1
|
Durham PG, Butnariu A, Alghorazi R, Pinton G, Krishna V, Dayton PA. Current clinical investigations of focused ultrasound blood-brain barrier disruption: A review. Neurotherapeutics 2024; 21:e00352. [PMID: 38636309 PMCID: PMC11044032 DOI: 10.1016/j.neurot.2024.e00352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 04/20/2024] Open
Abstract
The blood-brain barrier (BBB) presents a formidable challenge in delivering therapeutic agents to the central nervous system. Ultrasound-mediated BBB disruption has emerged as a promising non-invasive technique to enhance drug delivery to the brain. This manuscript reviews fundamental principles of ultrasound-based techniques and their mechanisms of action in temporarily permeabilizing the BBB. Clinical trials employing ultrasound for BBB disruption are discussed, summarizing diverse applications ranging from the treatment of neurodegenerative diseases to targeted drug delivery for brain tumors. The review also addresses safety considerations, outlining the current understanding of potential risks and mitigation strategies associated with ultrasound exposure, including real-time monitoring and assessment of treatment efficacy. Among the large number of studies, significant successes are highlighted thus providing perspective on the future direction of the field.
Collapse
Affiliation(s)
- Phillip G Durham
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, North Carolina State University, Chapel Hill, NC, USA
| | | | - Rizk Alghorazi
- School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Gianmarco Pinton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, North Carolina State University, Chapel Hill, NC, USA
| | - Vibhor Krishna
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, North Carolina State University, Chapel Hill, NC, USA; School of Medicine, University of North Carolina, Chapel Hill, NC, United States.
| | - Paul A Dayton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, North Carolina State University, Chapel Hill, NC, USA.
| |
Collapse
|
2
|
O'Malley GR, Cassimatis ND, Maggio J, Patel P, Patel NV. Sonolucent Cranial Implants: A Window into the Future of Management of Neurosurgical Patients? A Systematic Review and Cost Analysis. World Neurosurg 2024; 181:e848-e855. [PMID: 37931879 DOI: 10.1016/j.wneu.2023.10.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND Computeed tomography (CT) is a cornerstone of the identification and management of acute changes in neurosurgery patients. In addition to the monetary expense of CT scans, further costs are incurred due to the time of patient transport and radiation exposure. Ultrasounds (USs)offer a safe, inexpensive, and bedside alternative to CT but obstacles remain due to decreased penetrance in the adult skull. Sonolucent Cranial Implants (SCIs) offer a window for USs to view intracranial architectures. METHODS The authors performed a PRISMA guidelines-based systematic review of the literature. Information was extracted from included articles in regards to illness pathology, US imaging feasibility, comparison to standard imaging, infections, and revisions. Costs were collected in regards to price of implant and follow-up imaging. RESULTS A total of 226 articles resulted, of which 5 were included in the study. Ninety non-duplicate patients who received SCIs were analyzed. The pathologies of included patients is as follows: 51 patients were after extracranial-intracranial bypass, 37 after ventriculoperitoneal shunt placement for hydrocephalus, 1 after tumor resection, and 1 after cranioplasty following decompressive hemicraniectomy. All studies noted feasibility of US and comparability to standard imaging following SCI placement. Follow-up imaging with trans-sonolucent cranial implant ultrasound was estimated to save up to $4,000 per patient depending on the procedure. CONCLUSIONS Initial studies suggest that US imaging through SCIs is a safe and efficacious alternative to CT imaging in neurosurgical patients. Cost analysis suggests that SCI and subsequent US can offer a cost savings compared with current treatment.
Collapse
Affiliation(s)
- Geoffrey R O'Malley
- Department of Neurosurgery, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA.
| | - Nicholas D Cassimatis
- Department of Neurosurgery, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Jasmine Maggio
- Department of Neurosurgery, HMH-Jersey Shore University Medical Center, Neptune, New Jersey, USA
| | - Purvee Patel
- Department of Neurosurgery, HMH-Jersey Shore University Medical Center, Neptune, New Jersey, USA
| | - Nitesh V Patel
- Department of Neurosurgery, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA; Department of Neurosurgery, HMH-Jersey Shore University Medical Center, Neptune, New Jersey, USA
| |
Collapse
|
3
|
Mehkri Y, Pierre K, Woodford SJ, Davidson CG, Urhie O, Sriram S, Hernandez J, Hanna C, Lucke-Wold B. Surgical Management of Brain Tumors with Focused Ultrasound. Curr Oncol 2023; 30:4990-5002. [PMID: 37232835 DOI: 10.3390/curroncol30050377] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023] Open
Abstract
Focused ultrasound is a novel technique for the treatment of aggressive brain tumors that uses both mechanical and thermal mechanisms. This non-invasive technique can allow for both the thermal ablation of inoperable tumors and the delivery of chemotherapy and immunotherapy while minimizing the risk of infection and shortening the time to recovery. With recent advances, focused ultrasound has been increasingly effective for larger tumors without the need for a craniotomy and can be used with minimal surrounding soft tissue damage. Treatment efficacy is dependent on multiple variables, including blood-brain barrier permeability, patient anatomical features, and tumor-specific features. Currently, many clinical trials are currently underway for the treatment of non-neoplastic cranial pathologies and other non-cranial malignancies. In this article, we review the current state of surgical management of brain tumors using focused ultrasound.
Collapse
Affiliation(s)
- Yusuf Mehkri
- Department of Neurosurgery, College of Medicine, University of Florida, 1505 SW Archer Rd, Gainesville, FL 32608, USA
| | - Kevin Pierre
- Department of Radiology, College of Medicine, University of Florida, 1600 SW Archer Rd, Gainesville, FL 32608, USA
| | - Samuel Joel Woodford
- Department of Neurosurgery, College of Medicine, University of Florida, 1505 SW Archer Rd, Gainesville, FL 32608, USA
| | - Caroline Grace Davidson
- Department of Neurosurgery, College of Medicine, University of Florida, 1505 SW Archer Rd, Gainesville, FL 32608, USA
| | - Ogaga Urhie
- Department of Neurosurgery, College of Medicine, University of Florida, 1505 SW Archer Rd, Gainesville, FL 32608, USA
| | - Sai Sriram
- Department of Neurosurgery, College of Medicine, University of Florida, 1505 SW Archer Rd, Gainesville, FL 32608, USA
| | - Jairo Hernandez
- Department of Neurosurgery, College of Medicine, University of Florida, 1505 SW Archer Rd, Gainesville, FL 32608, USA
| | - Chadwin Hanna
- Department of Neurosurgery, College of Medicine, University of Florida, 1505 SW Archer Rd, Gainesville, FL 32608, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, College of Medicine, University of Florida, 1505 SW Archer Rd, Gainesville, FL 32608, USA
| |
Collapse
|
4
|
Giannakou M, Antoniou A, Damianou C. Preclinical robotic device for magnetic resonance imaging guided focussed ultrasound. Int J Med Robot 2023; 19:e2466. [PMID: 36169287 PMCID: PMC10078206 DOI: 10.1002/rcs.2466] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/12/2022] [Accepted: 09/27/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND A robotic device featuring three motion axes was manufactured for preclinical research on focussed ultrasound (FUS). The device comprises a 2.75 MHz single element ultrasonic transducer and is guided by Magnetic Resonance Imaging (MRI). METHODS The compatibility of the device with the MRI was evaluated by estimating the influence on the signal-to-noise ratio (SNR). The efficacy of the transducer in generating ablative temperatures was evaluated in phantoms and excised porcine tissue. RESULTS System's activation in the MRI scanner reduced the SNR to an acceptable level without compromising the image quality. The transducer demonstrated efficient heating ability as proved by MR thermometry. Discrete and overlapping thermal lesions were inflicted in excised tissue. CONCLUSIONS The FUS system was proven effective for FUS thermal applications in the MRI setting. It can thus be used for multiple preclinical applications of the emerging MRI-guided FUS technology. The device can be scaled-up for human use with minor modifications.
Collapse
Affiliation(s)
| | - Anastasia Antoniou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Christakis Damianou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
5
|
Hersh AM, Bhimreddy M, Weber-Levine C, Jiang K, Alomari S, Theodore N, Manbachi A, Tyler BM. Applications of Focused Ultrasound for the Treatment of Glioblastoma: A New Frontier. Cancers (Basel) 2022; 14:4920. [PMID: 36230843 PMCID: PMC9563027 DOI: 10.3390/cancers14194920] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/21/2022] Open
Abstract
Glioblastoma (GBM) is an aggressive primary astrocytoma associated with short overall survival. Treatment for GBM primarily consists of maximal safe surgical resection, radiation therapy, and chemotherapy using temozolomide. Nonetheless, recurrence and tumor progression is the norm, driven by tumor stem cell activity and a high mutational burden. Focused ultrasound (FUS) has shown promising results in preclinical and clinical trials for treatment of GBM and has received regulatory approval for the treatment of other neoplasms. Here, we review the range of applications for FUS in the treatment of GBM, which depend on parameters, including frequency, power, pulse duration, and duty cycle. Low-intensity FUS can be used to transiently open the blood-brain barrier (BBB), which restricts diffusion of most macromolecules and therapeutic agents into the brain. Under guidance from magnetic resonance imaging, the BBB can be targeted in a precise location to permit diffusion of molecules only at the vicinity of the tumor, preventing side effects to healthy tissue. BBB opening can also be used to improve detection of cell-free tumor DNA with liquid biopsies, allowing non-invasive diagnosis and identification of molecular mutations. High-intensity FUS can cause tumor ablation via a hyperthermic effect. Additionally, FUS can stimulate immunological attack of tumor cells, can activate sonosensitizers to exert cytotoxic effects on tumor tissue, and can sensitize tumors to radiation therapy. Finally, another mechanism under investigation, known as histotripsy, produces tumor ablation via acoustic cavitation rather than thermal effects.
Collapse
Affiliation(s)
- Andrew M. Hersh
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Meghana Bhimreddy
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Carly Weber-Levine
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Kelly Jiang
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Safwan Alomari
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Nicholas Theodore
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Amir Manbachi
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Mechanical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Electrical and Computer Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Betty M. Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
6
|
Aryal M, Azadian MM, Hart AR, Macedo N, Zhou Q, Rosenthal EL, Airan RD. Noninvasive ultrasonic induction of cerebrospinal fluid flow enhances intrathecal drug delivery. J Control Release 2022; 349:434-442. [PMID: 35798095 DOI: 10.1016/j.jconrel.2022.06.067] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/15/2022] [Accepted: 06/30/2022] [Indexed: 10/17/2022]
Abstract
Intrathecal drug delivery is routinely used in the treatment and prophylaxis of varied central nervous system conditions, as doing so allows drugs to directly bypass the blood-brain barrier. However, the utility of this route of administration is limited by poor brain and spinal cord parenchymal drug uptake from the cerebrospinal fluid. We demonstrate that a simple noninvasive transcranial ultrasound protocol can significantly increase influx of cerebrospinal fluid into the perivascular spaces of the brain, to enhance the uptake of intrathecally administered drugs. Specifically, we administered small (~1 kDa) and large (~155 kDa) molecule agents into the cisterna magna of rats and then applied low, diagnostic-intensity focused ultrasound in a scanning protocol throughout the brain. Using real-time magnetic resonance imaging and ex vivo histologic analyses, we observed significantly increased uptake of small molecule agents into the brain parenchyma, and of both small and large molecule agents into the perivascular space from the cerebrospinal fluid. Notably, there was no evidence of brain parenchymal damage following this intervention. The low intensity and noninvasive approach of transcranial ultrasound in this protocol underscores the ready path to clinical translation of this technique. In this manner, this protocol can be used to directly bypass the blood-brain barrier for whole-brain delivery of a variety of agents. Additionally, this technique can potentially be used as a means to probe the causal role of the glymphatic system in the variety of disease and physiologic processes to which it has been correlated.
