1
|
Grogan DP, Abduhalikov T, Kassell NF, Moosa S. Future Directions of MR-guided Focused Ultrasound. Magn Reson Imaging Clin N Am 2024; 32:705-715. [PMID: 39322359 DOI: 10.1016/j.mric.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
MR-guided focused ultrasound (MRgFUS) allows for the incisionless treatment of intracranial lesions in an outpatient setting. While this is currently approved for the surgical treatment of essential tremor and Parkinson's disease, advancements in imaging and ultrasound technology are allowing for the expansion of treatment indications to other intracranial diseases. In addition, these advancements are also making MRgFUS treatments easier, safer, and more efficacious.
Collapse
Affiliation(s)
- Dayton P Grogan
- Department of Neurosurgery, University of Virginia Hospital, 1215 Lee Street, Charlottesville, VA 22903, USA
| | - Timour Abduhalikov
- University of Virginia, School of Medicine, 1215 Lee Street, Charlottesville, VA 22903, USA
| | - Neal F Kassell
- Focused Ultrasound Foundation, 1230 Cedars Ct Suite 206, Charlottesville, VA 22903, USA
| | - Shayan Moosa
- Department of Neurosurgery, University of Virginia Hospital, PO Box 800212, Charlottesville, VA 22908, USA.
| |
Collapse
|
2
|
Wu M, Liao W. Machine Learning-Empowered Real-Time Acoustic Trapping: An Enabling Technique for Increasing MRI-Guided Microbubble Accumulation. SENSORS (BASEL, SWITZERLAND) 2024; 24:6342. [PMID: 39409397 PMCID: PMC11478462 DOI: 10.3390/s24196342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/06/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024]
Abstract
Acoustic trap, using ultrasound interference to ensnare bioparticles, has emerged as a versatile tool for life sciences due to its non-invasive nature. Bolstered by magnetic resonance imaging's advances in sensing acoustic interference and tracking drug carriers (e.g., microbubble), acoustic trap holds promise for increasing MRI-guided microbubbles (MBs) accumulation in target microvessels, improving drug carrier concentration. However, accurate trap generation remains challenging due to complex ultrasound propagation in tissues. Moreover, the MBs' short lifetime demands high computation efficiency for trap position adjustments based on real-time MRI-guided carrier monitoring. To this end, we propose a machine learning-based model to modulate the transducer array. Our model delivers accurate prediction of both time-of-flight (ToF) and pressure amplitude, achieving low average prediction errors for ToF (-0.45 µs to 0.67 µs, with only a few isolated outliers) and amplitude (-0.34% to 1.75%). Compared with the existing methods, our model enables rapid prediction (<10 ms), achieving a four-order of magnitude improvement in computational efficiency. Validation results based on different transducer sizes and penetration depths support the model's adaptability and potential for future ultrasound treatments.
Collapse
Affiliation(s)
- Mengjie Wu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 999077, China
| | - Wentao Liao
- Medical Imaging Center, Shenzhen Hospital of Southern Medical University, Shenzhen 518005, China;
| |
Collapse
|
3
|
Moscovich M, Aquino CHD, Marinho MM, Barcelos LB, Felício AC, Halverson M, Hamani C, Ferraz HB, Munhoz RP. Fundamentals of deep brain stimulation for Parkinson's disease in clinical practice: part 2. ARQUIVOS DE NEURO-PSIQUIATRIA 2024; 82:1-9. [PMID: 38653486 PMCID: PMC11039109 DOI: 10.1055/s-0044-1786037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/30/2023] [Indexed: 04/25/2024]
Abstract
The field of neuromodulation has evolved significantly over the past decade. Developments include novel indications and innovations of hardware, software, and stimulation techniques leading to an expansion in scope and role of these techniques as powerful therapeutic interventions. In this review, which is the second part of an effort to document and integrate the basic fundamentals and recent successful developments in the field, we will focus on classic paradigms for electrode placement as well as new exploratory targets, mechanisms of neuromodulation using this technique and new developments, including focused ultrasound driven ablative procedures.
Collapse
Affiliation(s)
- Mariana Moscovich
- Christian-Albrechts University, Department of Neurology, Kiel, Germany.
| | - Camila Henriques de Aquino
- University of Calgary, Cumming School of Medicine, Department of Clinical Neurosciences, Calgary, AB, Canada.
- University of Calgary, Hotchkiss Brain Institute, Calgary, AB, Canada.
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Neurologia e Neurocirurgia, São Paulo SP, Brazil.
| | - Murilo Martinez Marinho
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Neurologia e Neurocirurgia, São Paulo SP, Brazil.
| | - Lorena Broseghini Barcelos
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Neurologia e Neurocirurgia, São Paulo SP, Brazil.
| | | | - Matthew Halverson
- University of Utah, Department of Neurology, Salt Lake City, Utah, United States.
| | - Clement Hamani
- University of Toronto, Sunnybrook Hospital, Toronto, ON, Canada.
| | - Henrique Ballalai Ferraz
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Neurologia e Neurocirurgia, São Paulo SP, Brazil.
| | | |
Collapse
|
4
|
Zhu Y, Deng K, Zhou J, Lai C, Ma Z, Zhang H, Pan J, Shen L, Bucknor MD, Ozhinsky E, Kim S, Chen G, Ye SH, Zhang Y, Liu D, Gao C, Xu Y, Wang H, Wagner WR. Shape-recovery of implanted shape-memory devices remotely triggered via image-guided ultrasound heating. Nat Commun 2024; 15:1123. [PMID: 38321028 PMCID: PMC10847440 DOI: 10.1038/s41467-024-45437-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
Shape-memory materials hold great potential to impart medical devices with functionalities useful during implantation, locomotion, drug delivery, and removal. However, their clinical translation is limited by a lack of non-invasive and precise methods to trigger and control the shape recovery, especially for devices implanted in deep tissues. In this study, the application of image-guided high-intensity focused ultrasound (HIFU) heating is tested. Magnetic resonance-guided HIFU triggered shape-recovery of a device made of polyurethane urea while monitoring its temperature by magnetic resonance thermometry. Deformation of the polyurethane urea in a live canine bladder (5 cm deep) is achieved with 8 seconds of ultrasound-guided HIFU with millimeter resolution energy focus. Tissue sections show no hyperthermic tissue injury. A conceptual application in ureteral stent shape-recovery reduces removal resistance. In conclusion, image-guided HIFU demonstrates deep energy penetration, safety and speed.
Collapse
Affiliation(s)
- Yang Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Binjiang Institute of Zhejiang University, Hangzhou, China.
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Kaicheng Deng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianwei Zhou
- School of Electromechanical and Energy Engineering, NingboTech University, Ningbo, Zhejiang, China
| | - Chong Lai
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zuwei Ma
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hua Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiazhen Pan
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liyin Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Matthew D Bucknor
- Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Eugene Ozhinsky
- Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Seungil Kim
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Guangjie Chen
- Department of Urology, The Children's Hospital, School of Medicine, National Clinical Research Center for Child Health, Zhejiang University, Hangzhou, Zhejiang, China
| | - Sang-Ho Ye
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yue Zhang
- San Francisco Veterans Affairs Medical Center, University of California, San Francisco, CA, USA
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yonghua Xu
- Department of Imaging and Interventional Radiology, Zhongshan-Xuhui Hospital of Fudan University/Shanghai Xuhui Central Hospital, Shanghai, China.
| | - Huanan Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| | - William R Wagner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Kindler C, Upadhyay N, Purrer V, Schmeel FC, Borger V, Scheef L, Wüllner U, Boecker H. MRgFUS of the nucleus ventralis intermedius in essential tremor modulates functional connectivity within the classical tremor network and beyond. Parkinsonism Relat Disord 2023; 115:105845. [PMID: 37717502 DOI: 10.1016/j.parkreldis.2023.105845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/24/2023] [Accepted: 09/02/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND Magnetic resonance-guided focused ultrasound (MRgFUS) of the thalamic ventral intermediate nucleus is an incisionless lesional treatment for essential tremor. OBJECTIVE To examine relationships between tremor severity and functional connectivity in patients with essential tremor and to assess long-term changes in the tremor network after sonication of the ventral intermediate nucleus. METHODS Twenty-one patients with essential tremor (70.33 ± 11.32 years) were included in the final analysis and underwent resting state functional magnetic resonance imaging at 3 T before and 6 months after treatment. Tremor severity (Fahn-Tolosa-Marin Clinical Rating Scale) was evaluated and functional connectivity was investigated using independent component analysis. RESULTS MRgFUS of the thalamic ventral intermediate nucleus reduced contralateral tremor effectively. Multiple regression analysis revealed exclusively negative correlations between FC and tremor severity, notably in the right cerebellar lobe VI and the left cerebellar lobe VIIIa (cerebellar network), in the left occipital fusiform gyrus (lateral visual network), the anterior division of the left superior temporal gyrus (fronto-parieto-temporal network), and in the posterior division of the left parahippocampal gyrus and the bilateral lingual gyri (default mode network). Six months after treatment, increased functional connectivity was observed in almost all tremor-associated clusters, except the cluster localized in the left cerebellum. CONCLUSIONS Our findings suggest that tremor-related activity in essential tremor extends beyond the classical cerebellar network, additionally involving areas related to visual processing. Functional restoration of network activity after sonication of the ventral intermediate nucleus is observed within the classical tremor network (cerebellum) and notably also in visual processing areas.
Collapse
Affiliation(s)
- Christine Kindler
- Department of Neurology, University Hospital Bonn, Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| | - Neeraj Upadhyay
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Division 'Clinical Functional Imaging', Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Veronika Purrer
- Department of Neurology, University Hospital Bonn, Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | | - Valeri Borger
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Lukas Scheef
- Division 'Clinical Functional Imaging', Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Ullrich Wüllner
- Department of Neurology, University Hospital Bonn, Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Henning Boecker
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Division 'Clinical Functional Imaging', Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
6
|
Yoo SS, Kim E, Kowsari K, Van Reet J, Kim HC, Yoon K. Non-invasive enhancement of intracortical solute clearance using transcranial focused ultrasound. Sci Rep 2023; 13:12339. [PMID: 37524783 PMCID: PMC10390479 DOI: 10.1038/s41598-023-39640-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023] Open
Abstract
Transport of interstitial fluid and solutes plays a critical role in clearing metabolic waste from the brain. Transcranial application of focused ultrasound (FUS) has been shown to promote localized cerebrospinal fluid solute uptake into the brain parenchyma; however, its effects on the transport and clearance of interstitial solutes remain unknown. We demonstrate that pulsed application of low-intensity FUS to the rat brain enhances the transport of intracortically injected fluorescent tracers (ovalbumin and high molecular-weight dextran), yielding greater parenchymal tracer volume distribution compared to the unsonicated control group (ovalbumin by 40.1% and dextran by 34.6%). Furthermore, FUS promoted the drainage of injected interstitial ovalbumin to both superficial and deep cervical lymph nodes (cLNs) ipsilateral to sonication, with 78.3% higher drainage observed in the superficial cLNs compared to the non-sonicated hemisphere. The application of FUS increased the level of solute transport visible from the dorsal brain surface, with ~ 43% greater area and ~ 19% higher fluorescence intensity than the unsonicated group, especially in the pial surface ipsilateral to sonication. The sonication did not elicit tissue-level neuronal excitation, measured by an electroencephalogram, nor did it alter the molecular weight of the tracers. These findings suggest that nonthermal transcranial FUS can enhance advective transport of interstitial solutes and their subsequent removal in a completely non-invasive fashion, offering its potential non-pharmacological utility in facilitating clearance of waste from the brain.
Collapse
Affiliation(s)
- Seung-Schik Yoo
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, MA, 02115, Boston, USA.
| | - Evgenii Kim
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, MA, 02115, Boston, USA
| | - Kavin Kowsari
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, MA, 02115, Boston, USA
| | - Jared Van Reet
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, MA, 02115, Boston, USA
| | - Hyun-Chul Kim
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, MA, 02115, Boston, USA
- Department of Artificial Intelligence, Kyungpook National University, Daegu, Republic of Korea
| | - Kyungho Yoon
- School of Computational Science and Engineering, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Hughes A, Khan DS, Alkins R. Current and Emerging Systems for Focused Ultrasound-Mediated Blood-Brain Barrier Opening. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1479-1490. [PMID: 37100672 DOI: 10.1016/j.ultrasmedbio.2023.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/09/2023] [Accepted: 02/23/2023] [Indexed: 05/17/2023]
Abstract
With an ever-growing list of neurological applications of focused ultrasound (FUS), there has been a consequent increase in the variety of systems for delivering ultrasound energy to the brain. Specifically, recent successful pilot clinical trials of blood-brain barrier (BBB) opening with FUS have generated substantial interest in the future applications of this relatively novel therapy, with divergent, purpose-built technologies emerging. With many of these technologies at various stages of pre-clinical and clinical investigation, this article seeks to provide an overview and analysis of the numerous medical devices in active use and under development for FUS-mediated BBB opening.
Collapse
Affiliation(s)
- Alec Hughes
- School of Medicine, Faculty of Health Sciences, Queen's University, Kingston, ON, Canada
| | - Dure S Khan
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Ryan Alkins
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada; Division of Neurosurgery, Department of Surgery, Kingston Health Sciences Centre, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
8
|
Robinson TP, Pebror T, Krosin ME, Koniaris LG. Ablative Therapy in Non-HCC Liver Malignancy. Cancers (Basel) 2023; 15:cancers15041200. [PMID: 36831543 PMCID: PMC9954041 DOI: 10.3390/cancers15041200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Surgical extirpation of liver tumors remains a proven approach in the management of metastatic tumors to the liver, particularly those of colorectal origin. Ablative, non-resective therapies are an increasingly attractive primary therapy for liver tumors as they are generally better tolerated and result in far less morbidity and mortality. Ablative therapies preserve greater normal liver parenchyma allowing better post-treatment liver function and are particularly appropriate for treating subsequent liver-specific tumor recurrence. This article reviews the current status of ablative therapies for non-hepatocellular liver tumors with a discussion of many of the clinically available approaches.
Collapse
Affiliation(s)
- Tyler P. Robinson
- Department of Surgery, Indiana University, Indianapolis, IN 46202, USA
- Correspondence: ; Tel.: +1-312-371-8360
| | - Travis Pebror
- Department of Interventional Radiology, Indiana University, Indianapolis, IN 46202, USA
| | - Matthew E. Krosin
- Department of Interventional Radiology, Indiana University, Indianapolis, IN 46202, USA
| | | |
Collapse
|
9
|
Raghuram H, Looi T, Pichardo S, Waspe AC, Drake JM. A robotic MR-guided high-intensity focused ultrasound platform for intraventricular hemorrhage: assessment of clot lysis efficacy in a brain phantom. J Neurosurg Pediatr 2022; 30:586-594. [PMID: 36115058 DOI: 10.3171/2022.8.peds22144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/05/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Intraventricular hemorrhage (IVH) is a neurovascular complication due to premature birth that results in blood clots forming within the ventricles. Magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU) has been investigated as a noninvasive treatment to lyse clots. The authors designed and constructed a robotic MRgHIFU platform to treat the neonatal brain that facilitates ergonomic patient positioning. The clot lysis efficacy of the platform is quantified using a brain phantom and clinical MRI system. METHODS A thermosensitive brain-mimicking phantom with ventricular cavities was developed to test the clot lysis efficacy of the robotic MRgHIFU platform. Whole porcine blood was clotted within the phantom's cavities. Using the MRgHIFU platform and a boiling histotripsy treatment procedure (500 W, 10-msec pulse duration, 1.0% duty cycle, and 40-second duration), the clots were lysed inside the phantom. The contents of the cavities were vacuum filtered, and the remaining mass of the solid clot particles was used to quantify the percentage of clot lysis. The interior of the phantom's cavities was inspected for any collateral damage during treatment. RESULTS A total of 9 phantoms were sonicated, yielding an average (± SD) clot lysis of 97.0% ± 2.57%. Treatment resulted in substantial clot lysis within the brain-mimicking phantoms that were apparent on postsonication T2-weighted MR images. No apparent collateral damage was observed within the phantom after treatment. The results from the study showed the MRgHIFU platform was successful at lysing more than 90% of a blood clot at a statistically significant level. CONCLUSIONS The robotic MRgHIFU platform was shown to lyse a large percentage of a blood clot with no observable collateral damage. These results demonstrate the platform's ability to induce clot lysis when targeting through simulated brain matter and show promise toward the final application in neonatal patients.
Collapse
Affiliation(s)
- Hrishikesh Raghuram
- 1Posluns Centre for Image Guided Innovation and Therapeutic Intervention, Hospital for Sick Children, Toronto, Ontario
- 2The Institute of Biomedical Engineering, University of Toronto, Ontario
| | - Thomas Looi
- 1Posluns Centre for Image Guided Innovation and Therapeutic Intervention, Hospital for Sick Children, Toronto, Ontario
- 4Mechanical Engineering, and
| | - Samuel Pichardo
- 5Radiology and Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Alberta; and
- 6Hotchkiss Brain Institute, University of Calgary, Alberta, Canada
| | - Adam C Waspe
- 1Posluns Centre for Image Guided Innovation and Therapeutic Intervention, Hospital for Sick Children, Toronto, Ontario
- Departments of3Medical Imaging
| | - James M Drake
- 1Posluns Centre for Image Guided Innovation and Therapeutic Intervention, Hospital for Sick Children, Toronto, Ontario
- 2The Institute of Biomedical Engineering, University of Toronto, Ontario
- 4Mechanical Engineering, and
- 7Neurosurgery, University of Toronto, Ontario
| |
Collapse
|
10
|
Barzegar-Fallah A, Gandhi K, Rizwan SB, Slatter TL, Reynolds JNJ. Harnessing Ultrasound for Targeting Drug Delivery to the Brain and Breaching the Blood–Brain Tumour Barrier. Pharmaceutics 2022; 14:pharmaceutics14102231. [PMID: 36297666 PMCID: PMC9607160 DOI: 10.3390/pharmaceutics14102231] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Despite significant advances in developing drugs to treat brain tumours, achieving therapeutic concentrations of the drug at the tumour site remains a major challenge due to the presence of the blood–brain barrier (BBB). Several strategies have evolved to enhance brain delivery of chemotherapeutic agents to treat tumours; however, most approaches have several limitations which hinder their clinical utility. Promising studies indicate that ultrasound can penetrate the skull to target specific brain regions and transiently open the BBB, safely and reversibly, with a high degree of spatial and temporal specificity. In this review, we initially describe the basics of therapeutic ultrasound, then detail ultrasound-based drug delivery strategies to the brain and the mechanisms by which ultrasound can improve brain tumour therapy. We review pre-clinical and clinical findings from ultrasound-mediated BBB opening and drug delivery studies and outline current therapeutic ultrasound devices and technologies designed for this purpose.
Collapse
Affiliation(s)
- Anita Barzegar-Fallah
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
| | - Kushan Gandhi
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
| | - Shakila B. Rizwan
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
- School of Pharmacy, University of Otago, Dunedin 9016, New Zealand
| | - Tania L. Slatter
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - John N. J. Reynolds
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
- Correspondence: ; Tel.: +64-3-479-5781; Fax: +64-3-479-7254
| |
Collapse
|
11
|
Kim E, Van Reet J, Kim HC, Kowsari K, Yoo SS. High Incidence of Intracerebral Hemorrhaging Associated with the Application of Low-Intensity Focused Ultrasound Following Acute Cerebrovascular Injury by Intracortical Injection. Pharmaceutics 2022; 14:2120. [PMID: 36297554 PMCID: PMC9609794 DOI: 10.3390/pharmaceutics14102120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/22/2022] [Accepted: 10/04/2022] [Indexed: 11/29/2022] Open
Abstract
Low-intensity transcranial focused ultrasound (FUS) has gained momentum as a non-/minimally-invasive modality that facilitates the delivery of various pharmaceutical agents to the brain. With the additional ability to modulate regional brain tissue excitability, FUS is anticipated to confer potential neurotherapeutic applications whereby a deeper insight of its safety is warranted. We investigated the effects of FUS applied to the rat brain (Sprague-Dawley) shortly after an intracortical injection of fluorescent interstitial solutes, a widely used convection-enhanced delivery technique that directly (i.e., bypassing the blood-brain-barrier (BBB)) introduces drugs or interstitial tracers to the brain parenchyma. Texas Red ovalbumin (OA) and fluorescein isothiocyanate-dextran (FITC-d) were used as the interstitial tracers. Rats that did not receive sonication showed an expected interstitial distribution of OA and FITC-d around the injection site, with a wider volume distribution of OA (21.8 ± 4.0 µL) compared to that of FITC-d (7.8 ± 2.7 µL). Remarkably, nearly half of the rats exposed to the FUS developed intracerebral hemorrhaging (ICH), with a significantly higher volume of bleeding compared to a minor red blood cell extravasation from the animals that were not exposed to sonication. This finding suggests that the local cerebrovascular injury inflicted by the micro-injection was further exacerbated by the application of sonication, particularly during the acute stage of injury. Smaller tracer volume distributions and weaker fluorescent intensities, compared to the unsonicated animals, were observed for the sonicated rats that did not manifest hemorrhaging, which may indicate an enhanced degree of clearance of the injected tracers. Our results call for careful safety precautions when ultrasound sonication is desired among groups under elevated risks associated with a weakened or damaged vascular integrity.
Collapse
Affiliation(s)
- Evgenii Kim
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA or
| | - Jared Van Reet
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA or
| | - Hyun-Chul Kim
- Department of Artificial Intelligence, Kyungpook National University, Daegu 37224, Korea
| | - Kavin Kowsari
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA or
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Seung-Schik Yoo
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA or
| |
Collapse
|
12
|
Yamamoto K, Sarica C, Loh A, Vetkas A, Samuel N, Milano V, Zemmar A, Germann J, Cheyuo C, Boutet A, Elias GJ, Ito H, Taira T, Lozano AM. Magnetic resonance-guided focused ultrasound for the treatment of tremor. Expert Rev Neurother 2022; 22:849-861. [PMID: 36469578 DOI: 10.1080/14737175.2022.2147826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Magnetic resonance-guided focused ultrasound (MRgFUS) is an emerging treatment for tremor and other movement disorders. An incisionless therapy, it is becoming increasingly common worldwide. However, given MRgFUS' relative novelty, there remain limited data on its benefits and adverse effects. AREAS COVERED We review the current state of evidence of MRgFUS for tremor, highlight its challenges, and discuss future perspectives. EXPERT OPINION Essential tremor (ET) has been the major indication for MRgFUS since a milestone randomized controlled trial (RCT) in 2016, with substantial evidence attesting to the efficacy and acceptable safety profile of this treatment. Patients with other tremor etiologies are also being treated with MRgFUS, with studies - including an RCT - suggesting parkinsonian tremor in particular responds well to this intervention. Additionally, targets other than the ventral intermediate nucleus, such as the subthalamic nucleus and internal segment of the globus pallidus, have been reported to improve parkinsonian symptoms beyond tremor, including rigidity and bradykinesia. Although MRgFUS is encumbered by certain unique technical challenges, it nevertheless offers significant advantages compared to alternative neurosurgical interventions for tremor. The fast-growing interest in this treatment modality will likely lead to further scientific and technological advancements that could optimize and expand its therapeutic potential.
