1
|
Jang Y, Park TS, Park BC, Lee YM, Heo TH, Jun HS. Aberrant glucose metabolism underlies impaired macrophage differentiation in glycogen storage disease type Ib. FASEB J 2023; 37:e23216. [PMID: 37779422 DOI: 10.1096/fj.202300592rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/20/2023] [Accepted: 09/12/2023] [Indexed: 10/03/2023]
Abstract
Glycogen storage disease type Ib (GSD-Ib) is an autosomal recessive disorder caused by a deficiency in the glucose-6-phosphate (G6P) transporter (G6PT) that is responsible for transporting G6P into the endoplasmic reticulum. GSD-Ib is characterized by disturbances in glucose homeostasis, neutropenia, and neutrophil dysfunction. Although some studies have explored neutrophils abnormalities in GSD-Ib, investigations regarding monocytes/macrophages remain limited so far. In this study, we examined the impact of G6PT deficiency on monocyte-to-macrophage differentiation using bone marrow-derived monocytes from G6pt-/- mice as well as G6PT-deficient human THP-1 monocytes. Our findings revealed that G6PT-deficient monocytes exhibited immature differentiation into macrophages. Notably, the impaired differentiation observed in G6PT-deficient monocytes seemed to be associated with abnormal glucose metabolism, characterized by enhanced glucose consumption through glycolysis, even under quiescent conditions with oxidative phosphorylation. Furthermore, we observed a reduced secretion of inflammatory cytokines in G6PT-deficient THP-1 monocytes during the inflammatory response, despite their elevated glucose consumption. In conclusion, this study sheds light on the significance of G6PT in monocyte-to-macrophage differentiation and underscores its importance in maintaining glucose homeostasis and supporting immune response in GSD-Ib. These findings may contribute to a better understanding of the pathogenesis of GSD-Ib and potentially pave the way for the development of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Yuyeon Jang
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, Republic of Korea
| | - Tae Sub Park
- Graduate School of International Agricultural Technology, and Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang, Republic of Korea
| | - Byung-Chul Park
- Graduate School of International Agricultural Technology, and Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang, Republic of Korea
| | - Young Mok Lee
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Tae-Hwe Heo
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences and BK21 FOUR Team for Advanced Program for SmartPharma Leaders, College of Pharmacy, The Catholic University of Korea, Bucheon-si, Republic of Korea
| | - Hyun Sik Jun
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, Republic of Korea
| |
Collapse
|
2
|
Surcel M, Constantin C, Munteanu AN, Costea DA, Isvoranu G, Codrici E, Popescu ID, Tănase C, Ibram A, Neagu M. Immune Portrayal of a New Therapy Targeting Microbiota in an Animal Model of Psoriasis. J Pers Med 2023; 13:1556. [PMID: 38003872 PMCID: PMC10672519 DOI: 10.3390/jpm13111556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Despite all the available treatments, psoriasis remains incurable; therefore, finding personalized therapies is a continuous challenge. Psoriasis is linked to a gut microbiota imbalance, highlighting the importance of the gut-skin axis and its inflammatory mediators. Restoring this imbalance can open new perspectives in psoriasis therapy. We investigated the effect of purified IgY raised against pathological human bacteria antibiotic-resistant in induced murine psoriatic dermatitis (PSO). METHODS To evaluate the immune portrayal in an imiquimod experimental model, before and after IgY treatment, xMAP array and flow cytometry were used. RESULTS There were significant changes in IL-1α,β, IL-5, IL-6, IL-9, IL-10, IL-12 (p70), IL-13, IL-15, IL-17a, IFN-γ, TNF-α, IP-10/CXCL10, MCP-1/CCL2, MIP-1α/CCL3, MIP-1β/CCL4, MIG/CXCL9, and KC/CXCL1 serum levels. T (CD3ε+), B (CD19+) and NK (NK1.1+) cells were also quantified. In our model, TNF-α, IL-6, and IL-1β cytokines and CXCL1 chemokine have extremely high circulatory levels in the PSO group. Upon experimental therapy, the cytokine serum values were not different between IgY-treated groups and spontaneously remitted PSO. CONCLUSIONS Using the murine model of psoriatic dermatitis, we show that the orally purified IgY treatment can lead to an improvement in skin lesion healing along with the normalization of cellular and humoral immune parameters.