Collapse
Affiliation(s)
- Muna Aryal
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States; Departments of Engineering and Radiation Oncology, Loyola University Chicago, Chicago, IL, United States
| | - Matine M Azadian
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
| | - Alex R Hart
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
| | - Nicholas Macedo
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
| | - Quan Zhou
- Department of Otolaryngology, Stanford University School of Medicine, Stanford, CA, United States; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Eben L Rosenthal
- Department of Otolaryngology, Stanford University School of Medicine, Stanford, CA, United States; Stanford Cancer Center, Stanford Medical Center, Stanford, CA, United States; Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Raag D Airan
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States; Department of Materials Science and Engineering, Stanford University School of Medicine, Stanford, CA, United States; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States.
| |
Collapse
|
7
|
Kim C, Lim M, Woodworth GF, Arvanitis CD. The roles of thermal and mechanical stress in focused ultrasound-mediated immunomodulation and immunotherapy for central nervous system tumors. J Neurooncol 2022; 157:221-236. [PMID: 35235137 PMCID: PMC9119565 DOI: 10.1007/s11060-022-03973-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/16/2022] [Indexed: 12/19/2022]
Abstract
BACKGROUND Focused ultrasound (FUS) is an emerging technology, offering the capability of tuning and prescribing thermal and mechanical treatments within the brain. While early works in utilizing this technology have mainly focused on maximizing the delivery of therapeutics across the blood-brain barrier (BBB), the potential therapeutic impact of FUS-induced controlled thermal and mechanical stress to modulate anti-tumor immunity is becoming increasingly recognized. OBJECTIVE To better understand the roles of FUS-mediated thermal and mechanical stress in promoting anti-tumor immunity in central nervous system tumors, we performed a comprehensive literature review on focused ultrasound-mediated immunomodulation and immunotherapy in brain tumors. METHODS First, we summarize the current clinical experience with immunotherapy. Then, we discuss the unique and distinct immunomodulatory effects of the FUS-mediated thermal and mechanical stress in the brain tumor-immune microenvironment. Finally, we highlight recent findings that indicate that its combination with immune adjuvants can promote robust responses in brain tumors. RESULTS Along with the rapid advancement of FUS technologies into recent clinical trials, this technology through mild-hyperthermia, thermal ablation, mechanical perturbation mediated by microbubbles, and histotripsy each inducing distinct vascular and immunological effects, is offering the unique opportunity to improve immunotherapeutic trafficking and convert immunologically "cold" tumors into immunologically "hot" ones that are prone to generate prolonged anti-tumor immune responses. CONCLUSIONS While FUS technology is clearly accelerating concepts for new immunotherapeutic combinations, additional parallel efforts to detail rational therapeutic strategies supported by rigorous preclinical studies are still in need to leverage potential synergies of this technology with immune adjuvants. This work will accelerate the discovery and clinical implementation of new effective FUS immunotherapeutic combinations for brain tumor patients.
Collapse
Affiliation(s)
- Chulyong Kim
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Michael Lim
- Department of Neurosurgery, School of Medicine (Oncology), of Neurology, of Otolaryngology, and of Radiation Oncology, Stanford University, Paulo Alto, CA, USA
| | - Graeme F Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, USA
| | - Costas D Arvanitis
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| |
Collapse
|
8
|
Ahmed AK, Guo S, Kelm N, Clanton R, Melhem ER, Gullapalli RP, Ksendzovsky A, Eisenberg HM, Miller TR, Gandhi D. Technical Comparison of Treatment Efficiency of Magnetic Resonance-Guided Focused Ultrasound Thalamotomy and Pallidotomy in Skull Density Ratio-Matched Patient Cohorts. Front Neurol 2022; 12:808810. [PMID: 35126300 PMCID: PMC8813961 DOI: 10.3389/fneur.2021.808810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/17/2021] [Indexed: 11/24/2022] Open
Abstract
Objective MR-guided focused ultrasound (MRgFUS) is increasingly being used to treat patients with essential tremor (ET) and Parkinson's disease (PD) with thalamotomy and pallidotomy, respectively. Pallidotomy is performed off-center within the cranium compared to thalamotomy and may present challenges to therapeutic lesioning due to this location. However, the impact of target location on treatment efficiency and ability to create therapeutic lesions has not been studied. This study aimed to compare the physical efficiency of MRgFUS thalamotomy and pallidotomy. Methods Treatment characteristics were compared between patients treated with thalamotomy (n = 20) or pallidotomy (n = 20), matched by skull density ratios (SDR). Aspects of treatment efficiency were compared between these groups. Demographic and comparative statistics were conducted to assess these differences. Acoustic field simulations were performed to compare and validate the simulated temperature profile for VIM and GPi ablation. Results Lower SDR values were associated with greater energy requirement for thalamotomy (R2 = 0.197, p = 0.049) and pallidotomy (R2 = 0.342, p = 0.007). The impact of low SDR on efficiency reduction was greater for pallidotomy, approaching significance (p = 0.061). A nearly two-fold increase in energy was needed to reach 50°C in pallidotomy (10.9kJ) than in thalamotomy (5.7kJ), (p = 0.002). Despite lower energy requirement, the maximum average temperature reached was higher in thalamotomy (56.7°C) than in pallidotomy (55.0°C), (p = 0.017). Mean incident angle of acoustic beams was lesser in thalamotomy (12.7°) than in pallidotomy (18.6°), (p < 0.001). For all patients, a lesser mean incident angle correlated with a higher maximum average temperature reached (R2 = 0.124, p = 0.026), and less energy needed to reach 50°C (R2=0.134, p = 0.020). Greater skull thickness was associated with a higher maximum energy for a single sonication for thalamotomy (R2 = 0.206, p = 0.045) and pallidotomy (R2 = 0.403, p = 0.003). An acoustic and temperature field simulation validated similar findings for thalamotomy and pallidotomy in a single patient. Conclusion The centrally located VIM offers a more efficient location for therapeutic lesioning compared to GPi pallidotomy in SDR matched cohort of patients. The impact on therapeutic lesioning with lower SDR may be greater for pallidotomy patients. As newer off-center targets are investigated, these findings can inform patient selection and treatment requirements for lesion production.
Collapse
Affiliation(s)
- Abdul-Kareem Ahmed
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
- *Correspondence: Abdul-Kareem Ahmed
| | - Sijia Guo
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | | | | | - Elias R. Melhem
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Rao P. Gullapalli
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Alexander Ksendzovsky
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Howard M. Eisenberg
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Timothy R. Miller
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Dheeraj Gandhi
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
9
|
Current Landscape of Sonodynamic Therapy for Treating Cancer. Cancers (Basel) 2021; 13:cancers13246184. [PMID: 34944804 PMCID: PMC8699567 DOI: 10.3390/cancers13246184] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Recently, ultrasound has advanced in its treatment opportunities. One example is sonodynamic therapy, a minimally invasive anti-cancer therapy involving a chemical sonosensitizer and focused ultrasound. The combination of the ultrasound and chemical sonosensitizer amplifies the drug’s ability to target cancer cells. Combining multiple chemical sonosensitizers with ultrasound can create a synergistic effect that could effectively disrupt tumorigenic growth, induce cell death, and elicit an immune response. This review provides an oversight of the application of this treatment to various types of cancer, including prostate cancer, glioma, and pancreatic ductal adenocarcinoma tumors. Abstract Recent advancements have tangibly changed the cancer treatment landscape. However, curative therapy for this dreadful disease remains an unmet need. Sonodynamic therapy (SDT) is a minimally invasive anti-cancer therapy involving a chemical sonosensitizer and focused ultrasound. A high-intensity focused ultrasound (HIFU) beam is used to destroy or denature targeted cancer tissues. Some SDTs are based on unfocused ultrasound (US). In some SDTs, HIFU is combined with a drug, known as a chemical sonosensitizer, to amplify the drug’s ability to damage cancer cells preferentially. The mechanism by which US interferes with cancer cell function is further amplified by applying acoustic sensitizers. Combining multiple chemical sonosensitizers with US creates a substantial synergistic effect that could effectively disrupt tumorigenic growth, induce cell death, and elicit an immune response. Therefore, the minimally invasive SDT treatment is currently attracting attention. It can be combined with targeted therapy (double-targeting cancer therapy) and immunotherapy in the future and is expected to be a boon for treating previously incurable cancers. In this paper, we will consider the current state of this therapy and discuss parts of our research.
Collapse
|
10
|
Jenkins EPW, Finch A, Gerigk M, Triantis IF, Watts C, Malliaras GG. Electrotherapies for Glioblastoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100978. [PMID: 34292672 PMCID: PMC8456216 DOI: 10.1002/advs.202100978] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/20/2021] [Indexed: 05/08/2023]
Abstract
Non-thermal, intermediate frequency (100-500 kHz) electrotherapies present a unique therapeutic strategy to treat malignant neoplasms. Here, pulsed electric fields (PEFs) which induce reversible or irreversible electroporation (IRE) and tumour-treating fields (TTFs) are reviewed highlighting the foundations, advances, and considerations of each method when applied to glioblastoma (GBM). Several biological aspects of GBM that contribute to treatment complexity (heterogeneity, recurrence, resistance, and blood-brain barrier(BBB)) and electrophysiological traits which are suggested to promote glioma progression are described. Particularly, the biological responses at the cellular and molecular level to specific parameters of the electrical stimuli are discussed offering ways to compare these parameters despite the lack of a universally adopted physical description. Reviewing the literature, a disconnect is found between electrotherapy techniques and how they target the biological complexities of GBM that make treatment difficult in the first place. An attempt is made to bridge the interdisciplinary gap by mapping biological characteristics to different methods of electrotherapy, suggesting important future research topics and directions in both understanding and treating GBM. To the authors' knowledge, this is the first paper that attempts an in-tandem assessment of the biological effects of different aspects of intermediate frequency electrotherapy methods, thus offering possible strategies toward GBM treatment.