Collapse
Affiliation(s)
- Kazuaki Yamamoto
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, University of Toronto, Ontario, Canada
| | - Can Sarica
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, University of Toronto, Ontario, Canada
| | - Aaron Loh
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, University of Toronto, Ontario, Canada
| | - Artur Vetkas
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, University of Toronto, Ontario, Canada.,Department of Neurosurgery, School of Medicine, University of Tartu, Estonia
| | - Nardin Samuel
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, University of Toronto, Ontario, Canada
| | - Vanessa Milano
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, University of Toronto, Ontario, Canada
| | - Ajmal Zemmar
- Department of Neurosurgery, University of Louisville, School of Medicine, KY, USA.,Department of Neurosurgery, Henan University People's Hospital, Henan University School of Medicine, China
| | - Jürgen Germann
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, University of Toronto, Ontario, Canada
| | - Cletus Cheyuo
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, University of Toronto, Ontario, Canada
| | - Alexandre Boutet
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, University of Toronto, Ontario, Canada.,Joint Department of Medical Imaging, University of Toronto, Ontario, Canada
| | - Gavin Jb Elias
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, University of Toronto, Ontario, Canada
| | - Hisashi Ito
- Department of Neurology, Shonantobu General Hospital, Japan.,Department of Neurology, Shonan Fujisawa Tokushukai Hospital, Japan
| | - Takaomi Taira
- Department of Neurosurgery, Tokyo Women's Medical University, Japan
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, University of Toronto, Ontario, Canada.,Krembil Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Yoo SS, Kim HC, Kim J, Kim E, Kowsari K, Van Reet J, Yoon K. Enhancement of cerebrospinal fluid tracer movement by the application of pulsed transcranial focused ultrasound. Sci Rep 2022; 12:12940. [PMID: 35902724 PMCID: PMC9334279 DOI: 10.1038/s41598-022-17314-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/25/2022] [Indexed: 11/10/2022] Open
Abstract
Efficient transport of solutes in the cerebrospinal fluid (CSF) plays a critical role in their clearance from the brain. Convective bulk flow of solutes in the CSF in the perivascular space (PVS) is considered one of the important mechanisms behind solute movement in the brain, before their ultimate drainage to the systemic lymphatic system. Acoustic pressure waves can impose radiation force on a medium in its path, inducing localized and directional fluidic flow, known as acoustic streaming. We transcranially applied low-intensity focused ultrasound (FUS) to rats that received an intracisternal injection of fluorescent CSF tracers (dextran and ovalbumin, having two different molecular weights-Mw). The sonication pulsing parameter was determined on the set that propelled the aqueous solution of toluidine blue O dye into a porous media (melamine foam) at the highest level of infiltration. Fluorescence imaging of the brain showed that application of FUS increased the uptake of ovalbumin at the sonicated plane, particularly around the ventricles, whereas the uptake of high-Mw dextran was unaffected. Numerical simulation showed that the effects of sonication were non-thermal. Sonication did not alter the animals' behavior or disrupt the blood-brain barrier (BBB) while yielding normal brain histology. The results suggest that FUS may serve as a new non-invasive means to promote interstitial CSF solute transport in a region-specific manner without disrupting the BBB, providing potential for enhanced clearance of waste products from the brain.
Collapse
Affiliation(s)
- Seung-Schik Yoo
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.
| | - Hyun-Chul Kim
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
- Department of Artificial Intelligence, Kyungpook National University, Daegu, Republic of Korea
| | - Jaeho Kim
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
- Department of Neurology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Evgenii Kim
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Kavin Kowsari
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Boston, MA, USA
| | - Jared Van Reet
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Kyungho Yoon
- School of Mathematics and Computing (Computational Science and Engineering), Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
14
|
Pohl EDR, Upadhyay N, Kobeleva X, Purrer V, Maurer A, Keil VC, Kindler C, Borger V, Pieper CC, Groetz S, Scheef L, Maciaczyk J, Schild H, Vatter H, Klockgether T, Radbruch A, Attenberger U, Wüllner U, Boecker H. Coherent Structural and Functional Network Changes after Thalamic Lesions in Essential Tremor. Mov Disord 2022; 37:1924-1929. [PMID: 35735240 DOI: 10.1002/mds.29130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/02/2022] [Accepted: 06/01/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Magnetic resonance-guided focused ultrasound of the ventral intermediate nucleus is a novel incisionless ablative treatment for essential tremor (ET). OBJECTIVE The aim was to study the structural and functional network changes induced by unilateral sonication of the ventral intermediate nucleus in ET. METHODS Fifteen essential tremor patients (66.2 ± 15.4 years) underwent probabilistic tractography and functional magnetic resonance imaging (MRI) during unilateral postural tremor-eliciting tasks using 3-T MRI before, 1 month (N = 15), and 6 months (N = 10) post unilateral sonication. RESULTS Tractography identified tract-specific alterations within the dentato-thalamo-cortical tract (DTCT) affected by the unilateral lesion after sonication. Relative to the treated hand, task-evoked activation was significantly reduced in contralateral primary sensorimotor cortex and ipsilateral cerebellar lobules IV/V and VI, and vermis. Dynamic causal modeling revealed a significant decrease in excitatory drive from the cerebellum to the contralateral sensorimotor cortex. CONCLUSIONS Thalamic lesions induced by sonication induce specific functional network changes within the DTCT, notably reducing excitatory input to ipsilateral sensorimotor cortex in ET. ©[2022] International Parkinson and Movement Disorder Society. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Emily D R Pohl
- Division "Clinical Functional Imaging," Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Neeraj Upadhyay
- Division "Clinical Functional Imaging," Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Xenia Kobeleva
- Department of Neurology, University Hospital Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Veronika Purrer
- Department of Neurology, University Hospital Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Angelika Maurer
- Division "Clinical Functional Imaging," Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Vera C Keil
- Department of Neuroradiology, University Hospital Bonn, Bonn, Germany.,Department of Radiology and Nuclear Medicine, Amsterdam UMC, VUmc, Amsterdam, the Netherlands
| | - Christine Kindler
- Department of Neurology, University Hospital Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Valeri Borger
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Claus C Pieper
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Simon Groetz
- Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
| | - Lukas Scheef
- Division "Clinical Functional Imaging," Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Jaroslaw Maciaczyk
- Stereotactic and Functional Neurosurgery, Department of Neurosurgery, University Hospital Bonn, Bonn, Germany.,Division of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Hans Schild
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Hartmut Vatter
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Thomas Klockgether
- Department of Neurology, University Hospital Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Alexander Radbruch
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
| | - Ulrike Attenberger
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Ullrich Wüllner
- Department of Neurology, University Hospital Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Henning Boecker
- Division "Clinical Functional Imaging," Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| |
Collapse
|
15
|
Raghuram H, Keunen B, Soucier N, Looi T, Pichardo S, Waspe AC, Drake JM. A robotic magnetic resonance-guided high-intensity focused ultrasound platform for neonatal neurosurgery: Assessment of targeting accuracy and precision in a brain phantom. Med Phys 2022; 49:2120-2135. [PMID: 35174892 DOI: 10.1002/mp.15540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Intraventricular Hemorrhage (IVH) is one of the most serious neurovascular complications resulting from premature birth. It can result in clotting of blood within the ventricles, which causes a buildup of cerebrospinal fluid that can lead to posthemorrhagic ventricular dilation and posthemorrhagic hydrocephalus. Currently, there are no direct treatments for these blood clots as the standard of care is invasive surgery to insert a shunt. Magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU) has been investigated as a non-invasive treatment to lyse blood clots. However, current MRgHIFU systems are not suitable in the context of treating IVH in neonates. PURPOSE We have developed a robotic MRgHIFU neurosurgical platform designed to treat the neonatal brain. This platform facilitates ergonomic patient positioning and directs treatment through their open anterior fontanelle while providing a larger treatment volume. The platform is based on an MR-compatible robot developed by our group. Further development of the platform has warranted investigation of its targeting ability to assess its feasibility in the neonatal brain. This study aimed to quantify the platform's targeting accuracy, precision, and repeatability using a brain phantom and clinical MRI system. METHODS A thermosensitive brain-mimicking phantom was developed to test the platform's targeting accuracy. Rectangular grid patterns were created with HIFU thermal energy "lesions" in the phantoms by targeting specific coordinate points. The intended target locations were demarcated by inserting carbon fibre rods through a targeting assessment template. Coordinates for the intended and actual targets were derived from T2-weighted MRI scans and the centroid distance between them was measured. Subsequently, the platform's targeting accuracy was quantified according to equations derived from ISO Standard 9283:1998. RESULTS HIFU ablation resulted in distinct thermal lesions within the thermosensitive phantoms, which appeared as discrete hypointense regions in T2-weighted MR scans. A total of 127 target points were included in the data analysis, which yielded a targeting accuracy of 0.6mm and targeting precision of 1.2mm. CONCLUSIONS The robotic MRgHIFU platform was shown to have a high degree of accuracy, precision, and repeatability. The results demonstrate the platform's functionality when targeting through simulated brain matter. These results serve as an initial verification of the platform targeting ability and showed promise towards the final application in a neonatal brain. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hrishikesh Raghuram
- Posluns Centre for Image Guided Innovation and Therapeutic Intervention, Hospital for Sick Children, Toronto, Ontario, M5G 1 × 8, Canada.,The Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, M5G 3G9, Canada
| | - Benjamin Keunen
- The Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, M5G 3G9, Canada
| | - Nathan Soucier
- Posluns Centre for Image Guided Innovation and Therapeutic Intervention, Hospital for Sick Children, Toronto, Ontario, M5G 1 × 8, Canada.,The Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, M5G 3G9, Canada
| | - Thomas Looi
- Posluns Centre for Image Guided Innovation and Therapeutic Intervention, Hospital for Sick Children, Toronto, Ontario, M5G 1 × 8, Canada.,Department of Medical Imaging, University of Toronto, Toronto, Ontario, M5T 1W7, Canada
| | - Samuel Pichardo
- Radiology and Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Adam C Waspe
- Posluns Centre for Image Guided Innovation and Therapeutic Intervention, Hospital for Sick Children, Toronto, Ontario, M5G 1 × 8, Canada.,Department of Medical Imaging, University of Toronto, Toronto, Ontario, M5T 1W7, Canada
| | - James M Drake
- Posluns Centre for Image Guided Innovation and Therapeutic Intervention, Hospital for Sick Children, Toronto, Ontario, M5G 1 × 8, Canada.,The Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, M5G 3G9, Canada.,Department of Neurosurgery, University of Toronto, Toronto, Ontario, M5S 1A1, Canada
| |
Collapse
|
16
|
Byun SS, Jin N, Lee H. High Intensity Focused Ultrasound Ablation for Prostate Cancer: Whole Versus Partial Gland Ablation. Clin Genitourin Cancer 2022; 20:e39-e44. [PMID: 34756810 DOI: 10.1016/j.clgc.2021.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND We compared the clinical outcomes between whole-gland ablation (WGA) and partial gland ablation (PGA) using the high-intensity focused ultrasound (HIFU) technique for localized prostate cancer (PCa). METHODS We retrospectively investigated 206 patients who underwent WGA or PGA for localized PCa. Follow-up prostatic biopsy was performed 1 year postoperatively. We performed intergroup comparison of the postoperative functional and oncological outcomes and complication rates. RESULTS In this study, 152 and 54 patients underwent PGA and WGA, respectively. The total operation time was significantly longer in the WGA than in the PGA group (107.5 minutes vs. 95.0 minutes, P = .004). Of the 86 patients who underwent postoperative prostate biopsy, no residual cancer was detected in 70.4% of the WGA and 72.9% of the PGA group. Incontinence-free survival was significantly shorter in the PGA than in the WGA group (P= .047); however, no significant intergroup difference was observed in erectile dysfunction-free survival (P= .317). The postoperative adverse event rate was significantly lower in the PGA than in the WGA group (37.5% vs. 66.7%, P = .023). Of the total patients investigated, 43 (20.9%) required additional endoscopic surgery for bladder outlet obstruction, and the additional endoscopic surgery rate was significantly higher in the WGA than in the PGA group (35.2% vs. 15.8%, P = .005). CONCLUSION HIFU treatment was associated with acceptable oncological and fair functional outcomes in patients with localized PCa. Moreover, PGA was associated with significantly better clinical outcomes, including the faster recovery of urinary incontinence and adverse effects.
