1
|
Gunes S, Metin Mahmutoglu A, Hekim N. Epigenetics of nonobstructive azoospermia. Asian J Androl 2024:00129336-990000000-00238. [PMID: 39225008 DOI: 10.4103/aja202463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/04/2024] [Indexed: 09/04/2024] Open
Abstract
Nonobstructive azoospermia (NOA) is a severe and heterogeneous form of male factor infertility caused by dysfunction of spermatogenesis. Although various factors are well defined in the disruption of spermatogenesis, not all aspects due to the heterogeneity of the disorder have been determined yet. In this review, we focus on the recent findings and summarize the current data on epigenetic mechanisms such as DNA methylation and different metabolites produced during methylation and demethylation and various types of small noncoding RNAs involved in the pathogenesis of different groups of NOA.
Collapse
Affiliation(s)
- Sezgin Gunes
- Department of Medical Biology, Medical Faculty, Ondokuz Mayis University, Samsun 55139, Türkiye
| | - Asli Metin Mahmutoglu
- Department of Medical Biology, Medical Faculty, Yozgat Bozok University, Yozgat 66100, Türkiye
| | - Neslihan Hekim
- Department of Medical Biology, Medical Faculty, Ondokuz Mayis University, Samsun 55139, Türkiye
| |
Collapse
|
2
|
Gaspa-Toneu L, Peters AH. Nucleosomes in mammalian sperm: conveying paternal epigenetic inheritance or subject to reprogramming between generations? Curr Opin Genet Dev 2023; 79:102034. [PMID: 36893482 PMCID: PMC10109108 DOI: 10.1016/j.gde.2023.102034] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/09/2023] [Accepted: 02/21/2023] [Indexed: 03/09/2023]
Abstract
The genome of mammalian sperm is largely packaged by sperm-specific proteins termed protamines. The presence of some residual nucleosomes has, however, emerged as a potential source of paternal epigenetic inheritance between generations. Sperm nucleosomes bear important regulatory histone marks and locate at gene-regulatory regions, functional elements, and intergenic regions. It is unclear whether sperm nucleosomes are retained at specific genomic locations in a deterministic manner or are randomly preserved due to inefficient exchange of histones by protamines. Recent studies indicate heterogeneity in chromatin packaging within sperm populations and an extensive reprogramming of paternal histone marks post fertilization. Obtaining single-sperm nucleosome distributions is fundamental to estimating the potential of sperm-borne nucleosomes in instructing mammalian embryonic development and in the transmission of acquired phenotypes.
Collapse
Affiliation(s)
- Laura Gaspa-Toneu
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4056 Basel, Switzerland
| | - Antoine Hfm Peters
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4056 Basel, Switzerland.
| |
Collapse
|
3
|
Moustakli E, Zikopoulos A, Sakaloglou P, Bouba I, Sofikitis N, Georgiou I. Functional association between telomeres, oxidation and mitochondria. FRONTIERS IN REPRODUCTIVE HEALTH 2023; 5:1107215. [PMID: 36890798 PMCID: PMC9986632 DOI: 10.3389/frph.2023.1107215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/31/2023] [Indexed: 02/22/2023] Open
Abstract
Prior research has substantiated the vital role of telomeres in human fertility. Telomeres are prerequisites for maintaining the integrity of chromosomes by preventing the loss of genetic material following replication events. Little is known about the association between sperm telomere length and mitochondrial capacity involving its structure and functions. Mitochondria are structurally and functionally distinct organelles that are located on the spermatozoon's midpiece. Mitochondria produce adenosine triphosphate (ATP) through oxidative phosphorylation (OXPHOS), which is necessary for sperm motility and generate reactive oxygen species (ROS). While a moderate concentration of ROS is critical for egg-sperm fusion, and fertilization, excessive ROS generation is primarily related to telomere shortening, sperm DNA fragmentation, and alterations in the methylation pattern leading to male infertility. This review aims to highlight the functional connection between mitochondria biogenesis and telomere length in male infertility, as mitochondrial lesions have a damaging impact on telomere length, leading both to telomere lengthening and reprogramming of mitochondrial biosynthesis. Furthermore, it aims to shed light on how both inositol and antioxidants can positively affect male fertility.
Collapse
Affiliation(s)
- Efthalia Moustakli
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | | | - Prodromos Sakaloglou
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Ioanna Bouba
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Nikolaos Sofikitis
- Department of Urology, Ioannina University School of Medicine, Ioannina, Greece
| | - Ioannis Georgiou
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| |
Collapse
|
4
|
Sujit KM, Pallavi S, Singh V, Andrabi SW, Trivedi S, Sankhwar SN, Gupta G, Rajender S.
SPATA16
promoter hypermethylation and downregulation in male infertility. Andrologia 2022; 54:e14548. [DOI: 10.1111/and.14548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/11/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
| | - Saini Pallavi
- Division of Endocrinology Central Drug Research Institute Lucknow India
- Academy of Scientific and Innovative Research Ghaziabad India
| | - Vertika Singh
- Department of Molecular and Human Genetics Banaras Hindu University Varanasi India
| | | | - Sameer Trivedi
- Department of Urology Institute of Medical Sciences, Banaras Hindu University Varanasi India
| | | | - Gopal Gupta
- Division of Endocrinology Central Drug Research Institute Lucknow India
- Academy of Scientific and Innovative Research Ghaziabad India
| | - Singh Rajender
- Division of Endocrinology Central Drug Research Institute Lucknow India
- Academy of Scientific and Innovative Research Ghaziabad India
| |
Collapse
|
5
|
Botezatu A, Vladoiu S, Fudulu A, Albulescu A, Plesa A, Muresan A, Stancu C, Iancu IV, Diaconu CC, Velicu A, Popa OM, Badiu C, Dinu-Draganescu D. Advanced molecular approaches in male infertility diagnosis. Biol Reprod 2022; 107:684-704. [PMID: 35594455 DOI: 10.1093/biolre/ioac105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/29/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
In the recent years a special attention has been given to a major health concern namely to male infertility, defined as the inability to conceive after 12 months of regular unprotected sexual intercourse, taken into account the statistics that highlight that sperm counts have dropped by 50-60% in recent decades. According to the WHO, infertility affects approximately 9% of couples globally, and the male factor is believed to be present in roughly 50% of cases, with exclusive responsibility in 30%. The aim of this manuscript is to present an evidence-based approach for diagnosing male infertility that includes finding new solutions for diagnosis and critical outcomes, retrieving up-to-date studies and existing guidelines. The diverse factors that induce male infertility generated in a vast amount of data that needed to be analysed by a clinician before a decision could be made for each individual. Modern medicine faces numerous obstacles as a result of the massive amount of data generated by the molecular biology discipline. To address complex clinical problems, vast data must be collected, analysed, and used, which can be very challenging. The use of artificial intelligence (AI) methods to create a decision support system can help predict the diagnosis and guide treatment for infertile men, based on analysis of different data as environmental and lifestyle, clinical (sperm count, morphology, hormone testing, karyotype, etc.) and "omics" bigdata. Ultimately, the development of AI algorithms will assist clinicians in formulating diagnosis, making treatment decisions, and predicting outcomes for assisted reproduction techniques.
Collapse
Affiliation(s)
- A Botezatu
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - S Vladoiu
- "CI Parhon" National Institute of Endocrinology, Bucharest, Romania
| | - A Fudulu
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - A Albulescu
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania.,National Institute for Chemical pharmaceutical Research & Development
| | - A Plesa
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - A Muresan
- "CI Parhon" National Institute of Endocrinology, Bucharest, Romania
| | - C Stancu
- "CI Parhon" National Institute of Endocrinology, Bucharest, Romania
| | - I V Iancu
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - C C Diaconu
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - A Velicu
- "CI Parhon" National Institute of Endocrinology, Bucharest, Romania
| | - O M Popa
- "CI Parhon" National Institute of Endocrinology, Bucharest, Romania
| | - C Badiu
- "CI Parhon" National Institute of Endocrinology, Bucharest, Romania.,"Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | | |
Collapse
|
6
|
Olszewska M, Kordyl O, Kamieniczna M, Fraczek M, Jędrzejczak P, Kurpisz M. Global 5mC and 5hmC DNA Levels in Human Sperm Subpopulations with Differentially Protaminated Chromatin in Normo- and Oligoasthenozoospermic Males. Int J Mol Sci 2022; 23:ijms23094516. [PMID: 35562907 PMCID: PMC9099774 DOI: 10.3390/ijms23094516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 12/17/2022] Open
Abstract
Epigenetic modifications play a special role in the male infertility aetiology. Published data indicate the link between sperm quality and sperm chromatin protamination. This study aimed to determine the relationship between methylation (5mC) and hydroxymethylation (5hmC) in sperm DNA, with respect to sperm chromatin protamination in three subpopulations of fertile normozoospermic controls and infertile patients with oligo-/oligoasthenozoospermia. For the first time, a sequential staining protocol was applied, which allowed researchers to analyse 5mC/5hmC levels by immunofluorescence staining, with a previously determined chromatin protamination status (aniline blue staining), using the same spermatozoa. TUNEL assay determined the sperm DNA fragmentation level. The 5mC/5hmC levels were diversified with respect to chromatin protamination status in both studied groups of males, with the highest values observed in protaminated spermatozoa. The linkage between chromatin protamination and 5mC/5hmC levels in control males disappeared in patients with deteriorated semen parameters. A relationship between 5mC/5hmC and sperm motility/morphology was identified in the patient group. Measuring the 5mC/5hmC status of sperm DNA according to sperm chromatin integrity provides evidence of correct spermatogenesis, and its disruption may represent a prognostic marker for reproductive failure.
Collapse
Affiliation(s)
- Marta Olszewska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland; (M.K.); (M.F.)
- Correspondence: (M.O.); (M.K.)
| | - Oliwia Kordyl
- Faculty of Biology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland;
| | - Marzena Kamieniczna
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland; (M.K.); (M.F.)
| | - Monika Fraczek
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland; (M.K.); (M.F.)
| | - Piotr Jędrzejczak
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, 60-535 Poznan, Poland;
| | - Maciej Kurpisz
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland; (M.K.); (M.F.)
- Correspondence: (M.O.); (M.K.)
| |
Collapse
|
7
|
Gamallat Y, Fang X, Mai H, Liu X, Li H, Zhou P, Han D, Zheng S, Liao C, Yang M, Li Y, Zuo L, Sun L, Hu H, Li N. Bi-allelic mutation in Fsip1 impairs acrosome vesicle formation and attenuates flagellogenesis in mice. Redox Biol 2021; 43:101969. [PMID: 33901807 PMCID: PMC8099781 DOI: 10.1016/j.redox.2021.101969] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 11/30/2022] Open
Abstract
Fibrous sheath interacting protein 1 (Fsip1) is a cytoskeletal structural protein of the sperm flagellar proteome. A few studies have reported that it plays a vital role in the tumorigenesis and cancer progression. However, little is known about the role of Fsip1 in spermatogenesis and mammalian sperm flagellogenesis. Fsip1 protein showed the highest expression in round spermatids, and was translocated from nucleus to the anterior region of the elongating spermatid head. To investigate its role we constructed homozygous Fsip1 null (Fsip1−/−) mice. We found that the homozygous Fsip1−/− mutant mice were infertile, with a low sperm count and impaired motility. Interestingly, a subtle phenotype characterized by abnormal head shape, and flagella deformities was observed in the sperm of Fsip1−/− mutant mice similar to the partial globozoospermia phenotype. Electron microscopy analysis of Fsip1−/− sperm revealed abnormal accumulation of mitochondria, disrupted axoneme and retained cytoplasm. Testicular sections showed increased cytoplasmic vacuoles in the elongated spermatid of Fsip1–/–mice, which indicated an intraflagellar transport (IFT) defect. Using proteomic approaches, we characterized the cellular components and the mechanism underlying this subtle phenotype. Our result indicated that Fsip1–/–downregulates the formation of acrosomal membrane and vesicles proteins, intraflagellar transport particles B, and sperm flagellum components. Our results suggest that Fsip1 is essential for normal spermiogenesis, and plays an essential role in the acrosome biogenesis and flagellogenesis by attenuating intraflagellar transport proteins. Disruption of Fsip1 leads to infertility with partial globozoospermia phenotype. Homozygous deletion of Fsip1 alters spermiogenesis. Fsip1 Knockout disrupts acrosome vesicle formation. Fsip1 motif analysis involves in internal fertilization.
Collapse
Affiliation(s)
- Yaser Gamallat
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Xiang Fang
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Hanran Mai
- Department of Andrology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Xiaonan Liu
- Center of Reproductive Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Hong Li
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Pei Zhou
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Dingding Han
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Shuxin Zheng
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Caihua Liao
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Miaomiao Yang
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Yan Li
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Liandong Zuo
- Department of Andrology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Ling Sun
- Center of Reproductive Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Hao Hu
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China; Third Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China; Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China.
| | - Na Li
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China.
| |
Collapse
|
8
|
Shalini V, Bhaduri U, Ravikkumar AC, Rengarajan A, Satyanarayana RMR. Genome-wide occupancy reveals the localization of H1T2 (H1fnt) to repeat regions and a subset of transcriptionally active chromatin domains in rat spermatids. Epigenetics Chromatin 2021; 14:3. [PMID: 33407810 PMCID: PMC7788777 DOI: 10.1186/s13072-020-00376-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/23/2020] [Indexed: 11/10/2022] Open
Abstract
Background H1T2/H1FNT is a germ cell-specific linker histone variant expressed during spermiogenesis specifically in round and elongating spermatids. Infertile phenotype of homozygous H1T2 mutant male mice revealed the essential function of H1T2 for the DNA condensation and histone-to-protamine replacement in spermiogenesis. However, the mechanism by which H1T2 imparts the inherent polarity within spermatid nucleus including the additional protein partners and the genomic domains occupied by this linker histone are unknown. Results Sequence analysis revealed the presence of Walker motif, SR domains and putative coiled-coil domains in the C-terminal domain of rat H1T2 protein. Genome-wide occupancy analysis using highly specific antibody against the CTD of H1T2 demonstrated the binding of H1T2 to the LINE L1 repeat elements and to a significant percentage of the genic regions (promoter-TSS, exons and introns) of the rat spermatid genome. Immunoprecipitation followed by mass spectrometry analysis revealed the open chromatin architecture of H1T2 occupied chromatin encompassing the H4 acetylation and other histone PTMs characteristic of transcriptionally active chromatin. In addition, the present study has identified the interacting protein partners of H1T2-associated chromatin mainly as nucleo-skeleton components, RNA-binding proteins and chaperones. Conclusions Linker histone H1T2 possesses unique domain architecture which can account for the specific functions associated with chromatin remodeling events facilitating the initiation of histone to transition proteins/protamine transition in the polar apical spermatid genome. Our results directly establish the unique function of H1T2 in nuclear shaping associated with spermiogenesis by mediating the interaction between chromatin and nucleo-skeleton, positioning the epigenetically specialized chromatin domains involved in transcription coupled histone replacement initiation towards the apical pole of round/elongating spermatids.
Collapse
Affiliation(s)
- Vasantha Shalini
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India
| | - Utsa Bhaduri
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India.,Department of Life Sciences, University of Trieste, Trieste, Italy.,European Union's H2020 TRIM-NET ITN, Marie Sklodowska-Curie Actions (MSCA), Leiden, The Netherlands
| | - Anjhana C Ravikkumar
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India
| | - Anusha Rengarajan
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India
| | - Rao M R Satyanarayana
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India.
| |
Collapse
|
9
|
Martins MC, Gonçalves LM, Nonato A, Nassif Travençolo BA, Alves BG, Beletti ME. Sperm head morphometry and chromatin condensation are in constant change at seminiferous tubules, epididymis, and ductus deferens in bulls. Theriogenology 2020; 161:200-209. [PMID: 33340753 DOI: 10.1016/j.theriogenology.2020.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/01/2020] [Accepted: 12/05/2020] [Indexed: 01/16/2023]
Abstract
The aim of this study was to evaluate the sperm head morphometry and chromatin condensation at different regions of the reproductive tract in bulls. Sperm smears of seminiferous tubules (ST), epididymis head (EH), body (EB), and tail (ET), and ductus deferens (DD) were stained with toluidine blue. Afterwards, the sperm head morphometry and chromatin alteration types were evaluated by a computational image analysis. Overall, spermatozoa of ST had lower (P < 0.05) area (A), perimeter (P), width (W), length (L), ellipticity (E), and Fourier harmonics (F0, F1, and F2). The chromatin decondensation (CD) and heterogeneity (CH) were higher (P < 0.05) in the ST region and decreased (P < 0.0001) during the migration along the reproductive tract (ST - DD direction). Considering the factors extracted (Factors 1 and 2) by the principal component analysis, the parameters A, P, W, L, and F0 were responsible for ∼36% of the Factor 1, while the E, F0, F1, and anterior-posterior symmetry (APS) contributed ∼27% to Factor 2. Both, CD and CH were associated with Factor 1 in the EH and ET regions and Factor 2 in the ST. Also, a well-defined difference between sperm heads collected from the ST and DD regions was observed by canonical analysis. The distribution of each chromatin alteration type was recorded. The proportion of normal sperm was lower (P < 0.05) in ST compared to other regions. Moreover, the chromatin influenced the morphometry and sperm heads with whole chromatin alteration type showed a smaller (P < 0.05) A, P, W, L, and E. In summary, the epididymal maturation is important for chromatin compaction and final morphometry of the sperm head. Also, the identification and quantification of the sperm chromatin condensation in different regions of reproductive tract can be used as potential biomarkers to predict the fertility in bulls.
Collapse
Affiliation(s)
| | - Lucas Melo Gonçalves
- Laboratory of Biology of Reproduction, Federal University of Uberlândia, MG, Brazil
| | - Amanda Nonato
- Laboratory of Biology of Reproduction, Federal University of Uberlândia, MG, Brazil
| | | | - Benner Geraldo Alves
- Laboratory of Biology of Reproduction, Federal University of Uberlândia, MG, Brazil; Federal University of Goiás, Jataí, GO, Brazil
| | | |
Collapse
|
10
|
Kuchakulla M, Narasimman M, Khodamoradi K, Khosravizadeh Z, Ramasamy R. How defective spermatogenesis affects sperm DNA integrity. Andrologia 2020; 53:e13615. [PMID: 32324913 DOI: 10.1111/and.13615] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
Spermatogenesis is the essential process to maintain and promote male fertility. It is extraordinarily complex with many regulatory elements and numerous steps. The process involves several cell types, regulatory molecules, repair mechanisms and epigenetic regulators. Evidence has shown that fertility can be negatively impacted by reduced sperm DNA integrity. Sources of sperm DNA damage include replication errors and causes of DNA fragmentation which include abortive apoptosis, defective maturation and oxidative stress. This review outlines the process of spermatogenesis, spermatogonial regulation and sperm differentiation; additionally, DNA damage and currently studied DNA repair mechanisms in spermatozoon are also covered.
Collapse
Affiliation(s)
- Manish Kuchakulla
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Manish Narasimman
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Kajal Khodamoradi
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Zahra Khosravizadeh
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Ranjith Ramasamy
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
11
|
Chioccarelli T, Pierantoni R, Manfrevola F, Porreca V, Fasano S, Chianese R, Cobellis G. Histone Post-Translational Modifications and CircRNAs in Mouse and Human Spermatozoa: Potential Epigenetic Marks to Assess Human Sperm Quality. J Clin Med 2020; 9:jcm9030640. [PMID: 32121034 PMCID: PMC7141194 DOI: 10.3390/jcm9030640] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 12/14/2022] Open
Abstract
Spermatozoa (SPZ) are motile cells, characterized by a cargo of epigenetic information including histone post-translational modifications (histone PTMs) and non-coding RNAs. Specific histone PTMs are present in developing germ cells, with a key role in spermatogenic events such as self-renewal and commitment of spermatogonia (SPG), meiotic recombination, nuclear condensation in spermatids (SPT). Nuclear condensation is related to chromatin remodeling events and requires a massive histone-to-protamine exchange. After this event a small percentage of chromatin is condensed by histones and SPZ contain nucleoprotamines and a small fraction of nucleohistone chromatin carrying a landascape of histone PTMs. Circular RNAs (circRNAs), a new class of non-coding RNAs, characterized by a nonlinear back-spliced junction, able to play as microRNA (miRNA) sponges, protein scaffolds and translation templates, have been recently characterized in both human and mouse SPZ. Since their abundance in eukaryote tissues, it is challenging to deepen their biological function, especially in the field of reproduction. Here we review the critical role of histone PTMs in male germ cells and the profile of circRNAs in mouse and human SPZ. Furthermore, we discuss their suggested role as novel epigenetic biomarkers to assess sperm quality and improve artificial insemination procedure.
Collapse
|
12
|
Wang T, Gao H, Li W, Liu C. Essential Role of Histone Replacement and Modifications in Male Fertility. Front Genet 2019; 10:962. [PMID: 31649732 PMCID: PMC6792021 DOI: 10.3389/fgene.2019.00962] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/10/2019] [Indexed: 01/19/2023] Open
Abstract
Spermiogenesis is a complex cellular differentiation process that the germ cells undergo a distinct morphological change, and the protamines replace the core histones to facilitate chromatin compaction in the sperm head. Recent studies show the essential roles of epigenetic events during the histone-to-protamine transition. Defects in either the replacement or the modification of histones might cause male infertility with azoospermia, oligospermia or teratozoospermia. Here, we summarize recent advances in our knowledge of how epigenetic regulators, such as histone variants, histone modification and their related chromatin remodelers, facilitate the histone-to-protamine transition during spermiogenesis. Understanding the molecular mechanism underlying the modification and replacement of histones during spermiogenesis will enable the identification of epigenetic biomarkers of male infertility, and shed light on potential therapies for these patients in the future.
Collapse
Affiliation(s)
- Tong Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hui Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Fice HE, Robaire B. Telomere Dynamics Throughout Spermatogenesis. Genes (Basel) 2019; 10:genes10070525. [PMID: 31336906 PMCID: PMC6678359 DOI: 10.3390/genes10070525] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/05/2019] [Accepted: 07/10/2019] [Indexed: 12/16/2022] Open
Abstract
Telomeres are repeat regions of DNA that cap either end of each chromosome, thereby providing stability and protection from the degradation of gene-rich regions. Each cell replication causes the loss of telomeric repeats due to incomplete DNA replication, though it is well-established that progressive telomere shortening is evaded in male germ cells by the maintenance of active telomerase. However, germ cell telomeres are still susceptible to disruption or insult by oxidative stress, toxicant exposure, and aging. Our aim was to examine the relative telomere length (rTL) in an outbred Sprague Dawley (SD) and an inbred Brown Norway (BN) rat model for paternal aging. No significant differences were found when comparing pachytene spermatocytes (PS), round spermatids (RS), and sperm obtained from the caput and cauda of the epididymis of young and aged SD rats; this is likely due to the high variance observed among individuals. A significant age-dependent decrease in rTL was observed from 115.6 (±6.5) to 93.3 (±6.3) in caput sperm and from 142.4 (±14.6) to 105.3 (±2.5) in cauda sperm from BN rats. Additionally, an increase in rTL during epididymal maturation was observed in both strains, most strikingly from 115.6 (±6.5) to 142 (±14.6) in young BN rats. These results confirm the decrease in rTL in rodents, but only when an inbred strain is used, and represent the first demonstration that rTL changes as sperm transit through the epididymis.
Collapse
Affiliation(s)
- Heather E Fice
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Bernard Robaire
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada.
- Departments of Obstetrics and Gynecology, McGill University, Montreal, QC H4A 3J1, Canada.
| |
Collapse
|
14
|
The dynamics and regulation of chromatin remodeling during spermiogenesis. Gene 2019; 706:201-210. [DOI: 10.1016/j.gene.2019.05.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 01/06/2023]
|
15
|
González-Rojo S, Fernández-Díez C, Lombó M, Herráez MP. Distribution of DNA damage in the human sperm nucleus: implications of the architecture of the sperm head. Asian J Androl 2019; 22:401-408. [PMID: 31210149 PMCID: PMC7406100 DOI: 10.4103/aja.aja_26_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The sperm nucleus is prone to sustain DNA damage before and after ejaculation. Distribution of the damage is not homogeneous, and the factors determining differential sensitivity among nuclear regions have not yet been characterized. Human sperm chromatin contains three structural domains, two of which are considered the most susceptible to DNA damage: the histone bound domain, harboring developmental related genes, and the domain associated with nuclear matrix proteins. Using a quantitative polymerase chain reaction (qPCR) approach, we analyzed the number of lesions in genes homeobox A3 (HOXA3), homeobox B5 (HOXB5), sex-determining region Y (SRY)-box 2 (SOX2), β-GLOBIN, rDNA 18S, and rDNA 28S in human sperm after ultraviolet irradiation (400 μW cm−2, 10 min), H2O2 treatment (250 mmol l−1, 20 min), and cryopreservation, which showed differential susceptibility to genetic damage. Differential vulnerability is dependent on the genotoxic agent and independent of the sperm nuclear proteins to which the chromatin is bound and of accessibility to the transcription machinery. Immunodetection of 8-hydroxy-2'-deoxyguanosine (8-OHdG) showed that the highest level of oxidation was observed after H2O2 treatment. The distribution of oxidative lesions also differed depending on the genotoxic agent. 8-OHdG did not colocalize either with histone 3 (H3) or with type IIα + β topoisomerase (TOPO IIα + β) after H2O2 treatment but matched perfectly with peroxiredoxin 6 (PRDX6), which is involved in H2O2 metabolism. Our study reveals that the characteristics of the sperm head domains are responsible for access of the genotoxicants and cause differential degree of damage to nuclear areas, whereas chromatin packaging has a very limited relevance. The histone-enriched genes analyzed cannot be used as biomarkers of oxidative DNA damage.
Collapse
Affiliation(s)
- Silvia González-Rojo
- Department of Molecular Biology, Faculty of Biology, Universidad de León, Campus de Vegazana s/n León, León 24071, Spain
| | - Cristina Fernández-Díez
- Department of Molecular Biology, Faculty of Biology, Universidad de León, Campus de Vegazana s/n León, León 24071, Spain
| | - Marta Lombó
- Department of Molecular Biology, Faculty of Biology, Universidad de León, Campus de Vegazana s/n León, León 24071, Spain
| | - María Paz Herráez
- Department of Molecular Biology, Faculty of Biology, Universidad de León, Campus de Vegazana s/n León, León 24071, Spain
| |
Collapse
|
16
|
Abstract
Autophagy is an evolutionarily conserved self-digestion process which is essential to keep basal homeostasis in a cell. During this process, degradation and recycling of many cytoplasmic components including the long-lived, unnecessary or aggregated proteins and damaged organelles is achieved through lysosomal machinery. Autophagy has a critical role for lower eukaryotic organisms such as yeast to survive and adapt to nutrient starvation conditions. In addition to this primary function, autophagy appears as a crucial mechanism for cell differentiation and development enabling the cells to modify their content and morphology in response to environmental and hormonal cues. A recent study by Shang et al.1 shed more light on the molecular mechanisms of how autophagy regulates spermiogenesis.
Collapse
Affiliation(s)
- Nihan Ozturk
- Clinic of Urology, Pediatric Urology and Andrology, Section Molecular Andrology, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| | - Klaus Steger
- Clinic of Urology, Pediatric Urology and Andrology, Section Molecular Andrology, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| | - Undraga Schagdarsurengin
- Clinic of Urology, Pediatric Urology and Andrology, Section Molecular Andrology, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| |
Collapse
|
17
|
Hamad MF. Quantification of histones and protamines mRNA transcripts in sperms of infertile couples and their impact on sperm's quality and chromatin integrity. Reprod Biol 2019; 19:6-13. [PMID: 30876814 DOI: 10.1016/j.repbio.2019.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/17/2019] [Accepted: 03/02/2019] [Indexed: 11/16/2022]
Abstract
The proper transition of histones to protamine during spermiogenesis is critical for male fertility. This study aimed to quantify the levels of histones and protamines mRNA in sperms of infertile couples and their possible effect on the sperm's quality and chromatin integrity. Spermatozoa from 53 normal and 75 patients were enrolled in this study. Histones and Protamine mRNAs were extracted, reverse-transcribed and applied to real-time quantitative PCR. Chromomycin A3 staining was used to assess protamination and chromatin integrity, and Eosin-Nigrosine-Test and HOS-Test was used to evaluate the sperm's vitality and membrane integrity respectively. Levels of histones H2A and H2B mRNA in patient's sperms were significantly (p < 0.01) higher than that of normal (31.22 ± 2.91, 30.03 ± 2.05 vs. 25.62 ± 1.98, 27.23 ± 3.04, respectively). Protamine PRM2 mRNA in patient's sperms (20.55 ± 2.01) was significantly lower than in normal (21.73 ± 2.64, p < 0.01). The PRM1/PRM2 and H2A/H2B mRNAs ratios were significantly higher (p < 0.01) in patients than normal (1.02 ± 0.10, 1.04 ± 0.07 vs. 0.98 ± 0.06, 0.94 ± 0.08 respectively). Also, the sperm's nuclear histones to protamines transcripts ((H2A + H2B)/(PRM1 + PRM2)) ratios of patients (1.49 ± 0.16) was significantly higher (p < 0.01) than that of normal (1.25 ± 0.15). Histone/protamine transcripts [((H2A + H2B)/(PRM1 + PRM2)) mRNAs ratios] were negatively correlated (p < 0.05) with sperm's count, total count, motility, progressive motility, normal morphology, membrane integrity and positively with chromatin decondensation. The data suggests that histones/protamines mRNAs ratios are important for a sperm's quality and therefore could be used as predictors for male infertility. Also, validation study may be required to confirm the study conclusion.
Collapse
Affiliation(s)
- Mohammed Faiz Hamad
- Department of Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Riyadh, Saudi Arabia; IVF & Andrology Laboratory, Department of Obstetrics and Gynecology, Saarland University, Homburg, Saar, Germany.
| |
Collapse
|
18
|
Olszewska M, Wiland E, Huleyuk N, Fraczek M, Midro AT, Zastavna D, Kurpisz M. Chromosome (re)positioning in spermatozoa of fathers and sons - carriers of reciprocal chromosome translocation (RCT). BMC Med Genomics 2019; 12:30. [PMID: 30709354 PMCID: PMC6359769 DOI: 10.1186/s12920-018-0470-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/28/2018] [Indexed: 01/05/2023] Open
Abstract
Background Non-random chromosome positioning has been observed in the nuclei of several different tissue types, including human spermatozoa. The nuclear arrangement of chromosomes can be altered in men with decreased semen parameters or increased DNA fragmentation and in males with chromosomal numerical or structural aberrations. An aim of this study was to determine whether and how the positioning of nine chromosome centromeres was (re)arranged in the spermatozoa of fathers and sons – carriers of the same reciprocal chromosome translocation (RCT). Methods Fluorescence in situ hybridization (FISH) was applied to analyse the positioning of sperm chromosomes in a group of 13 carriers of 11 RCTs, including two familial RCT cases: t(4;5) and t(7;10), followed by analysis of eight control individuals. Additionally, sperm chromatin integrity was evaluated using TUNEL and Aniline Blue techniques. Results In the analysed familial RCT cases, repositioning of the chromosomes occurred in a similar way when compared to the data generated in healthy controls, even if some differences between father and son were further observed. These differences might have arisen from various statuses of sperm chromatin disintegration. Conclusions Nuclear topology appears as another aspect of epigenetic genomic regulation that may influence DNA functioning. We have re-documented that chromosomal positioning is defined in control males and that a particular RCT is reflected in the individual pattern of chromosomal topology. The present study examining the collected RCT group, including two familial cases, additionally showed that chromosomal factors (karyotype and hyperhaploidy) have superior effects, strongly influencing the chromosomal topology, when confronted with sperm chromatin integrity components (DNA fragmentation or chromatin deprotamination). Electronic supplementary material The online version of this article (10.1186/s12920-018-0470-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marta Olszewska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
| | - Ewa Wiland
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
| | - Nataliya Huleyuk
- National Academy of Medical Sciences of Ukraine, Institute of Hereditary Pathology, Lysenko Str. 31a, Lviv, 79000, Ukraine
| | - Monika Fraczek
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
| | - Alina T Midro
- Department of Clinical Genetics, Medical University of Bialystok, Waszyngtona 13, PO Box 22, 15-089, Bialystok, Poland
| | - Danuta Zastavna
- National Academy of Medical Sciences of Ukraine, Institute of Hereditary Pathology, Lysenko Str. 31a, Lviv, 79000, Ukraine.,Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstancow Warszawy 6, 35-959, Rzeszow, Poland
| | - Maciej Kurpisz
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland.
| |
Collapse
|
19
|
Genetic Factors Affecting Sperm Chromatin Structure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1166:1-28. [PMID: 31301043 DOI: 10.1007/978-3-030-21664-1_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Spermatozoa genome has unique features that make it a fascinating field of investigation: first, because, with oocyte genome, it can be transmitted generation after generation; second, because of genetic shuffling during meiosis, each spermatozoon is virtually unique in terms of genetic content, with consequences for species evolution; and finally, because its chromatin organization is very different from that of somatic cells or oocytes, as it is not based on nucleosomes but on nucleoprotamines which confer a higher order of packaging. Histone-to-protamine transition involves many actors, such as regulators of spermatid gene expression, components of the nuclear envelop, histone-modifying enzymes and readers, chaperones, histone variants, transition proteins, protamines, and certainly many more to be discovered.In this book chapter, we will present what is currently known about sperm chromatin structure and how it is established during spermiogenesis, with the aim to list the genetic factors that regulate its organization.
Collapse
|
20
|
Altered three-dimensional organization of sperm genome in DPY19L2-deficient globozoospermic patients. J Assist Reprod Genet 2018; 36:69-77. [PMID: 30362053 DOI: 10.1007/s10815-018-1342-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/12/2018] [Indexed: 02/07/2023] Open
Abstract
PURPOSE To explore the three-dimensional (3D) organization of sperm genome in DPY19L2-deficient globozoospermic patients speculating a link between DPY19L2 and genome organization of sperm nucleus. METHODS This is a study of chromatin organization in DPY19L2-deficient globozoospermic patients and healthy donors using three-dimensional fluorescence in situ hybridization (3D-FISH) combined with confocal laser scanning microscopy followed by 3D image analysis. The 3D structures of sperm nuclei, chromocenter, telomeric regions and chromosome territories (CTs), were reconstructed using IMARIS software, and the relative radial position for each individual signal was calculated. Statistical analysis used a non-parametric Mann-Whitney test was appropriate with significance at p < 0.05. RESULTS DPY19L2-deficient globozoospermic patients display impaired sperm chromocenter organization resulting in an increased number of chromocenters (5.4 vs 3.5; p < 0.0001). Moreover, radial positions of telomeres are modified with a more central position in globozoospermic nuclei. 3D-FISH analysis of five chromosome territories (CTs) (X, Y, 7, 17, 18) showed that DPY19L2-deficient globozoospermic sperm nuclei display altered spatial organization of CT X, CT 7 and CT 18. CONCLUSIONS Our findings strengthen the hypothesis that DPY19L2 might be considered as a LINC-like protein having a crucial role in the organization of nuclear chromatin in sperm nucleus through its interaction with nuclear lamina. Our results might also explain defective embryonic development after intracytoplasmic sperm injection (ICSI) performed with DPY19L2-deficient globozoospermic sperm.
Collapse
|
21
|
Souza ET, Silva CV, Travençolo BAN, Alves BG, Beletti ME. Sperm chromatin alterations in fertile and subfertile bulls. Reprod Biol 2018; 18:177-181. [DOI: 10.1016/j.repbio.2018.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/17/2018] [Accepted: 04/16/2018] [Indexed: 01/17/2023]
|
22
|
Wei YL, Yang WX. The acroframosome-acroplaxome-manchette axis may function in sperm head shaping and male fertility. Gene 2018; 660:28-40. [DOI: 10.1016/j.gene.2018.03.059] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/09/2018] [Accepted: 03/19/2018] [Indexed: 12/27/2022]
|
23
|
van Son M, Tremoen NH, Gaustad AH, Myromslien FD, Våge DI, Stenseth EB, Zeremichael TT, Grindflek E. RNA sequencing reveals candidate genes and polymorphisms related to sperm DNA integrity in testis tissue from boars. BMC Vet Res 2017; 13:362. [PMID: 29183316 PMCID: PMC5706377 DOI: 10.1186/s12917-017-1279-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 11/16/2017] [Indexed: 11/17/2022] Open
Abstract
Background Sperm DNA is protected against fragmentation by a high degree of chromatin packaging. It has been demonstrated that proper chromatin packaging is important for boar fertility outcome. However, little is known about the molecular mechanisms underlying differences in sperm DNA fragmentation. Knowledge of sequence variation influencing this sperm parameter could be beneficial in selecting the best artificial insemination (AI) boars for commercial production. The aim of this study was to identify genes differentially expressed in testis tissue of Norwegian Landrace and Duroc boars, with high and low sperm DNA fragmentation index (DFI), using transcriptome sequencing. Results Altogether, 308 and 374 genes were found to display significant differences in expression level between high and low DFI in Landrace and Duroc boars, respectively. Of these genes, 71 were differentially expressed in both breeds. Gene ontology analysis revealed that significant terms in common for the two breeds included extracellular matrix, extracellular region and calcium ion binding. Moreover, different metabolic processes were enriched in Landrace and Duroc, whereas immune response terms were common in Landrace only. Variant detection identified putative polymorphisms in some of the differentially expressed genes. Validation showed that predicted high impact variants in RAMP2, GIMAP6 and three uncharacterized genes are particularly interesting for sperm DNA fragmentation in boars. Conclusions We identified differentially expressed genes between groups of boars with high and low sperm DFI, and functional annotation of these genes point towards important biochemical pathways. Moreover, variant detection identified putative polymorphisms in the differentially expressed genes. Our results provide valuable insights into the molecular network underlying DFI in pigs. Electronic supplementary material The online version of this article (10.1186/s12917-017-1279-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Nina Hårdnes Tremoen
- Department of Natural Sciences and Technology, Inland Norway University of Applied Sciences, 2318, Hamar, Norway.,Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1432, Ås, Norway
| | - Ann Helen Gaustad
- Topigs Norsvin, 2317, Hamar, Norway.,Department of Natural Sciences and Technology, Inland Norway University of Applied Sciences, 2318, Hamar, Norway
| | - Frøydis Deinboll Myromslien
- Department of Natural Sciences and Technology, Inland Norway University of Applied Sciences, 2318, Hamar, Norway
| | - Dag Inge Våge
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1432, Ås, Norway
| | - Else-Berit Stenseth
- Department of Natural Sciences and Technology, Inland Norway University of Applied Sciences, 2318, Hamar, Norway
| | | | | |
Collapse
|
24
|
Elkhatib RA, Paci M, Boissier R, Longepied G, Auguste Y, Achard V, Bourgeois P, Levy N, Branger N, Mitchell MJ, Metzler-Guillemain C. LEM-domain proteins are lost during human spermiogenesis but BAF and BAF-L persist. Reproduction 2017; 154:387-401. [PMID: 28684548 DOI: 10.1530/rep-17-0358] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 06/10/2017] [Accepted: 07/06/2017] [Indexed: 12/22/2022]
Abstract
During spermiogenesis the spermatid nucleus is elongated, and dramatically reduced in size with protamines replacing histones to produce a highly compacted chromatin. After fertilisation, this process is reversed in the oocyte to form the male pronucleus. Emerging evidence, including the coordinated loss of the nuclear lamina (NL) and the histones, supports the involvement of the NL in spermatid nuclear remodelling, but how the NL links to the chromatin is not known. In somatic cells, interactions between the NL and the chromatin have been demonstrated: LEM-domain proteins and LBR interact with the NL and respectively, the chromatin proteins BAF and HP1. We therefore sought to characterise the lamina-chromatin interface during spermiogenesis, by investigating the localisation of six LEM-domain proteins, two BAF proteins and LBR, in human spermatids and spermatozoa. Using RT-PCR, IF and western blotting, we show that six of the proteins tested are present in spermatids: LEMD1, LEMD2 (a short isoform), ANKLE2, LAP2β, BAF and BAF-L, and three absent: Emerin, LBR and LEMD3. The full-length LEMD2 isoform, required for nuclear integrity in somatic cells, is absent. In spermatids, no protein localised to the nuclear periphery, but five were nucleoplasmic, receding towards the posterior nuclear pole as spermatids matured. Our study therefore establishes that the lamina-chromatin interface in human spermatids is radically distinct from that defined in somatic cells. In ejaculated spermatozoa, we detected only BAF and BAF-L, suggesting that they might contribute to the shaping of the spermatozoon nucleus and, after fertilisation, its transition to the male pronucleus.
Collapse
Affiliation(s)
| | - Marine Paci
- Aix Marseille UnivINSERM, GMGF, UMR_S 910, Marseille, France
- APHM Hôpital La ConceptionGynépôle, Laboratoire de Biologie de la Reproduction-CECOS, Marseille Cedex 5, France
| | - Romain Boissier
- APHM Hôpital La ConceptionService d'Urologie, Marseille Cedex 5, France
| | - Guy Longepied
- Aix Marseille UnivINSERM, GMGF, UMR_S 910, Marseille, France
| | - Yasmina Auguste
- Aix Marseille UnivINSERM, GMGF, UMR_S 910, Marseille, France
| | - Vincent Achard
- APHM Hôpital La ConceptionGynépôle, Laboratoire de Biologie de la Reproduction-CECOS, Marseille Cedex 5, France
- Aix-Marseille UnivUniv Avignon, CNRS, IRD, IMBE, UMR7263, Marseille France
| | | | - Nicolas Levy
- Aix Marseille UnivINSERM, GMGF, UMR_S 910, Marseille, France
| | - Nicolas Branger
- APHM Hôpital La ConceptionService d'Urologie, Marseille Cedex 5, France
| | | | - Catherine Metzler-Guillemain
- Aix Marseille UnivINSERM, GMGF, UMR_S 910, Marseille, France
- APHM Hôpital La ConceptionGynépôle, Laboratoire de Biologie de la Reproduction-CECOS, Marseille Cedex 5, France
| |
Collapse
|
25
|
Kwak HG, Suzuki T, Dohmae N. Global mapping of post-translational modifications on histone H3 variants in mouse testes. Biochem Biophys Rep 2017; 11:1-8. [PMID: 28955761 PMCID: PMC5614684 DOI: 10.1016/j.bbrep.2017.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 05/23/2017] [Indexed: 11/17/2022] Open
Abstract
Mass spectrometry (MS)-based characterization is important in proteomic research for verification of structural features and functional understanding of gene expression. Post-translational modifications (PTMs) such as methylation and acetylation have been reported to be associated with chromatin remodeling during spermatogenesis. Although antibody- and MS-based approaches have been applied for characterization of PTMs on H3 variants during spermatogenesis, variant-specific PTMs are still underexplored. We identified several lysine modifications in H3 variants, including testis-specific histone H3 (H3t), through their successful separation with MS-based strategy, based on differences in masses, retention times, and presence of immonium ions. Besides methylation and acetylation, we detected formylation as a novel PTM on H3 variants in mouse testes. These patterns were also observed in H3t. Our data provide high-throughput structural information about PTMs on H3 variants in mouse testes and show possible applications of this strategy in future proteomic studies on histone PTMs. Various post-translational modifications in histone H3 variants were characterized in the mouse testes. We specifically identified similar modified patterns based on immonium ions. Novel modified lysines in testis-specific H3 histone, H3t, were verified. Our approach will be helpful for the discovery of other novel or specific modifications during spermatogenesis.
Collapse
Key Words
- DTT, dithiothreitol
- ESI-TRAP, electrospray TRAP
- FDR, false discovery rate
- H2SO4, sulfuric acid
- HCD, high-energy collision dissociation
- HFBA, heptafluorobutyric acid
- HPLC, high performance liquid chromatography
- ISD, in source decay
- MALDI, matrix-assisted laser desorption/ionization
- MS, mass spectrometry
- Mass spectrometry
- PTMs, post-translational modifications
- Post-translational modification
- RP, reverse phase
- SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis
- Spermatogenesis
- TCA, trichloroacetic acid
- TFA, trifluoroacetic acid
- Testis-specific H3 histone
Collapse
|
26
|
Barral S, Morozumi Y, Tanaka H, Montellier E, Govin J, de Dieuleveult M, Charbonnier G, Couté Y, Puthier D, Buchou T, Boussouar F, Urahama T, Fenaille F, Curtet S, Héry P, Fernandez-Nunez N, Shiota H, Gérard M, Rousseaux S, Kurumizaka H, Khochbin S. Histone Variant H2A.L.2 Guides Transition Protein-Dependent Protamine Assembly in Male Germ Cells. Mol Cell 2017; 66:89-101.e8. [PMID: 28366643 DOI: 10.1016/j.molcel.2017.02.025] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/03/2017] [Accepted: 02/24/2017] [Indexed: 01/10/2023]
Abstract
Histone replacement by transition proteins (TPs) and protamines (Prms) constitutes an essential step for the successful production of functional male gametes, yet nothing is known on the underlying functional interplay between histones, TPs, and Prms. Here, by studying spermatogenesis in the absence of a spermatid-specific histone variant, H2A.L.2, we discover a fundamental mechanism involved in the transformation of nucleosomes into nucleoprotamines. H2A.L.2 is synthesized at the same time as TPs and enables their loading onto the nucleosomes. TPs do not displace histones but rather drive the recruitment and processing of Prms, which are themselves responsible for histone eviction. Altogether, the incorporation of H2A.L.2 initiates and orchestrates a series of successive transitional states that ultimately shift to the fully compacted genome of the mature spermatozoa. Hence, the current view of histone-to-nucleoprotamine transition should be revisited and include an additional step with H2A.L.2 assembly prior to the action of TPs and Prms.
Collapse
MESH Headings
- Animals
- COS Cells
- Chlorocebus aethiops
- Chromatin/genetics
- Chromatin/metabolism
- Chromatin Assembly and Disassembly
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Computational Biology
- Databases, Genetic
- Fertility
- Gene Expression Regulation, Developmental
- Genetic Predisposition to Disease
- Genome
- Histones/deficiency
- Histones/genetics
- Histones/metabolism
- Infertility, Male/genetics
- Infertility, Male/metabolism
- Infertility, Male/pathology
- Infertility, Male/physiopathology
- Male
- Mice, 129 Strain
- Mice, Knockout
- Nucleosomes/genetics
- Nucleosomes/metabolism
- Phenotype
- Protamines/metabolism
- Spermatogenesis/genetics
- Spermatozoa/metabolism
- Spermatozoa/pathology
- Transfection
Collapse
Affiliation(s)
- Sophie Barral
- CNRS UMR 5309, Inserm U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble 38700, France
| | - Yuichi Morozumi
- CNRS UMR 5309, Inserm U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble 38700, France; Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Research Institute for Science and Engineering, Institute for Medical-oriented Structural Biology, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Hiroki Tanaka
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Research Institute for Science and Engineering, Institute for Medical-oriented Structural Biology, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Emilie Montellier
- CNRS UMR 5309, Inserm U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble 38700, France
| | - Jérôme Govin
- Université Grenoble Alpes, Inserm U1038, CEA, BIG-BGE, Grenoble 38000, France
| | - Maud de Dieuleveult
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Guillaume Charbonnier
- TGML, platform IbiSA, Aix Marseille Univ, Inserm U1090, TAGC, Marseille 13288, France
| | - Yohann Couté
- Université Grenoble Alpes, Inserm U1038, CEA, BIG-BGE, Grenoble 38000, France
| | - Denis Puthier
- TGML, platform IbiSA, Aix Marseille Univ, Inserm U1090, TAGC, Marseille 13288, France
| | - Thierry Buchou
- CNRS UMR 5309, Inserm U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble 38700, France
| | - Fayçal Boussouar
- CNRS UMR 5309, Inserm U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble 38700, France
| | - Takashi Urahama
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Research Institute for Science and Engineering, Institute for Medical-oriented Structural Biology, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - François Fenaille
- Laboratoire d'Etude du Métabolisme des Médicaments, DSV/iBiTec-S/SPI, CEA Saclay, Gif-sur-Yvette 91191 Cedex, France
| | - Sandrine Curtet
- CNRS UMR 5309, Inserm U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble 38700, France
| | - Patrick Héry
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | | | - Hitoshi Shiota
- CNRS UMR 5309, Inserm U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble 38700, France
| | - Matthieu Gérard
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Sophie Rousseaux
- CNRS UMR 5309, Inserm U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble 38700, France
| | - Hitoshi Kurumizaka
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Research Institute for Science and Engineering, Institute for Medical-oriented Structural Biology, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Saadi Khochbin
- CNRS UMR 5309, Inserm U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble 38700, France.
| |
Collapse
|
27
|
Navarro E, Funtikova AN, Fíto M, Schröder H. Prenatal nutrition and the risk of adult obesity: Long-term effects of nutrition on epigenetic mechanisms regulating gene expression. J Nutr Biochem 2017; 39:1-14. [DOI: 10.1016/j.jnutbio.2016.03.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 03/23/2016] [Accepted: 03/27/2016] [Indexed: 12/19/2022]
|
28
|
Czernik M, Iuso D, Toschi P, Khochbin S, Loi P. Remodeling somatic nuclei via exogenous expression of protamine 1 to create spermatid-like structures for somatic nuclear transfer. Nat Protoc 2016; 11:2170-2188. [PMID: 27711052 DOI: 10.1038/nprot.2016.130] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
This protocol describes how to convert the chromatin structure of sheep and mouse somatic cells into spermatid-like nuclei through the heterologous expression of the protamine 1 gene (Prm1). Furthermore, we also provide step-by-step instructions for somatic cell nuclear transfer (SCNT) of Prm1-remodeled somatic nuclei in sheep oocytes. There is evidence that changing the organization of a somatic cell nucleus with that which mirrors the spermatozoon nucleus leads to better nuclear reprogramming. The protocol may have further potential application in determining the protamine and histone footprints of the whole genome; obtaining 'gametes' from somatic cells; and furthering understanding of the molecular mechanisms regulating the maintenance of DNA methylation in imprinted control regions during male gametogenesis. The protocol is straightforward, and it requires 4 weeks from the establishment of the cell lines to their transfection and the production of cloned blastocysts. It is necessary for researchers to have experience in cell biology and embryology, with basic skills in molecular biology, to carry out the protocol.
Collapse
Affiliation(s)
- Marta Czernik
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Domenico Iuso
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Paola Toschi
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Saadi Khochbin
- INSERM, U823, Institut Albert Bonniot, Université Grenoble Alpes, Grenoble, France
| | - Pasqualino Loi
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| |
Collapse
|
29
|
Fraser R, Lin CJ. Epigenetic reprogramming of the zygote in mice and men: on your marks, get set, go! Reproduction 2016; 152:R211-R222. [PMID: 27601712 PMCID: PMC5097126 DOI: 10.1530/rep-16-0376] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/02/2016] [Indexed: 12/19/2022]
Abstract
Gametogenesis (spermatogenesis and oogenesis) is accompanied by the acquisition of gender-specific epigenetic marks, such as DNA methylation, histone modifications and regulation by small RNAs, to form highly differentiated, but transcriptionally silent cell-types in preparation for fertilisation. Upon fertilisation, extensive global epigenetic reprogramming takes place to remove the previously acquired epigenetic marks and produce totipotent zygotic states. It is the aim of this review to delineate the cellular and molecular events involved in maternal, paternal and zygotic epigenetic reprogramming from the time of gametogenesis, through fertilisation, to the initiation of zygotic genome activation for preimplantation embryonic development. Recent studies have begun to uncover the indispensable functions of epigenetic players during gametogenesis, fertilisation and preimplantation embryo development, and a more comprehensive understanding of these early events will be informative for increasing pregnancy success rates, adding particular value to assisted fertility programmes.
Collapse
Affiliation(s)
- Rupsha Fraser
- The University of EdinburghMRC Centre for Reproductive Health, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| | - Chih-Jen Lin
- The University of EdinburghMRC Centre for Reproductive Health, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| |
Collapse
|
30
|
Olszewska M, Wanowska E, Kishore A, Huleyuk N, Georgiadis AP, Yatsenko AN, Mikula M, Zastavna D, Wiland E, Kurpisz M. Genetic dosage and position effect of small supernumerary marker chromosome (sSMC) in human sperm nuclei in infertile male patient. