1
|
Ali HT, Sula I, AbuHamdia A, Elejla SA, Elrefaey A, Hamdar H, Elfil M. Nervous System Response to Neurotrauma: A Narrative Review of Cerebrovascular and Cellular Changes After Neurotrauma. J Mol Neurosci 2024; 74:22. [PMID: 38367075 PMCID: PMC10874332 DOI: 10.1007/s12031-024-02193-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/22/2024] [Indexed: 02/19/2024]
Abstract
Neurotrauma is a significant cause of morbidity and mortality worldwide. For instance, traumatic brain injury (TBI) causes more than 30% of all injury-related deaths in the USA annually. The underlying cause and clinical sequela vary among cases. Patients are liable to both acute and chronic changes in the nervous system after such a type of injury. Cerebrovascular disruption has the most common and serious effect in such cases because cerebrovascular autoregulation, which is one of the main determinants of cerebral perfusion pressure, can be effaced in brain injuries even in the absence of evident vascular injury. Disruption of the blood-brain barrier regulatory function may also ensue whether due to direct injury to its structure or metabolic changes. Furthermore, the autonomic nervous system (ANS) can be affected leading to sympathetic hyperactivity in many patients. On a cellular scale, the neuroinflammatory cascade medicated by the glial cells gets triggered in response to TBI. Nevertheless, cellular and molecular reactions involved in cerebrovascular repair are not fully understood yet. Most studies were done on animals with many drawbacks in interpreting results. Therefore, future studies including human subjects are necessarily needed. This review will be of relevance to clinicians and researchers interested in understanding the underlying mechanisms in neurotrauma cases and the development of proper therapies as well as those with a general interest in the neurotrauma field.
Collapse
Affiliation(s)
| | - Idris Sula
- College of Medicine, Sulaiman Al Rajhi University, Al Bukayriyah, Al Qassim, Saudi Arabia
| | - Abrar AbuHamdia
- Department of Medical Laboratory Science, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | | | | | - Hiba Hamdar
- Medical Learning Skills Academy, Beirut, Lebanon
- Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Mohamed Elfil
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
2
|
Lin PH, Kuo LT, Luh HT. The Roles of Neurotrophins in Traumatic Brain Injury. LIFE (BASEL, SWITZERLAND) 2021; 12:life12010026. [PMID: 35054419 PMCID: PMC8780368 DOI: 10.3390/life12010026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 02/08/2023]
Abstract
Neurotrophins are a collection of structurally and functionally related proteins. They play important roles in many aspects of neural development, survival, and plasticity. Traumatic brain injury (TBI) leads to different levels of central nervous tissue destruction and cellular repair through various compensatory mechanisms promoted by the injured brain. Many studies have shown that neurotrophins are key modulators of neuroinflammation, apoptosis, blood–brain barrier permeability, memory capacity, and neurite regeneration. The expression of neurotrophins following TBI is affected by the severity of injury, genetic polymorphism, and different post-traumatic time points. Emerging research is focused on the potential therapeutic applications of neurotrophins in managing TBI. We conducted a comprehensive review by organizing the studies that demonstrate the role of neurotrophins in the management of TBI.
Collapse
Affiliation(s)
- Ping-Hung Lin
- Department of Medical Education, School of Medicine, National Taiwan University, Taipei 100, Taiwan;
| | - Lu-Ting Kuo
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei 100, Taiwan;
| | - Hui-Tzung Luh
- Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, New Taipei City 235, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University, Taipei 100, Taiwan
- Correspondence: ; Tel.: +886-956279587
| |
Collapse
|
3
|
Hermanides J, Hong YT, Trivedi M, Outtrim J, Aigbirhio F, Nestor PJ, Guilfoyle M, Winzeck S, Newcombe VFJ, Das T, Correia MM, Carpenter KLH, Hutchinson PJA, Gupta AK, Fryer TD, Pickard JD, Menon DK, Coles JP. Metabolic derangements are associated with impaired glucose delivery following traumatic brain injury. Brain 2021; 144:3492-3504. [PMID: 34240124 PMCID: PMC8677561 DOI: 10.1093/brain/awab255] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 05/20/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
Metabolic derangements following traumatic brain injury are poorly characterized. In this single-centre observational cohort study we combined 18F-FDG and multi-tracer oxygen-15 PET to comprehensively characterize the extent and spatial pattern of metabolic derangements. Twenty-six patients requiring sedation and ventilation with intracranial pressure monitoring following head injury within a Neurosciences Critical Care Unit, and 47 healthy volunteers were recruited. Eighteen volunteers were excluded for age over 60 years (n = 11), movement-related artefact (n = 3) or physiological instability during imaging (n = 4). We measured cerebral blood flow, blood volume, oxygen extraction fraction, and 18F-FDG transport into the brain (K1) and its phosphorylation (k3). We calculated oxygen metabolism, 18F-FDG influx rate constant (Ki), glucose metabolism and the oxygen/glucose metabolic ratio. Lesion core, penumbra and peri-penumbra, and normal-appearing brain, ischaemic brain volume and k3 hotspot regions were compared with plasma and microdialysis glucose in patients. Twenty-six head injury patients, median age 40 years (22 male, four female) underwent 34 combined 18F-FDG and oxygen-15 PET at early, intermediate, and late time points (within 24 h, Days 2-5, and Days 6-12 post-injury; n = 12, 8, and 14, respectively), and were compared with 20 volunteers, median age 43 years (15 male, five female) who underwent oxygen-15, and nine volunteers, median age 56 years (three male, six female) who underwent 18F-FDG PET. Higher plasma glucose was associated with higher microdialysate glucose. Blood flow and K1 were decreased in the vicinity of lesions, and closely related when blood flow was <25 ml/100 ml/min. Within normal-appearing brain, K1 was maintained despite lower blood flow than volunteers. Glucose utilization was globally reduced in comparison with volunteers (P < 0.001). k3 was variable; highest within lesions with some patients showing increases with blood flow <25 ml/100 ml/min, but falling steeply with blood flow lower than 12 ml/100 ml/min. k3 hotspots were found distant from lesions, with k3 increases associated with lower plasma glucose (Rho -0.33, P < 0.001) and microdialysis glucose (Rho -0.73, P = 0.02). k3 hotspots showed similar K1 and glucose metabolism to volunteers despite lower blood flow and oxygen metabolism (P < 0.001, both comparisons); oxygen extraction fraction increases consistent with ischaemia were uncommon. We show that glucose delivery was dependent on plasma glucose and cerebral blood flow. Overall glucose utilization was low, but regional increases were associated with reductions in glucose availability, blood flow and oxygen metabolism in the absence of ischaemia. Clinical management should optimize blood flow and glucose delivery and could explore the use of alternative energy substrates.
Collapse
Affiliation(s)
- Jeroen Hermanides
- University Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Young T Hong
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Monica Trivedi
- University Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Joanne Outtrim
- University Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Franklin Aigbirhio
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter J Nestor
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Matthew Guilfoyle
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Stefan Winzeck
- University Division of Anaesthesia, University of Cambridge, Cambridge, UK
- BioMedIA Group, Department of Computing, Imperial College, London, UK
| | | | - Tilak Das
- Department of Radiology, Addenbrooke’s Hospital, Cambridge, UK
| | - Marta M Correia
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Keri L H Carpenter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter J A Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Arun K Gupta
- University Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Tim D Fryer
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - John D Pickard
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - David K Menon
- University Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Jonathan P Coles
- University Division of Anaesthesia, University of Cambridge, Cambridge, UK
| |
Collapse
|
4
|
Song JL, Kim JA, Struck AF, Zhang R, Westover MB. A model of metabolic supply-demand mismatch leading to secondary brain injury. J Neurophysiol 2021; 126:653-667. [PMID: 34232754 DOI: 10.1152/jn.00674.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Secondary brain injury (SBI) is defined as new or worsening injury to the brain after an initial neurologic insult, such as hemorrhage, trauma, ischemic stroke, or infection. It is a common and potentially preventable complication following many types of primary brain injury (PBI). However, mechanistic details about how PBI leads to additional brain injury and evolves into SBI are poorly characterized. In this work, we propose a mechanistic model for the metabolic supply demand mismatch hypothesis (MSDMH) of SBI. Our model, based on the Hodgkin-Huxley model, supplemented with additional dynamics for extracellular potassium, oxygen concentration, and excitotoxity, provides a high-level unified explanation for why patients with acute brain injury frequently develop SBI. We investigate how decreased oxygen, increased extracellular potassium, excitotoxicity, and seizures can induce SBI and suggest three underlying paths for how events following PBI may lead to SBI. The proposed model also helps explain several important empirical observations, including the common association of acute brain injury with seizures, the association of seizures with tissue hypoxia and so on. In contrast to current practices which assume that ischemia plays the predominant role in SBI, our model suggests that metabolic crisis involved in SBI can also be nonischemic. Our findings offer a more comprehensive understanding of the complex interrelationship among potassium, oxygen, excitotoxicity, seizures, and SBI.NEW & NOTEWORTHY We present a novel mechanistic model for the metabolic supply demand mismatch hypothesis (MSDMH), which attempts to explain why patients with acute brain injury frequently develop seizure activity and secondary brain injury (SBI). Specifically, we investigate how decreased oxygen, increased extracellular potassium, excitotoxicity, seizures, all common sequalae of primary brain injury (PBI), can induce SBI and suggest three underlying paths for how events following PBI may lead to SBI.