Collapse
Affiliation(s)
- Seok-Soo Byun
- Department of Urology, Seoul National University Bundang Hospital, Gyeonggi-do, Korea
| | - Noh Jin
- Department of Urology, Seoul National University Bundang Hospital, Gyeonggi-do, Korea
| | - Hakmin Lee
- Department of Urology, Seoul National University Bundang Hospital, Gyeonggi-do, Korea.
| |
Collapse
|
17
|
Ahmed AK, Guo S, Kelm N, Clanton R, Melhem ER, Gullapalli RP, Ksendzovsky A, Eisenberg HM, Miller TR, Gandhi D. Technical Comparison of Treatment Efficiency of Magnetic Resonance-Guided Focused Ultrasound Thalamotomy and Pallidotomy in Skull Density Ratio-Matched Patient Cohorts. Front Neurol 2022; 12:808810. [PMID: 35126300 PMCID: PMC8813961 DOI: 10.3389/fneur.2021.808810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/17/2021] [Indexed: 11/24/2022] Open
Abstract
Objective MR-guided focused ultrasound (MRgFUS) is increasingly being used to treat patients with essential tremor (ET) and Parkinson's disease (PD) with thalamotomy and pallidotomy, respectively. Pallidotomy is performed off-center within the cranium compared to thalamotomy and may present challenges to therapeutic lesioning due to this location. However, the impact of target location on treatment efficiency and ability to create therapeutic lesions has not been studied. This study aimed to compare the physical efficiency of MRgFUS thalamotomy and pallidotomy. Methods Treatment characteristics were compared between patients treated with thalamotomy (n = 20) or pallidotomy (n = 20), matched by skull density ratios (SDR). Aspects of treatment efficiency were compared between these groups. Demographic and comparative statistics were conducted to assess these differences. Acoustic field simulations were performed to compare and validate the simulated temperature profile for VIM and GPi ablation. Results Lower SDR values were associated with greater energy requirement for thalamotomy (R2 = 0.197, p = 0.049) and pallidotomy (R2 = 0.342, p = 0.007). The impact of low SDR on efficiency reduction was greater for pallidotomy, approaching significance (p = 0.061). A nearly two-fold increase in energy was needed to reach 50°C in pallidotomy (10.9kJ) than in thalamotomy (5.7kJ), (p = 0.002). Despite lower energy requirement, the maximum average temperature reached was higher in thalamotomy (56.7°C) than in pallidotomy (55.0°C), (p = 0.017). Mean incident angle of acoustic beams was lesser in thalamotomy (12.7°) than in pallidotomy (18.6°), (p < 0.001). For all patients, a lesser mean incident angle correlated with a higher maximum average temperature reached (R2 = 0.124, p = 0.026), and less energy needed to reach 50°C (R2=0.134, p = 0.020). Greater skull thickness was associated with a higher maximum energy for a single sonication for thalamotomy (R2 = 0.206, p = 0.045) and pallidotomy (R2 = 0.403, p = 0.003). An acoustic and temperature field simulation validated similar findings for thalamotomy and pallidotomy in a single patient. Conclusion The centrally located VIM offers a more efficient location for therapeutic lesioning compared to GPi pallidotomy in SDR matched cohort of patients. The impact on therapeutic lesioning with lower SDR may be greater for pallidotomy patients. As newer off-center targets are investigated, these findings can inform patient selection and treatment requirements for lesion production.
Collapse
Affiliation(s)
- Abdul-Kareem Ahmed
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
- *Correspondence: Abdul-Kareem Ahmed
| | - Sijia Guo
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | | | | | - Elias R. Melhem
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Rao P. Gullapalli
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Alexander Ksendzovsky
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Howard M. Eisenberg
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Timothy R. Miller
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Dheeraj Gandhi
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
18
|
Schoen S, Kilinc MS, Lee H, Guo Y, Degertekin FL, Woodworth GF, Arvanitis C. Towards controlled drug delivery in brain tumors with microbubble-enhanced focused ultrasound. Adv Drug Deliv Rev 2022; 180:114043. [PMID: 34801617 PMCID: PMC8724442 DOI: 10.1016/j.addr.2021.114043] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/27/2021] [Accepted: 11/04/2021] [Indexed: 02/06/2023]
Abstract
Brain tumors are particularly challenging malignancies, due to their location in a structurally and functionally distinct part of the human body - the central nervous system (CNS). The CNS is separated and protected by a unique system of brain and blood vessel cells which together prevent most bloodborne therapeutics from entering the brain tumor microenvironment (TME). Recently, great strides have been made through microbubble (MB) ultrasound contrast agents in conjunction with ultrasound energy to locally increase the permeability of brain vessels and modulate the brain TME. As we elaborate in this review, this physical method can effectively deliver a wide range of anticancer agents, including chemotherapeutics, antibodies, and nanoparticle drug conjugates across a range of preclinical brain tumors, including high grade glioma (glioblastoma), diffuse intrinsic pontine gliomas, and brain metastasis. Moreover, recent evidence suggests that this technology can promote the effective delivery of novel immunotherapeutic agents, including immune check-point inhibitors and chimeric antigen receptor T cells, among others. With early clinical studies demonstrating safety, and several Phase I/II trials testing the preclinical findings underway, this technology is making firm steps towards shaping the future treatments of primary and metastatic brain cancer. By elaborating on its key components, including ultrasound systems and MB technology, along with methods for closed-loop spatial and temporal control of MB activity, we highlight how this technology can be tuned to enable new, personalized treatment strategies for primary brain malignancies and brain metastases.
Collapse
Affiliation(s)
- Scott Schoen
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - M. Sait Kilinc
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Hohyun Lee
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yutong Guo
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - F. Levent Degertekin
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Graeme F. Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA,Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, College Park, MD 20742, USA,Fischell Department of Bioengineering A. James Clarke School of Engineering, University of Maryland
| | - Costas Arvanitis
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA,Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| |
Collapse
|
19
|
Design and micromachining of a stretchable two-dimensional ultrasonic array. MICRO AND NANO ENGINEERING 2021. [DOI: 10.1016/j.mne.2021.100096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
High-Intensity Focused Ultrasound: A Review of Mechanisms and Clinical Applications. Ann Biomed Eng 2021; 49:1975-1991. [PMID: 34374945 DOI: 10.1007/s10439-021-02833-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/08/2021] [Indexed: 01/20/2023]
Abstract
High Intensity Focused Ultrasound (HIFU) is an emerging and increasingly useful modality in the treatment of cancer and other diseases. Although traditional use of ultrasound at lower frequencies has primarily been for diagnostic imaging purposes, the development of HIFU has allowed this particular modality to expand into therapeutic use. This non-invasive and acoustic method involves the use of a piezoelectric transducer to deliver high-energy pulses in a spatially coordinated manner, while minimizing damage to tissue outside the target area. This review describes the history of the development of diagnostic and therapeutic ultrasound and explores the biomedical applications utilizing HIFU technology including thermally ablative treatment, therapeutic delivery mechanisms, and neuromodulatory phenomena. The application of HIFU across various tumor types in multiple organ systems is explored in depth, with particular attention to successful models of HIFU in the treatment of various medical conditions. Basic mechanisms, preclinical models, previous clinical use, and ongoing clinical trials are comparatively discussed. Recent advances in HIFU across multiple medical fields reveal the growing importance of this biomedical technology for the care of patients and for the development of possible pathways for the future use of HIFU as a commonplace treatment modality.
Collapse
|
21
|
Prada F, Franzini A, Moosa S, Padilla F, Moore D, Solbiati L, DiMeco F, Legon W. In vitro and in vivo characterization of a cranial window prosthesis for diagnostic and therapeutic cerebral ultrasound. J Neurosurg 2021; 134:646-658. [PMID: 31899872 DOI: 10.3171/2019.10.jns191674] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 10/28/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The authors evaluated the acoustic properties of an implantable, biocompatible, polyolefin-based cranial prosthesis as a medium to transmit ultrasound energy into the intracranial space with minimal distortion for imaging and therapeutic purposes. METHODS The authors performed in vitro and in vivo studies of ultrasound transmission through a cranial prosthesis. In the in vitro phase, they analyzed the transmission of ultrasound energy through the prosthesis in a water tank using various transducers with resonance frequencies corresponding to those of devices used for neurosurgical imaging and therapeutic purposes. Four distinct, single-element, focused transducers were tested at fundamental frequencies of 500 kHz, 1 MHz, 2.5 MHz, and 5 MHz. In addition, the authors tested ultrasound transmission through the prosthesis using a linear diagnostic probe (center frequency 5.3 MHz) with a calibrated needle hydrophone in free water. Each transducer was assessed across a range of input voltages that encompassed their full minimum to maximum range without waveform distortion. They also tested the effect of the prosthesis on beam pressure and geometry. In the in vivo phase, the authors performed ultrasound imaging through the prosthesis implanted in a swine model. RESULTS Acoustic power attenuation through the prosthesis was considerably lower than that reported to occur through the native cranial bone. Increasing the frequency of the transducer augmented the degree of acoustic power loss. The degradation/distortion of the ultrasound beams passing through the prosthesis was minimal in all 3 spatial planes (XY, XZ, and YZ) that were examined. The images acquired in vivo demonstrated no spatial distortion from the prosthesis, with spatial relationships that were superimposable to those acquired through the dura. CONCLUSIONS The results of the tests performed on the polyolefin-based cranial prosthesis indicated that this is a valid medium for delivering both focused and unfocused ultrasound and obtaining ultrasound images of the intracranial space. The prosthesis may serve for several diagnostic and therapeutic ultrasound-based applications, including bedside imaging of the brain and ultrasound-guided focused ultrasound cerebral procedures.
Collapse
Affiliation(s)
- Francesco Prada
- 1Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico C. Besta, Milano, Italy
- 2Department of Neurosurgery, University of Virginia Health System
- 3Focused Ultrasound Foundation, Charlottesville, Virginia
| | - Andrea Franzini
- 1Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico C. Besta, Milano, Italy
- 2Department of Neurosurgery, University of Virginia Health System
| | - Shayan Moosa
- 2Department of Neurosurgery, University of Virginia Health System
| | | | - David Moore
- 3Focused Ultrasound Foundation, Charlottesville, Virginia
| | - Luigi Solbiati
- 4Department of Radiology, Humanitas Research Hospital, Rozzano, Italy
| | - Francesco DiMeco
- 1Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico C. Besta, Milano, Italy
- 5Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland; and
- 6Department of Pathophysiology and Transplantation, Università degli studi di Milano, Italy
| | - Wynn Legon
- 2Department of Neurosurgery, University of Virginia Health System
| |
Collapse
|
22
|
Meng Y, Hynynen K, Lipsman N. Applications of focused ultrasound in the brain: from thermoablation to drug delivery. Nat Rev Neurol 2020; 17:7-22. [PMID: 33106619 DOI: 10.1038/s41582-020-00418-z] [Citation(s) in RCA: 220] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2020] [Indexed: 02/07/2023]
Abstract
Focused ultrasound (FUS) is a disruptive medical technology, and its implementation in the clinic represents the culmination of decades of research. Lying at the convergence of physics, engineering, imaging, biology and neuroscience, FUS offers the ability to non-invasively and precisely intervene in key circuits that drive common and challenging brain conditions. The actions of FUS in the brain take many forms, ranging from transient blood-brain barrier opening and neuromodulation to permanent thermoablation. Over the past 5 years, we have seen a dramatic expansion of indications for and experience with FUS in humans, with a resultant exponential increase in academic and public interest in the technology. Applications now span the clinical spectrum in neurological and psychiatric diseases, with insights still emerging from preclinical models and human trials. In this Review, we provide a comprehensive overview of therapeutic ultrasound and its current and emerging indications in the brain. We examine the potential impact of FUS on the landscape of brain therapies as well as the challenges facing further advancement and broader adoption of this promising minimally invasive therapeutic alternative.
Collapse
Affiliation(s)
- Ying Meng
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Sunnybrook Research Institute, Hurvitz Brain Sciences Program, Harquail Centre for Neuromodulation, Toronto, ON, Canada.,Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Kullervo Hynynen
- Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Medical Biophysics and Institute of Biomaterials & Biomedical Engineering (IBBME), University of Toronto, Toronto, ON, Canada
| | - Nir Lipsman
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada. .,Sunnybrook Research Institute, Hurvitz Brain Sciences Program, Harquail Centre for Neuromodulation, Toronto, ON, Canada. .,Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
23
|
Asil SM, Ahlawat J, Barroso GG, Narayan M. Nanomaterial based drug delivery systems for the treatment of neurodegenerative diseases. Biomater Sci 2020; 8:4109-4128. [PMID: 32638706 PMCID: PMC7439575 DOI: 10.1039/d0bm00809e] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
With an aging population that has been increasing in recent years, the need for the development of therapeutic approaches for treatment of neurodegenerative disorders (ND) has increased. ND, which are characterized by the progressive loss of the structure or function of neurons, are often associated with neuronal death. In spite of screening numerous drugs, currently there is no specific treatment that can cure these diseases or slow down their progression. Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), frontotemporal dementia, Huntington's disease, and prion diseases belong to ND which affect enormous numbers of people globally. There are some main possible reasons for failure in the treatment of neurodegenerative diseases such as limitations introduced by the Blood-Brain Barrier (BBB), the Blood-Cerebrospinal Fluid Barrier (BCFB) and P-glycoproteins. Current advances in nanotechnology present opportunities to overcome the mentioned limitations by using nanotechnology and designing nanomaterials improving the delivery of active drug candidates. Some of the basic and developing strategies to overcome drug delivery impediments are the local delivery of drugs, receptor-mediated transcytosis, physicochemical disruption of the BBB, cell-penetrating peptides and magnetic disruption. Recently, the application of nanoparticles has been developed to improve the efficiency of drug delivery. Nanoengineered particles as nanodrugs possess the capacity to cross the BBB and also show decreased invasiveness. Examples include inorganic, magnetic, polymeric and carbonic nanoparticles that have been developed to improve drug delivery efficiency. Despite numerous papers published in this filed, there are some unsolved issues that need to be addressed for successful treatment of neurodegenerative diseases. These are discussed herein.