Collapse
Affiliation(s)
- Elise P. W. Jenkins
- Division of Electrical EngineeringDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| | - Alina Finch
- Institute of Cancer and Genomic ScienceUniversity of BirminghamBirminghamB15 2TTUK
| | - Magda Gerigk
- Division of Electrical EngineeringDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| | - Iasonas F. Triantis
- Department of Electrical and Electronic EngineeringCity, University of LondonLondonEC1V 0HBUK
| | - Colin Watts
- Institute of Cancer and Genomic ScienceUniversity of BirminghamBirminghamB15 2TTUK
| | - George G. Malliaras
- Division of Electrical EngineeringDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| |
Collapse
|
11
|
Meng Y, Pople CB, Lea-Banks H, Hynynen K, Lipsman N, Hamani C. Focused ultrasound neuromodulation. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 159:221-240. [PMID: 34446247 DOI: 10.1016/bs.irn.2021.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Focused ultrasound (FUS) is an emerging modality for performing incisionless neurosurgical procedures including thermoablation and blood-brain barrier (BBB) modulation. Emerging evidence suggests that low intensity FUS can also be used for neuromodulation with several benefits, including high spatial precision and the possibility of targeting deep brain regions. Here we review the existing data regarding the biological mechanisms of FUS neuromodulation, the characteristics of neuronal activity altered by FUS, emerging indications for FUS neuromodulation, as well as the strengths and limitations of this approach.
Collapse
Affiliation(s)
- Ying Meng
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Christopher B Pople
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Harriet Lea-Banks
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Nir Lipsman
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada; Sunnybrook Research Institute, Toronto, ON, Canada
| | - Clement Hamani
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada; Sunnybrook Research Institute, Toronto, ON, Canada.
| |
Collapse
|
12
|
Hwang BY, Mampre D, Ahmed AK, Suk I, Anderson WS, Manbachi A, Theodore N. Ultrasound in Traumatic Spinal Cord Injury: A Wide-Open Field. Neurosurgery 2021; 89:372-382. [PMID: 34098572 DOI: 10.1093/neuros/nyab177] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/19/2021] [Indexed: 02/02/2023] Open
Abstract
Traumatic spinal cord injury (SCI) is a common and devastating condition. In the absence of effective validated therapies, there is an urgent need for novel methods to achieve injury stabilization, regeneration, and functional restoration in SCI patients. Ultrasound is a versatile platform technology that can provide a foundation for viable diagnostic and therapeutic interventions in SCI. In particular, real-time perfusion and inflammatory biomarker monitoring, focal pharmaceutical delivery, and neuromodulation are capabilities that can be harnessed to advance our knowledge of SCI pathophysiology and to develop novel management and treatment options. Our review suggests that studies that evaluate the benefits and risks of ultrasound in SCI are severely lacking and our understanding of the technology's potential impact remains poorly understood. Although the complex anatomy and physiology of the spine and the spinal cord remain significant challenges, continued technological advances will help the field overcome the current barriers and bring ultrasound to the forefront of SCI research and development.
Collapse
Affiliation(s)
- Brian Y Hwang
- Division of Functional Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David Mampre
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - A Karim Ahmed
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ian Suk
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - William S Anderson
- Division of Functional Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Amir Manbachi
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicholas Theodore
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
13
|
Lopez W, Nguyen N, Cao J, Eddow C, Shung KK, Lee NS, Chow MSS. Ultrasound Therapy, Chemotherapy and Their Combination for Prostate Cancer. Technol Cancer Res Treat 2021; 20:15330338211011965. [PMID: 34013821 PMCID: PMC8141993 DOI: 10.1177/15330338211011965] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Prostate cancer is the second leading cause of cancer death in men. Its current treatment includes various physical and chemical approaches for the localized and advanced prostate cancer [e.g. metastatic castrate resistant prostate cancer (mCRPC)]. Although many new drugs are now available for prostate cancer, none is suitable for local treatment that can reduce adverse effects often associated with the current physical treatment. Of the drugs approved by FDA for mCRPC, the best mean improvement in overall survival is only about 4.8 months. Therefore, there is a need for improved treatment approaches for prostate cancer, especially drug-resistant cancer. Ultrasound therapy represents a useful new physical approach for the drug-resistant cancer treatment by facilitating the entry of the related chemotherapy drug into the target cancer cells. There are two versions of ultrasound: High Intensity Focused Ultrasound (HIFU) and Low Intensity Pulsed Ultrasound (LIPUS). HIFU has been a promising treatment option for prostate cancer due to its noninvasiveness and various biological effects on cancer tissue. It has been approved for the treatment of cancer and in recent years there have been numerous findings suggesting HIFU can reduce cancer cell viability and possibly reverse the spread of cancerous tumors. LIPUS is currently being studied as an alternative treatment option for prostate cancer. Preliminary studies have found LIPUS to reduce cancer cell viability without the side effects seen in HIFU. Reversible cell membrane damage caused by LIPUS could allow increased uptake of anticancer drugs, enhancing cytotoxicity and death of cancer cells. In this way, a low dose of anticancer drug is more effective toward cancer cells while there is less damage to normal cells. The combination of LIPUS with certain chemotherapeutic agents can be an exciting physical-chemical combination therapy for prostate cancer. This review will focus on this topic as well as the clinical use of HIFU to provide an understanding of their current use and future potential role for prostate cancer therapy.
Collapse
Affiliation(s)
- William Lopez
- College of Biomedical Sciences, College of Health Sciences, College of Osteopathic Medicine of the Pacific and College of Pharmacy, 6645Western University of Health Sciences, Pomona, CA, USA
| | - Nhu Nguyen
- College of Biomedical Sciences, College of Health Sciences, College of Osteopathic Medicine of the Pacific and College of Pharmacy, 6645Western University of Health Sciences, Pomona, CA, USA
| | - Jessica Cao
- College of Biomedical Sciences, College of Health Sciences, College of Osteopathic Medicine of the Pacific and College of Pharmacy, 6645Western University of Health Sciences, Pomona, CA, USA
| | - Christine Eddow
- College of Biomedical Sciences, College of Health Sciences, College of Osteopathic Medicine of the Pacific and College of Pharmacy, 6645Western University of Health Sciences, Pomona, CA, USA
| | - K Kirk Shung
- Department of Biomedical Engineering, 5116University of Southern California, Los Angeles, CA, USA
| | - Nan Sook Lee
- Department of Biomedical Engineering, 5116University of Southern California, Los Angeles, CA, USA
| | - Mosses S S Chow
- College of Biomedical Sciences, College of Health Sciences, College of Osteopathic Medicine of the Pacific and College of Pharmacy, 6645Western University of Health Sciences, Pomona, CA, USA
| |
Collapse
|
14
|
Sonodynamic therapy for metastatic melanoma to the brain. J Neurooncol 2021; 153:373-374. [PMID: 33970404 DOI: 10.1007/s11060-021-03768-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/30/2021] [Indexed: 10/21/2022]
|
15
|
Lee GP, Willis A, Pernal S, Phakatkar A, Shokuhfar T, Blot V, Engelhard HH. Targeted sonodynamic destruction of glioblastoma cells using antibody-titanium dioxide nanoparticle conjugates. Nanomedicine (Lond) 2021; 16:523-534. [PMID: 33660528 DOI: 10.2217/nnm-2020-0452] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Aim: We present data on sonodynamic therapy (SDT) against glioblastoma cells utilizing titanium dioxide (TiO2) nanoparticles conjugated to anti-EGFR antibody. Materials & methods: TiO2 nanoparticles were bound to anti-EGFR antibody to form antibody-nanoparticle conjugates (ANCs), then characterized by x-ray photoelectron spectroscopy and transmission electron microscopy. Cells underwent ultrasound and assessment on viability, reactive oxygen species and apoptosis were performed. Results: X-ray photoelectron spectroscopy analysis revealed the formation of an ANC. Transmission electron microscopy showed internalization of the ANCs by glioblastoma cells. With SDT, cell viabilities were reduced in the presence of ANCs, reactive oxygen species production was formed, but minimal effect on apoptosis was seen. Conclusion: For the first time, an ANC can be used with SDT to kill glioblastoma cells.
Collapse
Affiliation(s)
- George P Lee
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Alexander Willis
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sebastian Pernal
- School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Abhijit Phakatkar
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Tolou Shokuhfar
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Vincent Blot
- Division of Oncology Clinical Development, AbbVie Inc., North Chicago, IL 60064, USA
| | - Herbert H Engelhard
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL 60612, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
16
|
Abstract
Therapies for glioblastoma face several physiologic hurdles. The blood-brain barrier (BBB) and blood-brain-tumor barrier (BTB) present impediments to therapeutic delivery of drugs to the central nervous system. Strategies to disrupt or bypass the native BBB are necessary to deliver therapeutic agents. Techniques to bypass the BBB/BTB include implantable controlled-release polymer systems, intracavitary drug delivery, direct injection of viral vectors, and infusion via convection-enhanced delivery. Ideal methods and agents to accomplish the goal providing survival benefit are yet to be determined. Further development of methods to break down or bypass the BBB and BTB is necessary for patients with glioblastoma.
Collapse
|
17
|
Prada F, Franzini A, Moosa S, Padilla F, Moore D, Solbiati L, DiMeco F, Legon W. In vitro and in vivo characterization of a cranial window prosthesis for diagnostic and therapeutic cerebral ultrasound. J Neurosurg 2021; 134:646-658. [PMID: 31899872 DOI: 10.3171/2019.10.jns191674] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 10/28/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The authors evaluated the acoustic properties of an implantable, biocompatible, polyolefin-based cranial prosthesis as a medium to transmit ultrasound energy into the intracranial space with minimal distortion for imaging and therapeutic purposes. METHODS The authors performed in vitro and in vivo studies of ultrasound transmission through a cranial prosthesis. In the in vitro phase, they analyzed the transmission of ultrasound energy through the prosthesis in a water tank using various transducers with resonance frequencies corresponding to those of devices used for neurosurgical imaging and therapeutic purposes. Four distinct, single-element, focused transducers were tested at fundamental frequencies of 500 kHz, 1 MHz, 2.5 MHz, and 5 MHz. In addition, the authors tested ultrasound transmission through the prosthesis using a linear diagnostic probe (center frequency 5.3 MHz) with a calibrated needle hydrophone in free water. Each transducer was assessed across a range of input voltages that encompassed their full minimum to maximum range without waveform distortion. They also tested the effect of the prosthesis on beam pressure and geometry. In the in vivo phase, the authors performed ultrasound imaging through the prosthesis implanted in a swine model. RESULTS Acoustic power attenuation through the prosthesis was considerably lower than that reported to occur through the native cranial bone. Increasing the frequency of the transducer augmented the degree of acoustic power loss. The degradation/distortion of the ultrasound beams passing through the prosthesis was minimal in all 3 spatial planes (XY, XZ, and YZ) that were examined. The images acquired in vivo demonstrated no spatial distortion from the prosthesis, with spatial relationships that were superimposable to those acquired through the dura. CONCLUSIONS The results of the tests performed on the polyolefin-based cranial prosthesis indicated that this is a valid medium for delivering both focused and unfocused ultrasound and obtaining ultrasound images of the intracranial space. The prosthesis may serve for several diagnostic and therapeutic ultrasound-based applications, including bedside imaging of the brain and ultrasound-guided focused ultrasound cerebral procedures.
