1
|
Frühw W, Mairhofer M, Hahn A, Garn H, Waser M, Schmidt R, Benke T, Dal-Bianco P, Ransmayr G, Grossegger D, Roberts S, Dorffner G. Standardized low-resolution brain electromagnetic tomography does not improve EEG Alzheimer's disease assessment. Neuroimage 2025; 310:121144. [PMID: 40090555 DOI: 10.1016/j.neuroimage.2025.121144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 02/28/2025] [Accepted: 03/13/2025] [Indexed: 03/18/2025] Open
Abstract
Quantitative EEG has been shown to reflect neurodegenerative processes in Alzheimer's disease (AD) and may provide non-invasive and widely available biomarkers to enhance the objectivization of disease assessment. To address EEG's major drawback - its low spatial resolution - many studies have employed 3D source localization. However, none have investigated whether this complex mapping into 3D space actually adds value over standard surface derivation. In fact, we found no prior study - in any disease - that quantitatively compared the results of a 3D source localization method with those achieved by surface derivation. We analyzed data from one of the largest prospective AD EEG studies ever conducted (four study centers, 188 patients, 100 female). Thousands of distinct quantitative EEG markers of slowing, complexity, and functional connectivity were computed and regressed against disease severity, with rigorous control for multiple testing. We found highly significant associations between quantitative EEG markers and disease severity. However, standardized low-resolution electromagnetic tomography (sLORETA), a widely used 3D source localization method, did not improve results. Furthermore, a surface derivation marker (auto-mutual information of the left hemisphere during the eyes-closed condition) was the best performing marker across our entire sample. While our findings strongly support that quantitative EEG markers reflect neurodegenerative processes in AD, they do not demonstrate additional benefit from sLORETA. Importantly, our results are specific to AD and sLORETA. Therefore, they should not be generalized to other neurological or psychiatric disorders or to other 3D source localization methods without further validation. Finally, these findings do not diminish the value of 3D source localization for visual EEG inspection.
Collapse
Affiliation(s)
- Wolfgang Frühw
- Machine Learning Research Group, University of Oxford, Oxford, UK; Institute of Artificial Intelligence, Medical University of Vienna, Vienna, Austria.
| | - Martin Mairhofer
- Institute of Artificial Intelligence, Medical University of Vienna, Vienna, Austria
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Heinrich Garn
- AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - Markus Waser
- AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - Reinhold Schmidt
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Thomas Benke
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Peter Dal-Bianco
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Gerhard Ransmayr
- Department of Neurology 2, Kepler University Hospital, Linz, Austria
| | | | - Stephen Roberts
- Machine Learning Research Group, University of Oxford, Oxford, UK
| | - Georg Dorffner
- Institute of Artificial Intelligence, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Gogola A, Lopresti BJ, Minhas DS, Lopez O, Cohen A, Villemagne VL. Tau Imaging: Use and Implementation in New Diagnostic and Therapeutic Paradigms for Alzheimer's Disease. Geriatrics (Basel) 2025; 10:27. [PMID: 39997526 PMCID: PMC11855481 DOI: 10.3390/geriatrics10010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/24/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025] Open
Abstract
Alzheimer's disease (AD) affects an estimated 6.9 million older adults in the United States and is projected to impact as many as 13.8 million people by 2060. As studies continue to search for ways to combat the development and progression of AD, it is imperative to ensure that confident diagnoses can be made before the onset of severe clinical symptoms and new therapies can be evaluated effectively. Tau positron emission tomography (PET) has emerged as one method that may be capable of both, given its ability to recognize the presence of tau, a primary pathologic hallmark of AD; its usefulness in determining the spatial distribution of tau, which is necessary for differentiating AD from other tauopathies; and its association with measures of cognition. This review aims to evaluate the scope of tau PET's utility in clinical trials and practice. Firstly, the potential of using tau PET for differential diagnoses, distinguishing AD from other dementias, is considered. Next, the value of tau PET as a tool for staging disease progression is investigated. Finally, tau PET as a prognostic method for identifying the individuals most at risk of cognitive decline and, therefore, most in need of, and likely to benefit from, intervention, is discussed.
Collapse
Affiliation(s)
- Alexandra Gogola
- Department of Radiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (B.J.L.); (D.S.M.)
| | - Brian J. Lopresti
- Department of Radiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (B.J.L.); (D.S.M.)
| | - Davneet S. Minhas
- Department of Radiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (B.J.L.); (D.S.M.)
| | - Oscar Lopez
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Ann Cohen
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (A.C.); (V.L.V.)
| | - Victor L. Villemagne
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (A.C.); (V.L.V.)
| |
Collapse
|
3
|
Meyer AM, Snider SF, Faria AV, Tippett DC, Saloma R, Turkeltaub PE, Hillis AE, Friedman RB. Cortical and behavioral correlates of alexia in primary progressive aphasia and Alzheimer's disease. Neuropsychologia 2025; 207:109066. [PMID: 39756511 PMCID: PMC11847496 DOI: 10.1016/j.neuropsychologia.2025.109066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/07/2025]
Abstract
The underlying causes of reading impairment in neurodegenerative disease are not well understood. The current study seeks to determine the causes of surface alexia and phonological alexia in primary progressive aphasia (PPA) and typical (amnestic) Alzheimer's disease (AD). Participants included 24 with the logopenic variant (lvPPA), 17 with the nonfluent/agrammatic variant (nfvPPA), 12 with the semantic variant (svPPA), 19 with unclassifiable PPA (uPPA), and 16 with AD. Measures of Surface Alexia and Phonological Alexia were computed by subtracting control-condition word reading accuracy from irregular word reading and pseudoword reading accuracy, respectively. Cases of Surface Alexia were common in svPPA, lvPPA, uPPA, and AD, but not in nfvPPA. At the subgroup level, average Surface Alexia was significantly higher in svPPA, lvPPA, and uPPA, compared to unimpaired age-matched controls. Cases of Phonological Alexia were common in nfvPPA, lvPPA, and uPPA, and average Phonological Alexia was significantly higher in these subgroups, compared to unimpaired age-matched controls. Behavioral regression results indicated that Surface Alexia can be predicted by impairment in the lexical-semantic processing of nouns, suggesting that a lexical-semantic deficit is required for the development of surface alexia, while cortical volume regression results indicated that Surface Alexia can be predicted by reduced volume in the left Superior Temporal Pole, which has been associated with conceptual-semantic processing. Behavioral regression results indicated that Phonological Alexia can be predicted by impairment on Pseudoword Repetition, suggesting that this type of reading difficulty may be due to impaired phonological processing. The cortical volume regression results suggested that Phonological Alexia can be predicted by reduced volume within the left Inferior Temporal Gyrus and the left Angular Gyrus, areas that are associated with lexical-semantic processing and phonological processing, respectively.
Collapse
Affiliation(s)
- Aaron M Meyer
- Center for Aphasia Research and Rehabilitation, Georgetown University Medical Center, USA.
| | - Sarah F Snider
- Center for Aphasia Research and Rehabilitation, Georgetown University Medical Center, USA
| | | | - Donna C Tippett
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, USA; Department of Neurology, Johns Hopkins University, USA; Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, USA
| | - Ryan Saloma
- Center for Aphasia Research and Rehabilitation, Georgetown University Medical Center, USA
| | - Peter E Turkeltaub
- Center for Aphasia Research and Rehabilitation, Georgetown University Medical Center, USA
| | | | - Rhonda B Friedman
- Center for Aphasia Research and Rehabilitation, Georgetown University Medical Center, USA
| |
Collapse
|
4
|
Sun X, Zhu J, Li R, Peng Y, Gong L. The global research of magnetic resonance imaging in Alzheimer's disease: a bibliometric analysis from 2004 to 2023. Front Neurol 2025; 15:1510522. [PMID: 39882364 PMCID: PMC11774745 DOI: 10.3389/fneur.2024.1510522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025] Open
Abstract
Background Alzheimer's disease (AD) is a common neurodegenerative disorder worldwide and the using of magnetic resonance imaging (MRI) in the management of AD is increasing. The present study aims to summarize MRI in AD researches via bibliometric analysis and predict future research hotspots. Methods We searched for records related to MRI studies in AD patients from 2004 to 2023 in the Web of Science Core Collection (WoSCC) database. CiteSpace was applied to analyze institutions, references and keywords. VOSviewer was used for the analysis of countries, authors and journals. Results A total of 13,659 articles were obtained in this study. The number of published articles showed overall exponential growth from 2004 to 2023. The top country and institution were the United States and the University of California System, accounting for 40.30% and 9.88% of the total studies, respectively. Jack CR from the United States was the most productive author. The most productive journal was the Journal of Alzheimers Disease. Keyword burst analysis revealed that "machine learning" and "deep learning" were the keywords that frequently appeared in the past 6 years. Timeline views of the references revealed that "#0 tau pathology" and "#1 deep learning" are currently the latest research focuses. Conclusion This study provides an in-depth overview of publications on MRI studies in AD. The United States is the leading country in this field with a concentration of highly productive researchers and high-level institutions. The current research hotspot is deep learning, which is being applied to develop noninvasive diagnosis and safer treatment of AD.
Collapse
Affiliation(s)
- Xiaoyu Sun
- Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Intelligent Medical Imaging, Nanchang, China
| | - Jianghua Zhu
- Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Intelligent Medical Imaging, Nanchang, China
| | - Ruowei Li
- Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Intelligent Medical Imaging, Nanchang, China
| | - Yun Peng
- Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Intelligent Medical Imaging, Nanchang, China
| | - Lianggeng Gong
- Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Intelligent Medical Imaging, Nanchang, China
| |
Collapse
|
5
|
Shao Z, Gao X, Cen S, Tang X, Gong J, Ding W. Unveiling the link between glymphatic function and cortical microstructures in post-traumatic stress disorder. J Affect Disord 2024; 365:341-350. [PMID: 39178958 DOI: 10.1016/j.jad.2024.08.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 08/26/2024]
Abstract
PURPOSE The discovery of the glymphatic system, crucial for cerebrospinal and interstitial fluid exchange, has enhanced our grasp of brain protein balance and its potential role in neurodegenerative disease prevention and therapy. Detecting early neurodegenerative shifts via noninvasive biomarkers could be key in identifying at-risk individuals for Alzheimer's disease (AD). Our research explores a diffusion tensor imaging (DTI) method that measures cortical mean diffusivity (cMD), potentially a more sensitive indicator of neurodegeneration than traditional macrostructural methods. MATERIALS AND METHODS We analyzed 67 post-traumatic stress disorder (PTSD)-diagnosed veterans from the Alzheimer's Disease Neuroimaging Initiative database. Participants underwent structural MRI, DTI, Aβ PET imaging, and cognitive testing. We focused on the DTI-ALPS technique to assess glymphatic function and its relation to cMD, cortical Aβ accumulation, and thickness, accounting for age and APOE ε4 allele variations. RESULTS The cohort, all male with an average age of 68.1 (SD 3.4), showed a strong inverse correlation between DTI-ALPS and cMD in AD-affected regions, especially in the entorhinal, parahippocampal, and fusiform areas. Higher DTI-ALPS readings were consistently linked with greater cortical thickness, independent of Aβ deposits and genetic risk factors. Age and cMD emerged as inversely proportional predictors of DTI-ALPS, indicating a complex interaction with age. CONCLUSION The study confirms a meaningful association between glymphatic efficiency and cMD in AD-sensitive zones, accentuating cortical microstructural alterations in PTSD. It positions DTI-ALPS as a viable biomarker for assessing glymphatic function in PTSD, implicating changes in DTI-ALPS as indicative of glymphatic impairment.
Collapse
Affiliation(s)
- Zhiding Shao
- Department of Neurology, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Xue Gao
- Department of Neurology, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Si Cen
- Department of Neurology, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Xiaolei Tang
- Translational Medicine Center, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Juanyu Gong
- Department of Neurology, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China.
| | - Wencai Ding
- Department of Neurology, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China.
| |
Collapse
|
6
|
Sackl M, Tinauer C, Urschler M, Enzinger C, Stollberger R, Ropele S. Fully Automated Hippocampus Segmentation using T2-informed Deep Convolutional Neural Networks. Neuroimage 2024; 298:120767. [PMID: 39103064 DOI: 10.1016/j.neuroimage.2024.120767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024] Open
Abstract
Hippocampal atrophy (tissue loss) has become a fundamental outcome parameter in clinical trials on Alzheimer's disease. To accurately estimate hippocampus volume and track its volume loss, a robust and reliable segmentation is essential. Manual hippocampus segmentation is considered the gold standard but is extensive, time-consuming, and prone to rater bias. Therefore, it is often replaced by automated programs like FreeSurfer, one of the most commonly used tools in clinical research. Recently, deep learning-based methods have also been successfully applied to hippocampus segmentation. The basis of all approaches are clinically used T1-weighted whole-brain MR images with approximately 1 mm isotropic resolution. However, such T1 images show low contrast-to-noise ratios (CNRs), particularly for many hippocampal substructures, limiting delineation reliability. To overcome these limitations, high-resolution T2-weighted scans are suggested for better visualization and delineation, as they show higher CNRs and usually allow for higher resolutions. Unfortunately, such time-consuming T2-weighted sequences are not feasible in a clinical routine. We propose an automated hippocampus segmentation pipeline leveraging deep learning with T2-weighted MR images for enhanced hippocampus segmentation of clinical T1-weighted images based on a series of 3D convolutional neural networks and a specifically acquired multi-contrast dataset. This dataset consists of corresponding pairs of T1- and high-resolution T2-weighted images, with the T2 images only used to create more accurate manual ground truth annotations and to train the segmentation network. The T2-based ground truth labels were also used to evaluate all experiments by comparing the masks visually and by various quantitative measures. We compared our approach with four established state-of-the-art hippocampus segmentation algorithms (FreeSurfer, ASHS, HippoDeep, HippMapp3r) and demonstrated a superior segmentation performance. Moreover, we found that the automated segmentation of T1-weighted images benefits from the T2-based ground truth data. In conclusion, this work showed the beneficial use of high-resolution, T2-based ground truth data for training an automated, deep learning-based hippocampus segmentation and provides the basis for a reliable estimation of hippocampal atrophy in clinical studies.