Collapse
Affiliation(s)
- Shima Masoudi Asil
- The Department of Environmental Science & Engineering, The University of Texas at El Paso, USA
| | - Jyoti Ahlawat
- Department of Chemistry & Biochemistry, The University of Texas at El Paso, USA
| | | | - Mahesh Narayan
- Department of Chemistry & Biochemistry, The University of Texas at El Paso, USA
| |
Collapse
|
24
|
White PJ, Zhang YZ, Power C, Vykhodtseva N, McDannold N. Observed Effects of Whole-Brain Radiation Therapy on Focused Ultrasound Blood-Brain Barrier Disruption. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:1998-2006. [PMID: 32451192 PMCID: PMC7329597 DOI: 10.1016/j.ultrasmedbio.2020.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 03/11/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
As focused ultrasound for blood-brain barrier disruption (FUS-BBBD) has progressed to human application, it has become necessary to consider the potential effects of prior irradiation treatments. Using a murine model, we examined the effects of whole-brain irradiation on FUS-BBBD. We first subjected half of the experimental cohort to daily 3-Gy whole-brain irradiation for 10 consecutive days. Then, microbubble-assisted FUS-BBBD was performed unilaterally while the contralateral sides served as unsonicated controls. FUS-BBBD, as evident by measuring the fluorescence yield of extravasated trypan blue dye, was identified at all sites with minimal or no apparent pathology. The peak fluorescence intensity caused by extravasated dye in the sonicated region was 17.5 ± 12.1% higher after radiation and FUS-BBBD than after FUS-BBBD alone, suggesting that prior radiation of the brain may be a sensitizing factor for FUS-BBBD. Radiation alone-without FUS-BBBD-resulted in mild BBB disruption. Hemorrhagic petechiae were observed in 9 of 12 radiated brains, with 77% of them clearly located outside the sonicated area; no petechiae were found in non-irradiated animals. This radiation protocol did not appear to increase the risk for vascular damage associated with FUS-BBBD.
Collapse
Affiliation(s)
- Phillip Jason White
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| | - Yong-Zhi Zhang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Chanikarn Power
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Natalia Vykhodtseva
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nathan McDannold
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
25
|
Todd N, McDannold N, Borsook D. Targeted manipulation of pain neural networks: The potential of focused ultrasound for treatment of chronic pain. Neurosci Biobehav Rev 2020; 115:238-250. [PMID: 32534900 PMCID: PMC7483565 DOI: 10.1016/j.neubiorev.2020.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/24/2020] [Accepted: 06/04/2020] [Indexed: 12/29/2022]
Abstract
Focused ultrasound (FUS) is a promising technology for facilitating treatment of brain diseases including chronic pain. Focused ultrasound is a unique modality for delivering therapeutic levels of energy into the body, including the central nervous system (CNS). It is non-invasive and can target spatially localized effects through the intact skull to cortical or subcortical regions of the brain. FUS can achieve three different mechanisms of action in the brain that are relevant for chronic pain treatment: (1) localized thermal ablation of neural tissue; (2) localized and transient disruption of the blood-brain barrier for targeted drug delivery to CNS structures; and (3) inhibition or stimulation of neuronal activity in targeted regions. This review provides an in-depth look at the technology of FUS with emphasis placed on applications to CNS-based treatments of chronic pain. While still in the early stages of clinical translation and with some technical challenges remaining, we suggest that FUS has great potential as a novel approach for manipulating CNS networks involved in pain treatment.
Collapse
Affiliation(s)
- Nick Todd
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Center for Pain and the Brain, 1 Autumn Street, Boston Children's Hospital, Boston, MA, 02115, United States.
| | - Nathan McDannold
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - David Borsook
- Center for Pain and the Brain, 1 Autumn Street, Boston Children's Hospital, Boston, MA, 02115, United States; Department of Anesthesia, Perioperative, and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, United States
| |
Collapse
|
26
|
Huang YF, Deng J, Wei XL, Sun X, Xue M, Zhu XG, Deng XL. A comparison of reproductive outcomes of patients with adenomyosis and infertility treated with High-Intensity focused ultrasound and laparoscopic excision. Int J Hyperthermia 2020; 37:301-307. [PMID: 32208771 DOI: 10.1080/02656736.2020.1742390] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Yu Fu Huang
- Department of Gynecology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Jia Deng
- Department of Gynecology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Xue Li Wei
- Department of Gynecology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Xin Sun
- Department of Gynecology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Min Xue
- Department of Gynecology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Xiao Gang Zhu
- Department of Gynecology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Xin Liang Deng
- Department of Gynecology, Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
27
|
Partridge B, Rossmeisl JH, Kaloss AM, Basso EKG, Theus MH. Novel ablation methods for treatment of gliomas. J Neurosci Methods 2020; 336:108630. [PMID: 32068011 DOI: 10.1016/j.jneumeth.2020.108630] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 12/18/2022]
Abstract
Primary brain tumors are among the deadliest cancers that remain highly incurable. A need exists for new approaches to tumor therapy that can circumvent the blood brain barrier (BBB), target highly resistant tumors and cancer stem-like cells (CSCs) as well create an anti-cancer immunomodulatory environment. Successful treatments may also require a combinatory approach utilizing surgery, chemotherapy, radiation and novel ablation strategies that can both eliminate the bulk tumor and prevent any potential residual CSCs from propagating in the resected tissue. A number of thermal and non-thermal ablation methods have been developed and tested, which have gained much enthusiasm for the treatment of brain tumors. Here we review the most common primary brain tumors and the candidate ablation methods for targeting the tumor and its microenvironment.
Collapse
Affiliation(s)
- Brittanie Partridge
- Veterinary and Comparative Neuro-oncology Laboratory, Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA
| | - John H Rossmeisl
- Veterinary and Comparative Neuro-oncology Laboratory, Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Alexandra M Kaloss
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Erwin Kristobal Gudenschwager Basso
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Michelle H Theus
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA; School of Neuroscience, Virginia Tech, Blacksburg VA 24061, USA; Center for Regenerative Medicine, VT College of Veterinary Medicine, Blacksburg, Virginia, 24061, USA.
| |
Collapse
|
28
|
Essential Tremor: Lesions. Stereotact Funct Neurosurg 2020. [DOI: 10.1007/978-3-030-34906-6_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Cui Z, Li D, Feng Y, Xu T, Wu S, Li Y, Bouakaz A, Wan M, Zhang S. Enhanced neuronal activity in mouse motor cortex with microbubbles' oscillations by transcranial focused ultrasound stimulation. ULTRASONICS SONOCHEMISTRY 2019; 59:104745. [PMID: 31473423 DOI: 10.1016/j.ultsonch.2019.104745] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/29/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
Microbubbles (MBs) are known to serve as an amplifier of the mechanical effects of ultrasound, which combined with ultrasound are widely used in brain. The goal of this study is to investigate the effect of oscillating MBs on the neuronal activity in the central nervous system (CNS) of mammals. The motor cortex of mice brain was subjected to ultrasound stimulation with and without MBs, and evoked electromyogram signals were recorded. A c-fos immunofluorescence assay was performed to evaluate the neuronal activation in the region of ultrasound stimulation. BBB integrity during ultrasound stimulation with MBs was assessed in this study. Moreover, the safety of ultrasound stimulation with MBs was examined. Using ultrasound at 620 kHz, the injection of MBs significantly increased the success rate of motor response from 0.065 ± 0.06 to 0.28 ± 0.10 when stimulation was applied at 0.12 MPa and from 0.38 ± 0.09 to 0.77 ± 0.18 at 0.25 MPa (p < 0.001). The results of the c-fos immunofluorescence assay showed that the mean densities of c-fos+ cells were significantly increased from 15.67 ± 3.51 to 53.01 ± 9.54 at 0.12 MPa acoustic pressure. At 0.25 MPa, the mean density of c-fos + cells was 81 ± 10.97 without MBs and it significantly increased to 124.12 ± 25.71 with MBs (p < 0.05). Enhanced neuronal activities were observed with 0.12 MPa ultrasound stimulation with MBs, while the integrity of BBB was not compromised, but 0.25 MPa ultrasound stimulation with MBs resulted in BBB disruption. These findings reveal that the oscillations of MBs can enhance neuronal activity in the CNS of mammals, and may provide an insight into the application of MBs combined with ultrasound in brain.
Collapse
Affiliation(s)
- Zhiwei Cui
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Dapeng Li
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yang Feng
- Xijing Hospital, Traditional Chinese Medicine, Xi'an 710032, China
| | - Tianqi Xu
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shan Wu
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yibao Li
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China
| | | | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Siyuan Zhang
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
30
|
Walker MR, Zhong J, Waspe AC, Looi T, Piorkowska K, Hawkins C, Drake JM, Hodaie M. Acute MR-Guided High-Intensity Focused Ultrasound Lesion Assessment Using Diffusion-Weighted Imaging and Histological Analysis. Front Neurol 2019; 10:1069. [PMID: 31681145 PMCID: PMC6803785 DOI: 10.3389/fneur.2019.01069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/23/2019] [Indexed: 01/03/2023] Open
Abstract
Objectives: The application of magnetic resonance-guided focused ultrasound (MRgFUS) for the treatment of neurological conditions has been of increasing interest. Conventional MR imaging can provide structural information about the effect of MRgFUS, where differences in ablated tissue can be seen, but it lacks information about the status of the cellular environment or neural microstructure. We investigate in vivo acute changes in water diffusion and white matter tracts in the brain of a piglet model after MRgFUS treatment using diffusion-weighted imaging (DWI) with histological verification of treatment-related changes. Methods: MRgFUS was used to treat the anterior body of the fornix in four piglets. T1 and diffusion-weighted images were collected before and after treatment. Mean diffusion-weighted imaging (MDWI) images were generated to measure lesion volumes via signal intensity thresholds. Histological data were collected for volume comparison and assessment of treatment effect. DWI metric maps of fractional anisotropy (FA), apparent diffusion coefficient (ADC), axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD) were generated for quantitative assessment. Fornix-related fiber tracts were generated before and after treatment for qualitative assessment. Results: The volume of treated tissue measured via MDWI did not differ significantly from histological measurements, and both were significantly larger than the treatment cell volume. Diffusion metrics in the treatment region were significantly decreased following MRgFUS treatment, with the peak change seen at the lesion core and decreasing radially. Histological analysis confirmed an area of coagulative necrosis in the targeted region with sharp demarcation zone with surrounding brain. Tractography from the lesion core and the fornix revealed fiber disruptions following treatment. Conclusions: Diffusion maps and fiber tractography are an effective method for assessing lesion volumes and microstructural changes in vivo following MRgFUS treatment. This study demonstrates that DWI has the potential to advance MRgFUS by providing convenient in vivo microstructural lesion and fiber tractography assessment after treatment.