Collapse
Affiliation(s)
- Jiang-Ling Song
- The Medical Big Data Research Center, Northwest University, Xi'an, China.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jennifer A Kim
- Department of Neurology, Yale New Haven Hospital, New Haven, Connecticut
| | - Aaron F Struck
- Departments of Neurology, University of Wisconsin-Madison, Madison, Wisconsin.,William S Middleton Veterans Administration Hospital, Madison, Wisconsin
| | - Rui Zhang
- The Medical Big Data Research Center, Northwest University, Xi'an, China
| | - M Brandon Westover
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
5
|
Han X, Ren H, Nandi A, Fan X, Koehler RC. Analysis of glucose metabolism by 18F-FDG-PET imaging and glucose transporter expression in a mouse model of intracerebral hemorrhage. Sci Rep 2021; 11:10885. [PMID: 34035344 PMCID: PMC8149426 DOI: 10.1038/s41598-021-90216-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 05/07/2021] [Indexed: 12/19/2022] Open
Abstract
The relationship between cerebral glucose metabolism and glucose transporter expression after intracerebral hemorrhage (ICH) is unclear. Few studies have used positron emission tomography (PET) to explore cerebral glucose metabolism after ICH in rodents. In this study, we produced ICH in mice with an intrastriatal injection of collagenase to investigate whether glucose metabolic changes in 18F-fluoro-2-deoxy-D-glucose (FDG)-PET images are associated with expression of glucose transporters (GLUTs) over time. On days 1 and 3 after ICH, the ipsilateral striatum exhibited significant hypometabolism. However, by days 7 and 14, glucose metabolism was significantly higher in the ipsilateral striatum than in the contralateral striatum. The contralateral hemisphere did not show hypermetabolism at any time after ICH. Qualitative immunofluorescence and Western blotting indicated that the expression of GLUT1 in ipsilateral striatum decreased on days 1 and 3 after ICH and gradually returned to baseline by day 21. The 18F-FDG uptake after ICH was associated with expression of GLUT1 but not GLUT3 or GLUT5. Our data suggest that ipsilateral cerebral glucose metabolism decreases in the early stage after ICH and increases progressively in the late stage. Changes in 18F-FDG uptake on PET imaging are associated with the expression of GLUT1 in the ipsilateral striatum.
Collapse
Affiliation(s)
- Xiaoning Han
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
| | - Honglei Ren
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Ayon Nandi
- Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Xuanjia Fan
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Raymond C Koehler
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| |
Collapse
|
6
|
Chaudhary R, Rema V. Deficits in Behavioral Functions of Intact Barrel Cortex Following Lesions of Homotopic Contralateral Cortex. Front Syst Neurosci 2018; 12:57. [PMID: 30524251 PMCID: PMC6262316 DOI: 10.3389/fnsys.2018.00057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/17/2018] [Indexed: 12/02/2022] Open
Abstract
Focal unilateral injuries to the somatosensory whisker barrel cortex have been shown cause long-lasting deficits in the activity and experience-dependent plasticity of neurons in the intact contralateral barrel cortex. However, the long-term effect of these deficits on behavioral functions of the intact contralesional cortex is not clear. In this study, we used the “Gap-crossing task” a barrel cortex-dependent, whisker-sensitive, tactile behavior to test the hypothesis that unilateral lesions of the somatosensory cortex would affect behavioral functions of the intact somatosensory cortex and degrade the execution of a bilaterally learnt behavior. Adult rats were trained to perform the Gap-crossing task using whiskers on both sides of the face. The barrel cortex was then lesioned unilaterally by subpial aspiration. As observed in other studies, when rats used whiskers that directly projected to the lesioned hemisphere the performance of Gap-crossing was drastically compromised, perhaps due to direct effect of lesion. Significant and persistent deficits were present when the lesioned rats performed Gap-crossing task using whiskers that projected to the intact cortex. The deficits were specific to performance of the task at the highest levels of sensitivity. Comparable deficits were seen when normal, bilaterally trained, rats performed the Gap-crossing task with only the whiskers on one side of the face or when they used only two rows of whiskers (D row and E row) intact on both side of the face. These findings indicate that the prolonged impairment in execution of the learnt task by rats with unilateral lesions of somatosensory cortex could be because sensory inputs from one set of whiskers to the intact cortex is insufficient to provide adequate sensory information at higher thresholds of detection. Our data suggest that optimal performance of somatosensory behavior requires dynamic activity-driven interhemispheric interactions from the entire somatosensory inputs between homotopic areas of the cerebral cortex. These results imply that focal unilateral cortical injuries, including those in humans, are likely to have widespread bilateral effects on information processing including in intact areas of the cortex.
Collapse
Affiliation(s)
| | - V Rema
- National Brain Research Centre, Manesar, India
| |
Collapse
|
7
|
Koenig JB, Dulla CG. Dysregulated Glucose Metabolism as a Therapeutic Target to Reduce Post-traumatic Epilepsy. Front Cell Neurosci 2018; 12:350. [PMID: 30459556 PMCID: PMC6232824 DOI: 10.3389/fncel.2018.00350] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) is a significant cause of disability worldwide and can lead to post-traumatic epilepsy. Multiple molecular, cellular, and network pathologies occur following injury which may contribute to epileptogenesis. Efforts to identify mechanisms of disease progression and biomarkers which predict clinical outcomes have focused heavily on metabolic changes. Advances in imaging approaches, combined with well-established biochemical methodologies, have revealed a complex landscape of metabolic changes that occur acutely after TBI and then evolve in the days to weeks after. Based on this rich clinical and preclinical data, combined with the success of metabolic therapies like the ketogenic diet in treating epilepsy, interest has grown in determining whether manipulating metabolic activity following TBI may have therapeutic value to prevent post-traumatic epileptogenesis. Here, we focus on changes in glucose utilization and glycolytic activity in the brain following TBI and during seizures. We review relevant literature and outline potential paths forward to utilize glycolytic inhibitors as a disease-modifying therapy for post-traumatic epilepsy.
Collapse
Affiliation(s)
- Jenny B Koenig
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
8
|
Verley DR, Torolira D, Pulido B, Gutman B, Bragin A, Mayer A, Harris NG. Remote Changes in Cortical Excitability after Experimental Traumatic Brain Injury and Functional Reorganization. J Neurotrauma 2018; 35:2448-2461. [PMID: 29717625 DOI: 10.1089/neu.2017.5536] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Although cognitive and behavioral deficits are well known to occur following traumatic brain injury (TBI), motor deficits that occur even after mild trauma are far less known, yet are equally persistent. This study was aimed at making progress toward determining how the brain reorganizes in response to TBI. We used the adult rat controlled cortical impact injury model to study the ipsilesional forelimb map evoked by electrical stimulation of the affected limb, as well as the contralesional forelimb map evoked by stimulation of the unaffected limb, both before injury and at 1, 2, 3, and 4 weeks after using functional magnetic resonance imaging (fMRI). End-point c-FOS immunohistochemistry data following 1 h of constant stimulation of the unaffected limb were acquired in the same rats to avoid any potential confounds due to altered cerebrovascular coupling. Single and paired-pulse sensory evoked potential (SEP) data were recorded from skull electrodes over the contralesional cortex in a parallel series of rats before injury, at 3 days, and at 1, 2, 3, and 4 weeks after injury in order to determine whether alterations in cortical excitability accompanied reorganization of the cortical map. The results show a transient trans-hemispheric shift in the ipsilesional cortical map as indicated by fMRI, remote contralesional increases in cortical excitability that occur in spatially similar regions to altered fMRI activity and greater c-FOS activation, and reduced or absent ipsilesional cortical activity chronically. The contralesional changes also were indicated by reduced SEP latency within 3 days after injury, but not by blood oxygenation level-dependent fMRI until much later. Detailed interrogation of cortical excitability using paired-pulse electrophysiology showed that the contralesional cortex undergoes both an early and a late post-injury period of hyper-excitability in response to injury, interspersed by a period of relatively normal activity. From these data, we postulate a cross-hemispheric mechanism by which remote cortex excitability inhibits ipsilesional activation by rebalanced cortical excitation-inhibition.