Collapse
Affiliation(s)
- Maximilian Sackl
- Department of Neurology, Medical University of Graz, Austria; BioTechMed-Graz, Austria
| | | | - Martin Urschler
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Austria; BioTechMed-Graz, Austria
| | | | - Rudolf Stollberger
- Institute of Biomedical Imaging, Graz University of Technology, Austria; BioTechMed-Graz, Austria
| | - Stefan Ropele
- Department of Neurology, Medical University of Graz, Austria; BioTechMed-Graz, Austria.
| |
Collapse
|
7
|
Byeon JH, Byun MS, Yi D, Jung JH, Sohn BK, Chang YY, Kong N, Jung G, Ahn H, Lee JY, Lee YS, Kim YK, Lee DY. Moderation of thyroid hormones for the relationship between amyloid and tau pathology. Alzheimers Res Ther 2024; 16:164. [PMID: 39044293 PMCID: PMC11264392 DOI: 10.1186/s13195-024-01534-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Altered thyroid hormone levels have been associated with increased risk of Alzheimer's disease (AD) dementia and related cognitive decline. However, the neuropathological substrates underlying the link between thyroid hormones and AD dementia are not yet fully understood. We first investigated the association between serum thyroid hormone levels and in vivo AD pathologies including both beta-amyloid (Aβ) and tau deposition measured by positron emission tomography (PET). Given the well-known relationship between Aβ and tau pathology in AD, we additionally examined the moderating effects of thyroid hormone levels on the association between Aβ and tau deposition. METHODS This cross-sectional study was conducted as part of the Korean Brain Aging Study for Early Diagnosis and Prediction of Alzheimer's Disease (KBASE) cohort. This study included a total of 291 cognitively normal adults aged 55 to 90. All participants received comprehensive clinical assessments, measurements for serum total triiodothyronine (T3), free triiodothyronine (fT3), free thyroxine (fT4), and thyroid-stimulating hormone (TSH), and brain imaging evaluations including [11C]-Pittsburgh compound B (PiB)- PET and [18F] AV-1451 PET. RESULTS No associations were found between either thyroid hormones or TSH and Aβ and tau deposition on PET. However, fT4 (p = 0.002) and fT3 (p = 0.001) exhibited significant interactions with Aβ on tau deposition: The sensitivity analyses conducted after the removal of an outlier showed that the interaction effect between fT4 and Aβ deposition was not significant, whereas the interaction between fT3 and Aβ deposition remained significant. However, further subgroup analyses demonstrated a more pronounced positive relationship between Aβ and tau in both the higher fT4 and fT3 groups compared to the lower group, irrespective of outlier removal. Meanwhile, neither T3 nor TSH had any interaction with Aβ on tau deposition. CONCLUSION Our findings suggest that serum thyroid hormones may moderate the relationship between cerebral Aβ and tau pathology. Higher levels of serum thyroid hormones could potentially accelerate the Aβ-dependent tau deposition in the brain. Further replication studies in independent samples are needed to verify the current results.
Collapse
Affiliation(s)
- Jeong Hyeon Byeon
- Department of Neuropsychiatry, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
| | - Min Soo Byun
- Department of Neuropsychiatry, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Joon Hyung Jung
- Department of Psychiatry, Chungbuk National University Hospital, Cheongju, Republic of Korea
| | - Bo Kyung Sohn
- Department of Psychiatry, Inje University Sanggye Paik Hospital, Seoul, Republic of Korea
| | - Yoon Young Chang
- Department of Psychiatry, Inje University Sanggye Paik Hospital, Seoul, Republic of Korea
| | - Nayeong Kong
- Department of Psychiatry, Keimyung University Hospital, Daegu, Republic of Korea
| | - Gijung Jung
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Hyejin Ahn
- Interdisciplinary Program of Cognitive Science, Seoul National University, Seoul, Republic of Korea
| | - Jun-Young Lee
- Department of Psychiatry, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
- Department of Neuropsychiatry, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Yun-Sang Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Dong Young Lee
- Department of Neuropsychiatry, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea.
- Department of Psychiatry, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea.
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, Republic of Korea.
- Interdisciplinary Program of Cognitive Science, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Buchholz S, Zempel H. The six brain-specific TAU isoforms and their role in Alzheimer's disease and related neurodegenerative dementia syndromes. Alzheimers Dement 2024; 20:3606-3628. [PMID: 38556838 PMCID: PMC11095451 DOI: 10.1002/alz.13784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 04/02/2024]
Abstract
INTRODUCTION Alternative splicing of the human MAPT gene generates six brain-specific TAU isoforms. Imbalances in the TAU isoform ratio can lead to neurodegenerative diseases, underscoring the need for precise control over TAU isoform balance. Tauopathies, characterized by intracellular aggregates of hyperphosphorylated TAU, exhibit extensive neurodegeneration and can be classified by the TAU isoforms present in pathological accumulations. METHODS A comprehensive review of TAU and related dementia syndromes literature was conducted using PubMed, Google Scholar, and preprint server. RESULTS While TAU is recognized as key driver of neurodegeneration in specific tauopathies, the contribution of the isoforms to neuronal function and disease development remains largely elusive. DISCUSSION In this review we describe the role of TAU isoforms in health and disease, and stress the importance of comprehending and studying TAU isoforms in both, physiological and pathological context, in order to develop targeted therapeutic interventions for TAU-associated diseases. HIGHLIGHTS MAPT splicing is tightly regulated during neuronal maturation and throughout life. TAU isoform expression is development-, cell-type and brain region specific. The contribution of TAU to neurodegeneration might be isoform-specific. Ineffective TAU-based therapies highlight the need for specific targeting strategies.
Collapse
Affiliation(s)
- Sarah Buchholz
- Institute of Human GeneticsFaculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
- Present address:
Department Schaefer, Neurobiology of AgeingMax Planck Institute for Biology of AgeingCologneGermany
| | - Hans Zempel
- Institute of Human GeneticsFaculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
| |
Collapse
|
9
|
Basheer N, Buee L, Brion JP, Smolek T, Muhammadi MK, Hritz J, Hromadka T, Dewachter I, Wegmann S, Landrieu I, Novak P, Mudher A, Zilka N. Shaping the future of preclinical development of successful disease-modifying drugs against Alzheimer's disease: a systematic review of tau propagation models. Acta Neuropathol Commun 2024; 12:52. [PMID: 38576010 PMCID: PMC10993623 DOI: 10.1186/s40478-024-01748-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/21/2024] [Indexed: 04/06/2024] Open
Abstract
The transcellular propagation of the aberrantly modified protein tau along the functional brain network is a key hallmark of Alzheimer's disease and related tauopathies. Inoculation-based tau propagation models can recapitulate the stereotypical spread of tau and reproduce various types of tau inclusions linked to specific tauopathy, albeit with varying degrees of fidelity. With this systematic review, we underscore the significance of judicious selection and meticulous functional, biochemical, and biophysical characterization of various tau inocula. Furthermore, we highlight the necessity of choosing suitable animal models and inoculation sites, along with the critical need for validation of fibrillary pathology using confirmatory staining, to accurately recapitulate disease-specific inclusions. As a practical guide, we put forth a framework for establishing a benchmark of inoculation-based tau propagation models that holds promise for use in preclinical testing of disease-modifying drugs.
Collapse
Affiliation(s)
- Neha Basheer
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10, Bratislava, Slovakia
| | - Luc Buee
- Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, University of Lille, 59000, Lille, France.
| | - Jean-Pierre Brion
- Faculty of Medicine, Laboratory of Histology, Alzheimer and Other Tauopathies Research Group (CP 620), ULB Neuroscience Institute (UNI), Université Libre de Bruxelles, 808, Route de Lennik, 1070, Brussels, Belgium
| | - Tomas Smolek
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10, Bratislava, Slovakia
| | - Muhammad Khalid Muhammadi
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10, Bratislava, Slovakia
| | - Jozef Hritz
- CEITEC Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Tomas Hromadka
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10, Bratislava, Slovakia
| | - Ilse Dewachter
- Biomedical Research Institute, BIOMED, Hasselt University, 3500, Hasselt, Belgium
| | - Susanne Wegmann
- German Center for Neurodegenerative Diseases, Charitéplatz 1, 10117, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Isabelle Landrieu
- CNRS EMR9002 - BSI - Integrative Structural Biology, 59000, Lille, France
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, University of Lille, 59000, Lille, France
| | - Petr Novak
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10, Bratislava, Slovakia
| | - Amritpal Mudher
- School of Biological Sciences, Faculty of Environment and Life Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Norbert Zilka
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10, Bratislava, Slovakia.
- AXON Neuroscience R&D Services SE, Dubravska Cesta 9, 845 10, Bratislava, Slovakia.
| |
Collapse
|
10
|
Nakamura H, Noguchi-Shinohara M, Ishimiya-Jokaji M, Kobayashi Y, Isa M, Ide K, Kawano T, Kawashiri S, Uchida K, Tatewaki Y, Taki Y, Ohara T, Ninomiya T, Ono K. Brain atrophy in normal older adult links tooth loss and diet changes to future cognitive decline. NPJ AGING 2024; 10:20. [PMID: 38519528 PMCID: PMC10960014 DOI: 10.1038/s41514-024-00146-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/05/2024] [Indexed: 03/25/2024]
Abstract
Several studies have found associations between poor oral health, particularly tooth loss and cognitive decline. However, the specific brain regions affected by tooth loss and the probable causes remain unclear. We conducted a population-based longitudinal cohort study in Nakajima, Nanao City, Japan. Between 2016 and 2018, 2454 residents aged ≥60 participated, covering 92.9% of the local age demographics. This study used comprehensive approach by combining detailed dental examinations, dietary assessments, magnetic resonance imaging (MRI) analysis, and cognitive evaluations. Tooth loss, even in cognitively normal individuals, is associated with parahippocampal gyrus atrophy and increased WMH volume, both of which are characteristics of dementia. Tooth loss was associated with altered dietary patterns, notably a reduction in plant-based food intake and an increase in fatty, processed food intake. This study highlights a possible preventative pathway where oral health may play a significant role in preventing the early neuropathological shifts associated with dementia.
Collapse
Affiliation(s)
- Hiroyuki Nakamura
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan.
| | - Moeko Noguchi-Shinohara
- Department of Neurology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Mai Ishimiya-Jokaji
- Department of Oral and Maxillofacial Surgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Yutaka Kobayashi
- Department of Oral and Maxillofacial Surgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Mikana Isa
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Kentaro Ide
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Toshihiro Kawano
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Shuichi Kawashiri
- Department of Oral and Maxillofacial Surgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Kazuhiro Uchida
- Department of Health Promotion, School of Health and Nutrition Sciences, Nakamura-Gakuen University, Fukuoka, Japan
| | - Yasuko Tatewaki
- Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yasuyuki Taki
- Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Tomoyuki Ohara
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiharu Ninomiya
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenjiro Ono
- Department of Neurology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan.
| |
Collapse
|
11
|
Meyer P, Baeuchl C, Hoppstädter M. Insights from simultaneous EEG-fMRI and patient data illuminate the role of the anterior medial temporal lobe in N400 generation. Neuropsychologia 2024; 193:108762. [PMID: 38142959 DOI: 10.1016/j.neuropsychologia.2023.108762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/17/2023] [Accepted: 12/16/2023] [Indexed: 12/26/2023]
Abstract
The N400, a negative event-related potential (ERP) peaking approximately 400 ms after stimulus onset, is known to reflect the processing of semantic information. While scalp recordings have contributed to understanding the psychological processes underlying the N400, they have been limited in identifying its neural basis. However, recent intracranial ERP recordings and fMRI studies have shed light on the crucial role of the anterior medial temporal lobe (AMTL) in semantic information processing. These findings suggest that the N400 partially represents activity in the AMTL structures. To investigate the neural underpinnings of the N400 effect, we simultaneously recorded ERPs and event-related fMRI during a semantic priming paradigm in a sample of 12 young, healthy subjects. Additionally, we collected ERPs and structural brain data from older healthy adults and patients with amnestic mild cognitive impairment (aMCI), a population characterized by neurodegenerative changes in the AMTL. In our fMRI results, we identified bilateral loci in the AMTL as the global maxima. Employing an EEG-informed fMRI analysis, we explored trial-to-trial fluctuations in semantic processing by linking single-trial N400 amplitudes to the Blood Oxygen Level Dependent (BOLD) signal. This approach provided the first direct evidence linking the N400 recorded at the scalp level to the corresponding BOLD signal in the AMTL. Consistent with these findings, patients with aMCI exhibited a diminished N400 effect compared to healthy older adults. Furthermore, voxel-based morphometry analysis revealed a correlation between the magnitude of the N400 effect and the integrity of the AMTL. By integrating data from simultaneous EEG-fMRI, and patient studies, our research advances our understanding of the neural substrate of the N400 and highlights the critical involvement of the AMTL in semantic processing.
Collapse
Affiliation(s)
- Patric Meyer
- SRH University Heidelberg, Heidelberg, Germany; Department for General and Applied Linguistics, Heidelberg University, Heidelberg, Germany; Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Christian Baeuchl
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Michael Hoppstädter
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
12
|
Saleh O, Albakri K, Altiti A, Abutair I, Shalan S, Mohd OB, Negida A, Mushtaq G, Kamal MA. The Role of Non-coding RNAs in Alzheimer's Disease: Pathogenesis, Novel Biomarkers, and Potential Therapeutic Targets. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:731-745. [PMID: 37211844 DOI: 10.2174/1871527322666230519113201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 05/23/2023]
Abstract
Long non-coding RNAs (IncRNAs) are regulatory RNA transcripts that have recently been associated with the onset of many neurodegenerative illnesses, including Alzheimer's disease (AD). Several IncRNAs have been found to be associated with AD pathophysiology, each with a distinct mechanism. In this review, we focused on the role of IncRNAs in the pathogenesis of AD and their potential as novel biomarkers and therapeutic targets. Searching for relevant articles was done using the PubMed and Cochrane library databases. Studies had to be published in full text in English in order to be considered. Some IncRNAs were found to be upregulated, while others were downregulated. Dysregulation of IncRNAs expression may contribute to AD pathogenesis. Their effects manifest as the synthesis of beta-amyloid (Aβ) plaques increases, thereby altering neuronal plasticity, inducing inflammation, and promoting apoptosis. Despite the need for more investigations, IncRNAs could potentially increase the sensitivity of early detection of AD. Until now, there has been no effective treatment for AD. Hence, InRNAs are promising molecules and may serve as potential therapeutic targets. Although several dysregulated AD-associated lncRNAs have been discovered, the functional characterization of most lncRNAs is still lacking.
Collapse
Affiliation(s)
- Othman Saleh
- Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Khaled Albakri
- Faculty of Medicine, The Hashemite University, Zarqa, Jordan
- Medical Research Group of Egypt, Cairo, Egypt
| | | | - Iser Abutair
- Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Suhaib Shalan
- Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | | | - Ahmed Negida
- Medical Research Group of Egypt, Cairo, Egypt
- Department of Global Health and Social Medicine, Harvard Medical School, 641 Huntington Ave, Boston, MA, 02115, USA
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
- Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Gohar Mushtaq
- Center for Scientific Research, Faculty of Medicine, Idlib University, Idlib, Syria
| | - Mohammad A Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Sichuan, China
- King Fahd Medical Research Center, King Abdulaziz University, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia 1216, Bangladesh
- Enzymoics, 7 Peterlee place, Hebersham, NSW 2770, Novel Global Community Educational Foundation, Hebersham, Australia
| |
Collapse
|
13
|
Zheng C, Zhao W, Yang Z, Guo S. Functional connectome hierarchy dysfunction in Alzheimer's disease and its relationship with cognition and gene expression profiling. J Neurosci Res 2024; 102:e25280. [PMID: 38284860 DOI: 10.1002/jnr.25280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/21/2023] [Accepted: 11/16/2023] [Indexed: 01/30/2024]
Abstract
Numerous researches have shown that the human brain organizes as a continuum axis crossing from sensory motor to transmodal cortex. Functional network alterations were commonly found in Alzheimer's disease (AD). Whether the hierarchy of AD brain networks has changed and how these changes related to gene expression profiling and cognition is unclear. Using resting-state functional magnetic resonance imaging data from 233 subjects (185 AD patients and 48 healthy controls), we studied the changes in the functional network gradients in AD. Moreover, we investigated the relationships between gradient alterations and cognition, and gene expression profiling, respectively. We found that the second gradient organizes as a continuum axis crossing from the sensory motor to the transmodal cortex. Compared to the healthy controls, the secondary gradient scores of the visual and somatomotor network (SOM) increased significantly in AD, and the secondary gradient scores of default mode and frontoparietal network decreased significantly in AD. The secondary gradient scores of SOM and salience network (SAL) significantly positively correlated with memory function in AD. The secondary gradient in SAL also significantly positively correlated with language function. The AD-related second gradient alterations were spatially associated with the gene expression and the relevant genes enriched in neurobiology-related pathways, specially expressed in various tissues, cell types, and developmental stages. These findings suggested the changes in the functional network gradients in AD and deepened our understanding of the correlation between macroscopic gradient structure and microscopic gene expression profiling in AD.