Collapse
Affiliation(s)
- Matthew R Walker
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Division of Brain, Imaging and Behaviour - Systems Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Jidan Zhong
- Division of Brain, Imaging and Behaviour - Systems Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Adam C Waspe
- Centre for Image Guided Innovation and Therapeutic Intervention, Hospital for Sick Children, Toronto, ON, Canada.,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Thomas Looi
- Centre for Image Guided Innovation and Therapeutic Intervention, Hospital for Sick Children, Toronto, ON, Canada
| | - Karolina Piorkowska
- Centre for Image Guided Innovation and Therapeutic Intervention, Hospital for Sick Children, Toronto, ON, Canada
| | - Cynthia Hawkins
- Department of Paediatric Laboratory Medicine, Division of Neuropathology, Hospital for Sick Children, Toronto, ON, Canada
| | - James M Drake
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Centre for Image Guided Innovation and Therapeutic Intervention, Hospital for Sick Children, Toronto, ON, Canada.,Division of Neurosurgery, Hospital for Sick Children, Toronto, ON, Canada
| | - Mojgan Hodaie
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Division of Brain, Imaging and Behaviour - Systems Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| |
Collapse
|
31
|
Sheybani ND, Price RJ. Perspectives on Recent Progress in Focused Ultrasound Immunotherapy. Am J Cancer Res 2019; 9:7749-7758. [PMID: 31695798 PMCID: PMC6831458 DOI: 10.7150/thno.37131] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/28/2019] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy holds tremendous promise as a strategy for eradicating solid tumors. However, poor T cell infiltration and persistence within most solid tumor microenvironments, as well as mechanisms of adaptive resistance, continue to severely limit the accessibility of most immunotherapies to a broad patient population. This limitation perpetuates the demand for allied therapeutic strategies. Among such strategies is focused ultrasound (FUS), a non-invasive, non-ionizing technique for precisely targeted acoustic energy deposition into tissues. FUS has gained remarkable attention over recent years as a modality for elicitation of immune mechanisms in cancer and other pathologies. In 2017, we published a comprehensive review paper detailing existing evidence for immune modulation and therapy with FUS, as well as impending challenges and opportunities of consideration for the field. Over the last two years, a multitude of clinical trials have come online to explore safety, feasibility, and efficacy of FUS for cancers of the brain and periphery - including the first clinical trial to combine FUS with immunotherapy. Moreover, the last two years have seen a surge in FUS immunotherapy presentations at therapeutic ultrasound scientific meetings. Given the burst of activity in this field, we submit that an update on FUS immunotherapy progress is timely. In this review, we offer an updated overview and perspectives on scientific and clinical development in the FUS immunotherapy domain.
Collapse
|
32
|
Iacopino DG, Gagliardo C, Giugno A, Giammalva GR, Napoli A, Maugeri R, Graziano F, Valentino F, Cosentino G, D'Amelio M, Bartolotta TV, Catalano C, Fierro B, Midiri M, Lagalla R. Preliminary experience with a transcranial magnetic resonance-guided focused ultrasound surgery system integrated with a 1.5-T MRI unit in a series of patients with essential tremor and Parkinson's disease. Neurosurg Focus 2019; 44:E7. [PMID: 29385927 DOI: 10.3171/2017.11.focus17614] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Transcranial magnetic resonance-guided focused ultrasound surgery (tcMRgFUS) is one of the emerging noninvasive technologies for the treatment of neurological disorders such as essential tremor (ET), idiopathic asymmetrical tremor-dominant Parkinson's disease (PD), and neuropathic pain. In this clinical series the authors present the preliminary results achieved with the world's first tcMRgFUS system integrated with a 1.5-T MRI unit. METHODS The authors describe the results of tcMRgFUS in a sample of patients with ET and with PD who underwent the procedure during the period from January 2015 to September 2017. A monolateral ventralis intermedius nucleus (VIM) thalamic ablation was performed in both ET and PD patients. In all the tcMRgFUS treatments, a 1.5-T MRI scanner was used for both planning and monitoring the procedure. RESULTS During the study period, a total of 26 patients underwent tcMRgFUS thalamic ablation for different movement disorders. Among these patients, 18 were diagnosed with ET and 4 were affected by PD. All patients with PD were treated using tcMRgFUS thalamic ablation and all completed the procedure. Among the 18 patients with ET, 13 successfully underwent tcMRgFUS, 4 aborted the procedure during ultrasound delivery, and 1 did not undergo the tcMRgFUS procedure after stereotactic frame placement. Two patients with ET were not included in the results because of the short follow-up duration at the time of this study. A monolateral VIM thalamic ablation in both ET and PD patients was performed. All the enrolled patients were evaluated before the treatment and 2 days after, with a clinical control of the treatment effectiveness using the graphic items of the Fahn-Tolosa-Marin tremor rating scale. A global reevaluation was performed 3 months (17/22 patients) and 6 months (11/22 patients) after the treatment; the reevaluation consisted of clinical questionnaires, neurological tests, and video recordings of the tests. All the ET and PD treated patients who completed the procedure showed an immediate amelioration of tremor severity, with no intra- or posttreatment severe permanent side effects. CONCLUSIONS Although this study reports on a small number of patients with a short follow-up duration, the tcMRgFUS procedure using a 1.5-T MRI unit resulted in a safe and effective treatment option for motor symptoms in patients with ET and PD. To the best of the authors' knowledge, this is the first clinical series in which thalamotomy was performed using tcMRgFUS integrated with a 1.5-T magnet.
Collapse
Affiliation(s)
- Domenico Gerardo Iacopino
- Unit of Neurosurgery, Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo
| | - Cesare Gagliardo
- Section of Radiological Sciences, Department of Biopathology and Medical Biotechnologies, University of Palermo
| | - Antonella Giugno
- Unit of Neurosurgery, Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo
| | - Giuseppe Roberto Giammalva
- Unit of Neurosurgery, Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo
| | - Alessandro Napoli
- Radiology Section, Department of Radiological, Oncological and Anatomopathological Sciences, "Sapienza" University of Rome; and
| | - Rosario Maugeri
- Unit of Neurosurgery, Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo
| | - Francesca Graziano
- Unit of Neurosurgery, Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo
| | - Francesca Valentino
- Unit of Neurology, Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Italy
| | - Giuseppe Cosentino
- Unit of Neurology, Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Italy
| | - Marco D'Amelio
- Unit of Neurology, Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Italy
| | - Tommaso Vincenzo Bartolotta
- Section of Radiological Sciences, Department of Biopathology and Medical Biotechnologies, University of Palermo
| | - Carlo Catalano
- Radiology Section, Department of Radiological, Oncological and Anatomopathological Sciences, "Sapienza" University of Rome; and
| | - Brigida Fierro
- Unit of Neurology, Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Italy
| | - Massimo Midiri
- Section of Radiological Sciences, Department of Biopathology and Medical Biotechnologies, University of Palermo
| | - Roberto Lagalla
- Section of Radiological Sciences, Department of Biopathology and Medical Biotechnologies, University of Palermo
| |
Collapse
|
33
|
Harary M, Segar DJ, Huang KT, Tafel IJ, Valdes PA, Cosgrove GR. Focused ultrasound in neurosurgery: a historical perspective. Neurosurg Focus 2019; 44:E2. [PMID: 29385919 DOI: 10.3171/2017.11.focus17586] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Focused ultrasound (FUS) has been under investigation for neurosurgical applications since the 1940s. Early experiments demonstrated ultrasound as an effective tool for the creation of intracranial lesions; however, they were limited by the need for craniotomy to avoid trajectory damage and wave distortion by the skull, and they also lacked effective techniques for monitoring. Since then, the development and hemispheric distribution of phased arrays has resolved the issue of the skull and allowed for a completely transcranial procedure. Similarly, advances in MR technology have allowed for the real-time guidance of FUS procedures using MR thermometry. MR-guided FUS (MRgFUS) has primarily been investigated for its thermal lesioning capabilities and was recently approved for use in essential tremor. In this capacity, the use of MRgFUS is being investigated for other ablative indications in functional neurosurgery and neurooncology. Other applications of MRgFUS that are under active investigation include opening of the blood-brain barrier to facilitate delivery of therapeutic agents, neuromodulation, and thrombolysis. These recent advances suggest a promising future for MRgFUS as a viable and noninvasive neurosurgical tool, with strong potential for yet-unrealized applications.
Collapse
Affiliation(s)
- Maya Harary
- Harvard Medical School and Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - David J Segar
- Harvard Medical School and Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - Kevin T Huang
- Harvard Medical School and Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - Ian J Tafel
- Harvard Medical School and Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - Pablo A Valdes
- Harvard Medical School and Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - G Rees Cosgrove
- Harvard Medical School and Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
34
|
Walters H, Shah BB. Focused Ultrasound and Other Lesioning Therapies in Movement Disorders. Curr Neurol Neurosci Rep 2019; 19:66. [DOI: 10.1007/s11910-019-0975-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
35
|
Moosa S, Martínez-Fernández R, Elias WJ, Del Alamo M, Eisenberg HM, Fishman PS. The role of high-intensity focused ultrasound as a symptomatic treatment for Parkinson's disease. Mov Disord 2019; 34:1243-1251. [PMID: 31291491 DOI: 10.1002/mds.27779] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 12/13/2022] Open
Abstract
MR-guided focused ultrasound is a novel, minimally invasive surgical procedure for symptomatic treatment of PD. With this technology, the ventral intermediate nucleus, STN, and internal globus pallidus have been targeted for therapeutic cerebral ablation, while also minimizing the risk of hemorrhage and infection from more invasive neurosurgical procedures. In a double-blinded, prospective, sham-controlled randomized controlled trial of MR-guided focused ultrasound thalamotomy for treatment of tremor-dominant PD, 62% of treated patients demonstrated improvement in tremor scores from baseline to 3 months postoperatively, as compared to 22% in the sham group. There has been only one open-label trial of MR-guided focused ultrasound subthalamotomy for patients with PD, demonstrating improvements of 71% for rigidity, 36% for akinesia, and 77% for tremor 6 months after treatment. Among the two open-label trials of MR-guided focused ultrasound pallidotomy for patients with PD, dyskinesia and overall motor scores improved up to 52% and 45% at 6 months postoperatively. Although MR-guided focused ultrasound thalamotomy is now approved by the U.S. Food and Drug Administration for treatment of parkinsonian tremor, additional high-quality randomized controlled trials are warranted and are underway to determine the safety and efficacy of MR-guided focused ultrasound subthalamotomy and pallidotomy for treatment of the cardinal features of PD. These studies will be paramount to aid clinicians to determine the ideal ablative target for individual patients. Additional work will be required to assess the durability of MR-guided focused ultrasound lesions, ideal timing of MR-guided focused ultrasound ablation in the course of PD, and the safety of performing bilateral lesions. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Shayan Moosa
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Raul Martínez-Fernández
- CINAC (Centro Integral de Neurociencias), University Hospital HM Puerta del Sur, CEU-San Pablo University, Móstoles, Madrid, Spain
| | - W Jeffrey Elias
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Marta Del Alamo
- CINAC (Centro Integral de Neurociencias), University Hospital HM Puerta del Sur, CEU-San Pablo University, Móstoles, Madrid, Spain
| | | | - Paul S Fishman
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
36
|
|
37
|
Huang H, Ran J, Xiao Z, Ou L, Li X, Xu J, Wang Q, Wang Z, Li F. Reasons for different therapeutic effects of high-intensity focused ultrasound ablation on excised uterine fibroids with different signal intensities on T2-weighted MRI: a study of histopathological characteristics. Int J Hyperthermia 2019; 36:477-484. [PMID: 30915864 DOI: 10.1080/02656736.2019.1592242] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
OBJECTIVE The objective of this study was to explore the correlations between the therapeutic effect of high intensity focused ultrasound (HIFU) and histopathological characteristics of excised uterine fibroids with different signal intensities as visualized on T2-weighted magnetic resonance imaging (MRI). METHODS We collected 47 specimens of uterine fibroids after surgical resection and classified them into four groups according to preoperative T2-weighted MRI hypo-intense, isointense, heterogeneous intense and homogeneous hyper-intense. Then, specimens in each group were irradiated by HIFU with the same parameters and the necrotic tissue volume was calculated. The smooth muscle cell (SMC) count and collagen fiber content were quantitatively measured and compared between different groups. We analyzed the correlation between the necrotic tissue volume and SMC count and the collagen fiber content. RESULTS Necrotic tissue volume gradually decreased from the hypo-intense group to the homogeneous hyper-intense group (p = .008). The SMC count from the hypo-intense group to the homogeneous hyper-intense group was 215.6 ± 59.3, 237.0(89.5), 232.3 ± 72.5 and 330.5 ± 30.9, respectively; collagen fiber content was 0.65 ± 0.07, 0.64 ± 0.10, 0.53 ± 0.11 and 0.41 ± 0.06, respectively. Comparison among the four groups showed that SMC count progressively increased (p = .001) but collagen fiber content progressively decreased (p = .000) from the hypo-intense group to the homogeneous hyper-intense group. Correlation analysis showed that necrotic tissue volume was negatively correlated with SMC count (R = -0.488, p=.013) but positively correlated with collagen fiber content (R = 0.534, p = .005). CONCLUSIONS Differences in histopathological characteristics may be one of the reasons for different therapeutic effects of HIFU ablation on uterine fibroids with different signal intensities on T2-weighted MRI.