Collapse
Affiliation(s)
- Mihaela Surcel
- Immunology Department, Victor Babes National Institute of Pathology, Splaiul Independentei 99-101, 050096 Bucharest, Romania; (M.S.); (A.N.M.); (D.A.C.); (M.N.)
| | - Carolina Constantin
- Immunology Department, Victor Babes National Institute of Pathology, Splaiul Independentei 99-101, 050096 Bucharest, Romania; (M.S.); (A.N.M.); (D.A.C.); (M.N.)
- Department of Pathology, Colentina University Hospital, Șos. Ștefan cel Mare 19-21, 020125 Bucharest, Romania
| | - Adriana Narcisa Munteanu
- Immunology Department, Victor Babes National Institute of Pathology, Splaiul Independentei 99-101, 050096 Bucharest, Romania; (M.S.); (A.N.M.); (D.A.C.); (M.N.)
- Doctoral School of Biology, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania
| | - Diana Antonia Costea
- Immunology Department, Victor Babes National Institute of Pathology, Splaiul Independentei 99-101, 050096 Bucharest, Romania; (M.S.); (A.N.M.); (D.A.C.); (M.N.)
- Doctoral School of Biology, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania
| | - Gheorghița Isvoranu
- Animal Husbandry, Victor Babes National Institute of Pathology, Splaiul Independentei 99-101, 050096 Bucharest, Romania;
| | - Elena Codrici
- Biochemistry-Proteomics Department, Victor Babes National Institute of Pathology, Splaiul Independentei 99-101, 050096 Bucharest, Romania; (E.C.); (I.D.P.)
| | - Ionela Daniela Popescu
- Biochemistry-Proteomics Department, Victor Babes National Institute of Pathology, Splaiul Independentei 99-101, 050096 Bucharest, Romania; (E.C.); (I.D.P.)
| | - Cristiana Tănase
- Faculty of Medicine, Titu Maiorescu University, Calea Văcăreşti 189, 031593 Bucharest, Romania;
| | - Alef Ibram
- Research Laboratory, Romvac Company SA, Şos. Centurii 7, 077190 Voluntari, Romania;
| | - Monica Neagu
- Immunology Department, Victor Babes National Institute of Pathology, Splaiul Independentei 99-101, 050096 Bucharest, Romania; (M.S.); (A.N.M.); (D.A.C.); (M.N.)
- Department of Pathology, Colentina University Hospital, Șos. Ștefan cel Mare 19-21, 020125 Bucharest, Romania
- Doctoral School of Biology, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania
| |
Collapse
|
3
|
Pacheco BLB, Nogueira CP, Venancio EJ. IgY Antibodies from Birds: A Review on Affinity and Avidity. Animals (Basel) 2023; 13:3130. [PMID: 37835736 PMCID: PMC10571861 DOI: 10.3390/ani13193130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
IgY antibodies are found in the blood and yolk of eggs. Several studies show the feasibility of utilising IgY for immunotherapy and immunodiagnosis. These antibodies have been studied because they fulfil the current needs for reducing, replacing, and improving the use of animals. Affinity and avidity represent the strength of the antigen-antibody interaction and directly influence antibody action. The aim of this review was to examine the factors that influence the affinity and avidity of IgY antibodies and the methodologies used to determine these variables. In birds, there are few studies on the maturation of antibody affinity and avidity, and these studies suggest that the use of an adjuvant-type of antigen, the animal lineage, the number of immunisations, and the time interfered with the affinity and avidity of IgY antibodies. Regarding the methodologies, most studies use chaotropic agents to determine the avidity index. Studies involving the solution phase and equilibrium titration reactions are also described. These results demonstrate the need for the standardisation of methodologies for the determination of affinity and avidity so that further studies can be performed to optimise the production of high avidity IgY antibodies.