Collapse
Affiliation(s)
- Derek R Verley
- 1 UCLA Brain Injury Research Center, Department of Neurosurgery, University of California , Los Angeles, California
| | - Daniel Torolira
- 1 UCLA Brain Injury Research Center, Department of Neurosurgery, University of California , Los Angeles, California
| | - Brandon Pulido
- 1 UCLA Brain Injury Research Center, Department of Neurosurgery, University of California , Los Angeles, California
| | - Boris Gutman
- 2 Department of Neurology, Imaging Genetics Center, Keck/ University of Southern California School of Medicine, Institute for Neuroimaging and Informatics, University of Southern California , California
| | - Anatol Bragin
- 3 Department of Neurology, University of California , Los Angeles, California
| | - Andrew Mayer
- 4 The MIND Research Network and Department of Neurology, University of New Mexico , Albuquerque, New Mexico
| | - Neil G Harris
- 1 UCLA Brain Injury Research Center, Department of Neurosurgery, University of California , Los Angeles, California
| |
Collapse
|
9
|
Neurotrauma: The Crosstalk between Neurotrophins and Inflammation in the Acutely Injured Brain. Int J Mol Sci 2017; 18:ijms18051082. [PMID: 28524074 PMCID: PMC5454991 DOI: 10.3390/ijms18051082] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/25/2017] [Accepted: 05/11/2017] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) is a major cause of morbidity and mortality among young individuals worldwide. Understanding the pathophysiology of neurotrauma is crucial for the development of more effective therapeutic strategies. After the trauma occurs, immediate neurologic damage is produced by the traumatic forces; this primary injury triggers a secondary wave of biochemical cascades together with metabolic and cellular changes, called secondary neural injury. In the scenario of the acutely injured brain, the ongoing secondary injury results in ischemia and edema culminating in an uncontrollable increase in intracranial pressure. These areas of secondary injury progression, or areas of “traumatic penumbra”, represent crucial targets for therapeutic interventions. Neurotrophins are a class of signaling molecules that promote survival and/or maintenance of neurons. They also stimulate axonal growth, synaptic plasticity, and neurotransmitter synthesis and release. Therefore, this review focuses on the role of neurotrophins in the acute post-injury response. Here, we discuss possible endogenous neuroprotective mechanisms of neurotrophins in the prevailing environment surrounding the injured areas, and highlight the crosstalk between neurotrophins and inflammation with focus on neurovascular unit cells, particularly pericytes. The perspective is that neurotrophins may represent promising targets for research on neuroprotective and neurorestorative processes in the short-term following TBI.
Collapse
|
10
|
Lin WS, Lin TC, Hung Y, Lin WY, Lin CS, Lin CL, Cheng SM, Kao CH. Traumatic intracranial haemorrhage is in association with an increased risk of subsequent atrial fibrillation. Heart 2017; 103:1286-1291. [DOI: 10.1136/heartjnl-2016-310451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 01/10/2017] [Accepted: 02/04/2017] [Indexed: 11/03/2022] Open
|
11
|
Brabazon F, Wilson CM, Shukla DK, Mathur S, Jaiswal S, Bermudez S, Byrnes KR, Selwyn R. [18F]FDG-PET Combined with MRI Elucidates the Pathophysiology of Traumatic Brain Injury in Rats. J Neurotrauma 2017; 34:1074-1085. [DOI: 10.1089/neu.2016.4540] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Fiona Brabazon
- Neuroscience Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Colin M. Wilson
- Department of Radiology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Dinesh K Shukla
- Department of Radiology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Sanjeev Mathur
- Department of Radiology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Shalini Jaiswal
- Department of Radiology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Sara Bermudez
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Kimberly R. Byrnes
- Neuroscience Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Reed Selwyn
- Department of Radiology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Department of Radiology, University of New Mexico, Albuquerque, New Mexico
| |
Collapse
|
12
|
|
13
|
Lin WS, Lin CS, Liou JT, Lin WY, Lin CL, Cheng SM, Lin IC, Kao CH. Risk of Coronary Artery Disease in Patients With Traumatic Intracranial Hemorrhage: A Nationwide, Population-Based Cohort Study. Medicine (Baltimore) 2015; 94:e2284. [PMID: 26683957 PMCID: PMC5058929 DOI: 10.1097/md.0000000000002284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Traumatic intracranial hemorrhage (ICH) is prevalent worldwide with long-term consequences, including disabilities. However, studies on the association of traumatic ICH with coronary artery disease (CAD) are scant. Therefore, this study explored the aforementioned association in a large-scale, population-based cohort. A total of 128,997 patients with newly diagnosed traumatic ICH and 257,994 age- and sex-matched patients without traumatic ICH from 2000 to 2010 were identified from Taiwan's National Health Insurance Research Database. The Kaplan-Meier method was used for measuring the cumulative incidence of CAD in each cohort. Cox proportional regression models were used for evaluating the risk of CAD in patients with and without traumatic ICH and for comparing the risk between the 2 cohorts. The Kaplan-Meier analysis revealed that the cumulative incidence curves of CAD were significantly higher in patients with traumatic ICH than in those without ICH (log-rank test, P < 0.001). After adjustment for age, sex, and comorbidities, patients with traumatic ICH were associated with a higher risk of CAD compared with those without traumatic ICH (adjusted hazard ratio = 1.16, 95% confidence interval = 1.13-1.20). Compared with the general population, patients with traumatic ICH and having underlying comorbidities, including diabetes, hypertension, hyperlipidemia, chronic obstructive pulmonary disease, chronic kidney disease, and congestive heart failure, exhibited multiplicative risks of developing CAD. This cohort study revealed an increased risk of CAD in patients with traumatic ICH. Therefore, comprehensive evaluation and aggressive risk reduction for CAD are recommended in these patients.
Collapse
Affiliation(s)
- Wei-Shiang Lin
- From the Division of Cardiology (W-SL, C-SL, J-TL, W-YL, S-MC), Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei; Management Office for Health Data (C-LL), China Medical University Hospital, Taichung; College of Medicine (C-LL), China Medical University, Taichung; Family Medicine Department (I-CL), Changhua Christian Hospital, Changhua; School of Medicine (I-CL), Kaohsiung Medical University, Kaohsiung; School of Medicine (I-CL), Chung Shan Medical University, Taichung; Graduate Institute of Clinical Medical Science and School of Medicine (C-HK), College of Medicine, China Medical University, Taichung; and Department of Nuclear Medicine and PET Center (C-HK), China Medical University Hospital, Taichung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Amyot F, Arciniegas DB, Brazaitis MP, Curley KC, Diaz-Arrastia R, Gandjbakhche A, Herscovitch P, Hinds SR, Manley GT, Pacifico A, Razumovsky A, Riley J, Salzer W, Shih R, Smirniotopoulos JG, Stocker D. A Review of the Effectiveness of Neuroimaging Modalities for the Detection of Traumatic Brain Injury. J Neurotrauma 2015; 32:1693-721. [PMID: 26176603 PMCID: PMC4651019 DOI: 10.1089/neu.2013.3306] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The incidence of traumatic brain injury (TBI) in the United States was 3.5 million cases in 2009, according to the Centers for Disease Control and Prevention. It is a contributing factor in 30.5% of injury-related deaths among civilians. Additionally, since 2000, more than 260,000 service members were diagnosed with TBI, with the vast majority classified as mild or concussive (76%). The objective assessment of TBI via imaging is a critical research gap, both in the military and civilian communities. In 2011, the Department of Defense (DoD) prepared a congressional report summarizing the effectiveness of seven neuroimaging modalities (computed tomography [CT], magnetic resonance imaging [MRI], transcranial Doppler [TCD], positron emission tomography, single photon emission computed tomography, electrophysiologic techniques [magnetoencephalography and electroencephalography], and functional near-infrared spectroscopy) to assess the spectrum of TBI from concussion to coma. For this report, neuroimaging experts identified the most relevant peer-reviewed publications and assessed the quality of the literature for each of these imaging technique in the clinical and research settings. Although CT, MRI, and TCD were determined to be the most useful modalities in the clinical setting, no single imaging modality proved sufficient for all patients due to the heterogeneity of TBI. All imaging modalities reviewed demonstrated the potential to emerge as part of future clinical care. This paper describes and updates the results of the DoD report and also expands on the use of angiography in patients with TBI.