Collapse
Affiliation(s)
- Francesco Prada
- 1Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico C. Besta, Milano, Italy
- 2Department of Neurosurgery, University of Virginia Health System
- 3Focused Ultrasound Foundation, Charlottesville, Virginia
| | - Andrea Franzini
- 1Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico C. Besta, Milano, Italy
- 2Department of Neurosurgery, University of Virginia Health System
| | - Shayan Moosa
- 2Department of Neurosurgery, University of Virginia Health System
| | | | - David Moore
- 3Focused Ultrasound Foundation, Charlottesville, Virginia
| | - Luigi Solbiati
- 4Department of Radiology, Humanitas Research Hospital, Rozzano, Italy
| | - Francesco DiMeco
- 1Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico C. Besta, Milano, Italy
- 5Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland; and
- 6Department of Pathophysiology and Transplantation, Università degli studi di Milano, Italy
| | - Wynn Legon
- 2Department of Neurosurgery, University of Virginia Health System
| |
Collapse
|
18
|
Borah BM, Cacaccio J, Durrani FA, Bshara W, Turowski SG, Spernyak JA, Pandey RK. Sonodynamic therapy in combination with photodynamic therapy shows enhanced long-term cure of brain tumor. Sci Rep 2020; 10:21791. [PMID: 33311561 PMCID: PMC7732989 DOI: 10.1038/s41598-020-78153-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/20/2020] [Indexed: 11/09/2022] Open
Abstract
This article presents the construction of a multimodality platform that can be used for efficient destruction of brain tumor by a combination of photodynamic and sonodynamic therapy. For in vivo studies, U87 patient-derived xenograft tumors were implanted subcutaneously in SCID mice. For the first time, it has been shown that the cell-death mechanism by both treatment modalities follows two different pathways. For example, exposing the U87 cells after 24 h incubation with HPPH [3-(1'-hexyloxy)ethyl-3-devinyl-pyropheophorbide-a) by ultrasound participate in an electron-transfer process with the surrounding biological substrates to form radicals and radical ions (Type I reaction); whereas in photodynamic therapy, the tumor destruction is mainly caused by highly reactive singlet oxygen (Type II reaction). The combination of photodynamic therapy and sonodynamic therapy both in vitro and in vivo have shown an improved cell kill/tumor response, that could be attributed to an additive and/or synergetic effect(s). Our results also indicate that the delivery of the HPPH to tumors can further be enhanced by using cationic polyacrylamide nanoparticles as a delivery vehicle. Exposing the nano-formulation with ultrasound also triggered the release of photosensitizer. The combination of photodynamic therapy and sonodynamic therapy strongly affects tumor vasculature as determined by dynamic contrast enhanced imaging using HSA-Gd(III)DTPA.
Collapse
Affiliation(s)
- Ballav M Borah
- Photolitec, LLC, 73 High Street, Buffalo, NY, 14203, USA
| | - Joseph Cacaccio
- Department of Cell Stress Biology, Photodynamic Therapy Center, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Farukh A Durrani
- Department of Cell Stress Biology, Photodynamic Therapy Center, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Wiam Bshara
- Department of Pathology, Pathology Network Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Steven G Turowski
- Translational Imaging Shared Resource, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | | | - Ravindra K Pandey
- Department of Cell Stress Biology, Photodynamic Therapy Center, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
| |
Collapse
|
19
|
Belzberg M, Mahapatra S, Perdomo-Pantoja A, Chavez F, Morrison K, Xiong KT, Gamo NJ, Restaino S, Thakor N, Yazdi Y, Iyer R, Tyler B, Theodore N, Luciano MG, Brem H, Groves M, Cohen AR, Manbachi A. Minimally invasive therapeutic ultrasound: Ultrasound-guided ultrasound ablation in neuro-oncology. ULTRASONICS 2020; 108:106210. [PMID: 32619834 PMCID: PMC8895244 DOI: 10.1016/j.ultras.2020.106210] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 05/28/2020] [Accepted: 06/12/2020] [Indexed: 05/19/2023]
Abstract
INTRODUCTION To improve patient outcomes (eg, reducing blood loss and infection), practitioners have gravitated toward noninvasive and minimally invasive surgeries (MIS), which demand specialized toolkits. Focused ultrasound, for example, facilitates thermal ablation from a distance, thereby reducing injury to surrounding tissue. Focused ultrasound can often be performed noninvasively; however, it is more difficult to carry out in neuro-oncological tumors, as ultrasound is dramatically attenuated while propagating through the skull. This shortcoming has prompted exploration of MIS options for intracranial placement of focused ultrasound probes, such as within the BrainPath™ (NICO Corporation, Indianapolis, IN). Herein, we present the design, development, and in vitro testing of an image-guided, focused ultrasound prototype designed for use in MIS procedures. This probe can ablate neuro-oncological lesions despite its small size. MATERIALS & METHODS Preliminary prototypes were iteratively designed, built, and tested. The final prototype consisted of three 8-mm-diameter therapeutic elements guided by an imaging probe. Probe functionality was validated on a series of tissue-mimicking phantoms. RESULTS Lesions were created in tissue-mimicking phantoms with average dimensions of 2.5 × 1.2 × 6.5 mm and 3.4 × 3.25 × 9.36 mm after 10- and 30-second sonification, respectively. 30 s sonification with 118 W power at 50% duty cycle generated a peak temperature of 68 °C. Each ablation was visualized in real time by the built-in imaging probe. CONCLUSION We developed and validated an ultrasound-guided focused ultrasound probe for use in MIS procedures. The dimensional constraints of the prototype were designed to reflect those of BrainPath trocars, which are MIS tools used to create atraumatic access to deep-seated brain pathologies.
Collapse
Affiliation(s)
- Micah Belzberg
- Department of Dermatology, Johns Hopkins University, Baltimore, MD, USA
| | - Smruti Mahapatra
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | | | | | | | - Nao J Gamo
- Maryland Development Center, Baltimore, MD, USA
| | | | - Nitish Thakor
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Youseph Yazdi
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Rajiv Iyer
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| | - Betty Tyler
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| | - Nicholas Theodore
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| | - Mark G Luciano
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| | - Henry Brem
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| | - Mari Groves
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| | - Alan R Cohen
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| | - Amir Manbachi
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
20
|
Mueller T, Stucklin ASG, Postlmayr A, Metzger S, Gerber N, Kline C, Grotzer M, Nazarian J, Mueller S. Advances in Targeted Therapies for Pediatric Brain Tumors. Curr Treat Options Neurol 2020. [DOI: 10.1007/s11940-020-00651-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abstract
Purpose of Review
Over the last years, our understanding of the molecular biology of pediatric brain tumors has vastly improved. This has led to more narrowly defined subgroups of these tumors and has created new potential targets for molecularly driven therapies. This review presents an overview of the latest advances and challenges of implementing targeted therapies into the clinical management of pediatric brain tumors, with a focus on gliomas, craniopharyngiomas, and medulloblastomas.
Recent Findings
Pediatric low-grade gliomas (pLGG) show generally a low mutational burden with the mitogen-activated protein kinase (MAPK) signaling presenting a key driver for these tumors. Direct inhibition of this pathway through BRAF and/or MEK inhibitors has proven to be a clinically relevant strategy. More recently, MEK and IL-6 receptor inhibitors have started to be evaluated in the treatment for craniopharyngiomas. Aside these low-grade tumors, pediatric high-grade gliomas (pHGG) and medulloblastomas exhibit substantially greater molecular heterogeneity with various and sometimes unknown tumor driver alterations. The clinical benefit of different targeted therapy approaches to interfere with altered signaling pathways and restore epigenetic dysregulation is undergoing active clinical testing. For these multiple pathway-driven tumors, combination strategies will most likely be required to achieve clinical benefit.
Summary
The field of pediatric neuro-oncology made tremendous progress with regard to improved diagnosis setting the stage for precision medicine approaches over the last decades. The potential of targeted therapies has been clearly demonstrated for a subset of pediatric brain tumors. However, despite clear response rates, questions of sufficient blood-brain barrier penetration, optimal dosing, treatment duration as well as mechanisms of resistance and how these can be overcome with potential combination strategies need to be addressed in future investigations. Along this line, it is critical for future trials to define appropriate endpoints to assess therapy responses as well as short and long-term toxicities in the growing and developing child.
Collapse
|
21
|
Garrett MC, O’Shea TM, Wollenberg AL, Bernstein AM, Hung D, Staarman B, Soto H, Deming TJ, Sofroniew MV, Kornblum HI. Injectable diblock copolypeptide hydrogel provides platform to deliver effective concentrations of paclitaxel to an intracranial xenograft model of glioblastoma. PLoS One 2020; 15:e0219632. [PMID: 32706829 PMCID: PMC7380637 DOI: 10.1371/journal.pone.0219632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 05/17/2020] [Indexed: 01/30/2023] Open
Abstract
INTRODUCTION Surgical resection and systemic chemotherapy with temozolomide remain the mainstay for treatment of glioblastoma. However, many patients are not candidates for surgical resection given inaccessible tumor location or poor health status. Furthermore, despite being first line treatment, temozolomide has only limited efficacy. METHODS The development of injectable hydrogel-based carrier systems allows for the delivery of a wide range of chemotherapeutics that can achieve high local concentrations, thus potentially avoiding systemic side effects and wide-spread neurotoxicity. To test this modality in a realistic environment, we developed a diblock copolypeptide hydrogel (DCH) capable of carrying and releasing paclitaxel, a compound that we found to be highly potent against primary gliomasphere cells. RESULTS The DCH produced minimal tissue reactivity and was well tolerated in the immune-competent mouse brain. Paclitaxel-loaded hydrogel induced less tissue damage, cellular inflammation and reactive astrocytes than cremaphor-taxol (typical taxol-carrier) or hydrogel alone. In a deep subcortical xenograft model of glioblastoma in immunodeficient mice, injection of paclitaxel-loaded hydrogel led to local tumor control and improved survival. However, the tumor cells were highly migratory and were able to eventually escape the area of treatment. CONCLUSIONS These findings suggest this technology may be ultimately applicable to patients with deep-seated inoperable tumors, but as currently formulated, complete tumor eradication would be highly unlikely. Future studies should focus on targeting the migratory potential of surviving cells.