Collapse
Affiliation(s)
| | - Camila Parada Nogueira
- Scientific Initiation Programme, Animal Science Course, State University of Londrina, Londrina 86038-350, Brazil;
| | - Emerson José Venancio
- Department of Pathological Sciences, State University of Londrina, Londrina 86038-350, Brazil
| |
Collapse
|
4
|
IgY Antibodies as Biotherapeutics in Biomedicine. Antibodies (Basel) 2022; 11:antib11040062. [PMID: 36278615 PMCID: PMC9590010 DOI: 10.3390/antib11040062] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/05/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
Since the discovery of antibodies by Emil Von Behring and Shibasaburo Kitasato during the 19th century, their potential for use as biotechnological reagents has been exploited in different fields, such as basic and applied research, diagnosis, and the treatment of multiple diseases. Antibodies are relatively easy to obtain from any species with an adaptive immune system, but birds are animals characterized by relatively easy care and maintenance. In addition, the antibodies they produce can be purified from the egg yolk, allowing a system for obtaining them without performing invasive practices, which favors the three “rs” of animal care in experimentation, i.e., replacing, reducing, and refining. In this work, we carry out a brief descriptive review of the most outstanding characteristics of so-called “IgY technology” and the use of IgY antibodies from birds for basic experimentation, diagnosis, and treatment of human beings and animals.
Collapse
|
5
|
Han S, Wen Y, Yang F, He P. Chicken Egg Yolk Antibody (IgY) Protects Mice Against Enterotoxigenic Escherichia coli Infection Through Improving Intestinal Health and Immune Response. Front Cell Infect Microbiol 2021; 11:662710. [PMID: 33928047 PMCID: PMC8076637 DOI: 10.3389/fcimb.2021.662710] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
Chicken egg yolk antibody (IgY), considered as a potential substitute for antibiotics, has been used for preventing pathogens infection in food, human and animals. This study investigated effects of IgY on growth, adhesion inhibitory and morphology of enterotoxigenic Escherichia coli (ETEC) K88 in vitro, and evaluated the protective effects of IgY on intestinal health and immune response of mice infected with ETEC in vivo. Sixty pathogen-free C57BL/6J (4-6 weeks of age) mice were divided into six treatments: control (neither IgY nor ETEC infection), ETEC infection, ETEC-infected mice treated with 250 μL of high-dose (32 mg/mL), medium-dose (16 mg/mL) or low-dose (8 mg/mL) anti-ETEC IgY, or ETEC-infected mice treated with 250 μL of non-specific IgY (16 mg/mL). Anti-ETEC IgY inhibited ETEC growth, reduced adherence of ETEC to intestinal epithelial cells J2 and damaged the morphology and integrity of ETEC cell. Oral administration of anti-ETEC IgY effectively ameliorated ETEC-induced clinical signs, reduced ETEC colonization and intestinal permeability, alleviated inflammatory response through reducing the production and expression of proinflammatory cytokines, improved intestinal morphology, and inhibited excessive activation of the mucosal immune response of challenged mice. The overall protective effects of high-dose and medium-dose anti-ETEC IgY against ETEC infection were more effective. These results suggest that anti-ETEC IgY may function as a promising novel prophylactic agent against enteric pathogens infection.