Collapse
Affiliation(s)
- Franck Amyot
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - David B. Arciniegas
- Beth K. and Stuart C. Yudofsky Division of Neuropsychiatry, Baylor College of Medicine, Houston, Texas
- Brain Injury Research, TIRR Memorial Hermann, Houston, Texas
| | | | - Kenneth C. Curley
- Combat Casualty Care Directorate (RAD2), U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland
| | - Ramon Diaz-Arrastia
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Amir Gandjbakhche
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| | - Peter Herscovitch
- Positron Emission Tomography Department, National Institutes of Health Clinical Center, Bethesda, Maryland
| | - Sidney R. Hinds
- Defense and Veterans Brain Injury Center, Defense Centers of Excellence for Psychological Health and Traumatic Brain Injury Silver Spring, Maryland
| | - Geoffrey T. Manley
- Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Anthony Pacifico
- Congressionally Directed Medical Research Programs, Fort Detrick, Maryland
| | | | - Jason Riley
- Queens University, Kingston, Ontario, Canada
- ArcheOptix Inc., Picton, Ontario, Canada
| | - Wanda Salzer
- Congressionally Directed Medical Research Programs, Fort Detrick, Maryland
| | - Robert Shih
- Walter Reed National Military Medical Center, Bethesda, Maryland
| | - James G. Smirniotopoulos
- Department of Radiology, Neurology, and Biomedical Informatics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Derek Stocker
- Walter Reed National Military Medical Center, Bethesda, Maryland
| |
Collapse
|
15
|
Mathias JL, Wheaton P. Contribution of brain or biological reserve and cognitive or neural reserve to outcome after TBI: A meta-analysis (prior to 2015). Neurosci Biobehav Rev 2015; 55:573-93. [PMID: 26054792 DOI: 10.1016/j.neubiorev.2015.06.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 05/22/2015] [Accepted: 06/02/2015] [Indexed: 11/16/2022]
Affiliation(s)
- Jane L Mathias
- School of Psychology, University of Adelaide, Adelaide, South Australia, Australia.
| | - Patricia Wheaton
- School of Psychology, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
16
|
McGinn MJ, Povlishock JT. Cellular and molecular mechanisms of injury and spontaneous recovery. HANDBOOK OF CLINICAL NEUROLOGY 2015; 127:67-87. [PMID: 25702210 DOI: 10.1016/b978-0-444-52892-6.00005-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Until recently, most have assumed that traumatic brain injury (TBI) was singularly associated with the overt destruction of brain tissue resulting in subsequent morbidity or death. More recently, experimental and clinical studies have shown that the pathobiology of TBI is more complex, involving a host of cellular and subcellular changes that impact on neuronal function and viability while also affecting vascular reactivity and the activation of multiple biological response pathways. Here we review the brain's response to injury, examining both focal and diffuse changes and their implications for post-traumatic brain dysfunction and recovery. TBI-induced neuronal dysfunction and death as well as the diffuse involvement of multiple fiber projections are discussed together with considerations of how local axonal membrane changes or channelopathy translate into local ionic dysregulation and axonal disconnection. Concomitant changes in the cerebral microcirculation are also discussed and their relationship with the parallel changes in the brain's metabolism is considered. These cellular and subcellular events occurring within neurons and their blood supply are correlated with multiple biological response modifiers evoked by generalized post-traumatic inflammation and the parallel activation of oxidative stress processes. The chapter closes with considerations of recovery following focal or diffuse injury. Evidence for dynamic brain reorganization/repair is presented, with considerations of traumatically induced circuit disruption and their progression to either adaptive or in some cases, maladaptive reorganization.
Collapse
Affiliation(s)
- Melissa J McGinn
- Department of Anatomy and Neurobiology, Medical College of Virginia Campus of Virginia Commonwealth University, Richmond, VA, USA
| | - John T Povlishock
- Department of Anatomy and Neurobiology, Medical College of Virginia Campus of Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
17
|
Hillary FG, Rajtmajer SM, Roman CA, Medaglia JD, Slocomb-Dluzen JE, Calhoun VD, Good DC, Wylie GR. The rich get richer: brain injury elicits hyperconnectivity in core subnetworks. PLoS One 2014; 9:e104021. [PMID: 25121760 PMCID: PMC4133194 DOI: 10.1371/journal.pone.0104021] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 07/09/2014] [Indexed: 11/22/2022] Open
Abstract
There remains much unknown about how large-scale neural networks accommodate neurological disruption, such as moderate and severe traumatic brain injury (TBI). A primary goal in this study was to examine the alterations in network topology occurring during the first year of recovery following TBI. To do so we examined 21 individuals with moderate and severe TBI at 3 and 6 months after resolution of posttraumatic amnesia and 15 age- and education-matched healthy adults using functional MRI and graph theoretical analyses. There were two central hypotheses in this study: 1) physical disruption results in increased functional connectivity, or hyperconnectivity, and 2) hyperconnectivity occurs in regions typically observed to be the most highly connected cortical hubs, or the "rich club". The current findings generally support the hyperconnectivity hypothesis showing that during the first year of recovery after TBI, neural networks show increased connectivity, and this change is disproportionately represented in brain regions belonging to the brain's core subnetworks. The selective increases in connectivity observed here are consistent with the preferential attachment model underlying scale-free network development. This study is the largest of its kind and provides the unique opportunity to examine how neural systems adapt to significant neurological disruption during the first year after injury.
Collapse
Affiliation(s)
- Frank G. Hillary
- The Pennsylvania State University, Department of Psychology, University Park, Pennsylvania, United States of America
| | - Sarah M. Rajtmajer
- The Pennsylvania State University, Department of Mathematics, University Park, Pennsylvania, United States of America
| | - Cristina A. Roman
- The Pennsylvania State University, Department of Psychology, University Park, Pennsylvania, United States of America
| | - John D. Medaglia
- The Pennsylvania State University, Department of Psychology, University Park, Pennsylvania, United States of America
| | - Julia E. Slocomb-Dluzen
- Hershey Medical Center, Department of Neurology, Hershey, Pennsylvania, United States of America
| | - Vincent D. Calhoun
- The Mind Research Network, Albuquerque, New Mexico, United States of America
| | - David C. Good
- Hershey Medical Center, Department of Neurology, Hershey, Pennsylvania, United States of America
| | - Glenn R. Wylie
- Kessler Foundation Research Center, West Orange, New Jersey, United States of America
| |
Collapse
|
18
|
Talavage TM, Nauman EA, Breedlove EL, Yoruk U, Dye AE, Morigaki KE, Feuer H, Leverenz LJ. Functionally-detected cognitive impairment in high school football players without clinically-diagnosed concussion. J Neurotrauma 2014; 31:327-38. [PMID: 20883154 PMCID: PMC3922228 DOI: 10.1089/neu.2010.1512] [Citation(s) in RCA: 399] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Head trauma and concussion in football players have recently received considerable media attention. Postmortem evidence suggests that accrual of damage to the brain may occur with repeated blows to the head, even when the individual blows fail to produce clinical symptoms. There is an urgent need for improved detection and characterization of head trauma to reduce future injury risk and promote development of new therapies. In this study we examined neurological performance and health in the presence of head collision events in high school football players, using longitudinal measures of collision events (the HIT(™) System), neurocognitive testing (ImPACT(™)), and functional magnetic resonance imaging MRI (fMRI). Longitudinal assessment (including baseline) was conducted in 11 young men (ages 15-19 years) participating on the varsity and junior varsity football teams at a single high school. We expected and observed subjects in two previously described categories: (1) no clinically-diagnosed concussion and no changes in neurological behavior, and (2) clinically-diagnosed concussion with changes in neurological behavior. Additionally, we observed players in a previously undiscovered third category, who exhibited no clinically-observed symptoms associated with concussion, but who demonstrated measurable neurocognitive (primarily visual working memory) and neurophysiological (altered activation in the dorsolateral prefrontal cortex [DLPFC]) impairments. This new category was associated with significantly higher numbers of head collision events to the top-front of the head, directly above the DLPFC. The discovery of this new category suggests that more players are suffering neurological injury than are currently being detected using traditional concussion-assessment tools. These individuals are unlikely to undergo clinical evaluation, and thus may continue to participate in football-related activities, even when changes in brain physiology (and potential brain damage) are present, which will increase the risk of future neurological injury.