Collapse
Affiliation(s)
- Matthew C. Garrett
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
- * E-mail:
| | - Timothy M. O’Shea
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Alexander L. Wollenberg
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Alexander M. Bernstein
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Derek Hung
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Brittany Staarman
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Horacio Soto
- Department of Neurosurgery David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Timothy J. Deming
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, United States of America
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Michael V. Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Harley I. Kornblum
- Departments of Psychiatry and Biobehavioral Sciences, Pharmacology, Pediatrics and the Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| |
Collapse
|
22
|
Frenster JD, Desai S, Placantonakis DG. In vitro evidence for glioblastoma cell death in temperatures found in the penumbra of laser-ablated tumors. Int J Hyperthermia 2020; 37:20-26. [PMID: 32672127 PMCID: PMC7725000 DOI: 10.1080/02656736.2020.1774082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/11/2020] [Accepted: 05/20/2020] [Indexed: 12/30/2022] Open
Abstract
The concept of thermal therapy toward the treatment of brain tumors has gained traction in recent years. Traditionally, thermal therapy has been subdivided into hyperthermia, with mild elevation of temperature in treated tissue above the physiologic baseline; and thermal ablation, where even higher temperatures are achieved. The recent surge in interest has been driven by the use of novel thermal ablation technologies, including laser interstitial thermal therapy (LITT), that are implemented in brain tumor treatment. Here, we review previous scientific literature on the biologic effects of thermal therapy on brain tumors, with an emphasis on glioblastoma (GBM), an aggressive brain malignancy. In addition, we present in vitro evidence from our laboratory that even moderate elevations in temperature achieved in the penumbra around laser-ablated coagulum may also produce GBM cell death. While much remains to be elucidated in terms of the biology of thermal therapy, we propose that it is a welcome addition to the neuro-oncology armamentarium, in particular with regard to GBM, which is generally resistant to current chemoradiotherapeutic regimens.
Collapse
Affiliation(s)
- Joshua D. Frenster
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Shivang Desai
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA
- Emory School of Medicine, Atlanta, GA, USA
| | - Dimitris G. Placantonakis
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
- Kimmel Center for Stem Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Brain and Spine Tumor Center, NYU Grossman School of Medicine, New York, NY 10016, USA
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
23
|
Lee NS, Yoon CW, Wang Q, Moon S, Koo KM, Jung H, Chen R, Jiang L, Lu G, Fernandez A, Chow RH, Weitz AC, Salvaterra PM, Pinaud F, Shung KK. Focused Ultrasound Stimulates ER Localized Mechanosensitive PANNEXIN-1 to Mediate Intracellular Calcium Release in Invasive Cancer Cells. Front Cell Dev Biol 2020; 8:504. [PMID: 32656213 PMCID: PMC7325310 DOI: 10.3389/fcell.2020.00504] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022] Open
Abstract
Focused ultrasound (FUS) is a rapidly developing stimulus technology with the potential to uncover novel mechanosensory dependent cellular processes. Since it is non-invasive, it holds great promise for future therapeutic applications in patients used either alone or as a complement to boost existing treatments. For example, FUS stimulation causes invasive but not non-invasive cancer cell lines to exhibit marked activation of calcium signaling pathways. Here, we identify the membrane channel PANNEXIN1 (PANX1) as a mediator for activation of calcium signaling in invasive cancer cells. Knockdown of PANX1 decreases calcium signaling in invasive cells, while PANX1 overexpression enhances calcium elevations in non-invasive cancer cells. We demonstrate that FUS may directly stimulate mechanosensory PANX1 localized in endoplasmic reticulum to evoke calcium release from internal stores. This process does not depend on mechanosensory stimulus transduction through an intact cytoskeleton and does not depend on plasma membrane localized PANX1. Plasma membrane localized PANX1, however, plays a different role in mediating the spread of intercellular calcium waves via ATP release. Additionally, we show that FUS stimulation evokes cytokine/chemokine release from invasive cancer cells, suggesting that FUS could be an important new adjuvant treatment to improve cancer immunotherapy.
Collapse
Affiliation(s)
- Nan Sook Lee
- Ultrasonic Transducer Resource Center, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Chi Woo Yoon
- Ultrasonic Transducer Resource Center, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Qing Wang
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Sunho Moon
- Ultrasonic Transducer Resource Center, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Kweon Mo Koo
- Ultrasonic Transducer Resource Center, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Hayong Jung
- Ultrasonic Transducer Resource Center, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Ruimin Chen
- Ultrasonic Transducer Resource Center, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Laiming Jiang
- Ultrasonic Transducer Resource Center, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Gengxi Lu
- Ultrasonic Transducer Resource Center, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Antony Fernandez
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Robert H Chow
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
| | - Andrew C Weitz
- Ultrasonic Transducer Resource Center, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Paul M Salvaterra
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Fabien Pinaud
- Department of Biological Sciences, Chemistry and Physics & Astronomy, University of Southern California, Los Angeles, CA, United States
| | - K Kirk Shung
- Ultrasonic Transducer Resource Center, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
24
|
Prada F, Sheybani N, Franzini A, Moore D, Cordeiro D, Sheehan J, Timbie K, Xu Z. Fluorescein-mediated sonodynamic therapy in a rat glioma model. J Neurooncol 2020; 148:445-454. [PMID: 32500440 DOI: 10.1007/s11060-020-03536-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/12/2020] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Malignant gliomas have a dismal prognosis and significant efforts are being made to develop more effective treatments. Sonodynamic therapy (SDT) is an emerging modality for cancer treatment which combines ultrasound with sonosensitizers to produce a localized cytotoxic effect. The aim of this study is to demonstrate the efficacy of SDT with fluorescein (FL) and low-intensity focused ultrasound in inhibiting the growth of ectopic gliomas implanted in the rat's subcutaneous tissue. METHODS In vivo cytotoxicity of FL-SDT was evaluated in C6 rat glioma cells which were inoculated subcutaneously. Tumor specific extracellular FL extravasation and accumulation was assessed with IVIS imaging in rats receiving systemic FL. Effects of FL-SDT with focused low-intensity ultrasound on tumor growth, and histological features of the rat's tumors were investigated. Treatment related apoptosis and necrosis were analyzed using hematoxylin & eosin, and apoptosis-specific staining. RESULTS IVIS imaging revealed a high degree of FL accumulation within the tumor, with a nearly threefold increase in tumoral epifluorescence signal over background. SDT significantly inhibited outgrowth of ectopic C6 gliomas across all three FUS exposure conditions. TUNEL and active caspase-3 staining did not reveal conclusive trends across control and SDT condition for apoptosis. CONCLUSION Our results suggest that SDT with FL and low-intensity FUS is effective in inhibiting the growth of ectopic malignant gliomas in rats. The selective FL extravasation and accumulation in the tumor areas where the blood-brain barrier is damaged suggests the tumor-specificity of the treatment. The possibility to use this treatment in intracranial models and in human gliomas will have to be explored in further studies.
Collapse
Affiliation(s)
- Francesco Prada
- Department of Neurological Surgery, University of Virginia Health Science Center, Charlottesville, VA, USA. .,Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy. .,Focused Ultrasound Foundation, Charlottesville, VA, USA.
| | - Natasha Sheybani
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Andrea Franzini
- Department of Neurological Surgery, University of Virginia Health Science Center, Charlottesville, VA, USA.,Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - David Moore
- Focused Ultrasound Foundation, Charlottesville, VA, USA
| | - Diogo Cordeiro
- Department of Neurological Surgery, University of Virginia Health Science Center, Charlottesville, VA, USA
| | - Jason Sheehan
- Department of Neurological Surgery, University of Virginia Health Science Center, Charlottesville, VA, USA
| | - Kelsie Timbie
- Focused Ultrasound Foundation, Charlottesville, VA, USA
| | - Zhiyuan Xu
- Department of Neurological Surgery, University of Virginia Health Science Center, Charlottesville, VA, USA
| |
Collapse
|
25
|
Horne DA, Jones PD, Adams MS, Lotz JC, Diederich CJ. LIPUS far-field exposimetry system for uniform stimulation of tissues in-vitro: development and validation with bovine intervertebral disc cells. Biomed Phys Eng Express 2020; 6:035033. [PMID: 33438678 DOI: 10.1088/2057-1976/ab8b26] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Therapeutic Low-intensity Pulsed Ultrasound (LIPUS) has been applied clinically for bone fracture healing and has been shown to stimulate extracellular matrix (ECM) metabolism in numerous soft tissues including intervertebral disc (IVD). In-vitro LIPUS testing systems have been developed and typically include polystyrene cell culture plates (CCP) placed directly on top of the ultrasound transducer in the acoustic near-field (NF). This configuration introduces several undesirable acoustic artifacts, making the establishment of dose-response relationships difficult, and is not relevant for targeting deep tissues such as the IVD, which may require far-field (FF) exposure from low frequency sources. The objective of this study was to design and validate an in-vitro LIPUS system for stimulating ECM synthesis in IVD-cells while mimicking attributes of a deep delivery system by delivering uniform, FF acoustic energy while minimizing reflections and standing waves within target wells, and unwanted temperature elevation within target samples. Acoustic field simulations and hydrophone measurements demonstrated that by directing LIPUS energy at 0.5, 1.0, or 1.5 MHz operating frequency, with an acoustic standoff in the FF (125-350 mm), at 6-well CCP targets including an alginate ring spacer, uniform intensity distributions can be delivered. A custom FF LIPUS system was fabricated and demonstrated reduced acoustic intensity field heterogeneity within CCP-wells by up to 93% compared to common NF configurations. When bovine IVD cells were exposed to LIPUS (1.5 MHz, 200 μs pulse, 1 kHz pulse frequency, and ISPTA = 120 mW cm-2) using the FF system, sample heating was minimal (+0.81 °C) and collagen content was increased by 2.6-fold compared to the control and was equivalent to BMP-7 growth factor treatment. The results of this study demonstrate that FF LIPUS exposure increases collagen content in IVD cells and suggest that LIPUS is a potential noninvasive therapeutic for stimulating repair of tissues deep within the body such as the IVD.
Collapse
Affiliation(s)
- Devante A Horne
- Department of Orthopaedic Surgery, University of California, San Francisco, United States of America. The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, and University of California, San Francisco, United States of America. Thermal Therapy Research Group, Radiation Oncology Department, University of California, San Francisco, United States of America
| | | | | | | | | |
Collapse
|
26
|
Sheehan K, Sheehan D, Sulaiman M, Padilla F, Moore D, Sheehan J, Xu Z. Investigation of the tumoricidal effects of sonodynamic therapy in malignant glioblastoma brain tumors. J Neurooncol 2020; 148:9-16. [PMID: 32361864 DOI: 10.1007/s11060-020-03504-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/17/2020] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Glioblastoma is the most common primary brain tumor; survival is typically 12-18 months after diagnosis. We sought to study the effects of sonodynamic therapy (SDT) using 5-Aminolevulinic acid hydrochloride (5-ALA) and high frequency focused ultrasound (FUS) on 2 glioblastoma cell lines. PROCEDURE Rat C6 and human U87 glioblastoma cells were studied under the following conditions: 1 mM 5-ALA (5-ALA); focused ultrasound (FUS); 5-ALA and focused ultrasound (SDT); control. Studied responses included cell viability using an MTT assay, microscopic changes using phase contract microscopy, apoptotic induction through a caspase-3 assay, and apoptosis staining to quantify cell death. RESULTS SDT led to a marked decrease in cell extension and reduction in cell size. For C6, the MTT assay showed reductions in cell viability for 5-ALA, FUS, and SDT groups of 5%, 16%, and 47%, respectively compared to control (p < 0.05). Caspase 3 induction in C6 cells relative to control showed increases of 109%, 110%, and 278% for 5-ALA, FUS, and SDT groups, respectively (p < 0.05). For the C6 cells, caspase 3 staining positivity was 2.1%, 6.7%, 11.2%, and 39.8% for control, 5-ALA, FUS, and SDT groups, respectively. C6 Parp-1 staining positivity was 1.9%, 6.5%, 9.0%, and 37.8% for control, 5-ALA, FUS, and SDT groups, respectively. U87 cells showed similar responses to the treatments. CONCLUSIONS Sonodynamic therapy resulted in appreciable glioblastoma cell death as compared to 5-ALA or FUS alone. The approach couples two already FDA approved techniques in a novel way to treat the most aggressive and malignant of brain tumors. Further study of this promising technique is planned.