Collapse
Affiliation(s)
- Chuchu Zheng
- School of Mathematics and Statistics, Hunan Normal University, Changsha, China
- Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha, China
| | - Wei Zhao
- School of Mathematics and Statistics, Hunan Normal University, Changsha, China
- Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha, China
| | - Zeyu Yang
- School of Mathematics and Statistics, Hunan Normal University, Changsha, China
- Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha, China
| | - Shuixia Guo
- School of Mathematics and Statistics, Hunan Normal University, Changsha, China
- Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha, China
| |
Collapse
|
14
|
Canet G, Rocaboy E, Diego-Diàz S, Whittington RA, Julien C, Planel E. Methods for Biochemical Isolation of Insoluble Tau in Rodent Models of Tauopathies. Methods Mol Biol 2024; 2754:323-341. [PMID: 38512674 DOI: 10.1007/978-1-0716-3629-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
The intracellular accumulation of microtubule-associated protein tau is a characteristic feature of tauopathies, a group of neurodegenerative diseases including Alzheimer's disease. Formation of insoluble tau aggregates is initiated by the abnormal hyperphosphorylation and oligomerization of tau. Over the past decades, multiple transgenic rodent models mimicking tauopathies have been develop, showcasing this neuropathological hallmark. The biochemical analysis of insoluble tau in these models has served as a valuable tool to understand the progression of tau-related pathology. In this chapter, we provide a comprehensive review of the two primary methods for isolating insoluble tau, namely, sarkosyl and formic acid extraction (and their variants), which are employed for biochemical analysis in transgenic mouse models of tauopathy. We also analyze the strengths and limitations of these methods.
Collapse
Affiliation(s)
- Geoffrey Canet
- Faculté de Médecine, Département de Psychiatrie et Neurosciences, Université Laval, Quebec, QC, Canada
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Quebec, QC, Canada
| | - Emma Rocaboy
- Faculté de Médecine, Département de Psychiatrie et Neurosciences, Université Laval, Quebec, QC, Canada
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Quebec, QC, Canada
| | - Sofia Diego-Diàz
- Faculté de Médecine, Département de Psychiatrie et Neurosciences, Université Laval, Quebec, QC, Canada
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Quebec, QC, Canada
| | - Robert A Whittington
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Carl Julien
- Centre de Recherche en Sciences Animales de Deschambault, Deschambault, QC, Canada
- Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Quebec, QC, Canada
| | - Emmanuel Planel
- Faculté de Médecine, Département de Psychiatrie et Neurosciences, Université Laval, Quebec, QC, Canada.
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Quebec, QC, Canada.
| |
Collapse
|
15
|
Liu Y, Wang Z, Wei T, Zhou S, Yin Y, Mi Y, Liu X, Tang Y. Alterations of Audiovisual Integration in Alzheimer's Disease. Neurosci Bull 2023; 39:1859-1872. [PMID: 37812301 PMCID: PMC10661680 DOI: 10.1007/s12264-023-01125-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/22/2023] [Indexed: 10/10/2023] Open
Abstract
Audiovisual integration is a vital information process involved in cognition and is closely correlated with aging and Alzheimer's disease (AD). In this review, we evaluated the altered audiovisual integrative behavioral symptoms in AD. We further analyzed the relationships between AD pathologies and audiovisual integration alterations bidirectionally and suggested the possible mechanisms of audiovisual integration alterations underlying AD, including the imbalance between energy demand and supply, activity-dependent degeneration, disrupted brain networks, and cognitive resource overloading. Then, based on the clinical characteristics including electrophysiological and imaging data related to audiovisual integration, we emphasized the value of audiovisual integration alterations as potential biomarkers for the early diagnosis and progression of AD. We also highlighted that treatments targeted audiovisual integration contributed to widespread pathological improvements in AD animal models and cognitive improvements in AD patients. Moreover, investigation into audiovisual integration alterations in AD also provided new insights and comprehension about sensory information processes.
Collapse
Affiliation(s)
- Yufei Liu
- Department of Neurology and Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, 100053, China
| | - Zhibin Wang
- Department of Neurology and Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, 100053, China
| | - Tao Wei
- Department of Neurology and Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, 100053, China
| | - Shaojiong Zhou
- Department of Neurology and Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, 100053, China
| | - Yunsi Yin
- Department of Neurology and Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, 100053, China
| | - Yingxin Mi
- Department of Neurology and Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, 100053, China
| | - Xiaoduo Liu
- Department of Neurology and Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, 100053, China
| | - Yi Tang
- Department of Neurology and Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, 100053, China.
| |
Collapse
|
16
|
Gogola A, Lopresti BJ, Tudorascu D, Snitz B, Minhas D, Doré V, Ikonomovic MD, Shaaban CE, Matan C, Bourgeat P, Mason NS, Aizenstein H, Mathis CA, Klunk WE, Rowe CC, Lopez OL, Cohen AD, Villemagne VL. Biostatistical Estimation of Tau Threshold Hallmarks (BETTH) Algorithm for Human Tau PET Imaging Studies. J Nucl Med 2023; 64:1798-1805. [PMID: 37709531 PMCID: PMC10626371 DOI: 10.2967/jnumed.123.265941] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/03/2023] [Indexed: 09/16/2023] Open
Abstract
A methodology for determining tau PET thresholds is needed to confidently detect early tau deposition. We compared multiple threshold-determining methods in participants who underwent either 18F-flortaucipir or 18F-MK-6240 PET scans. Methods: 18F-flortaucipir (n = 798) and 18F-MK-6240 (n = 216) scans were processed and sampled to obtain regional SUV ratios. Subsamples of the cohorts were based on participant diagnosis, age, amyloid-β status (positive or negative), and neurodegeneration status (positive or negative), creating older-adult (age ≥ 55 y) cognitively unimpaired (amyloid-β-negative, neurodegeneration-negative) and cognitively impaired (mild cognitive impairment/Alzheimer disease, amyloid-β-positive, neurodegeneration-positive) groups, and then were further subsampled via matching to reduce significant differences in diagnostic prevalence, age, and Mini-Mental State Examination score. We used the biostatistical estimation of tau threshold hallmarks (BETTH) algorithm to determine sensitivity and specificity in 6 composite regions. Results: Parametric double receiver operating characteristic analysis yielded the greatest joint sensitivity in 5 of the 6 regions, whereas hierarchic clustering, gaussian mixture modeling, and k-means clustering all yielded perfect joint specificity (2.00) in all regions. Conclusion: When 18F-flortaucipir and 18F-MK-6240 are used, Alzheimer disease-related tau status is best assessed using 2 thresholds, a sensitivity one based on parametric double receiver operating characteristic analysis and a specificity one based on gaussian mixture modeling, delimiting an uncertainty zone indicating participants who may require further evaluation.
Collapse
Affiliation(s)
- Alexandra Gogola
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania;
| | - Brian J Lopresti
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Dana Tudorascu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Beth Snitz
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Davneet Minhas
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Vincent Doré
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Victoria, Australia
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Melbourne, Victoria, Australia
| | - Milos D Ikonomovic
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Geriatric Research Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania; and
| | - C Elizabeth Shaaban
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Cristy Matan
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Pierrick Bourgeat
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Melbourne, Victoria, Australia
| | - N Scott Mason
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Howard Aizenstein
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Chester A Mathis
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - William E Klunk
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Christopher C Rowe
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Victoria, Australia
| | - Oscar L Lopez
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ann D Cohen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Victor L Villemagne
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Victoria, Australia
| |
Collapse
|
17
|
Hrybouski S, Das SR, Xie L, Wisse LEM, Kelley M, Lane J, Sherin M, DiCalogero M, Nasrallah I, Detre J, Yushkevich PA, Wolk DA. Aging and Alzheimer's disease have dissociable effects on local and regional medial temporal lobe connectivity. Brain Commun 2023; 5:fcad245. [PMID: 37767219 PMCID: PMC10521906 DOI: 10.1093/braincomms/fcad245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/06/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Functional disruption of the medial temporal lobe-dependent networks is thought to underlie episodic memory deficits in aging and Alzheimer's disease. Previous studies revealed that the anterior medial temporal lobe is more vulnerable to pathological and neurodegenerative processes in Alzheimer's disease. In contrast, cognitive and structural imaging literature indicates posterior, as opposed to anterior, medial temporal lobe vulnerability in normal aging. However, the extent to which Alzheimer's and aging-related pathological processes relate to functional disruption of the medial temporal lobe-dependent brain networks is poorly understood. To address this knowledge gap, we examined functional connectivity alterations in the medial temporal lobe and its immediate functional neighbourhood-the Anterior-Temporal and Posterior-Medial brain networks-in normal agers, individuals with preclinical Alzheimer's disease and patients with Mild Cognitive Impairment or mild dementia due to Alzheimer's disease. In the Anterior-Temporal network and in the perirhinal cortex, in particular, we observed an inverted 'U-shaped' relationship between functional connectivity and Alzheimer's stage. According to our results, the preclinical phase of Alzheimer's disease is characterized by increased functional connectivity between the perirhinal cortex and other regions of the medial temporal lobe, as well as between the anterior medial temporal lobe and its one-hop neighbours in the Anterior-Temporal system. This effect is no longer present in symptomatic Alzheimer's disease. Instead, patients with symptomatic Alzheimer's disease displayed reduced hippocampal connectivity within the medial temporal lobe as well as hypoconnectivity within the Posterior-Medial system. For normal aging, our results led to three main conclusions: (i) intra-network connectivity of both the Anterior-Temporal and Posterior-Medial networks declines with age; (ii) the anterior and posterior segments of the medial temporal lobe become increasingly decoupled from each other with advancing age; and (iii) the posterior subregions of the medial temporal lobe, especially the parahippocampal cortex, are more vulnerable to age-associated loss of function than their anterior counterparts. Together, the current results highlight evolving medial temporal lobe dysfunction in Alzheimer's disease and indicate different neurobiological mechanisms of the medial temporal lobe network disruption in aging versus Alzheimer's disease.
Collapse
Affiliation(s)
- Stanislau Hrybouski
- Penn Image Computing and Science Laboratory (PICSL), University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sandhitsu R Das
- Penn Image Computing and Science Laboratory (PICSL), University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Memory Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Alzheimer’s Disease Research Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Long Xie
- Penn Image Computing and Science Laboratory (PICSL), University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laura E M Wisse
- Penn Image Computing and Science Laboratory (PICSL), University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Diagnostic Radiology, Lund University, 221 00 Lund, Sweden
| | - Melissa Kelley
- Penn Memory Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jacqueline Lane
- Penn Memory Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Monica Sherin
- Penn Memory Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael DiCalogero
- Penn Memory Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ilya Nasrallah
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Alzheimer’s Disease Research Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John Detre
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul A Yushkevich
- Penn Image Computing and Science Laboratory (PICSL), University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Alzheimer’s Disease Research Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David A Wolk
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Alzheimer’s Disease Research Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
18
|
Garland EF, Dennett O, Lau LC, Chatelet DS, Bottlaender M, Nicoll JAR, Boche D. The mitochondrial protein TSPO in Alzheimer's disease: relation to the severity of AD pathology and the neuroinflammatory environment. J Neuroinflammation 2023; 20:186. [PMID: 37580767 PMCID: PMC10424356 DOI: 10.1186/s12974-023-02869-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023] Open
Abstract
The 18kD translocator protein (TSPO) is used as a positron emission tomography (PET) target to quantify neuroinflammation in patients. In Alzheimer's disease (AD), the cerebellum is the pseudo-reference region for comparison with the cerebral cortex due to the absence of AD pathology and lower levels of TSPO. However, using the cerebellum as a pseudo-reference region is debated, with other brain regions suggested as more suitable. This paper aimed to establish the neuroinflammatory differences between the temporal cortex and cerebellar cortex, including TSPO expression. Using 60 human post-mortem samples encompassing the spectrum of Braak stages (I-VI), immunostaining for pan-Aβ, hyperphosphorylated (p)Tau, TSPO and microglial proteins Iba1, HLA-DR and MSR-A was performed in the temporal cortex and cerebellum. In the cerebellum, Aβ but not pTau, increased over the course of the disease, in contrast to the temporal cortex, where both proteins were significantly increased. TSPO increased in the temporal cortex, more than twofold in the later stages of AD compared to the early stages, but not in the cerebellum. Conversely, Iba1 increased in the cerebellum, but not in the temporal cortex. TSPO was associated with pTau in the temporal cortex, suggesting that TSPO positive microglia may be reacting to pTau itself and/or neurodegeneration at later stages of AD. Furthermore, the neuroinflammatory microenvironment was examined, using MesoScale Discovery assays, and IL15 only was significantly increased in the temporal cortex. Together this data suggests that the cerebellum maintains a more homeostatic environment compared to the temporal cortex, with a consistent TSPO expression, supporting its use as a pseudo-reference region for quantification in TSPO PET scans.
Collapse
Affiliation(s)
- Emma F Garland
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - Oliver Dennett
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - Laurie C Lau
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - David S Chatelet
- Biomedical Imaging Unit, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - Michel Bottlaender
- CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frederic Joliot, Paris-Sacaly University, 91400, Orsay, France
- UNIACT Neurospin, CEA, Gif-Sur-Yvette, 91191, France
| | - James A R Nicoll
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK
- Department of Cellular Pathology, University Hospital Southampton NHS Trust, Southampton, SO16 6YD, UK
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK.
| |
Collapse
|
19
|
López-Pérez J, García-Herranz S, Díaz-Mardomingo MDC. Acquisition and consolidation of verbal learning and episodic memory as predictors of the conversion from mild cognitive impairment to probable Alzheimer's disease. NEUROPSYCHOLOGY, DEVELOPMENT, AND COGNITION. SECTION B, AGING, NEUROPSYCHOLOGY AND COGNITION 2023; 30:638-653. [PMID: 35475773 DOI: 10.1080/13825585.2022.2069670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Verbal episodic memory tests assess memory performance using total learning scores. The analysis of inter-trial indices such as gained (GA) and lost (LA) access can provide additional information on the acquisition and consolidation processes. The main objetive was to determine whether the GA and LA indices, derived from a word-list verbal episodic memory test are useful for predicting cognitive impairment in aging. 60 older people aged was divided into 3 groups: cognitively healthy, stable Mild Cognitive Impairment (MCI) and MCI converting to probable Alzheimer's disease (MCI-conv). The results showed that GA and LA measures are independent from the traditional measures -total score of correct answers-. Logistic regression showed that these values are predictive of the conversion over time and could be a cognitive marker of conversion from MCI to AD. This suggests that the GA index, which shows acquisition processes in word-list tests, may be a marker of cognitive impairment.