Collapse
Affiliation(s)
- Thomas M. Talavage
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana
| | - Eric A. Nauman
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana
| | - Evan L. Breedlove
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Umit Yoruk
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana
| | - Anne E. Dye
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana
| | | | - Henry Feuer
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Larry J. Leverenz
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana
| |
Collapse
|
19
|
Byrnes KR, Wilson CM, Brabazon F, von Leden R, Jurgens JS, Oakes TR, Selwyn RG. FDG-PET imaging in mild traumatic brain injury: a critical review. FRONTIERS IN NEUROENERGETICS 2014; 5:13. [PMID: 24409143 PMCID: PMC3885820 DOI: 10.3389/fnene.2013.00013] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 12/23/2013] [Indexed: 11/30/2022]
Abstract
Traumatic brain injury (TBI) affects an estimated 1.7 million people in the United States and is a contributing factor to one third of all injury related deaths annually. According to the CDC, approximately 75% of all reported TBIs are concussions or considered mild in form, although the number of unreported mild TBIs (mTBI) and patients not seeking medical attention is unknown. Currently, classification of mTBI or concussion is a clinical assessment since diagnostic imaging is typically inconclusive due to subtle, obscure, or absent changes in anatomical or physiological parameters measured using standard magnetic resonance (MR) or computed tomography (CT) imaging protocols. Molecular imaging techniques that examine functional processes within the brain, such as measurement of glucose uptake and metabolism using [18F]fluorodeoxyglucose and positron emission tomography (FDG-PET), have the ability to detect changes after mTBI. Recent technological improvements in the resolution of PET systems, the integration of PET with magnetic resonance imaging (MRI), and the availability of normal healthy human databases and commercial image analysis software contribute to the growing use of molecular imaging in basic science research and advances in clinical imaging. This review will discuss the technological considerations and limitations of FDG-PET, including differentiation between glucose uptake and glucose metabolism and the significance of these measurements. In addition, the current state of FDG-PET imaging in assessing mTBI in clinical and preclinical research will be considered. Finally, this review will provide insight into potential critical data elements and recommended standardization to improve the application of FDG-PET to mTBI research and clinical practice.
Collapse
Affiliation(s)
- Kimberly R Byrnes
- Department of Anatomy, Physiology and Genetics, Uniformed Services University Bethesda, MD, USA ; Neuroscience Program, Department of Neuroscience, Uniformed Services University Bethesda, MD, USA ; Center for Neuroscience and Regenerative Medicine Bethesda, MD, USA
| | - Colin M Wilson
- Center for Neuroscience and Regenerative Medicine Bethesda, MD, USA ; Department of Radiology and Radiological Sciences, Uniformed Services University Bethesda, MD, USA
| | - Fiona Brabazon
- Neuroscience Program, Department of Neuroscience, Uniformed Services University Bethesda, MD, USA
| | - Ramona von Leden
- Neuroscience Program, Department of Neuroscience, Uniformed Services University Bethesda, MD, USA
| | - Jennifer S Jurgens
- Nuclear Medicine Service, Walter Reed National Military Medical Center Bethesda, MD, USA ; Department of Neurology, Uniformed Services University Bethesda, MD, USA
| | | | - Reed G Selwyn
- Center for Neuroscience and Regenerative Medicine Bethesda, MD, USA ; Department of Radiology and Radiological Sciences, Uniformed Services University Bethesda, MD, USA
| |
Collapse
|
20
|
Wu HM, Huang SC, Vespa P, Hovda DA, Bergsneider M. Redefining the pericontusional penumbra following traumatic brain injury: evidence of deteriorating metabolic derangements based on positron emission tomography. J Neurotrauma 2013; 30:352-60. [PMID: 23461651 DOI: 10.1089/neu.2012.2610] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract The pathophysiological changes in the pericontusional region after traumatic brain injury (TBI) have classically been considered to be ischemic. Using [F-18]fluorodeoxyglucose (FDG) and triple-oxygen PET studies, we examined the pericontusional "penumbra" to assess for increased oxygen extraction fraction (OEF), anaerobic metabolism, and tissue viability. Acute (≤4 days) CT, MRI, and PET studies were performed in eight patients with TBI who had contusions. Four regions-of-interest (ROI) containing the contusion core, pericontusional hypodense gray matter (GM), pericontusional normal-appearing GM, and remote normal-appearing GM, were defined using a semi-automatic method. The correlations of cerebral blood flow (CBF) with OEF, cerebral metabolic rate of oxygen (CMRO2), and cerebral metabolic rate of glucose (CMRglc) were examined. The oxygen-glucose ratio (OGR) in each brain region was evaluated for anaerobic metabolism. The results show that pericontusional tissue had progressively diminishing OEF, CBF, CMRO2, or CMRglc approaching the contusion core. In general, there was a preserved ratio of CBF to CMRO2 in pericontusional hypodense GM. The OGR of the pericontusional hypodense GM was low (<4.0) and was inversely correlated (r=-0.68) with time after injury. A large proportion (%area: 22-76%) of pericontusional hypodense GM tissue had CMRO2 values less than 35 μmol/100 g/min, with this percentage increased with time after injury.
Collapse
Affiliation(s)
- Hsiao-Ming Wu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-7039, USA
| | | | | | | | | |
Collapse
|
21
|
Tight glycemic control increases metabolic distress in traumatic brain injury: a randomized controlled within-subjects trial. Crit Care Med 2012; 40:1923-9. [PMID: 22610193 DOI: 10.1097/ccm.0b013e31824e0fcc] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To determine the effects of tight glycemic control on brain metabolism after traumatic brain injury using brain positron emission tomography and microdialysis. DESIGN Single-center, randomized controlled within-subject crossover observational trial. SETTING Academic intensive care unit. METHODS We performed a prospective, unblinded randomized controlled within-subject crossover trial of tight (80-110 mg/dL) vs. loose (120-150 mg/dL) glycemic control in patients with severe traumatic brain injury to determine the effects of glycemic control on brain glucose metabolism, as measured by [18F] deoxy-D-glucose brain positron emission tomography. Brain microdialysis was done simultaneously. MEASUREMENTS AND MAIN RESULTS Thirteen severely injured traumatic brain injury patients underwent the study between 3 and 8 days (mean 4.8 days) after traumatic brain injury. In ten of these subjects, global brain and gray matter tissues demonstrated higher glucose metabolic rates while glucose was under tight control as compared with loose control (3.2 ± 0.6 vs. 2.4 + 0.4, p = .02 [whole brain] and 3.8 ± 1.4 vs. 2.9 ± 0.8, p = .05 [gray matter]). However, the responses were heterogeneous with pericontusional tissue demonstrating the least state-dependent change. Cerebral microdialysis demonstrated more frequent critical reductions in glucose (p = .02) and elevations of lactate/pyruvate ratio (p = .03) during tight glycemic control. CONCLUSION Tight glycemic control results in increased global glucose uptake and an increased cerebral metabolic crisis after traumatic brain injury. The mechanisms leading to the enhancement of metabolic crisis are unclear, but delivery of more glucose through mild hyperglycemia may be necessary after traumatic brain injury.
Collapse
|
22
|
Abstract
The main purpose of neurointensive care is to fight against cerebral ischaemia. Ischaemia is the cell energy failure following inadequacy between supply of glucose and oxygen and demand. Ischemia monitoring starts with a global approach, especially with cerebral perfusion pressure (CPP) determined by mean arterial pressure and intracranial pressure (ICP). However, global monitoring is insufficient to detect "regional" ischaemia, leading to development of local monitoring such as brain oxygen partial pressure (PtiO(2)). PtiO(2) is measured on a volume of a few mm(3) from a probe implanted in the cerebral tissue. The normal value is classically included between 25 and 35 mmHg and critical ischemic threshold is 10 mmHg. Understanding what exactly is PtiO(2) is still a matter of debate. PtiO(2) is more an indicator of oxygen diffusion depending of oxygen arterial pressure (PaO(2)) and local cerebral blood flow (CBF). Increase PaO(2) to treat PtiO(2) would hide information about local CBF. PtiO(2) is useful for the detection of low local CBF even when ICP is low as in hypocapnia-induced vasoconstriction. PtiO(2)-guided management could lead to a continuous optimization of arterial oxygen transport for an optimal cerebral tissue oxygenation. Finally, PtiO(2) has probably a global prognostic value because studies showed that hypoxic values for a long period of time lead to an unfavourable neurologic outcome. In conclusion, PtiO(2) provides additional information for regional monitoring of cerebral ischaemia and deserves more intensive use to better understand it and probably improve neurointensive care management.