Collapse
Affiliation(s)
- Kimball Sheehan
- Department of Neurological Surgery, Health Sciences Center, University of Virginia, Box 800212, Charlottesville, VA, 22908, USA.
| | - Darrah Sheehan
- Department of Neurological Surgery, Health Sciences Center, University of Virginia, Box 800212, Charlottesville, VA, 22908, USA
| | - Mohanad Sulaiman
- Department of Neurological Surgery, Health Sciences Center, University of Virginia, Box 800212, Charlottesville, VA, 22908, USA
| | - Frederic Padilla
- Focused Ultrasound Foundation, Charlottesville, VA, USA
- Department of Radiology, University of Virginia, Charlottesville, VA, USA
| | - David Moore
- Focused Ultrasound Foundation, Charlottesville, VA, USA
| | - Jason Sheehan
- Department of Neurological Surgery, Health Sciences Center, University of Virginia, Box 800212, Charlottesville, VA, 22908, USA
| | - Zhiyuan Xu
- Department of Neurological Surgery, Health Sciences Center, University of Virginia, Box 800212, Charlottesville, VA, 22908, USA
| |
Collapse
|
27
|
Schibber EF, Mittelstein DR, Gharib M, Shapiro MG, Lee PP, Ortiz M. A dynamical model of oncotripsy by mechanical cell fatigue: selective cancer cell ablation by low-intensity pulsed ultrasound. PROCEEDINGS. MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020. [PMID: 32398930 DOI: 10.1063/1.5128627] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
The method of oncotripsy, first proposed in Heyden & Ortiz (Heyden & Ortiz 2016 J. Mech. Phys. Solids 92, 164-175 (doi:10.1016/j.jmps.2016.04.016)), exploits aberrations in the material properties and morphology of cancerous cells in order to ablate them selectively by means of tuned low-intensity pulsed ultrasound. We propose the dynamical model of oncotripsy that follows as an application of cell dynamics, statistical mechanical theory of network elasticity and 'birth-death' kinetics to describe the processes of damage and repair of the cytoskeleton. We also develop a reduced dynamical model that approximates the three-dimensional dynamics of the cell and facilitates parametric studies, including sensitivity analysis and process optimization. We show that the dynamical model predicts-and provides a conceptual basis for understanding-the oncotripsy effect and other trends in the data of Mittelstein et al. (Mittelstein et al. 2019 Appl. Phys. Lett. 116, 013701 (doi:10.1063/1.5128627)), for cells in suspension, including the dependence of cell-death curves on cell and process parameters.
Collapse
Affiliation(s)
- E F Schibber
- Division of Engineering and Applied Science, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - D R Mittelstein
- Division of Engineering and Applied Science, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - M Gharib
- Division of Engineering and Applied Science, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - M G Shapiro
- Division of Engineering and Applied Science, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - P P Lee
- Department of Immuno-Oncology, City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA 91010, USA
| | - M Ortiz
- Division of Engineering and Applied Science, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
28
|
El Demerdash N, Kedda J, Ram N, Brem H, Tyler B. Novel therapeutics for brain tumors: current practice and future prospects. Expert Opin Drug Deliv 2020; 17:9-21. [DOI: 10.1080/17425247.2019.1676227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Nagat El Demerdash
- Department of Neurosurgery, Hunterian Neurosurgical Research Laboratory, Johns Hopkins University, Baltimore, MD, USA
| | - Jayanidhi Kedda
- Department of Neurosurgery, Hunterian Neurosurgical Research Laboratory, Johns Hopkins University, Baltimore, MD, USA
| | - Nivi Ram
- Department of Neurosurgery, Hunterian Neurosurgical Research Laboratory, Johns Hopkins University, Baltimore, MD, USA
| | - Henry Brem
- Department of Neurosurgery, Hunterian Neurosurgical Research Laboratory, Johns Hopkins University, Baltimore, MD, USA
- Departments of Biomedical Engineering, Oncology, and Ophthalmology, Johns Hopkins University, Baltimore, MD, USA
| | - Betty Tyler
- Department of Neurosurgery, Hunterian Neurosurgical Research Laboratory, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
29
|
Schneider CS, Woodworth GF, Vujaskovic Z, Mishra MV. Radiosensitization of high-grade gliomas through induced hyperthermia: Review of clinical experience and the potential role of MR-guided focused ultrasound. Radiother Oncol 2020; 142:43-51. [DOI: 10.1016/j.radonc.2019.07.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/14/2019] [Accepted: 07/15/2019] [Indexed: 02/07/2023]
|
30
|
Liu C, Xu Y, Yang H, Zhang J. Establishment of axon regeneration regulatory network and the role of low intensity pulsed ultrasound in the network. Saudi J Biol Sci 2020; 26:1922-1926. [PMID: 31889775 PMCID: PMC6923491 DOI: 10.1016/j.sjbs.2019.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/11/2019] [Accepted: 07/13/2019] [Indexed: 11/28/2022] Open
Abstract
Objective To establish an axon regeneration regulatory network for optimal selection, and explore the role of low intensity pulsed ultrasound in the network. Methods The axon regeneration regulatory network involving axon regeneration-related proteins NGF, BDNF and PirB was constructed by using GO and KEGG. The maximum possible pathway acting on axon regeneration was screened by Bayesian network theory. The node of low - intensity pulsed ultrasound in NGF - involved axon regeneration network was complemented by combining literature methods. Results The NGF, BDNF and PirB-involved axonal regeneration regulatory pathway was successfully constructed. The low intensity pulsed ultrasound played a role in axon regeneration by acting on ERK1/2-CREB pathway and GSK-3β. NGF-TrKA-Rap1-ERK1/2-CREB-Bcl-2 was optimized as optimal pathway by Bayesian theory. Conclusion The regulatory pathway of axon regeneration involving nerve growth related factors and low intensity pulsed ultrasound was initially established, which provided a theoretical basis for further study of axon regeneration, and also new ideas for action of low intensity pulsed ultrasound on axon regeneration regulatory pathway.
Collapse
Affiliation(s)
- Chunyang Liu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yanhua Xu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Hong Yang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jianhua Zhang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
31
|
Bilmin K, Kujawska T, Grieb P. Sonodynamic Therapy for Gliomas. Perspectives and Prospects of Selective Sonosensitization of Glioma Cells. Cells 2019; 8:E1428. [PMID: 31766152 PMCID: PMC6912826 DOI: 10.3390/cells8111428] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 11/29/2022] Open
Abstract
Malignant glial tumors (gliomas) are the second (after cerebral stroke) cause of death from diseases of the central nervous system. The current routine therapy, involving a combination of tumor resection, radio-, and chemo-therapy, only modestly improves survival. Sonodynamic therapy (SDT) has been broadly defined as a synergistic effect of sonication applied in combination with substances referred to as "sonosensitizers". The current review focuses on the possibility of the use of tumor-seeking sonosensitizers, in particular 5-aminolevulinic acid, to control recurring gliomas. In this application, SDT employs a principle similar to that of the more widely-known photodynamic therapy of superficially located cancers, the difference being the use of ultrasound instead of light to deliver the energy necessary to eliminate the sensitized malignant cells. The ability of ultrasound to penetrate brain tissues makes it possible to reach deeply localized intracranial tumors such as gliomas. The major potential advantage of this variant of SDT is its relative non-invasiveness and possibility of repeated application. Until now, there have been no clinical data regarding the efficacy and safety of such treatment for malignant gliomas, but the preclinical data are encouraging.
Collapse
Affiliation(s)
- Krzysztof Bilmin
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland;
- Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszynski University, 01-938 Warsaw, Poland
| | - Tamara Kujawska
- Institute of Fundamental Technological Research, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Paweł Grieb
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| |
Collapse
|
32
|
Belzberg M, Ben-Shalom N, Shay T, Gordon C. Letter to the Editor Regarding "Polymethyl-Methacrylate Cranioplasty Is an Effective Ultrasound Window to Explore Intracranial Structures: Preliminary Experience and Future Perspectives". World Neurosurg 2019; 129:546-547. [PMID: 31426260 DOI: 10.1016/j.wneu.2019.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 10/26/2022]
Affiliation(s)
- Micah Belzberg
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Netanel Ben-Shalom
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tamir Shay
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chad Gordon
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
33
|
Burks SR, Lorsung RM, Nagle ME, Tu TW, Frank JA. Focused ultrasound activates voltage-gated calcium channels through depolarizing TRPC1 sodium currents in kidney and skeletal muscle. Theranostics 2019; 9:5517-5531. [PMID: 31534500 PMCID: PMC6735402 DOI: 10.7150/thno.33876] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/09/2019] [Indexed: 12/26/2022] Open
Abstract
Pulsed focused ultrasound (pFUS) technology is being developed for clinical neuro/immune modulation and regenerative medicine. Biological signal transduction of pFUS forces can require mechanosensitive or voltage-gated plasma membrane ion channels. Previous studies suggested pFUS is capable of activating either channel type, but their mechanistic relationship remains ambiguous. We demonstrated pFUS bioeffects increased mesenchymal stem cell tropism (MSC) by altering molecular microenvironments through cyclooxygenase-2 (COX2)-dependent pathways. This study explored specific relationships between mechanosensitive and voltage-gated Ca2+ channels (VGCC) to initiate pFUS bioeffects that increase stem cell tropism. Methods: Murine kidneys and hamstring were given pFUS (1.15 or 1.125 MHz; 4MPa peak rarefactional pressure) under ultrasound or magnetic resonance imaging guidance. Cavitation and tissue displacement were measure by hydrophone and ultrasound radiofrequency data, respectively. Elastic modeling was performed from displacement measurements. COX2 expression and MSC tropism were evaluated in the presence of pharmacological ion channel inhibitors or in transient-receptor-potential-channel-1 (TRPC1)-deficient mice. Immunohistochemistry and co-immunoprecipitation examined physical channel relationships. Fluorescent ionophore imaging of cultured C2C12 muscle cells or TCMK1 kidney cells probed physiological interactions. Results: pFUS induced tissue deformations resulting in kPa-scale forces suggesting mechanical activation of pFUS-induced bioeffects. Inhibiting VGCC or TRPC1 in vivo blocked pFUS-induced COX2 upregulation and MSC tropism to kidneys and muscle. A TRPC1/VGCC complex was observed in plasma membranes. VGCC or TRPC1 suppression blocked pFUS-induced Ca2+ transients in TCMK1 and C2C12 cells. Additionally, Ca2+ transients were blocked by reducing transmembrane Na+ potentials and observed Na+ transients were diminished by genetic TRPC1 suppression. Conclusion: This study suggests that pFUS acoustic radiation forces mechanically activate a Na+-containing TRPC1 current upstream of VGCC rather than directly opening VGCC. The electrogenic function of TRPC1 provides potential mechanistic insight into other pFUS techniques for physiological modulation and optimization strategies for clinical implementation.