Collapse
Affiliation(s)
- Jorge López-Pérez
- Department of Basic Psychology I, Faculty of Psychology, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - Sara García-Herranz
- Department of Basic Psychology II, Faculty of Psychology, Universidad Nacional de Educación a Distancia, Madrid, Spain
- Instituto Mixto de Investigación-Escuela Nacional de Sanidad (IMIENS), Madrid, Spain
| | - María Del Carmen Díaz-Mardomingo
- Department of Basic Psychology I, Faculty of Psychology, Universidad Nacional de Educación a Distancia, Madrid, Spain
- Instituto Mixto de Investigación-Escuela Nacional de Sanidad (IMIENS), Madrid, Spain
| |
Collapse
|
20
|
Villemagne VL, Leuzy A, Bohorquez SS, Bullich S, Shimada H, Rowe CC, Bourgeat P, Lopresti B, Huang K, Krishnadas N, Fripp J, Takado Y, Gogola A, Minhas D, Weimer R, Higuchi M, Stephens A, Hansson O, Doré V. CenTauR: Toward a universal scale and masks for standardizing tau imaging studies. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12454. [PMID: 37424964 PMCID: PMC10326476 DOI: 10.1002/dad2.12454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 07/11/2023]
Abstract
INTRODUCTION Recently, an increasing number of tau tracers have become available. There is a need to standardize quantitative tau measures across tracers, supporting a universal scale. We developed several cortical tau masks and applied them to generate a tau imaging universal scale. METHOD One thousand forty-five participants underwent tau scans with either 18F-flortaucipir, 18F-MK6240, 18F-PI2620, 18F-PM-PBB3, 18F-GTP1, or 18F-RO948. The universal mask was generated from cognitively unimpaired amyloid beta (Aβ)- subjects and Alzheimer's disease (AD) patients with Aβ+. Four additional regional cortical masks were defined within the constraints of the universal mask. A universal scale, the CenTauRz, was constructed. RESULTS None of the regions known to display off-target signal were included in the masks. The CenTauRz allows robust discrimination between low and high levels of tau deposits. DISCUSSION We constructed several tau-specific cortical masks for the AD continuum and a universal standard scale designed to capture the location and degree of abnormality that can be applied across tracers and across centers. The masks are freely available at https://www.gaain.org/centaur-project.
Collapse
Affiliation(s)
- Victor L. Villemagne
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Molecular Imaging & TherapyAustin HealthMelbourneVictoriaAustralia
| | - Antoine Leuzy
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityMalmöSweden
| | | | | | - Hitoshi Shimada
- Department of Functional Brain ImagingNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
- Brain Research InstituteNiigata UniversityNiigataJapan
| | - Christopher C. Rowe
- Department of Molecular Imaging & TherapyAustin HealthMelbourneVictoriaAustralia
- Florey Department of Neurosciences & Mental HealthThe University of MelbourneMelbourneParkvilleAustralia
- The Australian Dementia Network (ADNeT)MelbourneVictoriaAustralia
| | - Pierrick Bourgeat
- Health and Biosecurity FlagshipThe Australian eHealth Research CentreCSIROBrisbaneQueenslandAustralia
| | - Brian Lopresti
- Department of RadiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Kun Huang
- Department of Molecular Imaging & TherapyAustin HealthMelbourneVictoriaAustralia
| | - Natasha Krishnadas
- Department of Molecular Imaging & TherapyAustin HealthMelbourneVictoriaAustralia
- Florey Institute of Neurosciences & Mental HealthParkvilleVictoriaAustralia
| | - Jurgen Fripp
- Health and Biosecurity FlagshipThe Australian eHealth Research CentreCSIROBrisbaneQueenslandAustralia
| | - Yuhei Takado
- Department of Functional Brain ImagingNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Alexandra Gogola
- Department of RadiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Davneet Minhas
- Department of RadiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | | | - Makoto Higuchi
- Department of Functional Brain ImagingNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | | | - Oskar Hansson
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityMalmöSweden
- Memory ClinicSkåne University HospitalMalmöSweden
| | - Vincent Doré
- Department of Molecular Imaging & TherapyAustin HealthMelbourneVictoriaAustralia
- Health and Biosecurity FlagshipThe Australian eHealth Research CentreCSIROHeidelbergVictoriaAustralia
| | | |
Collapse
|
21
|
Martinez Villar G, Daneault V, Martineau-Dussault MÈ, Baril AA, Gagnon K, Lafond C, Gilbert D, Thompson C, Marchi NA, Lina JM, Montplaisir J, Carrier J, Gosselin N, André C. Altered resting-state functional connectivity patterns in late middle-aged and older adults with obstructive sleep apnea. Front Neurol 2023; 14:1215882. [PMID: 37470008 PMCID: PMC10353887 DOI: 10.3389/fneur.2023.1215882] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/05/2023] [Indexed: 07/21/2023] Open
Abstract
Introduction Obstructive sleep apnea (OSA) is increasingly recognized as a risk factor for cognitive decline, and has been associated with structural brain alterations in regions relevant to memory processes and Alzheimer's disease. However, it is unclear whether OSA is associated with disrupted functional connectivity (FC) patterns between these regions in late middle-aged and older populations. Thus, we characterized the associations between OSA severity and resting-state FC between the default mode network (DMN) and medial temporal lobe (MTL) regions. Second, we explored whether significant FC changes differed depending on cognitive status and were associated with cognitive performance. Methods Ninety-four participants [24 women, 65.7 ± 6.9 years old, 41% with Mild Cognitive Impairment (MCI)] underwent a polysomnography, a comprehensive neuropsychological assessment and a resting-state functional magnetic resonance imaging (MRI). General linear models were conducted between OSA severity markers (i.e., the apnea-hypopnea, oxygen desaturation and microarousal indices) and FC values between DMN and MTL regions using CONN toolbox. Partial correlations were then performed between OSA-related FC patterns and (i) OSA severity markers in subgroups stratified by cognitive status (i.e., cognitively unimpaired versus MCI) and (ii) cognitive scores in the whole sample. All analyzes were controlled for age, sex and education, and considered significant at a p < 0.05 threshold corrected for false discovery rate. Results In the whole sample, a higher apnea-hypopnea index was significantly associated with lower FC between (i) the medial prefrontal cortex and bilateral hippocampi, and (ii) the left hippocampus and both the posterior cingulate cortex and precuneus. FC patterns were not associated with the oxygen desaturation index, or micro-arousal index. When stratifying the sample according to cognitive status, all associations remained significant in cognitively unimpaired individuals but not in the MCI group. No significant associations were observed between cognition and OSA severity or OSA-related FC patterns. Discussion OSA severity was associated with patterns of lower FC in regions relevant to memory processes and Alzheimer's disease. Since no associations were found with cognitive performance, these FC changes could precede detectable cognitive deficits. Whether these FC patterns predict future cognitive decline over the long-term needs to be investigated.
Collapse
Affiliation(s)
- Guillermo Martinez Villar
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
- Department of Psychology, Université de Montréal, Montréal, QC, Canada
| | - Véronique Daneault
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
| | - Marie-Ève Martineau-Dussault
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
- Department of Psychology, Université de Montréal, Montréal, QC, Canada
| | - Andrée-Ann Baril
- Douglas Mental Health Institute, McGill University, Montréal, QC, Canada
| | - Katia Gagnon
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
- Laboratory and Sleep Clinic, Hôpital en Santé Mentale Rivière-des-Prairies, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
| | - Chantal Lafond
- Department of Pulmonology, Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Danielle Gilbert
- Department of Radiology, Radio-Oncology and Nuclear Medicine, Université de Montréal, QC, Canada
- Department of Radiology, Hopital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l'Ile-de, Montréal, QC, Canada
| | - Cynthia Thompson
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
| | - Nicola Andrea Marchi
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
- Department of Psychology, Université de Montréal, Montréal, QC, Canada
- Center for Investigation and Research in Sleep, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Laboratory for Research in Neuroimaging, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jean-Marc Lina
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
- Département de Génie Electrique, École de Technologie Supérieure, Montréal, QC, Canada
| | - Jacques Montplaisir
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
- Department of Psychiatry, Université de Montréal, Montréal, QC, Canada
| | - Julie Carrier
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
- Department of Psychology, Université de Montréal, Montréal, QC, Canada
| | - Nadia Gosselin
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
- Department of Psychology, Université de Montréal, Montréal, QC, Canada
| | - Claire André
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
- Department of Psychology, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
22
|
Meyer AM, Snider SF, Tippett DC, Saloma R, Turkeltaub PE, Hillis AE, Friedman RB. Baseline Conceptual-Semantic Impairment Predicts Longitudinal Treatment Effects for Anomia in Primary Progressive Aphasia and Alzheimer's Disease. APHASIOLOGY 2023; 38:205-236. [PMID: 38283767 PMCID: PMC10809875 DOI: 10.1080/02687038.2023.2183075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 02/16/2023] [Indexed: 01/30/2024]
Abstract
Background An individual's diagnostic subtype may fail to predict the efficacy of a given type of treatment for anomia. Classification by conceptual-semantic impairment may be more informative. Aims This study examined the effects of conceptual-semantic impairment and diagnostic subtype on anomia treatment effects in primary progressive aphasia (PPA) and Alzheimer's disease (AD). Methods & Procedures At baseline, the picture and word versions of the Pyramids and Palm Trees and Kissing and Dancing tests were used to measure conceptual-semantic processing. Based on norming that was conducted with unimpaired older adults, participants were classified as being impaired on both the picture and word versions (i.e., modality-general conceptual-semantic impairment), the picture version (Objects or Actions) only (i.e., visual-conceptual impairment), the word version (Nouns or Verbs) only (i.e., lexical-semantic impairment), or neither the picture nor the word version (i.e., no impairment). Following baseline testing, a lexical treatment and a semantic treatment were administered to all participants. The treatment stimuli consisted of nouns and verbs that were consistently named correctly at baseline (Prophylaxis items) and/or nouns and verbs that were consistently named incorrectly at baseline (Remediation items). Naming accuracy was measured at baseline, and it was measured at three, seven, eleven, fourteen, eighteen, and twenty-one months. Outcomes & Results Compared to baseline naming performance, lexical and semantic treatments both improved naming accuracy for treated Remediation nouns and verbs. For Prophylaxis items, lexical treatment was effective for both nouns and verbs, and semantic treatment was effective for verbs, but the pattern of results was different for nouns -- the effect of semantic treatment was initially nonsignificant or marginally significant, but it was significant beginning at 11 Months, suggesting that the effects of prophylactic semantic treatment may become more apparent as the disorder progresses. Furthermore, the interaction between baseline Conceptual-Semantic Impairment and the Treatment Condition (Lexical vs. Semantic) was significant for verb Prophylaxis items at 3 and 18 Months, and it was significant for noun Prophylaxis items at 14 and 18 Months. Conclusions The pattern of results suggested that individuals who have modality-general conceptual-semantic impairment at baseline are more likely to benefit from lexical treatment, while individuals who have unimpaired conceptual-semantic processing at baseline are more likely to benefit from semantic treatment as the disorder progresses. In contrast to conceptual-semantic impairment, diagnostic subtype did not typically predict the treatment effects.
Collapse
Affiliation(s)
- Aaron M. Meyer
- Center for Aphasia Research and Rehabilitation, Georgetown University Medical Center
| | - Sarah F. Snider
- Center for Aphasia Research and Rehabilitation, Georgetown University Medical Center
| | | | - Ryan Saloma
- Center for Aphasia Research and Rehabilitation, Georgetown University Medical Center
| | - Peter E. Turkeltaub
- Center for Aphasia Research and Rehabilitation, Georgetown University Medical Center
| | | | - Rhonda B. Friedman
- Center for Aphasia Research and Rehabilitation, Georgetown University Medical Center
| |
Collapse
|
23
|
Hu X, Meier M, Pruessner J. Challenges and opportunities of diagnostic markers of Alzheimer's disease based on structural magnetic resonance imaging. Brain Behav 2023; 13:e2925. [PMID: 36795041 PMCID: PMC10013953 DOI: 10.1002/brb3.2925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/04/2023] [Indexed: 02/17/2023] Open
Abstract
OBJECTIVES This article aimed to carry out a narrative literature review of early diagnostic markers of Alzheimer's disease (AD) based on both micro and macro levels of pathology, indicating the shortcomings of current biomarkers and proposing a novel biomarker of structural integrity that associates the hippocampus and adjacent ventricle together. This could help to reduce the influence of individual variety and improve the accuracy and validity of structural biomarker. METHODS This review was based on presenting comprehensive background of early diagnostic markers of AD. We have compiled those markers into micro level and macro level, and discussed the advantages and disadvantages of them. Eventually the ratio of gray matter volume to ventricle volume was put forward. RESULTS The costly methodologies and related high patient burden of "micro" biomarkers (cerebrospinal fluid biomarkers) hinder the implementation in routine clinical examination. In terms of "macro" biomarkers- hippocampal volume (HV), there is a large variation of it among population, which undermines its validity Considering the gray matter atrophies while the adjacent ventricular volume enlarges, we assume the hippocampal to ventricle ratio (HVR) is a more reliable marker than HV alone the emerging evidence showed hippocampal to ventricle ratio predicts memory functions better than HV alone in elderly sample. CONCLUSIONS The ratio between gray matter structures and adjacent ventricular volumes counts as a promising superior diagnostic marker of early neurodegeneration.
Collapse
Affiliation(s)
- Xiang Hu
- Department of Psychology, University of Konstanz, Konstanz, Germany
| | - Maria Meier
- Department of Psychology, University of Konstanz, Konstanz, Germany
| | - Jens Pruessner
- Department of Psychology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
24
|
I F. The unique neuropathological vulnerability of the human brain to aging. Ageing Res Rev 2023; 87:101916. [PMID: 36990284 DOI: 10.1016/j.arr.2023.101916] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Alzheimer's disease (AD)-related neurofibrillary tangles (NFT), argyrophilic grain disease (AGD), aging-related tau astrogliopathy (ARTAG), limbic predominant TDP-43 proteinopathy (LATE), and amygdala-predominant Lewy body disease (LBD) are proteinopathies that, together with hippocampal sclerosis, progressively appear in the elderly affecting from 50% to 99% of individuals aged 80 years, depending on the disease. These disorders usually converge on the same subject and associate with additive cognitive impairment. Abnormal Tau, TDP-43, and α-synuclein pathologies progress following a pattern consistent with an active cell-to-cell transmission and abnormal protein processing in the host cell. However, cell vulnerability and transmission pathways are specific for each disorder, albeit abnormal proteins may co-localize in particular neurons. All these alterations are unique or highly prevalent in humans. They all affect, at first, the archicortex and paleocortex to extend at later stages to the neocortex and other regions of the telencephalon. These observations show that the phylogenetically oldest areas of the human cerebral cortex and amygdala are not designed to cope with the lifespan of actual humans. New strategies aimed at reducing the functional overload of the human telencephalon, including optimization of dream repair mechanisms and implementation of artificial circuit devices to surrogate specific brain functions, appear promising.