Collapse
|
23
|
Abstract
Sports-related concussions are complex injuries with biomechanical and biochemical etiology that present with central and autonomic nervous system dysfunction. Current methods for assessing concussions and basing return-to-play decisions rely on symptom resolution, rating scales, and neuropsychological testing, all of which are indirect measures of injury severity and detect functional capabilities but do not directly measure injury location or severity. In addition, these downstream measures are susceptible to false negatives because compensatory mechanism, such as unmasking and redundancies in brain circuitry can return functional capabilities before injury resolution. The multifactorial nature of concussion necessitates rapid, inexpensive, and easily applied multimodal analysis methods that can offer greater sensitivity and specificity. This article discusses how new approaches utilizing electrophysiology (e.g., QEEG, ERP, ECG, HRV), quantified balance measures, and biochemistry are necessary to advance the science of concussion assessment, treatment, recovery projections, and return-to-play decisions. These additional assessment tools offer a more direct window into the severity and location of the injury, real-time measures of brain function, and the ability to measure the multiple body systems negatively affected by concussion.
Collapse
|
24
|
Hillary FG, Slocomb J, Hills EC, Fitzpatrick NM, Medaglia JD, Wang J, Good DC, Wylie GR. Changes in resting connectivity during recovery from severe traumatic brain injury. Int J Psychophysiol 2011; 82:115-23. [PMID: 21473890 DOI: 10.1016/j.ijpsycho.2011.03.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 03/21/2011] [Accepted: 03/21/2011] [Indexed: 11/28/2022]
Abstract
In the present study we investigate neural network changes after moderate and severe traumatic brain injury (TBI) through the use of resting state functional connectivity (RSFC) methods. Using blood oxygen level dependent functional MRI, we examined RSFC at 3 and 6 months following resolution of posttraumatic amnesia. The goal of this study was to examine how regional off-task connectivity changes during a critical period of recovery from significant neurological disruption. This was achieved by examining regional changes in the intrinsic, or "resting", BOLD fMRI signal in separate networks: 1) regions linked to goal-directed (or external-state) networks and 2) default mode (or internal-state) networks. Findings here demonstrate significantly increased resting connectivity internal-state networks in the TBI sample during the first 6 months following recovery. The most consistent finding was increased connectivity in both internal and external state networks to the insula and medial temporal regions during recovery. These findings were dissociable from repeat measurements in a matched healthy control sample.
Collapse
Affiliation(s)
- F G Hillary
- Department of Psychology, Penn State University, University Park, PA 16802, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Jodzio K, Biechowska D. Wisconsin card sorting test as a measure of executive function impairments in stroke patients. ACTA ACUST UNITED AC 2011; 17:267-77. [PMID: 21154040 DOI: 10.1080/09084282.2010.525104] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The Wisconsin Card Sorting Test (WCST) is among the most frequently administered neuropsychological tests. It is assumed that successful completion of this test requires engagement of executive functions (EF). One of the most common origins of EF impairments is ischemic stroke. The present study intends to evaluate the diagnostic use of the WCST as a measure of these impairments in poststroke patients. Forty-four patients (8 women and 36 men) who had recent unilateral stroke (22 left hemisphere, 22 right hemisphere) participated in the study. The overall accuracy of the WCST in classifying stroke survivors as having executive disorders was poor. Nevertheless, statistical analysis revealed its negative predictive power to be greater than positive predictive power (i.e., normal scores on the WCST reliably indicated the absence of executive disorders in 8 or more out of 10). Performance on the WCST is clearly influenced by severity of the executive disorders. Namely, patients with severe impairment of EF (as measured by go/no-go, fluency, and other EF tests) performed more poorly on the WCST than patients with lesser impairment or those with no impairment at all, the latter group's results being indistinguishable. In addition, this study highlights a three-factor solution to the WCST, which accounted for 90.3% of the variance. The scores that most strongly loaded on Factors 1 to 3 were, in order: percentage of conceptual-level responses, number of trials to complete the first category, and failures to maintain the set of responses. Finally, an analysis using multivariate analysis of variance, with the anterior versus posterior site and left versus right side of the lesion as independent variables, revealed a relatively weak effect of lesion location on the WCST performance. In particular, with respect to all test scores, there is only one significant interaction between the site and side of lesion was obtained (F(₁(,)₂₄) = 4.12; p < .05; i.e., the number of categories achieved was significantly smaller after damage to the frontal lobe on the left than on the right side, whereas the laterality effect was not significant after nonfrontal lesions). In conclusion, to ascertain the cerebral substrates of poststroke executive dysfunction, there is a need to apply more accurate tests than the WCST. The study highlights the importance of a multicomponent approach to executive functioning in stroke patients.
Collapse
|
26
|
Lok J, Leung W, Murphy S, Butler W, Noviski N, Lo EH. Intracranial hemorrhage: mechanisms of secondary brain injury. ACTA NEUROCHIRURGICA. SUPPLEMENT 2011; 111:63-9. [PMID: 21725733 PMCID: PMC3285293 DOI: 10.1007/978-3-7091-0693-8_11] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
ICH is a disease with high rates of mortality and morbidity, with a substantial public health impact. Spontaneous ICH (sICH) has been extensively studied, and a large body of data has been accumulated on its pathophysiology. However, the literature on traumatic ICH (tICH) is limited, and further investigations of this important topic are needed. This review will highlight some of the cellular pathways in ICH with an emphasis on the mechanisms of secondary injury due to heme toxicity and to events in the coagulation process that are common to both sICH and tICH.
Collapse
Affiliation(s)
- Josephine Lok
- Neuroprotection Research Laboratory, Department of Pediatrics, Pediatric Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Recovered neuronal viability revealed by Iodine-123-iomazenil SPECT following traumatic brain injury. J Cereb Blood Flow Metab 2010; 30:1673-81. [PMID: 20683454 PMCID: PMC3023407 DOI: 10.1038/jcbfm.2010.75] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We evaluated cortical damages following traumatic brain injury (TBI) in the acute phase with [(123)I] iomazenil (IMZ) single photon emission computed tomography (SPECT). In all, 12 patients with cerebral contusion following TBI were recruited. All patients underwent IMZ SPECT within 1 week after TBI. To investigate the changes in distribution of IMZ in the cortex in the chronic phase, after conventional treatment, patients underwent IMZ SPECT again. A decrease in the accumulation of radioligand for the central benzodiazepine receptor in the cortex corresponding to the contusion revealed with computed tomography (CT) scans and magnetic resonance imaging (MRI) were shown on IMZ SPECT in the acute phase in all patients. In 9 of 12 patients (75%), images of IMZ SPECT obtained in the chronic phase of TBI showed that areas with a decreased distribution of IMZ were remarkably reduced in comparison with those obtained in the acute phase. Both CT scans and MRI showed a normal appearance of the cortex morphologically, where the binding potential of IMZ recovered in the chronic phase. Reduced binding potential of radioligand for the central benzodiazepine receptor is considered to be an irreversible reaction; however, in this study, IMZ accumulation in the cortex following TBI was recovered in the chronic phase in several patients. [(123)I] iomazenil SPECT may have a potential to disclose a reversible vulnerability of neurons following TBI.
Collapse
|
28
|
The nature of processing speed deficits in traumatic brain injury: is less brain more? Brain Imaging Behav 2010; 4:141-54. [PMID: 20502993 DOI: 10.1007/s11682-010-9094-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The cognitive constructs working memory (WM) and processing speed are fundamental components to general intellectual functioning in humans and highly susceptible to disruption following neurological insult. Much of the work to date examining speeded working memory deficits in clinical samples using functional imaging has demonstrated recruitment of network areas including prefrontal cortex (PFC) and anterior cingulate cortex (ACC). What remains unclear is the nature of this neural recruitment. The goal of this study was to isolate the neural networks distinct from those evident in healthy adults and to determine if reaction time (RT) reliably predicts observable between-group differences. The current data indicate that much of the neural recruitment in TBI during a speeded visual scanning task is positively correlated with RT. These data indicate that recruitment in PFC during tasks of rapid information processing are at least partially attributable to normal recruitment of PFC support resources during slowed task processing.
Collapse
|
29
|
Xu Y, McArthur DL, Alger JR, Etchepare M, Hovda DA, Glenn TC, Huang S, Dinov I, Vespa PM. Early nonischemic oxidative metabolic dysfunction leads to chronic brain atrophy in traumatic brain injury. J Cereb Blood Flow Metab 2010; 30:883-94. [PMID: 20029449 PMCID: PMC2949156 DOI: 10.1038/jcbfm.2009.263] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chronic brain atrophy after traumatic brain injury (TBI) is a well-known phenomenon, the causes of which are unknown. Early nonischemic reduction in oxidative metabolism is regionally associated with chronic brain atrophy after TBI. A total of 32 patients with moderate-to-severe TBI prospectively underwent positron emission tomography (PET) and volumetric magnetic resonance imaging (MRI) within the first week and at 6 months after injury. Regional lobar assessments comprised oxidative metabolism and glucose metabolism. Acute MRI showed a preponderance of hemorrhagic lesions with few irreversible ischemic lesions. Global and regional chronic brain atrophy occurred in all patients by 6 months, with the temporal and frontal lobes exhibiting the most atrophy compared with the occipital lobe. Global and regional reduction in cerebral metabolic rate of oxygen (CMRO(2)), cerebral blood flow (CBF), oxygen extraction fraction (OEF), and cerebral metabolic rate of glucose were observed. The extent of metabolic dysfunction was correlated with the total hemorrhage burden on initial MRI (r=0.62, P=0.01). The extent of regional brain atrophy correlated best with CMRO(2) and CBF. Lobar values of OEF were not in the ischemic range and did not correlate with chronic brain atrophy. Chronic brain atrophy is regionally specific and associated with regional reductions in oxidative brain metabolism in the absence of irreversible ischemia.
Collapse
Affiliation(s)
- Yueqiao Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Van Horn JD, Toga AW. Is it time to re-prioritize neuroimaging databases and digital repositories? Neuroimage 2009; 47:1720-34. [PMID: 19371790 PMCID: PMC2754579 DOI: 10.1016/j.neuroimage.2009.03.086] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 03/30/2009] [Accepted: 03/31/2009] [Indexed: 11/16/2022] Open
Abstract
The development of in vivo brain imaging has lead to the collection of large quantities of digital information. In any individual research article, several tens of gigabytes-worth of data may be represented-collected across normal and patient samples. With the ease of collecting such data, there is increased desire for brain imaging datasets to be openly shared through sophisticated databases. However, very often the raw and pre-processed versions of these data are not available to researchers outside of the team that collected them. A range of neuroimaging databasing approaches has streamlined the transmission, storage, and dissemination of data from such brain imaging studies. Though early sociological and technical concerns have been addressed, they have not been ameliorated altogether for many in the field. In this article, we review the progress made in neuroimaging databases, their role in data sharing, data management, potential for the construction of brain atlases, recording data provenance, and value for re-analysis, new publication, and training. We feature the LONI IDA as an example of an archive being used as a source for brain atlas workflow construction, list several instances of other successful uses of image databases, and comment on archive sustainability. Finally, we suggest that, given these developments, now is the time for the neuroimaging community to re-prioritize large-scale databases as a valuable component of brain imaging science.
Collapse
Affiliation(s)
- John Darrell Van Horn
- Laboratory of Neuro Imaging (LONI), Department of Neurology, UCLA School of Medicine, University of California Los Angeles, 635 Charles E. Young Drive SW, Suite 225, Los Angeles, CA 90095-7334. Phone: (310) 206-2101 (voice), Fax: (310) 206-5518 (fax)
| | - Arthur W. Toga
- Laboratory of Neuro Imaging (LONI), Department of Neurology, UCLA School of Medicine, University of California Los Angeles, 635 Charles E. Young Drive SW, Suite 225, Los Angeles, CA 90095-7334. Phone: (310) 206-2101 (voice), Fax: (310) 206-5518 (fax)
| |
Collapse
|
31
|
An analysis of regional microvascular loss and recovery following two grades of fluid percussion trauma: a role for hypoxia-inducible factors in traumatic brain injury. J Cereb Blood Flow Metab 2009; 29:575-84. [PMID: 19088740 DOI: 10.1038/jcbfm.2008.151] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Secondary hypoxic/ischemic injuries, stemming from reductions in cerebral blood flow are important contributing factors in progressive neuronal dysfunction after brain trauma. A greater preclinical understanding of how brain trauma leads to secondary hypoxia/ischemia is necessary in the development of posttraumatic brain injury (TBI) therapeutics. To this end, we examined the density of microvascular coverage in the injured and contralateral cortical hemispheres using two intensities of fluid percussion trauma in rats. A silicone microangiography technique showed a significant loss in microvascular density in 2 atmosphere (atm) (16.9+/-3.8%) and 3 atm (15.7+/-1.3%) injured animals relative to sham animals (29.9+/-2.5%; P<0.01). RECA-1 immunohistochemistry indicated that capillary changes involved a reduction in capillary number and diameter. Reduction in microvascular density was shown to be a diffuse phenomenon occurring up to 4 mm rostral and caudal to the injury epicenter. Recovery of microvasculature occurred by 2 weeks after injury only in the 2 atm injury group. Expression of HIF1alpha and increased vascular endothelial growth factor expression were observed in the ipsilateral hippocampus suggesting sufficiently impaired microcirculation resulting in the expression of hypoxic-response proteins. Collectively, the results indicate diffuse and heterogeneous microvascular alterations as well as endogenous expression of neuroprotective and neovascularization pathways after TBI.
Collapse
|
32
|
Branched-chain amino acids may improve recovery from a vegetative or minimally conscious state in patients with traumatic brain injury: a pilot study. Arch Phys Med Rehabil 2008; 89:1642-7. [PMID: 18760149 DOI: 10.1016/j.apmr.2008.02.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 02/26/2008] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To investigate whether supplementation with branched-chain amino acids (BCAAs) may improve recovery of patients with a posttraumatic vegetative or minimally conscious state. DESIGN Patients were randomly assigned to 15 days of intravenous BCAA supplementation (n=22; 19.6g/d) or an isonitrogenous placebo (n=19). SETTING Tertiary care rehabilitation setting. PARTICIPANTS Patients (N=41; 29 men, 12 women; mean age, 49.5+/-21 y) with a posttraumatic vegetative or minimally conscious state, 47+/-24 days after the index traumatic event. INTERVENTION Supplementation with BCAAs. MAIN OUTCOME MEASURE Disability Rating Scale (DRS) as log(10)DRS. RESULTS Fifteen days after admission to the rehabilitation department, the log(10)DRS score improved significantly only in patients who had received BCAAs (log(10)DRS score, 1.365+/-0.08 to 1.294+/-0.05; P<.001), while the log(10)DRS score in the placebo recipients remained virtually unchanged (log(10)DRS score, 1.373+/-0.03 to 1.37+/-0.03; P not significant). The difference in improvement of log(10)DRS score between the 2 groups was highly significant (P<.000). Moreover, 68.2% (n=15) of treated patients achieved a log(10)DRS point score of .477 or higher (3 as geometric mean) that allowed them to exit the vegetative or minimally conscious state. CONCLUSIONS Supplemented BCAAs may improve the recovery from a vegetative or minimally conscious state in patients with posttraumatic vegetative or minimally conscious state.
Collapse
|
33
|
Abstract
Biomedical imaging can reveal clear 3-dimensional body morphology non-invasively with high spatial resolution. Its efficacy, in both clinical and pre-clinical settings, is enhanced with its capability to provide in vivo functional/biological information in tissue. The role of kinetic modeling in providing biological/functional information in biomedical imaging is described. General characteristics and limitations in extracting biological information are addressed and practical approaches to solve the problems are discussed and illustrated with examples. Some future challenges and opportunities for kinetic modeling to expand the capability of biomedical imaging are also presented.
Collapse
|
34
|
Vespa PM, O'Phelan K, McArthur D, Miller C, Eliseo M, Hirt D, Glenn T, Hovda DA. Pericontusional brain tissue exhibits persistent elevation of lactate/pyruvate ratio independent of cerebral perfusion pressure. Crit Care Med 2007; 35:1153-60. [PMID: 17334254 DOI: 10.1097/01.ccm.0000259466.66310.4f] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To determine whether pericontusional tissue exhibits neurochemical responsiveness to changes in cerebral perfusion pressure as measured by microdialysis lactate/pyruvate ratio. DESIGN Prospective monitoring with retrospective data analysis. SETTING Single-center academic neurologic intensive care unit. PATIENTS Twenty-one patients with severe traumatic brain injury (Glasgow Coma Scale score 3-8). INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Cerebral microdialysis was performed for the initial 7 days after traumatic brain injury. Thirteen patients had microdialysis probes in normal tissue and eight had two probes, one of which was located in pericontusional tissue. Retrospective analysis was performed to determine if microdialysis levels in pericontusional tissue demonstrates higher levels of lactate/pyruvate ratio than normal tissue and if lactate/pyruvate ratio increased with reductions in cerebral perfusion pressure. Univariate analysis revealed higher values for glutamate and lactate/pyruvate ratio in pericontusional tissue compared with normal tissue. However, based on the mixed-effects model analysis, the percent time of elevated lactate/pyruvate ratio was significantly higher in pericontusional tissue (40 +/- 59% vs. 17 +/- 37%, p < .05), and the mean lactate/pyruvate ratio values showed only a trend relationship (62 +/- 134 vs. 34 +/- 78, p < .06). When examined by cerebral perfusion pressure threshold, cerebral perfusion pressure <60 mm Hg was not associated with higher lactate/pyruvate ratio values in normal or pericontusional tissue. In addition, no single cerebral perfusion pressure threshold was associated with a significant reduction in lactate/pyruvate ratio in either pericontusional or normal tissue (p < .08). CONCLUSIONS Sustained increases in lactate/pyruvate ratio occurred more frequently in pericontusional tissue compared with normal brain tissue. The lactate/pyruvate ratio was not related to cerebral perfusion pressure, nor was the percent time-burden of elevated lactate/pyruvate ratio related to any particular sustained cerebral perfusion pressure threshold. Lactate/pyruvate ratio values appear to be elevated despite cerebral perfusion pressure values customarily considered to be adequate.
Collapse
|
35
|
Chappell MH, Uluğ AM, Zhang L, Heitger MH, Jordan BD, Zimmerman RD, Watts R. Distribution of microstructural damage in the brains of professional boxers: a diffusion MRI study. J Magn Reson Imaging 2007; 24:537-42. [PMID: 16878306 DOI: 10.1002/jmri.20656] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To investigate and localize cerebral abnormalities in professional boxers with no history of moderate or severe head trauma. MATERIALS AND METHODS Diffusion tensor imaging (DTI) was used to determine the apparent diffusion coefficient (ADC) and fractional anisotropy (FA) in the brains of 81 professional male boxers and 12 male control subjects. Voxel-based analysis (VBA) of both the diffusion and anisotropy values was performed using statistical parametric mapping (SPM). From this objective analysis, regions of microstructural abnormalities in the brains of the boxers were located. RESULTS Increases in the ADC, and decreases in FA were identified in deep white matter (WM), while decreases in ADC were identified in cortical gray matter (GM). Regions of positive correlation between ADC and age were also found in both the boxer and control groups, although the regions and strength of the correlation were not the same in each group. CONCLUSION Using VBA, we localized previously unreported abnormalities in the brains of professional boxers. These abnormalities are assumed to reflect cumulative (chronic) brain injury resulting from nonsevere head trauma.
Collapse
Affiliation(s)
- Michael H Chappell
- Department of Physics and Astronomy, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW To describe the role of O2 positron emission tomography in studies aimed at understanding ischaemia in head injury. It has been difficult to use cerebral blood flow levels to provide a secure definition of cerebral ischaemia in head injury, since primary changes in cerebral metabolism may be responsible for coupled reductions in cerebral blood flow. Further, regional heterogeneity of pathophysiology can confound global measures of adequacy of cerebral oxygen delivery. There is a need for a technique that can provide a comprehensive and quantitative description of cerebral physiology in this setting. RECENT FINDINGS O2 positron emission tomography can image cerebral blood flow, cerebral blood volume, cerebral metabolic rate for oxygen and oxygen extraction fraction, and thus allows a robust and specific definition of true ischaemia. When used in combination with other monitoring tools and imaging modalities, positron emission tomography has also been used to validate and refine bedside monitors of cerebrovascular physiology, study the impact of therapeutic interventions and provide clues to novel pathophysiology. SUMMARY There is a clear role for O2 positron emission tomography in elucidating pathophysiology in head injury. The technique may provide most information when combined with other imaging and monitoring tools.
Collapse
Affiliation(s)
- David K Menon
- Division of Anaesthesia, University of Cambridge, Honorary Consultant, Neurosciences Critical Care Unit, Addenbrooke's Hospital, Cambridge, UK.
| |
Collapse
|
37
|
Pickard JD, Hutchinson PJ, Coles JP, Steiner LA, Johnston AJ, Fryer TD, Coleman MR, Smielewski P, Chatfield DA, Aigbirhio F, Williams GB, Rice K, Clark JC, Salmond CH, Sahakian BJ, Bradley PG, Carpenter TA, Salvador R, Pena A, Gillard JH, Cunningham AS, Piechnik S, Czosnyka M, Menon DK. Imaging of cerebral blood flow and metabolism in brain injury in the ICU. ACTA NEUROCHIRURGICA. SUPPLEMENT 2006; 95:459-64. [PMID: 16463901 DOI: 10.1007/3-211-32318-x_94] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
The heterogeneity of the initial insult and subsequent pathophysiology has made both the study of human head injury and design of randomised controlled trials exceptionally difficult. The combination of multimodality bedside monitoring and functional brain imaging positron emission tomography (PET) and magnetic resonance (MR), incorporated within a Neurosciences Critical Care Unit, provides the resource required to study critically ill patients after brain injury from initial ictus through recovery from coma and rehabilitation to final outcome. Methods to define cerebral ischemia in the context of altered cerebral oxidative metabolism have been developed, traditional therapies for intracranial hypertension re-evaluated and bedside monitors cross-validated. New modelling and analytical approaches have been developed.
Collapse
Affiliation(s)
- J D Pickard
- Wolfson Brain Imaging Centre, University of Cambridge, Addenbrookes Hospital, Cambridge, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Vespa P, Boonyaputthikul R, McArthur DL, Miller C, Etchepare M, Bergsneider M, Glenn T, Martin N, Hovda D. Intensive insulin therapy reduces microdialysis glucose values without altering glucose utilization or improving the lactate/pyruvate ratio after traumatic brain injury*. Crit Care Med 2006; 34:850-6. [PMID: 16505665 DOI: 10.1097/01.ccm.0000201875.12245.6f] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To determine that intensive glycemic control does not reduce microdialysis glucose concentration brain metabolism of glucose. DESIGN Prospective monitoring followed by retrospective data analysis of cerebral microdialysis and global brain metabolism. SETTING Single center, academic neurointensive care unit. PATIENTS Forty-seven moderate to severe traumatic brain injury patients. INTERVENTIONS A nonrandomized, consecutive design was used for glycemic control with loose insulin (n=33) for the initial 2 yrs or intensive insulin therapy (n=14) for the last year. MEASUREMENTS AND MAIN RESULTS In 14 patients treated with intensive insulin therapy, there was a reduction in microdialysis glucose by 70% of baseline concentration compared with a 15% reduction in 33 patients treated with a loose insulin protocol. Despite this reduction in microdialysis glucose, the global metabolic rate of glucose did not change. However, intensive insulin therapy was associated with increased incidence of microdialysis markers of cellular distress, namely elevated glutamate (38+/-37% vs. 10+/-17%, p<.01), elevated lactate/pyruvate ratio (38+/-37% vs. 19+/-26%, p<.03) and low glucose (26+/-17% vs. 11+/-15%, p<.05, and increased global oxygen extraction fraction. Mortality was similar in the intensive and loose insulin treatment groups (14% vs. 15%, p=.9), as was 6-month clinical outcome (p=.3). CONCLUSIONS Intensive insulin therapy results in a net reduction in microdialysis glucose and an increase in microdialysis glutamate and lactate/pyruvate without conveying a functional outcome advantage.
Collapse
Affiliation(s)
- Paul Vespa
- UCLA Division of Neurosurgery, Los Angeles, CA, and Barrows Neurologic Institute, Phoenix, AZ, USA
| | | | | | | | | | | | | | | | | |
Collapse
|