Collapse
|
34
|
Belzberg M, Shalom NB, Yuhanna E, Manbachi A, Tekes A, Huang J, Brem H, Gordon CR. Sonolucent Cranial Implants: Cadaveric Study and Clinical Findings Supporting Diagnostic and Therapeutic Transcranioplasty Ultrasound. J Craniofac Surg 2019; 30:1456-1461. [PMID: 31299743 PMCID: PMC7329202 DOI: 10.1097/scs.0000000000005454] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/09/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Previously, sonographic evaluation of the intracranial contents was limited to intraoperative use following bone flap removal, with placement of the probe directly on the cortical surface or through a transsulcal tubular retractor. Cranioplasty with sonolucent implants may represent a postoperative window into the brain by allowing ultrasound to serve as a novel bedside imaging modality. The potential sonolucency of various commonly used cranial implant types was examined in this study. METHODS A 3-phase study was comprised of cadaveric evaluation of transcranioplasty ultrasound (TCU) with cranioplasty implants of varying materials, intraoperative TCU during right-sided cranioplasty with clear implant made of poly-methyl-methacrylate (PMMA), and bedside TCU on postoperative day 5 after cranioplasty. RESULTS The TCU through clear PMMA, polyether-ether-ketone, and opaque PMMA cranial implants revealed implant sonoluceny, in contrast to autologous bone and porous-polyethylene. Intraoperative ultrasound via the clear PMMA implant in a single patient revealed recognizable ventricular anatomy. Furthermore, postoperative bedside ultrasound in the same patient revealed comparable ventricular anatomy and a small epidural fluid collection corresponding to that visualized on an axial computed tomography scan. CONCLUSION Sonolucent cranial implants, such as those made of clear PMMA, hold great promise for enhanced diagnostic and therapeutic applications previously limited by cranial bone. Furthermore, as functional cranial implants are manufactured with implantable devices housed within clear PMMA, the possibility of utilizing ultrasound for real-time surveillance of intracranial pathology becomes much more feasible.
Collapse
Affiliation(s)
- Micah Belzberg
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Netanel Ben Shalom
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Edward Yuhanna
- Department of Radiology, Johns Hopkins Hospital, Baltimore, MD
| | - Amir Manbachi
- Department of Radiology, Johns Hopkins Hospital, Baltimore, MD
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD
| | - Aylin Tekes
- Division of Pediatric Radiology and Pediatric Neuroradiology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Judy Huang
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Henry Brem
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Chad R. Gordon
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
35
|
Transcranioplasty Ultrasound Through a Sonolucent Cranial Implant Made of Polymethyl Methacrylate: Phantom Study Comparing Ultrasound, Computed Tomography, and Magnetic Resonance Imaging. J Craniofac Surg 2019; 30:e626-e629. [PMID: 31188246 DOI: 10.1097/scs.0000000000005651] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Current methods of transcranial diagnostic ultrasound imaging are limited by the skull's acoustic properties. Craniotomy, craniectomy, and cranioplasty procedures present opportunities to circumvent these limitations by substituting autologous bone with synthetic cranial implants composed of sonolucent biomaterials. OBJECTIVE This study examined the potential to image the brain using transcranioplasty ultrasound (TCU) through a sonolucent cranial implant. MATERIALS AND METHODS A validated adult brain phantom was imaged using computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound without an implant. Next, for experimental comparison, TCU was performed through a sonolucent implant composed of clear polymethyl methacrylate. RESULTS All imaging modalities successfully revealed elements of the brain phantom, including the bilateral ventricular system, the falx cerebri, and a deep hyperdense mass representing a brain tumor or hematoma. In addition, ultrasound images were captured which closely resembled axial images obtained with both CT and MRI. CONCLUSION The results obtained in this first-ever, preclinical, phantom study suggest TCU is now a viable immediate and long-term diagnostic imaging modality deserving of further clinical investigation.
Collapse
|
36
|
Yoshida M, Kobayashi H, Terasaka S, Endo S, Yamaguchi S, Motegi H, Itay R, Suzuki S, Brokman O, Shapira Y, Moriyama K, Kawase Y, Akahane T, Kato Y, Kamada H, Houkin K. Sonodynamic Therapy for Malignant Glioma Using 220-kHz Transcranial Magnetic Resonance Imaging-Guided Focused Ultrasound and 5-Aminolevulinic acid. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:526-538. [PMID: 30522817 DOI: 10.1016/j.ultrasmedbio.2018.10.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 09/07/2018] [Accepted: 10/11/2018] [Indexed: 06/09/2023]
Abstract
Sonodynamic therapy (SDT) is used to treat various malignancies and can be applied to brain tumors using a transcranial magnetic resonance imaging-guided focused ultrasound (TcMRgFUS) device. This study investigated the efficacy of 220-kHz TcMRgFUS combined with 5-aminolevulinic acid (5-ALA) on malignant glioma in vitro and in vivo. F98 cells were irradiated with focused ultrasound (FUS) (4000 J, 20 W, 240 s, 100% duty cycle, target medium temperature <40°C) after treatment with 200 µg/mL 5-ALA, and cell viability and apoptosis were evaluated with the water-soluble tetrazolium-1 assay, triple fluorescent staining and Western blot analysis 20 h later. The anti-tumor effects of 5-ALA combined with FUS (500 J, 18 W, 30 s, 100% duty cycle, 10 repeats, target tissue temperature ≤42°C) were assessed on the basis of changes in tumor volume determined by MRI and histopathological analysis before and after treatment. The FUS/5-ALA combination reduced cell viability by inducing apoptosis and suppressed tumor proliferation and invasion as well as angiogenesis in vivo, while causing minimal damage to normal brain tissue. SDT with 220-kHz TcMRgFUS and 5-ALA can be safely used for the treatment of malignant glioma.
Collapse
Affiliation(s)
- Michiharu Yoshida
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan; Department of Neurosurgery, Hokuto Hospital, Obihiro, Hokkaido, Japan
| | - Hiroyuki Kobayashi
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | - Shunsuke Terasaka
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shogo Endo
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shigeru Yamaguchi
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroaki Motegi
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | - Kenji Moriyama
- Department of Radiology, Hokuto Hospital, Obihiro, Japan
| | - Yumiko Kawase
- Department of Biology and Genetics, Laboratory of Cancer Medical Science, Hokuto Hospital, Obihiro, Japan
| | - Toshiaki Akahane
- Department of Biology and Genetics, Laboratory of Cancer Medical Science, Hokuto Hospital, Obihiro, Japan
| | - Yasutaka Kato
- Department of Biology and Genetics, Laboratory of Cancer Medical Science, Hokuto Hospital, Obihiro, Japan
| | - Hajime Kamada
- Department of Neurosurgery, Hokuto Hospital, Obihiro, Hokkaido, Japan
| | - Kiyohiro Houkin
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
37
|
Lesniak WG, Chu C, Jablonska A, Du Y, Pomper MG, Walczak P, Janowski M. A Distinct Advantage to Intraarterial Delivery of 89Zr-Bevacizumab in PET Imaging of Mice With and Without Osmotic Opening of the Blood-Brain Barrier. J Nucl Med 2018; 60:617-622. [PMID: 30315146 DOI: 10.2967/jnumed.118.218792] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/24/2018] [Indexed: 12/24/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive and common type of brain cancer. Five-year survival rates are below 12%, even with the most aggressive trimodal therapies. Poor blood-brain barrier (BBB) permeability of therapeutics is a major obstacle to efficacy. Intravenous administration of bevacizumab is the standard treatment for GBM. It has been recently demonstrated that a single intraarterial infusion of bevacizumab provides superior therapeutic outcomes in patients with recurrent GBM. Further GBM treatment benefits can be achieved through opening of the BBB before intraarterial infusion of bevacizumab. However, a rationale for intraarterial delivery and BBB opening when delivering antibodies is lacking. A method facilitating quantification of intraarterial delivery of bevacizumab is needed for more effective and personalized GBM treatment. Here, we demonstrate such a method using PET imaging of radiolabeled bevacizumab. Methods: Bevacizumab was conjugated with deferoxamine and subsequently radiolabeled with 89Zr. 89Zr-bevacizumab deferoxamine (89Zr-BVDFO) was prepared with a specific radioactivity of 81.4 ± 7.4 MBq/mg (2.2 ± 0.2 μCi/mg). Brain uptake of 89Zr-BVDFO on carotid artery and tail vein infusion with an intact BBB or with BBB opening with mannitol was initially monitored by dynamic PET, followed by whole-body PET/CT at 1 and 24 h after infusion. Th ex vivo biodistribution of 89Zr-BVDFO was also determined. Results: Intraarterial administration of 89Zr-BVDFO resulted in gradual accumulation of radioactivity in the ipsilateral hemisphere, with 9.16 ± 2.13 percentage injected dose/cm3 at the end of infusion. There was negligible signal observed in the contralateral hemisphere. BBB opening with mannitol before intraarterial infusion of 89Zr-BVDFO resulted in faster and higher uptake in the ipsilateral hemisphere (23.58 ± 4.46 percentage injected dose/cm3) and negligible uptake in the contralateral hemisphere. In contrast, intravenous infusion of 89Zr-BVDFO and subsequent BBB opening did not lead to uptake of radiotracer in the brain. The ex vivo biodistribution results validated the PET/CT studies. Conclusion: Our findings demonstrate that intraarterial delivery of bevacizumab into the brain across an osmotically opened BBB is effective, in contrast to the intravenous route.