Collapse
Affiliation(s)
- Haoran Huang
- a State Key Laboratory of Ultrasound Engineering in Medicine Co-founded by Chongqing and the Ministry of Science and Technology, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering , Chongqing Medical University , Chongqing , PR China
| | - Jianbo Ran
- a State Key Laboratory of Ultrasound Engineering in Medicine Co-founded by Chongqing and the Ministry of Science and Technology, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering , Chongqing Medical University , Chongqing , PR China
| | - Zhibo Xiao
- b Department of Radiology , The First Affiliated Hospital of Chongqing Medical University , Chongqing , PR China
| | - Liping Ou
- c The Key Laboratory of Diagnostics Medicine Designated by the Ministry of Education , Chongqing Medical University , Chongqing , PR China
| | - Xing Li
- a State Key Laboratory of Ultrasound Engineering in Medicine Co-founded by Chongqing and the Ministry of Science and Technology, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering , Chongqing Medical University , Chongqing , PR China
| | - Jie Xu
- d National Engineering Research Center of Ultrasound Medicine , Chongqing , PR China
| | - Qi Wang
- d National Engineering Research Center of Ultrasound Medicine , Chongqing , PR China
| | - Zhibiao Wang
- a State Key Laboratory of Ultrasound Engineering in Medicine Co-founded by Chongqing and the Ministry of Science and Technology, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering , Chongqing Medical University , Chongqing , PR China
| | - Faqi Li
- a State Key Laboratory of Ultrasound Engineering in Medicine Co-founded by Chongqing and the Ministry of Science and Technology, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering , Chongqing Medical University , Chongqing , PR China
| |
Collapse
|
38
|
Samoudi MA, Van Renterghem T, Botteldooren D. Computational modeling of a single-element transcranial focused ultrasound transducer for subthalamic nucleus stimulation. J Neural Eng 2019; 16:026015. [DOI: 10.1088/1741-2552/aafa38] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
39
|
Yoshida M, Kobayashi H, Terasaka S, Endo S, Yamaguchi S, Motegi H, Itay R, Suzuki S, Brokman O, Shapira Y, Moriyama K, Kawase Y, Akahane T, Kato Y, Kamada H, Houkin K. Sonodynamic Therapy for Malignant Glioma Using 220-kHz Transcranial Magnetic Resonance Imaging-Guided Focused Ultrasound and 5-Aminolevulinic acid. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:526-538. [PMID: 30522817 DOI: 10.1016/j.ultrasmedbio.2018.10.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 09/07/2018] [Accepted: 10/11/2018] [Indexed: 06/09/2023]
Abstract
Sonodynamic therapy (SDT) is used to treat various malignancies and can be applied to brain tumors using a transcranial magnetic resonance imaging-guided focused ultrasound (TcMRgFUS) device. This study investigated the efficacy of 220-kHz TcMRgFUS combined with 5-aminolevulinic acid (5-ALA) on malignant glioma in vitro and in vivo. F98 cells were irradiated with focused ultrasound (FUS) (4000 J, 20 W, 240 s, 100% duty cycle, target medium temperature <40°C) after treatment with 200 µg/mL 5-ALA, and cell viability and apoptosis were evaluated with the water-soluble tetrazolium-1 assay, triple fluorescent staining and Western blot analysis 20 h later. The anti-tumor effects of 5-ALA combined with FUS (500 J, 18 W, 30 s, 100% duty cycle, 10 repeats, target tissue temperature ≤42°C) were assessed on the basis of changes in tumor volume determined by MRI and histopathological analysis before and after treatment. The FUS/5-ALA combination reduced cell viability by inducing apoptosis and suppressed tumor proliferation and invasion as well as angiogenesis in vivo, while causing minimal damage to normal brain tissue. SDT with 220-kHz TcMRgFUS and 5-ALA can be safely used for the treatment of malignant glioma.
Collapse
Affiliation(s)
- Michiharu Yoshida
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan; Department of Neurosurgery, Hokuto Hospital, Obihiro, Hokkaido, Japan
| | - Hiroyuki Kobayashi
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | - Shunsuke Terasaka
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shogo Endo
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shigeru Yamaguchi
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroaki Motegi
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | - Kenji Moriyama
- Department of Radiology, Hokuto Hospital, Obihiro, Japan
| | - Yumiko Kawase
- Department of Biology and Genetics, Laboratory of Cancer Medical Science, Hokuto Hospital, Obihiro, Japan
| | - Toshiaki Akahane
- Department of Biology and Genetics, Laboratory of Cancer Medical Science, Hokuto Hospital, Obihiro, Japan
| | - Yasutaka Kato
- Department of Biology and Genetics, Laboratory of Cancer Medical Science, Hokuto Hospital, Obihiro, Japan
| | - Hajime Kamada
- Department of Neurosurgery, Hokuto Hospital, Obihiro, Hokkaido, Japan
| | - Kiyohiro Houkin
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
40
|
Chamanzar M, Scopelliti MG, Bloch J, Do N, Huh M, Seo D, Iafrati J, Sohal VS, Alam MR, Maharbiz MM. Ultrasonic sculpting of virtual optical waveguides in tissue. Nat Commun 2019; 10:92. [PMID: 30626873 PMCID: PMC6327026 DOI: 10.1038/s41467-018-07856-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 11/21/2018] [Indexed: 12/19/2022] Open
Abstract
Optical imaging and stimulation are widely used to study biological events. However, scattering processes limit the depth to which externally focused light can penetrate tissue. Optical fibers and waveguides are commonly inserted into tissue when delivering light deeper than a few millimeters. This approach, however, introduces complications arising from tissue damage. In addition, it makes it difficult to steer light. Here, we demonstrate that ultrasound can be used to define and steer the trajectory of light within scattering media by exploiting local pressure differences created by acoustic waves that result in refractive index contrasts. We show that virtual light pipes can be created deep into the tissue (>18 scattering mean free paths). We demonstrate the application of this technology in confining light through mouse brain tissue. This technology is likely extendable to form arbitrary light patterns within tissue, extending both the reach and the flexibility of light-based methods.
Collapse
Affiliation(s)
- Maysamreza Chamanzar
- Electrical and Computer Engineering Department, Carnegie Mellon University, Pittsburgh, 15213, PA, USA.
- Electrical Engineering and Computer Science Department, University of California, Berkeley, 94720, CA, USA.
| | | | - Julien Bloch
- Mechanical Engineering Department, University of California, 94720, Berkeley, CA, USA
| | - Ninh Do
- Mechanical Engineering Department, University of California, 94720, Berkeley, CA, USA
| | - Minyoung Huh
- Electrical Engineering and Computer Science Department, University of California, Berkeley, 94720, CA, USA
| | - Dongjin Seo
- Electrical Engineering and Computer Science Department, University of California, Berkeley, 94720, CA, USA
| | - Jillian Iafrati
- Department of Psychiatry, University of California, San Francisco, 94103, CA, USA
- Center for Integrative Neuroscience, University of California, San Francisco, 94158, CA, USA
| | - Vikaas S Sohal
- Department of Psychiatry, University of California, San Francisco, 94103, CA, USA
- Center for Integrative Neuroscience, University of California, San Francisco, 94158, CA, USA
| | - Mohammad-Reza Alam
- Mechanical Engineering Department, University of California, 94720, Berkeley, CA, USA
| | - Michel M Maharbiz
- Electrical Engineering and Computer Science Department, University of California, Berkeley, 94720, CA, USA
- Bioengineering Department, University of California, Berkeley, 94720, CA, USA
- Center for Neural Engineering and Prostheses, University of California, Berkeley, 94720, CA, USA
- Chan Zuckerberg Biohub, San Francisco, 94158, CA, USA
| |
Collapse
|
41
|
Olmstead TA, Chiarelli PA, Griggs DJ, McClintic AM, Myroniv AN, Mourad PD. Transcranial and pulsed focused ultrasound that activates brain can accelerate remyelination in a mouse model of multiple sclerosis. J Ther Ultrasound 2018; 6:11. [PMID: 30555696 PMCID: PMC6287362 DOI: 10.1186/s40349-018-0119-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/15/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Multiple sclerosis (MS) impacts approximately 400,000 in the United States and is the leading cause of disability among young to middle aged people in the developed world. Characteristic of this disease, myelin within generally focal volumes of brain tissue wastes away under an autoimmune assault, either inexorably or through a cycle of demyelination and remyelination. This centrally located damage produces central and peripheral symptoms tied to the portion of brain within the MS lesion site. Interestingly, Gibson and colleagues noted that optical activation of transgenically tagged central neurons increased the thickness of the myelin sheath around those neurons. Since ultrasound, delivered transcranially, can also activate brain focally, we hypothesized that ultrasound stimulation that followed the temporal pattern of Gibson et al. applied to MS lesions in a mouse model might either decelerate the demyelination phase or accelerate its remyelination phase. METHODS We created a temporal pattern of ultrasound delivery that conformed to that of Gibson et al. and capable of activating mouse brain. We then applied ultrasound, transcranially, following that temporal pattern to separate cohorts of a mouse model of multiple sclerosis, using three different ultrasound carrier frequencies (0.625 MHz, 1.09 MHz, 2.0 MHz), during each of the demyelinating and remyelinating phases. After identifying the most promising protocol and MS brain state through qualitative analysis of myelin content, we performed additional studies for that condition then assayed for change in myelin content via quantitative analysis. RESULTS We identified one ultrasound protocol that significantly accelerated remyelination, without damage, as demonstrated with histological analysis. CONCLUSION MRI-guided focused ultrasound systems exist that can, in principle, deliver the ultrasound protocol we successfully tested here. In addition, MRI, as the clinical gold standard, can readily identify MS lesions. Given the relatively low intensity values of our ultrasound protocol - close to FDA limits - we anticipate that future success with this approach to MS therapy as tested using more realistic MS mouse models may one day translate to clinical trials that help address this devastating disease.
Collapse
Affiliation(s)
- T. A. Olmstead
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195 USA
| | - P. A. Chiarelli
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195 USA
| | - D. J. Griggs
- Division of Engineering and Mathematics, University of Washington, Bothell, WA 98011 USA
| | - A. M. McClintic
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195 USA
| | - A. N. Myroniv
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195 USA
| | - P. D. Mourad
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195 USA
- Division of Engineering and Mathematics, University of Washington, Bothell, WA 98011 USA
| |
Collapse
|
42
|
Jung NY, Chang JW. Magnetic Resonance-Guided Focused Ultrasound in Neurosurgery: Taking Lessons from the Past to Inform the Future. J Korean Med Sci 2018; 33:e279. [PMID: 30369860 PMCID: PMC6200905 DOI: 10.3346/jkms.2018.33.e279] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 09/13/2018] [Indexed: 11/20/2022] Open
Abstract
Magnetic resonance-guided focused ultrasound (MRgFUS) is a new emerging neurosurgical procedure applied in a wide range of clinical fields. It can generate high-intensity energy at the focal zone in deep body areas without requiring incision of soft tissues. Although the effectiveness of the focused ultrasound technique had not been recognized because of the skull being a main barrier in the transmission of acoustic energy, the development of hemispheric distribution of ultrasound transducer phased arrays has solved this issue and enabled the performance of true transcranial procedures. Advanced imaging technologies such as magnetic resonance thermometry could enhance the safety of MRgFUS. The current clinical applications of MRgFUS in neurosurgery involve stereotactic ablative treatments for patients with essential tremor, Parkinson's disease, obsessive-compulsive disorder, major depressive disorder, or neuropathic pain. Other potential treatment candidates being examined in ongoing clinical trials include brain tumors, Alzheimer's disease, and epilepsy, based on MRgFUS abilities of thermal ablation and opening the blood-brain barrier. With the development of ultrasound technology to overcome the limitations, MRgFUS is gradually expanding the therapeutic field for intractable neurological disorders and serving as a trail for a promising future in noninvasive and safe neurosurgical care.
Collapse
Affiliation(s)
- Na Young Jung
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jin Woo Chang
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
43
|
Gu J, Jing Y. Numerical Modeling of Ultrasound Propagation in Weakly Heterogeneous Media Using a Mixed-Domain Method. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:1258-1267. [PMID: 29993378 PMCID: PMC6055067 DOI: 10.1109/tuffc.2018.2828316] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A mixed-domain method (MDM) is presented in this paper for modeling one-way linear/nonlinear wave propagation in biological tissue with arbitrary heterogeneities, in which sound speed, density, attenuation coefficients, and nonlinear coefficients are all spatial varying functions. The present method is based on solving an integral equation derived from a Westervelt-like equation. One-dimensional problems are first studied to verify the MDM and to reveal its limitations. It is shown that this method is accurate for cases with small variation of sound speed. A 2-D case is further studied with focused ultrasound beams to validate the application of the method in the medical field. Results from the MATLAB toolbox k-Wave are used as the benchmark. Normalized root-mean-square (rms) error estimated at the focus of the transducer is 0.0133 when the coarsest mesh (1/3 of the wavelength) is used in the MDM. Fundamental and second-harmonic fields throughout the considered computational domains are compared and good agreement is observed. Overall, this paper demonstrates that the MDM is a computationally efficient and accurate method when used to model wave propagation in biological tissue with relatively weak heterogeneities.
Collapse
|
44
|
Han M, Wang N, Guo S, Chang N, Lu S, Wan M. Nakagami-m parametric imaging for characterization of thermal coagulation and cavitation erosion induced by HIFU. ULTRASONICS SONOCHEMISTRY 2018; 45:78-85. [PMID: 29705328 DOI: 10.1016/j.ultsonch.2018.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 06/08/2023]
Abstract
Nowadays, both thermal and mechanical ablation techniques of HIFU associated with cavitation have been developed for noninvasive treatment. A specific challenge for the successful clinical implementation of HIFU is to achieve real-time imaging for the evaluation and determination of therapy outcomes such as necrosis or homogenization. Ultrasound Nakagami-m parametric imaging highlights the degrading shadowing effects of bubbles and can be used for tissue characterization. The aim of this study is to investigate the performance of Nakagami-m parametric imaging for evaluating and differentiating thermal coagulation and cavitation erosion induced by HIFU. Lesions were induced in basic bovine serum albumin (BSA) phantoms and ex vivo porcine livers using a 1.6 MHz single-element transducer. Thermal and mechanical lesions induced by two types of HIFU sequences respectively were evaluated using Nakagami-m parametric imaging and ultrasound B-mode imaging. The lesion sizes estimated using Nakagami-m parametric imaging technique were all closer to the actual sizes than those of B-mode imaging. The p-value obtained from the t-test between the mean m values of thermal coagulation and cavitation erosion was smaller than 0.05, demonstrating that the m values of thermal lesions were significantly different from that of mechanical lesions, which was confirmed by ex vivo experiments and histologic examination showed that different changes result from HIFU exposure, one of tissue dehydration resulting from the thermal effect, and the other of tissue homogenate resulting from mechanical effect. This study demonstrated that Nakagami-m parametric imaging is a potential real-time imaging technique for evaluating and differentiating thermal coagulation and cavitation erosion.
Collapse
Affiliation(s)
- Meng Han
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Na Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Shifang Guo
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Nan Chang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Shukuan Lu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China.
| |
Collapse
|
45
|
MacDonell J, Patel N, Rubino S, Ghoshal G, Fischer G, Burdette EC, Hwang R, Pilitsis JG. Magnetic resonance-guided interstitial high-intensity focused ultrasound for brain tumor ablation. Neurosurg Focus 2018; 44:E11. [PMID: 29385926 PMCID: PMC5907801 DOI: 10.3171/2017.11.focus17613] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Currently, treatment of brain tumors is limited to resection, chemotherapy, and radiotherapy. Thermal ablation has been recently explored. High-intensity focused ultrasound (HIFU) is being explored as an alternative. Specifically, the authors propose delivering HIFU internally to the tumor with an MRI-guided robotic assistant (MRgRA). The advantage of the authors' interstitial device over external MRI-guided HIFU (MRgHIFU) is that it allows for conformal, precise ablation and concurrent tissue sampling. The authors describe their workflow for MRgRA HIFU delivery.
Collapse
Affiliation(s)
- Jacquelyn MacDonell
- Department of Neuroscience and Experimental Therapeutics, Albany Medical Center, Albany, New York
- Department of Neurosurgery, Albany Medical Center, Albany, New York
| | - Niravkumar Patel
- Robotics Engineering Program, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Sebastian Rubino
- Department of Neuroscience and Experimental Therapeutics, Albany Medical Center, Albany, New York
- Department of Neurosurgery, Albany Medical Center, Albany, New York
| | | | - Gregory Fischer
- Robotics Engineering Program, Worcester Polytechnic Institute, Worcester, Massachusetts
| | | | - Roy Hwang
- Department of Neuroscience and Experimental Therapeutics, Albany Medical Center, Albany, New York
| | - Julie G. Pilitsis
- Department of Neuroscience and Experimental Therapeutics, Albany Medical Center, Albany, New York
- Department of Neurosurgery, Albany Medical Center, Albany, New York
| |
Collapse
|
46
|
Quadri SA, Waqas M, Khan I, Khan MA, Suriya SS, Farooqui M, Fiani B. High-intensity focused ultrasound: past, present, and future in neurosurgery. Neurosurg Focus 2018; 44:E16. [DOI: 10.3171/2017.11.focus17610] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Since Lynn and colleagues first described the use of focused ultrasound (FUS) waves for intracranial ablation in 1942, many strides have been made toward the treatment of several brain pathologies using this novel technology. In the modern era of minimal invasiveness, high-intensity focused ultrasound (HIFU) promises therapeutic utility for multiple neurosurgical applications, including treatment of tumors, stroke, epilepsy, and functional disorders. Although the use of HIFU as a potential therapeutic modality in the brain has been under study for several decades, relatively few neuroscientists, neurologists, or even neurosurgeons are familiar with it. In this extensive review, the authors intend to shed light on the current use of HIFU in different neurosurgical avenues and its mechanism of action, as well as provide an update on the outcome of various trials and advances expected from various preclinical studies in the near future. Although the initial technical challenges have been overcome and the technology has been improved, only very few clinical trials have thus far been carried out. The number of clinical trials related to neurological disorders is expected to increase in the coming years, as this novel therapeutic device appears to have a substantial expansive potential. There is great opportunity to expand the use of HIFU across various medical and surgical disciplines for the treatment of different pathologies. As this technology gains recognition, it will open the door for further research opportunities and innovation.
Collapse
Affiliation(s)
- Syed A. Quadri
- 1California Institute of Neuroscience, Thousand Oaks, California
| | - Muhammad Waqas
- 1California Institute of Neuroscience, Thousand Oaks, California
- 2Department of Neurosurgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Inamullah Khan
- 2Department of Neurosurgery, Aga Khan University Hospital, Karachi, Pakistan
| | | | - Sajid S. Suriya
- 1California Institute of Neuroscience, Thousand Oaks, California
| | - Mudassir Farooqui
- 3University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and
| | - Brian Fiani
- 4Department of Neurosurgery, Institute of Clinical Orthopedic and Neurosciences, Desert Regional Medical Center, Palm Springs, California
| |
Collapse
|
47
|
Alongi F, Russo G, Spinelli A, Borasi G, Scorsetti M, Gilardi MC, Messa C. Can magnetic resonance image-guided focused ultrasound surgery replace local oncology treatments? A review. TUMORI JOURNAL 2018; 97:259-64. [DOI: 10.1177/030089161109700301] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Magnetic resonance image-guided focused ultrasound surgery (MRgFUS) is an innovative technology in the new panorama of treatment using ultrasound. It combines two well-known and distinct methodologies: high-intensity focused ultrasound (HIFU) and a magnetic resonance imaging system (MRI). This review on MRgFUS is focused on the technical aspects and the current clinical applications in oncology. More precisely, the advantages/disadvantages of MRgFUS compared to other local approaches such as surgery and radiotherapy are discussed in detail.
Collapse
Affiliation(s)
- Filippo Alongi
- Radiotherapy and Radiosurgery, IRCCS Istituto Clinico Humanitas, Milan
| | - Giorgio Russo
- Institute for Molecular Bioimaging and Physiology (IBFM), National Council of Researches (CNR)
- Laboratorio di Tecnologie Oncologiche (LATO) and San Raffaele - G Giglio Foundation, Cefalù
| | - Antonio Spinelli
- Physics, IRCCS Scientific Institute San Raffaele, Milan; Physics-Radiotherapy, Negrar, Verona
| | - Giovanni Borasi
- Laboratorio di Tecnologie Oncologiche (LATO) and San Raffaele - G Giglio Foundation, Cefalù
| | - Marta Scorsetti
- Radiotherapy and Radiosurgery, IRCCS Istituto Clinico Humanitas, Milan
| | - Maria Carla Gilardi
- Institute for Molecular Bioimaging and Physiology (IBFM), National Council of Researches (CNR)
- Laboratorio di Tecnologie Oncologiche (LATO) and San Raffaele - G Giglio Foundation, Cefalù
- Milano-Bicocca University, Milan
| | - Cristina Messa
- Institute for Molecular Bioimaging and Physiology (IBFM), National Council of Researches (CNR)
- Laboratorio di Tecnologie Oncologiche (LATO) and San Raffaele - G Giglio Foundation, Cefalù
- Milano-Bicocca University, Milan
- Nuclear Medicine Center, San Gerardo, Monza, Italy
| |
Collapse
|
48
|
|
49
|
Abstract
The direct delivery of drugs and other agents into tissue (in contrast to systemic administration) has been used in clinical trials for brain cancer, neurodegenerative diseases and peripheral tumors. However, continuing evidence suggests that clinical efficacy depends on adequate delivery to a target. Inadequate delivery may have doomed otherwise effective drugs, through failure to distinguish drug inefficacy from poor distribution at the target. Conventional pretreatment clinical images of the patient fail to reveal the complexity and diversity of drug transport pathways in tissue. We discuss the richness of these pathways and argue that development and patient treatment can be sped up and improved by: using quantitative as well as 'real-time' imaging; customized simulations using data from that imaging; and device designs that optimize the drug-device combination.
Collapse
|
50
|
Curley CT, Sheybani ND, Bullock TN, Price RJ. Focused Ultrasound Immunotherapy for Central Nervous System Pathologies: Challenges and Opportunities. Theranostics 2017; 7:3608-3623. [PMID: 29109764 PMCID: PMC5667336 DOI: 10.7150/thno.21225] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 07/13/2017] [Indexed: 01/01/2023] Open
Abstract
Immunotherapy is rapidly emerging as the cornerstone for the treatment of several forms of metastatic cancer, as well as for a host of other pathologies. Meanwhile, several new high-profile studies have uncovered remarkable linkages between the central nervous and immune systems. With these recent developments, harnessing the immune system for the treatment of brain pathologies is a promising strategy. Here, we contend that MR image-guided focused ultrasound (FUS) represents a noninvasive approach that will allow for favorable therapeutic immunomodulation in the setting of the central nervous system. One obstacle to effective immunotherapeutic drug delivery to the brain is the blood brain barrier (BBB), which refers to the specialized structure of brain capillaries that prevents transport of most therapeutics from the blood into brain tissue. When applied in the presence of circulating microbubbles, FUS can safely and transiently open the BBB to facilitate the delivery of immunotherapeutic agents into the brain parenchyma. Furthermore, it has been demonstrated that physical perturbations of the tissue microenvironment via FUS can modulate immune response in both normal and diseased tissue. In this review article, we provide an overview of FUS energy regimens and corresponding tissue bioeffects, followed by a review of the literature pertaining to FUS for therapeutic antibody delivery in normal brain and preclinical models of brain disease. We provide an overview of studies that demonstrate FUS-mediated immune modulation in both the brain and peripheral settings. Finally, we provide remarks on challenges facing FUS immunotherapy and opportunities for future expansion in this area.
Collapse
Affiliation(s)
- Colleen T. Curley
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| | - Natasha D. Sheybani
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| | | | - Richard J. Price
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| |
Collapse
|