Collapse
Affiliation(s)
- Ferrer I
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain; Emeritus Researcher of the Bellvitge Institute of Biomedical Research (IDIBELL), Barcelona, Spain; Biomedical Research Network of Neurodegenerative Diseases (CIBERNED), Barcelona, Spain; Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
25
|
Abe S, Onoda K, Takamura M, Nitta E, Nagai A, Yamaguchi S. Altered Feedback-Related Negativity in Mild Cognitive Impairment. Brain Sci 2023; 13:brainsci13020203. [PMID: 36831745 PMCID: PMC9953936 DOI: 10.3390/brainsci13020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
INTRODUCTION Feedback-related negativity (FRN) is electrical brain activity related to the function of monitoring behavior and its outcome. FRN is generated by negative feedback input, such as punishment or monetary loss, and its potential is distributed maximally over the frontal-central part of the skull. Our previous study demonstrated that FRN latency was delayed and that the amplitude was increased in patients with mild Alzheimer's disease (AD). As mild cognitive impairment (MCI) is considered to be a prodromal stage of AD, we speculated that FRN would also be altered in MCI, as in AD. The aim of this study is to examine whether MCI patients showed changes in FRN during a gambling task. METHODS Thirteen MCI patients and thirteen age-matched healthy elderly individuals participated in a simple gambling task and underwent neuro-psychological assessments. The participants were asked to choose one out of two options and randomly received positive or negative feedback to their response. An EEG was recorded during the task, and FRN was obtained by subtracting the positive feedback-related activity from the negative feedback-related activity. RESULTS The reaction time to probe stimuli was comparable in the two groups. The group comparisons revealed that the FRN amplitude was significantly larger for the MCI group than for the healthy elderly (F(1,24) = 6.4, ηp2 = 0.22, p = 0.019), but there was no group difference in the FRN latency. The FRN amplitude at the frontocentral electrode positively correlated with the mini-mental state examination score (Spearman's rhopartial = 0.41, p = 0.043). The finding of increased FRN amplitude in MCI was consistent with the previous finding in AD. CONCLUSION Our findings indicate that monitoring dysfunction might also be involved in the prodromal stage of dementia.
Collapse
Affiliation(s)
- Satoshi Abe
- Department of Neurology, Faculty of Medicine, Shimane University, Izumo, Shimane 693-8501, Japan
- Correspondence:
| | - Keiichi Onoda
- Department of Psychology, Otemon Gakuin University, Ibaraki, Osaka 567-8502, Japan
| | - Masahiro Takamura
- Department of Neurology, Faculty of Medicine, Shimane University, Izumo, Shimane 693-8501, Japan
| | - Eri Nitta
- Laboratory Medicine, Shimane University Hospital, Izumo, Shimane 693-8501, Japan
| | - Atsushi Nagai
- Department of Neurology, Faculty of Medicine, Shimane University, Izumo, Shimane 693-8501, Japan
| | - Shuhei Yamaguchi
- Department of Neurology, Shimane Prefectural Central Hospital, Izumo, Shimane 693-8555, Japan
| |
Collapse
|
26
|
Hrybouski S, Das SR, Xie L, Wisse LEM, Kelley M, Lane J, Sherin M, DiCalogero M, Nasrallah I, Detre JA, Yushkevich PA, Wolk DA. Aging and Alzheimer's Disease Have Dissociable Effects on Medial Temporal Lobe Connectivity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.18.23284749. [PMID: 36711782 PMCID: PMC9882834 DOI: 10.1101/2023.01.18.23284749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Functional disruption of the medial temporal lobe-dependent networks is thought to underlie episodic memory deficits in aging and Alzheimer's disease. Previous studies revealed that the anterior medial temporal lobe is more vulnerable to pathological and neurodegenerative processes in Alzheimer's disease. In contrast, cognitive and structural imaging literature indicates posterior, as opposed to anterior, medial temporal lobe vulnerability in normal aging. However, the extent to which Alzheimer's and aging-related pathological processes relate to functional disruption of the medial temporal lobe-dependent brain networks is poorly understood. To address this knowledge gap, we examined functional connectivity alterations in the medial temporal lobe and its immediate functional neighborhood - the Anterior-Temporal and Posterior-Medial brain networks - in normal agers, individuals with preclinical Alzheimer's disease, and patients with Mild Cognitive Impairment or mild dementia due to Alzheimer's disease. In the Anterior-Temporal network and in the perirhinal cortex, in particular, we observed an inverted 'U-shaped' relationship between functional connectivity and Alzheimer's stage. According to our results, the preclinical phase of Alzheimer's disease is characterized by increased functional connectivity between the perirhinal cortex and other regions of the medial temporal lobe, as well as between the anterior medial temporal lobe and its one-hop neighbors in the Anterior-Temporal system. This effect is no longer present in symptomatic Alzheimer's disease. Instead, patients with symptomatic Alzheimer's disease displayed reduced hippocampal connectivity within the medial temporal lobe as well as hypoconnectivity within the Posterior-Medial system. For normal aging, our results led to three main conclusions: (1) intra-network connectivity of both the Anterior-Temporal and Posterior-Medial networks declines with age; (2) the anterior and posterior segments of the medial temporal lobe become increasingly decoupled from each other with advancing age; and, (3) the posterior subregions of the medial temporal lobe, especially the parahippocampal cortex, are more vulnerable to age-associated loss of function than their anterior counterparts. Together, the current results highlight evolving medial temporal lobe dysfunction in Alzheimer's disease and indicate different neurobiological mechanisms of the medial temporal lobe network disruption in aging vs. Alzheimer's disease.
Collapse
|
27
|
Dong H, Guo L, Yang H, Zhu W, Liu F, Xie Y, Zhang Y, Xue K, Li Q, Liang M, Zhang N, Qin W. Association between gray matter atrophy, cerebral hypoperfusion, and cognitive impairment in Alzheimer's disease. Front Aging Neurosci 2023; 15:1129051. [PMID: 37091519 PMCID: PMC10117777 DOI: 10.3389/fnagi.2023.1129051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/15/2023] [Indexed: 04/25/2023] Open
Abstract
Background Alzheimer's disease (AD) is one of the most severe neurodegenerative diseases leading to dementia in the elderly. Cerebral atrophy and hypoperfusion are two important pathophysiological characteristics. However, it is still unknown about the area-specific causal pathways between regional gray matter atrophy, cerebral hypoperfusion, and cognitive impairment in AD patients. Method Forty-two qualified AD patients and 49 healthy controls (HC) were recruited in this study. First, we explored voxel-wise inter-group differences in gray matter volume (GMV) and arterial spin labeling (ASL) -derived cerebral blood flow (CBF). Then we explored the voxel-wise associations between GMV and Mini-Mental State Examination (MMSE) score, GMV and CBF, and CBF and MMSE to identify brain targets contributing to cognitive impairment in AD patients. Finally, a mediation analysis was applied to test the causal pathways among atrophied GMV, hypoperfusion, and cognitive impairment in AD. Results Voxel-wise permutation test identified that the left middle temporal gyrus (MTG) had both decreased GMV and CBF in the AD. Moreover, the GMV of this region was positively correlated with MMSE and its CBF, and CBF of this region was also positively correlated with MMSE in AD (p < 0.05, corrected). Finally, mediation analysis revealed that gray matter atrophy of left MTG drives cognitive impairment of AD via the mediation of CBF (proportion of mediation = 55.82%, β = 0.242, 95% confidence interval by bias-corrected and accelerated bootstrap: 0.082 to 0.530). Conclusion Our findings indicated suggested that left MTG is an important hub linking gray matter atrophy, hypoperfusion, and cognitive impairment for AD, and might be a potential treatment target for AD.
Collapse
Affiliation(s)
- Haoyang Dong
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Lining Guo
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Hailei Yang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenshuang Zhu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Fang Liu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yingying Xie
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Yu Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Kaizhong Xue
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiang Li
- Technical College for the Deaf, Tianjin University of Technology, Tianjin, China
| | - Meng Liang
- School of Medical Imaging, Tianjin Medical University, Tianjin, China
| | - Nan Zhang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Nan Zhang,
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
- Wen Qin,
| |
Collapse
|
28
|
Common and Specific Marks of Different Tau Strains Following Intra-Hippocampal Injection of AD, PiD, and GGT Inoculum in hTau Transgenic Mice. Int J Mol Sci 2022; 23:ijms232415940. [PMID: 36555581 PMCID: PMC9787745 DOI: 10.3390/ijms232415940] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/04/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Heterozygous hTau mice were used for the study of tau seeding. These mice express the six human tau isoforms, with a high predominance of 3Rtau over 4Rtau. The following groups were assessed: (i) non-inoculated mice aged 9 months (n = 4); (ii) Alzheimer's Disease (AD)-inoculated mice (n = 4); (iii) Globular Glial Tauopathy (GGT)-inoculated mice (n = 4); (iv) Pick's disease (PiD)-inoculated mice (n = 4); (v) control-inoculated mice (n = 4); and (vi) inoculated with vehicle alone (n = 2). AD-inoculated mice showed AT8-immunoreactive neuronal pre-tangles, granular aggregates, and dots in the CA1 region of the hippocampus, dentate gyrus (DG), and hilus, and threads and dots in the ipsilateral corpus callosum. GGT-inoculated mice showed unique or multiple AT8-immunoreactive globular deposits in neurons, occasionally extended to the proximal dendrites. PiD-inoculated mice showed a few loose pre-tangles in the CA1 region, DG, and cerebral cortex near the injection site. Coiled bodies were formed in the corpus callosum in AD-inoculated mice, but GGT-inoculated mice lacked globular glial inclusions. Tau deposits in inoculated mice co-localized active kinases p38-P and SAPK/JNK-P, thus suggesting active phosphorylation of the host tau. Tau deposits were absent in hTau mice inoculated with control homogenates and vehicle alone. Deposits in AD-inoculated hTau mice contained 3Rtau and 4Rtau; those in GGT-inoculated mice were mainly stained with anti-4Rtau antibodies, but a small number of deposits contained 3Rtau. Deposits in PiD-inoculated mice were stained with anti-3Rtau antibodies, but rare neuronal, thread-like, and dot-like deposits showed 4Rtau immunoreactivity. These findings show that tau strains produce different patterns of active neuronal seeding, which also depend on the host tau. Unexpected 3Rtau and 4Rtau deposits after inoculation of homogenates from 4R and 3R tauopathies, respectively, suggests the regulation of exon 10 splicing of the host tau during the process of seeding, thus modulating the plasticity of the cytoskeleton.
Collapse
|
29
|
Bullich S, Mueller A, De Santi S, Koglin N, Krause S, Kaplow J, Kanekiyo M, Roé-Vellvé N, Perrotin A, Jovalekic A, Scott D, Gee M, Stephens A, Irizarry M. Evaluation of tau deposition using 18F-PI-2620 PET in MCI and early AD subjects—a MissionAD tau sub-study. Alzheimers Res Ther 2022; 14:105. [PMID: 35897078 PMCID: PMC9327167 DOI: 10.1186/s13195-022-01048-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/11/2022] [Indexed: 11/10/2022]
Abstract
Background The ability of 18F-PI-2620 PET to measure the spatial distribution of tau pathology in Alzheimer’s disease (AD) has been demonstrated in previous studies. The objective of this work was to evaluate tau deposition using 18F-PI-2620 PET in beta-amyloid positive subjects with a diagnosis of mild cognitive impairment (MCI) or mild AD dementia and characterize it with respect to amyloid deposition, cerebrospinal fluid (CSF) assessment, hippocampal volume, and cognition. Methods Subjects with a diagnosis of MCI due to AD or mild AD dementia and a visually amyloid-positive 18F-florbetaben PET scan (n=74, 76 ± 7 years, 38 females) underwent a baseline 18F-PI-2620 PET, T1-weighted magnetic resonance imaging (MRI), CSF assessment (Aβ42/Aβ40 ratio, p-tau, t-tau) (n=22) and several cognitive tests. A 1-year follow-up 18F-PI-2620 PET scans and cognitive assessments were done in 15 subjects. Results Percentage of visually tau-positive scans increased with amyloid-beta deposition measured in 18F-florbetaben Centiloids (CL) (7.7% (<36 CL), 80% (>83 CL)). 18F-PI-2620 standardized uptake value ratio (SUVR) was correlated with increased 18F-florbetaben CL in several regions of interest. Elevated 18F-PI-2620 SUVR (fusiform gyrus) was associated to high CSF p-tau and t-tau (p=0.0006 and p=0.01, respectively). Low hippocampal volume was associated with increased tau load at baseline (p=0.006 (mesial temporal); p=0.01 (fusiform gyrus)). Significant increases in tau SUVR were observed after 12 months, particularly in the mesial temporal cortex, fusiform gyrus, and inferior temporal cortex (p=0.04, p=0.047, p=0.02, respectively). However, no statistically significant increase in amyloid-beta load was measured over the observation time. The MMSE (Recall score), ADAS-Cog14 (Word recognition score), and CBB (One-card learning score) showed the strongest association with tau deposition at baseline. Conclusions The findings support the hypothesis that 18F-PI-2620 PET imaging of neuropathologic tau deposits may reflect underlying neurodegeneration in AD with significant correlations with hippocampal volume, CSF biomarkers, and amyloid-beta load. Furthermore, quantifiable increases in 18F-PI-2620 SUVR over a 12-month period in regions with early tau deposition are consistent with the hypothesis that cortical tau is associated with cognitive impairment. This study supports the utility of 18F-PI-2620 PET to assess tau deposits in an early AD population. Quantifiable tau load and its corresponding increase in early AD cases could be a relevant target engagement marker in clinical trials of anti-amyloid and anti-tau agents. Trial registration Data used in this manuscript belong to a tau PET imaging sub-study of the elenbecestat MissionAD Phase 3 program registered in ClinicalTrials.gov (NCT02956486; NCT03036280). Supplementary Information The online version contains supplementary material available at 10.1186/s13195-022-01048-x.