Collapse
Affiliation(s)
- Wojciech G Lesniak
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chengyan Chu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Anna Jablonska
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yong Du
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Martin G Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Piotr Walczak
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Neurosurgery, University of Warmia and Mazury, Olsztyn, Poland; and
| | - Miroslaw Janowski
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland .,Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland.,NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
38
|
Schneider JR, Kulason KO, Khan MB, White TG, Kwan K, Faltings L, Kobets AJ, Chakraborty S, Ellis JA, Ortiz RA, Filippi CG, Langer DJ, Boockvar JA. Commentary: Advances in Glioblastoma Therapies: A Collaborative Effort Between Physicians and the Biotechnology Industry. Neurosurgery 2018; 83:E162-E168. [PMID: 29889276 DOI: 10.1093/neuros/nyy253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Julia R Schneider
- Brain Tumor Biotech Center, Department of Neurosurgery, Lenox Hill Hospital, Zucker School of Medicine at Hofstra/Northwell, New York, New York.,Feinstein Institute for Medical Research, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - Kay O Kulason
- Brain Tumor Biotech Center, Department of Neurosurgery, Lenox Hill Hospital, Zucker School of Medicine at Hofstra/Northwell, New York, New York
| | - Muhammad Babar Khan
- Feinstein Institute for Medical Research, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - Timothy G White
- Brain Tumor Biotech Center, Department of Neurosurgery, Lenox Hill Hospital, Zucker School of Medicine at Hofstra/Northwell, New York, New York
| | - Kevin Kwan
- Brain Tumor Biotech Center, Department of Neurosurgery, Lenox Hill Hospital, Zucker School of Medicine at Hofstra/Northwell, New York, New York.,Feinstein Institute for Medical Research, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - Lukas Faltings
- Brain Tumor Biotech Center, Department of Neurosurgery, Lenox Hill Hospital, Zucker School of Medicine at Hofstra/Northwell, New York, New York
| | - Andrew J Kobets
- Feinstein Institute for Medical Research, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - Shamik Chakraborty
- Brain Tumor Biotech Center, Department of Neurosurgery, Lenox Hill Hospital, Zucker School of Medicine at Hofstra/Northwell, New York, New York.,Feinstein Institute for Medical Research, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - Jason A Ellis
- Brain Tumor Biotech Center, Department of Neurosurgery, Lenox Hill Hospital, Zucker School of Medicine at Hofstra/Northwell, New York, New York.,Feinstein Institute for Medical Research, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - Rafael A Ortiz
- Brain Tumor Biotech Center, Department of Neurosurgery, Lenox Hill Hospital, Zucker School of Medicine at Hofstra/Northwell, New York, New York.,Feinstein Institute for Medical Research, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - Christopher G Filippi
- Feinstein Institute for Medical Research, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York.,Department of Neuroradiology, Lenox Hill Hospital, Zucker School of Medicine at Hofstra/Northwell, New York, New York
| | - David J Langer
- Brain Tumor Biotech Center, Department of Neurosurgery, Lenox Hill Hospital, Zucker School of Medicine at Hofstra/Northwell, New York, New York.,Feinstein Institute for Medical Research, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - John A Boockvar
- Brain Tumor Biotech Center, Department of Neurosurgery, Lenox Hill Hospital, Zucker School of Medicine at Hofstra/Northwell, New York, New York.,Feinstein Institute for Medical Research, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| |
Collapse
|
39
|
Toccaceli G, Delfini R, Colonnese C, Raco A, Peschillo S. Emerging Strategies and Future Perspective in Neuro-Oncology Using Transcranial Focused Ultrasonography Technology. World Neurosurg 2018; 117:84-91. [DOI: 10.1016/j.wneu.2018.05.239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 01/08/2023]
|
40
|
Bretsztajn L, Gedroyc W. Brain-focussed ultrasound: what's the "FUS" all about? A review of current and emerging neurological applications. Br J Radiol 2018; 91:20170481. [PMID: 29419328 PMCID: PMC6221771 DOI: 10.1259/bjr.20170481] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 01/12/2018] [Accepted: 02/01/2018] [Indexed: 11/05/2022] Open
Abstract
MR-guided focussed ultrasound surgery (MRgFUS) allows for precise non-invasive thermal ablation of target tissues for a wide range of clinical applications. It is an innovative and rapidly expanding technology, which has already established itself as an effective and safe incisionless alternative in the treatment of various soft tissue tumours, with many more research studies underway to extend its therapeutic envelope. The non-invasiveness of the procedure makes FUS particularly attractive in functional neurosurgery, where existing treatment options are not suitable for all patients. Several clinical trials have demonstrated the feasibility and favourable safety profile of MR-guided focused ultrasound surgery in essential tremor, Parkinson's disease and other neurological conditions. This article reviews the existing evidence base for the neurological applications of FUS and the evidence for its emerging roles in the treatment of a range of brain disorders.
Collapse
Affiliation(s)
- Laure Bretsztajn
- Radiology Department, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Wladyslaw Gedroyc
- Radiology Department, Imperial College Healthcare NHS Trust, London, United Kingdom
| |
Collapse
|
41
|
Di Sebastiano AR, Deweyert A, Benoit S, Iredale E, Xu H, De Oliveira C, Wong E, Schmid S, Hebb MO. Preclinical outcomes of Intratumoral Modulation Therapy for glioblastoma. Sci Rep 2018; 8:7301. [PMID: 29740075 PMCID: PMC5940838 DOI: 10.1038/s41598-018-25639-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 04/25/2018] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma (GBM) is the leading cause of high fatality cancer arising within the adult brain. Electrotherapeutic approaches offer new promise for GBM treatment by exploiting innate vulnerabilities of cancer cells to low intensity electric fields. This report describes the preclinical outcomes of a novel electrotherapeutic strategy called Intratumoral Modulation Therapy (IMT) that uses an implanted stimulation system to deliver sustained, titratable, low intensity electric fields directly across GBM-affected brain regions. This pilot technology was applied to in vitro and animal models demonstrating significant and marked reduction in tumor cell viability and a cumulative impact of concurrent IMT and chemotherapy in GBM. No off target neurological effects were observed in treated subjects. Computational modeling predicted IMT field optimization as a means to further bolster treatment efficacy. This sentinel study provides new support for defining the potential of IMT strategies as part of a more effective multimodality treatment platform for GBM.
Collapse
Affiliation(s)
- Andrea R Di Sebastiano
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Andrew Deweyert
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Simon Benoit
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Erin Iredale
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Hu Xu
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Cleusa De Oliveira
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Eugene Wong
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Susanne Schmid
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Matthew O Hebb
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada. .,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.
| |
Collapse
|
42
|
Colen RR, Sahnoune I, Weinberg JS. Neurosurgical Applications of High-Intensity Focused Ultrasound with Magnetic Resonance Thermometry. Neurosurg Clin N Am 2018; 28:559-567. [PMID: 28917284 DOI: 10.1016/j.nec.2017.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Magnetic resonance guided focused ultrasound surgery (MRgFUS) has potential noninvasive effects on targeted tissue. MRgFUS integrates MRI and focused ultrasound surgery (FUS) into a single platform. MRI enables visualization of the target tissue and monitors ultrasound-induced effects in near real-time during FUS treatment. MRgFUS may serve as an adjunct or replace invasive surgery and radiotherapy for specific conditions. Its thermal effects ablate tumors in locations involved in movement disorders and essential tremors. Its nonthermal effects increase blood-brain barrier permeability to enhance delivery of therapeutics and other molecules.
Collapse
Affiliation(s)
- Rivka R Colen
- Department of Cancer Systems Imaging and Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, 1881 East Road, 3SCR4.3600, Unit 1907, Houston, TX 77054-1907, USA
| | - Iman Sahnoune
- Department of Cancer Systems Imaging, MD Anderson UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, 1881 East Road, 3SCR4.3600, Unit 1907, Houston, TX 77054-1907, USA
| | - Jeffrey S Weinberg
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, PO Box 301402-442, Houston, TX 77230-1402, USA.
| |
Collapse
|
43
|
In vivo study of enhanced chemotherapy combined with ultrasound image-guided focused ultrasound (USgFUS) treatment for pancreatic cancer in a xenograft mouse model. Eur Radiol 2018; 28:3710-3718. [DOI: 10.1007/s00330-018-5355-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 01/03/2018] [Accepted: 01/25/2018] [Indexed: 12/23/2022]
|
44
|
Buttrick SS, Shah AH, Basil GW, Komotar RJ. The Future of Cranial Neurosurgery-Adapting New Approaches. Neurosurgery 2017; 64:144-150. [PMID: 28899040 DOI: 10.1093/neuros/nyx214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/03/2017] [Indexed: 01/11/2023] Open
Affiliation(s)
- Simon S Buttrick
- Department of Neurological Surgery, University of Miami/Jackson Memorial Hospital, Miami, Florida
| | - Ashish H Shah
- Department of Neurological Surgery, University of Miami/Jackson Memorial Hospital, Miami, Florida
| | - Gregory W Basil
- Department of Neurological Surgery, University of Miami/Jackson Memorial Hospital, Miami, Florida
| | - Ricardo J Komotar
- Department of Neurological Surgery, University of Miami/Jackson Memorial Hospital, Miami, Florida
| |
Collapse
|
45
|
Hirschberg H, Madsen SJ. Synergistic efficacy of ultrasound, sonosensitizers and chemotherapy: a review. Ther Deliv 2017; 8:331-342. [PMID: 28361613 PMCID: PMC6367792 DOI: 10.4155/tde-2016-0080] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/03/2017] [Indexed: 12/13/2022] Open
Abstract
Chemotherapeutic agents, either in the form of systemically injected free drug or encapsulated in nanoparticles transport vehicles, must overcome three main obstacles prior to reaching and interacting with their intended target inside tumor cells. Drugs must leave the circulation, overcome the tissue-tumor barrier and penetrate the cell's plasma membrane. Since, many agents enter the cell by endocytosis, they must avoid entrapment and degradation by the intracellular endolysosome complex. Ultrasound has demonstrated potential to enhance the efficacy of chemotherapy by reducing these barriers. The purpose of this review is to highlight the potential of ultrasound in combination with sonosensitizers to enhance the efficacy of chemotherapy by optimizing the anticancer agent's intracellular ability to engage and interact with its target.
Collapse
Affiliation(s)
- Henry Hirschberg
- Beckman Laser Institute & Medical Clinic, University of California, Irvine, CA 92612, USA
- Department of Health Physics & Diagnostic Sciences, University of Nevada, Las Vegas, NV 89154, USA
| | - Steen J Madsen
- Department of Health Physics & Diagnostic Sciences, University of Nevada, Las Vegas, NV 89154, USA
| |
Collapse
|
46
|
Lenting K, Verhaak R, Ter Laan M, Wesseling P, Leenders W. Glioma: experimental models and reality. Acta Neuropathol 2017; 133:263-282. [PMID: 28074274 PMCID: PMC5250671 DOI: 10.1007/s00401-017-1671-4] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/06/2017] [Accepted: 01/06/2017] [Indexed: 12/12/2022]
Abstract
In theory, in vitro and in vivo models for human gliomas have great potential to not only enhance our understanding of glioma biology, but also to facilitate the development of novel treatment strategies for these tumors. For reliable prediction and validation of the effects of different therapeutic modalities, however, glioma models need to comply with specific and more strict demands than other models of cancer, and these demands are directly related to the combination of genetic aberrations and the specific brain micro-environment gliomas grow in. This review starts with a brief introduction on the pathological and molecular characteristics of gliomas, followed by an overview of the models that have been used in the last decades in glioma research. Next, we will discuss how these models may play a role in better understanding glioma development and especially in how they can aid in the design and optimization of novel therapies. The strengths and weaknesses of the different models will be discussed in light of genotypic, phenotypic and metabolic characteristics of human gliomas. The last part of this review provides some examples of how therapy experiments using glioma models can lead to deceptive results when such characteristics are not properly taken into account.
Collapse
Affiliation(s)
- Krissie Lenting
- Department of Pathology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Roel Verhaak
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Mark Ter Laan
- Department of Neurosurgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Pieter Wesseling
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
- Department of Pathology, Princess Máxima Center for Pediatric Oncology and University Medical Center Utrecht, Utrecht, The Netherlands
| | - William Leenders
- Department of Pathology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|