Collapse
Affiliation(s)
- Shuaijuan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.,College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Yang Wen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Fengfan Yang
- Hubei Shendi Biological Technology Co., LTD, Jingmen, China
| | - Pingli He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Rehan IF, Youssef M, Abdel-Rahman MAM, Fahmy SG, Ahmed E, Ahmed AS, Maky MA, Diab HM, Shanab O, Alkahtani S, Abdel-Daim MM, Hassan H, Rehan AF, Hussien MA, Eleiwa NZ, Elnagar A, Abdeen A, Hesham AEL. The Impact of Probiotics and Egg Yolk IgY on Behavior and Blood Parameters in a Broiler Immune Stress Model. Front Vet Sci 2020; 7:145. [PMID: 32328501 PMCID: PMC7160245 DOI: 10.3389/fvets.2020.00145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/27/2020] [Indexed: 11/13/2022] Open
Abstract
Feed additives are used frequently in variable combinations to maximize broiler productivity and consumer safety. Therefore, we evaluated the efficiency of feed additives used in four different diets: a basal diet, a probiotic (PRO-PAC®) supplement diet, an egg yolk purified immunoglobulin Y (IgY) supplemented diet, and a combination of IgY and PRO-PAC® supplement (n = 15 for each group). We assessed the improvement of behavioral and hematological parameters of Ross broilers before and after an immune stress challenge using lipopolysaccharide (LPS). Behavioral as well as physiological parameters were analyzed. The standing frequency was the highest (P < 0.05) in broilers supplemented with a combination of probiotics and IgY. Likewise, latency approach score to a novel object improved (P < 0.01) in the combination group at week-3. After intraperitoneal injection of LPS, this combination group achieved the best gait score at week-3, followed by week-5, compared to birds fed the basal diet. The heterophil/lymphocyte (H/L) ratio, heterophil differential count, and eosinophil differential count in the basal diet group that was challenged with LPS were significantly increased (P < 0.01, P < 0.001, P < 0.05, respectively) compared to the combination groups. Therefore, we concluded that the combination of IgY and probiotics can significantly improve the behavior and the underlying physiological parameters of Ross broilers. Consequently, this combination can improve the broilers′ health, welfare and produce a safe meat free from harmful chemical residues.
Collapse
Affiliation(s)
- Ibrahim F Rehan
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Menofia University, Shibin Alkom, Egypt
| | - Mohammed Youssef
- Department of Animal Physiology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Mootaz A M Abdel-Rahman
- Department of Behavior, Management, and Development of Animal Wealth, Faculty of Veterinary Medicine, Minia University, El-Minia, Egypt
| | - Sohaila G Fahmy
- Department of Animal Behavior and Management, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Eslam Ahmed
- Department of Animal Behavior and Management, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Ahmed S Ahmed
- Department of Food Hygiene and Control (Milk Hygiene), Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Mohamed A Maky
- Department of Food Hygiene and Control (Meat Hygiene), Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Hassan M Diab
- Department of Animal and Poultry Health and Environment, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Obeid Shanab
- Department of Biochemistry, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.,Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Hamdy Hassan
- Department of Animal Production, Faculty of Agriculture, South Valley University, Qena, Egypt
| | - Ahmed F Rehan
- Department of Food Control, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed A Hussien
- Department of Food Control, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Nesreen Z Eleiwa
- Department of Food Hygiene, Animal Health Research Institute, Agricultural Research Center, Giza, Egypt
| | - Asmaa Elnagar
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Abd El-Latif Hesham
- Department of Genetics, Faculty of Agriculture, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
7
|
IgY-technology (egg yolk antibodies) in human medicine: A review of patents and clinical trials. Int Immunopharmacol 2020; 81:106269. [PMID: 32036273 DOI: 10.1016/j.intimp.2020.106269] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 01/23/2020] [Accepted: 01/29/2020] [Indexed: 12/11/2022]
Abstract
IgY-technology (the production and extraction of specific IgY antibodies from egg yolk) is an innovative method to produce antibodies for therapy and prophylaxis. Advantages of IgY over other antibodies comprise its cost-effective extraction, the minimization of animal harm and distress, and its reduced reactivity with mammalian factors. Many research groups have demonstrated that IgY is active against several pathogens or conditions, a fact that may support the design of novel, safe and effective health products. This review provides a comprehensive analysis of IgY-based biologicals for human medicine, including patent applications and clinical trials during the period 2010-2018, and addresses how IgY-technology can lead to innovation in the production of biologicals for the treatment and prophylaxis of a wide range of infectious and non-communicable diseases.
Collapse
|