Collapse
|
30
|
Li L, Yu X, Sheng C, Jiang X, Zhang Q, Han Y, Jiang J. A review of brain imaging biomarker genomics in Alzheimer’s disease: implementation and perspectives. Transl Neurodegener 2022; 11:42. [PMID: 36109823 PMCID: PMC9476275 DOI: 10.1186/s40035-022-00315-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease with phenotypic changes closely associated with both genetic variants and imaging pathology. Brain imaging biomarker genomics has been developed in recent years to reveal potential AD pathological mechanisms and provide early diagnoses. This technique integrates multimodal imaging phenotypes with genetic data in a noninvasive and high-throughput manner. In this review, we summarize the basic analytical framework of brain imaging biomarker genomics and elucidate two main implementation scenarios of this technique in AD studies: (1) exploring novel biomarkers and seeking mutual interpretability and (2) providing a diagnosis and prognosis for AD with combined use of machine learning methods and brain imaging biomarker genomics. Importantly, we highlight the necessity of brain imaging biomarker genomics, discuss the strengths and limitations of current methods, and propose directions for development of this research field.
Collapse
|
31
|
Marciante AB, Howard J, Kelly MN, Santiago Moreno J, Allen LL, Gonzalez-Rothi EJ, Mitchell GS. Dose-dependent phosphorylation of endogenous Tau by intermittent hypoxia in rat brain. J Appl Physiol (1985) 2022; 133:561-571. [PMID: 35861520 PMCID: PMC9448341 DOI: 10.1152/japplphysiol.00332.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/22/2022] Open
Abstract
Intermittent hypoxia, or intermittent low oxygen interspersed with normal oxygen levels, has differential effects that depend on the "dose" of hypoxic episodes (duration, severity, number per day, and number of days). Whereas "low dose" daily acute intermittent hypoxia (dAIH) elicits neuroprotection and neuroplasticity, "high dose" chronic intermittent hypoxia (CIH) similar to that experienced during sleep apnea elicits neuropathology. Sleep apnea is comorbid in >50% of patients with Alzheimer's disease-a progressive, neurodegenerative disease associated with brain amyloid and chronic Tau dysregulation (pathology). Although patients with sleep apnea present with higher Tau levels, it is unknown if sleep apnea through attendant CIH contributes to onset of Tau pathology. We hypothesized CIH characteristic of moderate sleep apnea would increase dysregulation of phosphorylated Tau (phospho-Tau) species in Sprague-Dawley rat hippocampus and prefrontal cortex. Conversely, we hypothesized that dAIH, a promising neurotherapeutic, has minimal impact on Tau phosphorylation. We report a dose-dependent intermittent hypoxia effect, with region-specific increases in 1) phospho-Tau species associated with human Tauopathies in the soluble form and 2) accumulated phospho-Tau in the insoluble fraction. The latter observation was particularly evident with higher CIH intensities. This important and novel finding is consistent with the idea that sleep apnea and attendant CIH have the potential to accelerate the progression of Alzheimer's disease and/or other Tauopathies.NEW & NOTEWORTHY Sleep apnea is highly prevalent in people with Alzheimer's disease, suggesting the potential to accelerate disease onset and/or progression. These studies demonstrate that intermittent hypoxia (IH) induces dose-dependent, region-specific Tau phosphorylation, and are the first to indicate that higher IH "doses" elicit both endogenous, (rat) Tau hyperphosphorylation and accumulation in the hippocampus. These findings are essential for development and implementation of new treatment strategies that minimize sleep apnea and its adverse impact on neurodegenerative diseases.
Collapse
Affiliation(s)
- Alexandria B Marciante
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida
- Department of Physical Therapy, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - John Howard
- Department of Neuroscience, University of Florida, Gainesville, Florida
- Center for Translational Research in Neurodegenerative Diseases, University of Florida, Gainesville, Florida
| | - Mia N Kelly
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida
- Department of Physical Therapy, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Juan Santiago Moreno
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida
- Department of Physical Therapy, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Latoya L Allen
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida
- Department of Physical Therapy, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Elisa J Gonzalez-Rothi
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida
- Department of Physical Therapy, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Gordon S Mitchell
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida
- Department of Physical Therapy, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
| |
Collapse
|
32
|
Ruwanpathirana GP, Williams RC, Masters CL, Rowe CC, Johnston LA, Davey CE. Mapping the association between tau-PET and Aβ-amyloid-PET using deep learning. Sci Rep 2022; 12:14797. [PMID: 36042256 PMCID: PMC9427855 DOI: 10.1038/s41598-022-18963-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022] Open
Abstract
In Alzheimer’s disease, the molecular pathogenesis of the extracellular Aβ-amyloid (Aβ) instigation of intracellular tau accumulation is poorly understood. We employed a high-resolution PET scanner, with low detection thresholds, to examine the Aβ-tau association using a convolutional neural network (CNN), and compared results to a standard voxel-wise linear analysis. The full range of Aβ Centiloid values was highly predicted by the tau topography using the CNN (training R2 = 0.86, validation R2 = 0.75, testing R2 = 0.72). Linear models based on tau-SUVR identified widespread positive correlations between tau accumulation and Aβ burden throughout the brain. In contrast, CNN analysis identified focal clusters in the bilateral medial temporal lobes, frontal lobes, precuneus, postcentral gyrus and middle cingulate. At low Aβ levels, information from the middle cingulate, frontal lobe and precuneus regions was more predictive of Aβ burden, while at high Aβ levels, the medial temporal regions were more predictive of Aβ burden. The data-driven CNN approach revealed new associations between tau topography and Aβ burden.
Collapse
Affiliation(s)
- Gihan P Ruwanpathirana
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC, Australia.,Melbourne Brain Centre Imaging Unit, The University of Melbourne, Melbourne, VIC, Australia
| | - Robert C Williams
- Melbourne Brain Centre Imaging Unit, The University of Melbourne, Melbourne, VIC, Australia
| | - Colin L Masters
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Christopher C Rowe
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC, Australia.,Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Leigh A Johnston
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC, Australia.,Melbourne Brain Centre Imaging Unit, The University of Melbourne, Melbourne, VIC, Australia
| | - Catherine E Davey
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC, Australia. .,Melbourne Brain Centre Imaging Unit, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
33
|
Zhou J, Benoit M, Sharoar MG. Recent advances in pre-clinical diagnosis of Alzheimer's disease. Metab Brain Dis 2022; 37:1703-1725. [PMID: 33900524 DOI: 10.1007/s11011-021-00733-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/05/2021] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD) is the most common dementia with currently no known cures or disease modifying treatments (DMTs), despite much time and effort from the field. Diagnosis and intervention of AD during the early pre-symptomatic phase of the disease is thought to be a more effective strategy. Therefore, the detection of biomarkers has emerged as a critical tool for monitoring the effect of new AD therapies, as well as identifying patients most likely to respond to treatment. The establishment of the amyloid/tau/neurodegeneration (A/T/N) framework in 2018 has codified the contexts of use of AD biomarkers in neuroimaging and bodily fluids for research and diagnostic purposes. Furthermore, a renewed drive for novel AD biomarkers and innovative methods of detection has emerged with the goals of adding additional insight to disease progression and discovery of new therapeutic targets. The use of biomarkers has accelerated the development of AD drugs and will bring new therapies to patients in need. This review highlights recent methods utilized to diagnose antemortem AD.
Collapse
Affiliation(s)
- John Zhou
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, 06030, USA
- Molecular Medicine Program, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Marc Benoit
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Md Golam Sharoar
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, 06030, USA.
| |
Collapse
|
34
|
Joo IL, Lam WW, Oakden W, Hill ME, Koletar MM, Morrone CD, Stanisz GJ, McLaurin J, Stefanovic B. Early alterations in brain glucose metabolism and vascular function in a transgenic rat model of Alzheimer's disease. Prog Neurobiol 2022; 217:102327. [PMID: 35870681 DOI: 10.1016/j.pneurobio.2022.102327] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 05/06/2022] [Accepted: 07/18/2022] [Indexed: 11/28/2022]
Abstract
Alteration in brain metabolism predates clinical onset of Alzheimer's Disease (AD). Realizing its potential as an early diagnostic marker, however, requires understanding how early AD metabolic dysregulation manifests on non-invasive brain imaging. We presently utilized magnetic resonance imaging and spectroscopy to map glucose and ketone metabolic profiles and image cerebrovascular function in a rat model of early stage AD - 9-month-old TgF344-AD (TgAD) rats - and their age-matched non-transgenic (nTg) littermates. Compared to the nTg rats, TgAD rats displayed attenuation in global cerebral and hippocampal vasoreactivity to hypercapnia, by 49±17% and 58±19%, respectively, while their functional hyperemia to somatosensory stimulation diminished by 69±5%. To assess brain glucose uptake, rats were fasted overnight and then challenged with an intravenous infusion of 2-deoxy-D-glucose (2DG). Compared to their non-transgenic littermates, TgAD rats exhibited 99±10% and 52±5% smaller glucose uptake in the entorhinal cortex and the hippocampus, respectively. Moreover, hippocampal glucose uptake reduction in male TgAD rats compared to the nTg was 54±36% greater than the reduction seen in female TgAD rats. TgAD rats also showed a 59±42% increase in total choline level in the hippocampus, suggesting increased membrane turnover. In combination with our earlier findings of impaired electrophysiological metrics at this early stage of AD pathology progression, our findings suggest that subtle neuronal function alterations that would be difficult to assess in a clinical population may be accompanied by MRI-detectable changes in brain glucose metabolism and cerebrovascular function.
Collapse
Affiliation(s)
- Illsung L Joo
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3N5, Canada.
| | - Wilfred W Lam
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3N5, Canada.
| | - Wendy Oakden
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3N5, Canada.
| | - Mary E Hill
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3N5, Canada.
| | - Margaret M Koletar
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3N5, Canada.
| | - Christopher D Morrone
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3N5, Canada; Department of Laboratory Medicine and Pathology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Greg J Stanisz
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3N5, Canada; Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L7, Canada.
| | - JoAnne McLaurin
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3N5, Canada; Department of Laboratory Medicine and Pathology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Bojana Stefanovic
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3N5, Canada; Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L7, Canada.
| |
Collapse
|
35
|
Incontri-Abraham D, Esparza-Salazar FJ, Ibarra A. Copolymer-1 as a potential therapy for mild cognitive impairment. Brain Cogn 2022; 162:105892. [PMID: 35841771 DOI: 10.1016/j.bandc.2022.105892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022]
Abstract
Mild cognitive impairment (MCI) is a prodromal stage of memory impairment that may precede dementia. MCI is classified by the presence or absence of memory impairment into amnestic or non-amnestic MCI, respectively. More than 90% of patients with amnestic MCI who progress towards dementia meet criteria for Alzheimer's disease (AD). A combination of mechanisms promotes MCI, including intracellular neurofibrillary tangle formation, extracellular amyloid deposition, oxidative stress, neuronal loss, synaptodegeneration, cholinergic dysfunction, cerebrovascular disease, and neuroinflammation. However, emerging evidence indicates that neuroinflammation plays an important role in the pathogenesis of cognitive impairment. Unfortunately, there are currently no Food and Drug Administration (FDA)-approved drugs for MCI. Copolymer-1 (Cop-1), also known as glatiramer acetate, is a synthetic polypeptide of four amino acids approved by the FDA for the treatment of relapsing-remitting multiple sclerosis. Cop-1 therapeutic effect is attributed to immunomodulation, promoting a switch from proinflammatory to anti-inflammatory phenotype. In addition to its anti-inflammatory properties, it stimulates brain-derived neurotrophic factor (BDNF) secretion, a neurotrophin involved in neurogenesis and the generation of hippocampal long-term potentials. Moreover, BDNF levels are significantly decreased in patients with cognitive impairment. Therefore, Cop-1 immunization might promote synaptic plasticity and memory consolidation by increasing BDNF production in patients with MCI.
Collapse
Affiliation(s)
- Diego Incontri-Abraham
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Av. Universidad Anáhuac No. 46, Col. Lomas Anáhuac, Huixquilucan, CP 52786, Edo. de México, Mexico
| | - Felipe J Esparza-Salazar
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Av. Universidad Anáhuac No. 46, Col. Lomas Anáhuac, Huixquilucan, CP 52786, Edo. de México, Mexico
| | - Antonio Ibarra
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Av. Universidad Anáhuac No. 46, Col. Lomas Anáhuac, Huixquilucan, CP 52786, Edo. de México, Mexico.
| |
Collapse
|
36
|
Hicks A, Ponsford JL, Spitz G, Dore V, Krishnadas N, Roberts C, Rowe CC. Amyloid- and Tau Imaging in Chronic Traumatic Brain Injury: A Cross-sectional Study. Neurology 2022; 99:e1131-e1141. [PMID: 36096678 DOI: 10.1212/wnl.0000000000200857] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/02/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Traumatic brain injury (TBI) has been promoted as a risk factor for Alzheimer's disease. There is evidence of elevated amyloid-β and tau, the pathological hallmarks of Alzheimer's disease, immediately following TBI. It is not clear whether amyloid-β and tau remain elevated in the chronic period. To address this issue, we assessed amyloid-β and tau burden in long-term TBI survivors and healthy controls using PET imaging. METHODS Using a cross-sectional design, we recruited individuals following a single moderate to severe TBI at least 10 years previously from an inpatient rehabilitation program. A demographically similar healthy control group was recruited from the community. PET data were acquired using 18F-NAV4694 (amyloid-β) and 18F-MK6240 (tau) tracers. Amyloid-β deposition was quantified using the Centiloid scale. Tau deposition was quantified using the standardized uptake value ratio (SUVR) in four regions of interest (ROI). As a secondary measure, PET scans were also visually read as positive or negative. We examined PET data in relation to time since injury and age at injury. PET data were analysed in a series of regression analyses. RESULTS The sample comprised 87 individuals with TBI (71.3% male; 28.7% female; M = 57.53 years, SD = 11.53) and 59 controls (59.3% male; 40.7% female; M = 60.34 years, SD = 11.97). Individuals with TBI did not have significantly higher 18F-NAV4694 Centiloid values (p = 0.067) or 18F-MK6240 tau SUVRs in any ROI (p = ≤ 0.001; SUVR greater for controls). Visual assessment was consistent with the quantification; individuals with TBI were not more likely than controls to have a positive amyloid-β (p = 0.505) or tau scan (p = 0.221). No associations were identified for amyloid-β or tau burden with time since injury (p = 0.057 to 0.332) or age at injury. DISCUSSION A single moderate to severe TBI was not associated with higher burden of amyloid-β or tau pathologies in the chronic period relative to healthy controls. Amyloid-β and tau burden did not show a significant increase with years since injury, and burden did not appear to be greater for those who were older at the time of injury.
Collapse
Affiliation(s)
- Amelia Hicks
- Monash-Epworth Rehabilitation Research Centre, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, 3168, Australia.
| | - Jennie L Ponsford
- Monash-Epworth Rehabilitation Research Centre, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, 3168, Australia
| | - Gershon Spitz
- Monash-Epworth Rehabilitation Research Centre, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, 3168, Australia
| | - Vincent Dore
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, 3084, Australia.,CSIRO Health and Biosecurity Flagship, The Australian e-Health Research Centre, Parkville, 3052, Australia
| | - Natasha Krishnadas
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, 3084, Australia.,Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, 3052, Australia
| | - Caroline Roberts
- Monash-Epworth Rehabilitation Research Centre, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, 3168, Australia
| | - Christopher C Rowe
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, 3084, Australia.,Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, 3052, Australia
| |
Collapse
|
37
|
Is the Brain Undernourished in Alzheimer's Disease? Nutrients 2022; 14:nu14091872. [PMID: 35565839 PMCID: PMC9102563 DOI: 10.3390/nu14091872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 01/27/2023] Open
Abstract
Cerebrospinal fluid (CSF) amino acid (AA) levels and CSF/plasma AA ratios in Alzheimer Disease (AD) in relation to nutritional state are not known. Methods: In 30 fasting patients with AD (46% males, 74.4 ± 8.2 years; 3.4 ± 3.2 years from diagnosis) and nine control (CTRL) matched subjects, CSF and venous blood samples were drawn for AA measurements. Patients were stratified according to nutritional state (Mini Nutritional Assessment, MNA, scores). Results: Total CSF/plasma AA ratios were lower in the AD subpopulations than in NON-AD (p < 0.003 to 0.017. In combined malnourished (16.7%; MNA < 17) and at risk for malnutrition (36.6%, MNA 17−24) groups (CG), compared to CTRL, all essential amino acids (EAAs) and 30% of non-EAAs were lower (p < 0.018 to 0.0001), whereas in normo-nourished ADs (46.7%, MNA > 24) the CSF levels of 10% of EAAs and 25% of NON-EAAs were decreased (p < 0.05 to 0.00021). CG compared to normo-nourished ADs, had lower CSF aspartic acid, glutamic acid and Branched-Chain AA levels (all, p < 0.05 to 0.003). CSF/plasma AA ratios were <1 in NON-AD but even lower in the AD population. Conclusions: Compared to CTRL, ADs had decreased CSF AA Levels and CSF/plasma AA ratios, the degree of which depended on nutritional state.
Collapse
|
38
|
Wei X, Du X, Xie Y, Suo X, He X, Ding H, Zhang Y, Ji Y, Chai C, Liang M, Yu C, Liu Y, Qin W. Mapping cerebral atrophic trajectory from amnestic mild cognitive impairment to Alzheimer's disease. Cereb Cortex 2022; 33:1310-1327. [PMID: 35368064 PMCID: PMC9930625 DOI: 10.1093/cercor/bhac137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/13/2022] [Accepted: 03/13/2022] [Indexed: 11/14/2022] Open
Abstract
Alzheimer's disease (AD) patients suffer progressive cerebral atrophy before dementia onset. However, the region-specific atrophic processes and the influences of age and apolipoprotein E (APOE) on atrophic trajectory are still unclear. By mapping the region-specific nonlinear atrophic trajectory of whole cerebrum from amnestic mild cognitive impairment (aMCI) to AD based on longitudinal structural magnetic resonance imaging data from Alzheimer's disease Neuroimaging Initiative (ADNI) database, we unraveled a quadratic accelerated atrophic trajectory of 68 cerebral regions from aMCI to AD, especially in the superior temporal pole, caudate, and hippocampus. Besides, interaction analyses demonstrated that APOE ε4 carriers had faster atrophic rates than noncarriers in 8 regions, including the caudate, hippocampus, insula, etc.; younger patients progressed faster than older patients in 32 regions, especially for the superior temporal pole, hippocampus, and superior temporal gyrus; and 15 regions demonstrated complex interaction among age, APOE, and disease progression, including the caudate, hippocampus, etc. (P < 0.05/68, Bonferroni correction). Finally, Cox proportional hazards regression model based on the identified region-specific biomarkers could effectively predict the time to AD conversion within 10 years. In summary, cerebral atrophic trajectory mapping could help a comprehensive understanding of AD development and offer potential biomarkers for predicting AD conversion.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoxi He
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China,Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hao Ding
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China,Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China,School of Medical Imaging, Tianjin Medical University, Tianjin 300070, China
| | - Yu Zhang
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China,Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yi Ji
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China,Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Chao Chai
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China,Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Meng Liang
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China,Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China,School of Medical Imaging, Tianjin Medical University, Tianjin 300070, China
| | - Chunshui Yu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China,Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China,School of Medical Imaging, Tianjin Medical University, Tianjin 300070, China
| | - Yong Liu
- Corresponding author: Wen Qin, Department of Radiology, and Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Anshan Road No 154, Heping District, Tianjin 300052, China. ; Yong Liu, School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China.
| | - Wen Qin
- Corresponding author: Wen Qin, Department of Radiology, and Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Anshan Road No 154, Heping District, Tianjin 300052, China. ; Yong Liu, School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China.
| | | |
Collapse
|
39
|
Karimi H, Marefat H, Khanbagi M, Kalafatis C, Modarres MH, Vahabi Z, Khaligh-Razavi SM. Temporal dynamics of animacy categorization in the brain of patients with mild cognitive impairment. PLoS One 2022; 17:e0264058. [PMID: 35196356 PMCID: PMC8865635 DOI: 10.1371/journal.pone.0264058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 02/02/2022] [Indexed: 11/18/2022] Open
Abstract
Electroencephalography (EEG) has been commonly used to measure brain alterations in Alzheimer’s Disease (AD). However, reported changes are limited to those obtained from using univariate measures, including activation level and frequency bands. To look beyond the activation level, we used multivariate pattern analysis (MVPA) to extract patterns of information from EEG responses to images in an animacy categorization task. Comparing healthy controls (HC) with patients with mild cognitive impairment (MCI), we found that the neural speed of animacy information processing is decreased in MCI patients. Moreover, we found critical time-points during which the representational pattern of animacy for MCI patients was significantly discriminable from that of HC, while the activation level remained unchanged. Together, these results suggest that the speed and pattern of animacy information processing provide clinically useful information as a potential biomarker for detecting early changes in MCI and AD patients.
Collapse
Affiliation(s)
- Hamed Karimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran
- * E-mail: (HK); (SMKR)
| | - Haniyeh Marefat
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Mahdiyeh Khanbagi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Chris Kalafatis
- South London & Maudsley NHS Foundation Trust, London, United Kingdom
- Department of Old Age Psychiatry, King’s College London, London, United Kingdom
- Cognetivity Ltd, London, United Kingdom
| | | | - Zahra Vahabi
- Department of Geriatric Medicine, Ziaeian Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Memory and Behavioral Neurology Division, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed-Mahdi Khaligh-Razavi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Cognetivity Ltd, London, United Kingdom
- * E-mail: (HK); (SMKR)
| |
Collapse
|
40
|
Leroux E, Perbet R, Caillierez R, Richetin K, Lieger S, Espourteille J, Bouillet T, Bégard S, Danis C, Loyens A, Toni N, Déglon N, Deramecourt V, Schraen-Maschke S, Buée L, Colin M. Extracellular vesicles: Major actors of heterogeneity in tau spreading among human tauopathies. Mol Ther 2022; 30:782-797. [PMID: 34563677 PMCID: PMC8821971 DOI: 10.1016/j.ymthe.2021.09.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/12/2021] [Accepted: 09/20/2021] [Indexed: 02/04/2023] Open
Abstract
Tauopathies are neurodegenerative diseases characterized by tau inclusions in brain cells. Seed-competent tau species have been suggested to spread from cell to cell in a stereotypical manner, indicating that this may involve a prion-like mechanism. Although the intercellular mechanisms of transfer are unclear, extracellular vesicles (EVs) could be potential shuttles. We assessed this in humans by preparing vesicles from fluids (brain-derived enriched EVs [BD-EVs]). These latter were isolated from different brain regions in various tauopathies, and their seeding potential was assessed in vitro and in vivo. We observed considerable heterogeneity among tauopathies and brain regions. The most striking evidence was coming mainly from Alzheimer's disease where the BD-EVs clearly contain pathological species that can induce tau lesions in vivo. The results support the hypothesis that BD-EVs participate in the prion-like propagation of tau pathology among tauopathies, and there may be implications for diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Elodie Leroux
- Université de Lille, INSERM, CHU-Lille, Lille Neuroscience & Cognition, 59000 Lille, France
| | - Romain Perbet
- Université de Lille, INSERM, CHU-Lille, Lille Neuroscience & Cognition, 59000 Lille, France
| | - Raphaëlle Caillierez
- Université de Lille, INSERM, CHU-Lille, Lille Neuroscience & Cognition, 59000 Lille, France
| | - Kevin Richetin
- Department of Psychiatry, Center for Psychiatric Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, 1011 Lausanne, Switzerland,Lausanne University Hospital (CHUV) and University of Lausanne, Neuroscience Research Center (CRN), Laboratory of Cellular and Molecular Neurotherapies, 1011 Lausanne, Switzerland,Lausanne University Hospital (CHUV) and University of Lausanne, Department of Clinical Neuroscience (DNC), Laboratory of Cellular and Molecular Neurotherapies, 1011 Lausanne, Switzerland
| | - Sarah Lieger
- Université de Lille, INSERM, CHU-Lille, Lille Neuroscience & Cognition, 59000 Lille, France
| | - Jeanne Espourteille
- Department of Psychiatry, Center for Psychiatric Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, 1011 Lausanne, Switzerland
| | - Thomas Bouillet
- Université de Lille, INSERM, CHU-Lille, Lille Neuroscience & Cognition, 59000 Lille, France
| | - Séverine Bégard
- Université de Lille, INSERM, CHU-Lille, Lille Neuroscience & Cognition, 59000 Lille, France
| | - Clément Danis
- Université de Lille, INSERM, CHU-Lille, Lille Neuroscience & Cognition, 59000 Lille, France
| | - Anne Loyens
- Université de Lille, INSERM, CHU-Lille, Lille Neuroscience & Cognition, 59000 Lille, France
| | - Nicolas Toni
- Department of Psychiatry, Center for Psychiatric Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, 1011 Lausanne, Switzerland
| | - Nicole Déglon
- Lausanne University Hospital (CHUV) and University of Lausanne, Neuroscience Research Center (CRN), Laboratory of Cellular and Molecular Neurotherapies, 1011 Lausanne, Switzerland,Lausanne University Hospital (CHUV) and University of Lausanne, Department of Clinical Neuroscience (DNC), Laboratory of Cellular and Molecular Neurotherapies, 1011 Lausanne, Switzerland
| | - Vincent Deramecourt
- Université de Lille, INSERM, CHU-Lille, Lille Neuroscience & Cognition, 59000 Lille, France
| | | | - Luc Buée
- Université de Lille, INSERM, CHU-Lille, Lille Neuroscience & Cognition, 59000 Lille, France,Corresponding author: Luc Buée, PhD, Université de Lille, INSERM, CHU-Lille, Lille Neuroscience & Cognition, Bâtiment Biserte, rue Polonovski, 59045 Lille Cedex, France.
| | - Morvane Colin
- Université de Lille, INSERM, CHU-Lille, Lille Neuroscience & Cognition, 59000 Lille, France,Corresponding author: Morvane Colin, Université de Lille, INSERM, CHU-Lille, Lille Neuroscience & Cognition, Bâtiment Biserte, rue Polonovski, 59045 Lille Cedex, France.
| |
Collapse
|
41
|
Putra P, Thompson TB, Chaggar P, Goriely A. Braiding Braak and Braak: Staging patterns and model selection in network neurodegeneration. Netw Neurosci 2022; 5:929-956. [PMID: 35024537 PMCID: PMC8746141 DOI: 10.1162/netn_a_00208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 08/25/2021] [Indexed: 01/12/2023] Open
Abstract
A hallmark of Alzheimer’s disease is the aggregation of insoluble amyloid-beta plaques and tau protein neurofibrillary tangles. A key histopathological observation is that tau protein aggregates follow a structured progression pattern through the brain. Mathematical network models of prion-like propagation have the ability to capture such patterns, but a number of factors impact the observed staging result, thus introducing questions regarding model selection. Here, we introduce a novel approach, based on braid diagrams, for studying the structured progression of a marker evolving on a network. We apply this approach to a six-stage ‘Braak pattern’ of tau proteins, in Alzheimer’s disease, motivated by a recent observation that seed-competent tau precedes tau aggregation. We show that the different modeling choices, from the model parameters to the connectome resolution, play a significant role in the landscape of observable staging patterns. Our approach provides a systematic way to approach model selection for network propagation of neurodegenerative diseases that ensures both reproducibility and optimal parameter fitting. Network diffusion models of neurodegenerative diseases are a class of dynamical systems that simulate the evolution of toxic proteins on the connectome. These models predict, from an initial seed, a pattern of invasion called staging. The generalized staging problem seeks to systematically study the effect of various model choices on staging. We introduce methods based on braid diagrams to test the possible staging landscape of a model and how it depends on the choice of connectome, as well as the model parameters. Our primary finding is that connectome construction, the choice of the graph Laplacian, and transport models all have an impact on staging that should be taken into account in any study.
Collapse
Affiliation(s)
- Prama Putra
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Travis B Thompson
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Pavanjit Chaggar
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Alain Goriely
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
42
|
Zhou P, Zeng R, Yu L, Feng Y, Chen C, Li F, Liu Y, Huang Y, Huang Z. Deep-Learning Radiomics for Discrimination Conversion of Alzheimer's Disease in Patients With Mild Cognitive Impairment: A Study Based on 18F-FDG PET Imaging. Front Aging Neurosci 2021; 13:764872. [PMID: 34764864 PMCID: PMC8576572 DOI: 10.3389/fnagi.2021.764872] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Objectives: Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder and the most common form of dementia in the older people. Some types of mild cognitive impairment (MCI) are the clinical precursors of AD, while other MCI forms tend to remain stable over time and do not progress to AD. To discriminate MCI patients at risk of AD from stable MCI, we propose a novel deep-learning radiomics (DLR) model based on 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) images and combine DLR features with clinical parameters (DLR+C) to improve diagnostic performance. Methods: 18F-fluorodeoxyglucose positron emission tomography (PET) data from the Alzheimer's disease Neuroimaging Initiative database (ADNI) were collected, including 168 patients with MCI who converted to AD within 3 years and 187 patients with MCI without conversion within 3 years. These subjects were randomly partitioned into 90 % for the training/validation group and 10 % for the independent test group. The proposed DLR approach consists of three steps: base DL model pre-training, network features extraction, and integration of DLR+C, where a convolution network serves as a feature encoder, and a support vector machine (SVM) operated as the classifier. In comparative experiments, we compared our DLR+C method with four other methods: the standard uptake value ratio (SUVR) method, Radiomics-ROI method, Clinical method, and SUVR + Clinical method. To guarantee the robustness, 10-fold cross-validation was processed 100 times. Results: Under the DLR model, our proposed DLR+C was advantageous and yielded the best classification performance in the diagnosis of conversion with the accuracy, sensitivity, and specificity of 90.62 ± 1.16, 87.50 ± 0.00, and 93.39 ± 2.19%, respectively. In contrast, the respective accuracy of the other four methods reached 68.38 ± 1.27, 73.31 ± 6.93, 81.09 ± 1.97, and 85.35 ± 0.72 %. These results suggested the DLR approach could be used successfully in the prediction of conversion to AD, and that our proposed DLR-combined clinical information was effective. Conclusions: This study showed DLR+C could provide a novel and valuable method for the computer-assisted diagnosis of conversion to AD from MCI. This DLR+C method provided a quantitative biomarker which could predict conversion to AD in MCI patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhongxiong Huang
- Department of PET-CT Center, Chenzhou No.1 People's Hospital, Chenzhou, China
| | | |
Collapse
|
43
|
Spreading of Alzheimer tau seeds is enhanced by aging and template matching with limited impact of amyloid-β. J Biol Chem 2021; 297:101159. [PMID: 34480901 PMCID: PMC8477193 DOI: 10.1016/j.jbc.2021.101159] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022] Open
Abstract
In Alzheimer's disease (AD), deposition of pathological tau and amyloid-β (Aβ) drive synaptic loss and cognitive decline. The injection of misfolded tau aggregates extracted from human AD brains drives templated spreading of tau pathology within WT mouse brain. Here, we assessed the impact of Aβ copathology, of deleting loci known to modify AD risk (Ptk2b, Grn, and Tmem106b) and of pharmacological intervention with an Fyn kinase inhibitor on tau spreading after injection of AD tau extracts. The density and spreading of tau inclusions triggered by human tau seed were unaltered in the hippocampus and cortex of APPswe/PSEN1ΔE9 transgenic and AppNL-F/NL-F knock-in mice. In mice with human tau sequence replacing mouse tau, template matching enhanced neuritic tau burden. Human AD brain tau-enriched preparations contained aggregated Aβ, and the Aβ coinjection caused a redistribution of Aβ aggregates in mutant AD model mice. The injection-induced Aβ phenotype was spatially distinct from tau accumulation and could be ameliorated by depleting Aβ from tau extracts. These data suggest that Aβ and tau pathologies propagate by largely independent mechanisms after their initial formation. Altering the activity of the Fyn and Pyk2 (Ptk2b) kinases involved in Aβ-oligomer–induced signaling, or deleting expression of the progranulin and TMEM106B lysosomal proteins, did not alter the somatic tau inclusion burden or spreading. However, mouse aging had a prominent effect to increase the accumulation of neuritic tau after injection of human AD tau seeds into WT mice. These studies refine our knowledge of factors capable of modulating tau spreading.
Collapse
|
44
|
An Overview of the Nrf2/ARE Pathway and Its Role in Neurodegenerative Diseases. Int J Mol Sci 2021; 22:ijms22179592. [PMID: 34502501 PMCID: PMC8431732 DOI: 10.3390/ijms22179592] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/28/2021] [Accepted: 09/01/2021] [Indexed: 12/20/2022] Open
Abstract
Nrf2 is a basic region leucine-zipper transcription factor that plays a pivotal role in the coordinated gene expression of antioxidant and detoxifying enzymes, promoting cell survival in adverse environmental or defective metabolic conditions. After synthesis, Nrf2 is arrested in the cytoplasm by the Kelch-like ECH-associated protein 1 suppressor (Keap1) leading Nrf2 to ubiquitin-dependent degradation. One Nrf2 activation mechanism relies on disconnection from the Keap1 homodimer through the oxidation of cysteine at specific sites of Keap1. Free Nrf2 enters the nucleus, dimerizes with small musculoaponeurotic fibrosarcoma proteins (sMafs), and binds to the antioxidant response element (ARE) sequence of the target genes. Since oxidative stress, next to neuroinflammation and mitochondrial dysfunction, is one of the hallmarks of neurodegenerative pathologies, a molecular intervention into Nrf2/ARE signaling and the enhancement of the transcriptional activity of particular genes are targets for prevention or delaying the onset of age-related and inherited neurogenerative diseases. In this study, we review evidence for the Nrf2/ARE-driven pathway dysfunctions leading to various neurological pathologies, such as Alzheimer’s, Parkinson’s, and Huntington’s diseases, as well as amyotrophic lateral sclerosis, and the beneficial role of natural and synthetic molecules that are able to interact with Nrf2 to enhance its protective efficacy.
Collapse
|
45
|
Moloney CM, Lowe VJ, Murray ME. Visualization of neurofibrillary tangle maturity in Alzheimer's disease: A clinicopathologic perspective for biomarker research. Alzheimers Dement 2021; 17:1554-1574. [PMID: 33797838 PMCID: PMC8478697 DOI: 10.1002/alz.12321] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/11/2021] [Accepted: 02/03/2021] [Indexed: 12/29/2022]
Abstract
Neurofibrillary tangles, one of the neuropathologic hallmarks of Alzheimer's disease, have a dynamic lifespan of maturity that associates with progressive neuronal dysfunction and cognitive deficits. As neurofibrillary tangles mature, the biology of the neuron undergoes extensive changes that may impact biomarker recognition and therapeutic targeting. Neurofibrillary tangle maturity encompasses three levels: pretangles, mature tangles, and ghost tangles. In this review, we detail distinct and overlapping characteristics observed in the human brain regarding morphologic changes the neuron undergoes, conversion from intracellular to extracellular space, tau immunostaining patterns, and tau isoform expression changes across the lifespan of the neurofibrillary tangle. Post-translational modifications of tau such as phosphorylation, ubiquitination, conformational events, and truncations are discussed to contextualize tau immunostaining patterns. We summarize accumulated and emerging knowledge of neurofibrillary tangle maturity, discuss the current tools used to interpret the dynamic nature in the postmortem brain, and consider implications for cognitive dysfunction and tau biomarkers.
Collapse
Affiliation(s)
| | - Val J. Lowe
- Department of RadiologyMayo ClinicRochesterMinnesotaUSA
| | | |
Collapse
|
46
|
Lu P, Colliot O. Multilevel Survival Modeling with Structured Penalties for Disease Prediction from Imaging Genetics data. IEEE J Biomed Health Inform 2021; 26:798-808. [PMID: 34329174 DOI: 10.1109/jbhi.2021.3100918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This paper introduces a framework for disease prediction from multimodal genetic and imaging data. We propose a multilevel survival model which allows predicting the time of occurrence of a future disease state in patients initially exhibiting mild symptoms. This new multilevel setting allows modeling the interactions between genetic and imaging variables. This is in contrast with classical additive models which treat all modalities in the same manner and can result in undesirable elimination of specific modalities when their contributions are unbalanced. Moreover, the use of a survival model allows overcoming the limitations of previous approaches based on classification which consider a fixed time frame. Furthermore, we introduce specific penalties taking into account the structure of the different types of data, such as a group lasso penalty over the genetic modality and a L2-penalty over the imaging modality. Finally, we propose a fast optimization algorithm, based on a proximal gradient method. The approach was applied to the prediction of Alzheimer's disease (AD) among patients with mild cognitive impairment (MCI) based on genetic (single nucleotide polymorphisms - SNP) and imaging (anatomical MRI measures) data from the ADNI database. The experiments demonstrate the effectiveness of the method for predicting the time of conversion to AD. It revealed how genetic variants and brain imaging alterations interact in the prediction of future disease status. The approach is generic and could potentially be useful for the prediction of other diseases.
Collapse
|
47
|
Zhang H, Cao Y, Ma L, Wei Y, Li H. Possible Mechanisms of Tau Spread and Toxicity in Alzheimer's Disease. Front Cell Dev Biol 2021; 9:707268. [PMID: 34395435 PMCID: PMC8355602 DOI: 10.3389/fcell.2021.707268] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/09/2021] [Indexed: 12/31/2022] Open
Abstract
Tau is a protein that associates with microtubules (MTs) and promotes their assembly and stability. The protein loses its ability to bind MTs in tauopathies, and detached tau can misfold and induce the pathological changes that characterize Alzheimer’s disease (AD). A growing body of evidence indicates that tauopathies can spread between cells or connected regions. Pathological tau transmission in the brain of patients with AD and other tauopathies is due to the spread of various tau species along neuroanatomically connected regions in a “prion-like” manner. This complex process involves multiple steps of secretion, cellular uptake, transcellular transfer, and/or seeding, but the precise mechanisms of tau pathology propagation remain unclear. This review summarizes the current evidence on the nature of propagative tau species and the possible steps involved in the process of tau pathology spread, including detachment from MTs, degradations, and secretion, and discusses the different mechanisms underlying the spread of tau pathology.
Collapse
Affiliation(s)
- Huiqin Zhang
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Cao
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lina Ma
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yun Wei
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Li
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
48
|
Zhou J, Sun WW, Zhang J, Li L. Partially Observed Dynamic Tensor Response Regression. J Am Stat Assoc 2021; 118:424-439. [PMID: 37333062 PMCID: PMC10274377 DOI: 10.1080/01621459.2021.1938082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
In modern data science, dynamic tensor data prevail in numerous applications. An important task is to characterize the relationship between dynamic tensor datasets and external covariates. However, the tensor data are often only partially observed, rendering many existing methods inapplicable. In this article, we develop a regression model with a partially observed dynamic tensor as the response and external covariates as the predictor. We introduce the low-rankness, sparsity, and fusion structures on the regression coefficient tensor, and consider a loss function projected over the observed entries. We develop an efficient nonconvex alternating updating algorithm, and derive the finite-sample error bound of the actual estimator from each step of our optimization algorithm. Unobserved entries in the tensor response have imposed serious challenges. As a result, our proposal differs considerably in terms of estimation algorithm, regularity conditions, as well as theoretical properties, compared to the existing tensor completion or tensor response regression solutions. We illustrate the efficacy of our proposed method using simulations and two real applications, including a neuroimaging dementia study and a digital advertising study.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Management Science, University of Miami Herbert Business School, Miami, FL
| | - Will Wei Sun
- Krannert School of Management, Purdue University, West Lafayette, IN
| | - Jingfei Zhang
- Department of Management Science, University of Miami Herbert Business School, Miami, FL
| | - Lexin Li
- Division of Biostatistics, University of California, Berkeley, Berkeley, CA
| |
Collapse
|
49
|
Cecchini MA, Yassuda MS, Squarzoni P, Coutinho AM, de Paula Faria D, Duran FLDS, Costa NAD, Porto FHDG, Nitrini R, Forlenza OV, Brucki SMD, Buchpiguel CA, Parra MA, Busatto GF. Deficits in short-term memory binding are detectable in individuals with brain amyloid deposition in the absence of overt neurodegeneration in the Alzheimer's disease continuum. Brain Cogn 2021; 152:105749. [PMID: 34022637 DOI: 10.1016/j.bandc.2021.105749] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/24/2021] [Accepted: 05/03/2021] [Indexed: 10/21/2022]
Abstract
The short-term memory binding (STMB) test involves the ability to hold in memory the integration between surface features, such as shapes and colours. The STMB test has been used to detect Alzheimer's disease (AD) at different stages, from preclinical to dementia, showing promising results. The objective of the present study was to verify whether the STMB test could differentiate patients with distinct biomarker profiles in the AD continuum. The sample comprised 18 cognitively unimpaired (CU) participants, 30 mild cognitive impairment (MCI) and 23 AD patients. All participants underwent positron emission tomography (PET) with Pittsburgh compound-B labelled with carbon-11 ([11C]PIB) assessing amyloid beta (Aβ) aggregation (A) and 18fluorine-fluorodeoxyglucose ([18F]FDG)-PET assessing neurodegeneration (N) (A-N- [n = 35]); A+N- [n = 11]; A+ N+ [n = 19]). Participants who were negative and positive for amyloid deposition were compared in the absence (A-N- vs. A+N-) of neurodegeneration. When compared with the RAVLT and SKT memory tests, the STMB was the only cognitive task that differentiated these groups, predicting the group outcome in logistic regression analyses. The STMB test showed to be sensitive to the signs of AD pathology and may represent a cognitive marker within the AD continuum.
Collapse
Affiliation(s)
- Mario Amore Cecchini
- Human Cognitive Neuroscience, Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | - Mônica Sanches Yassuda
- Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil; Gerontology, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil.
| | - Paula Squarzoni
- Laboratory of Psychiatric Neuroimaging (LIM-21), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Artur Martins Coutinho
- Laboratory of Psychiatric Neuroimaging (LIM-21), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, School of Medicine, University of São Paulo, São Paulo, Brazil; Laboratory of Nuclear Medicine (LIM43), Centro de Medicina Nuclear, Department of Radiology and Oncology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Daniele de Paula Faria
- Laboratory of Neuroscience (LIM 27), Department of Psychiatry, School of Medicine, University of São Paulo, São Paulo, Brazil; Núcleo de Apoio a Pesquisa em Neurociência Aplicada (NAPNA), University of São Paulo, São Paulo, Brazil
| | - Fábio Luiz de Souza Duran
- Laboratory of Psychiatric Neuroimaging (LIM-21), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Naomi Antunes da Costa
- Laboratory of Psychiatric Neuroimaging (LIM-21), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Fábio Henrique de Gobbi Porto
- Laboratory of Psychiatric Neuroimaging (LIM-21), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Ricardo Nitrini
- Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Orestes Vicente Forlenza
- Laboratory of Neuroscience (LIM 27), Department of Psychiatry, School of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Carlos Alberto Buchpiguel
- Laboratory of Nuclear Medicine (LIM43), Centro de Medicina Nuclear, Department of Radiology and Oncology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Mario A Parra
- School of Psychological Sciences and Health, University of Strathclyde, Glasgow, United Kingdom
| | - Geraldo F Busatto
- Laboratory of Psychiatric Neuroimaging (LIM-21), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, School of Medicine, University of São Paulo, São Paulo, Brazil; Núcleo de Apoio a Pesquisa em Neurociência Aplicada (NAPNA), University of São Paulo, São Paulo, Brazil
| |
Collapse
|
50
|
Knopman DS, Amieva H, Petersen RC, Chételat G, Holtzman DM, Hyman BT, Nixon RA, Jones DT. Alzheimer disease. Nat Rev Dis Primers 2021; 7:33. [PMID: 33986301 PMCID: PMC8574196 DOI: 10.1038/s41572-021-00269-y] [Citation(s) in RCA: 1113] [Impact Index Per Article: 278.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/09/2021] [Indexed: 12/21/2022]
Abstract
Alzheimer disease (AD) is biologically defined by the presence of β-amyloid-containing plaques and tau-containing neurofibrillary tangles. AD is a genetic and sporadic neurodegenerative disease that causes an amnestic cognitive impairment in its prototypical presentation and non-amnestic cognitive impairment in its less common variants. AD is a common cause of cognitive impairment acquired in midlife and late-life but its clinical impact is modified by other neurodegenerative and cerebrovascular conditions. This Primer conceives of AD biology as the brain disorder that results from a complex interplay of loss of synaptic homeostasis and dysfunction in the highly interrelated endosomal/lysosomal clearance pathways in which the precursors, aggregated species and post-translationally modified products of Aβ and tau play important roles. Therapeutic endeavours are still struggling to find targets within this framework that substantially change the clinical course in persons with AD.
Collapse
Affiliation(s)
| | - Helene Amieva
- Inserm U1219 Bordeaux Population Health Center, University of Bordeaux, Bordeaux, France
| | | | - Gäel Chételat
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - David M Holtzman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Ralph A Nixon
- Departments of Psychiatry and Cell Biology, New York University Langone Medical Center, New York University, New York, NY, USA
- NYU Neuroscience Institute, New York University Langone Medical Center, New York University, New York, NY, USA
| | - David T Jones
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|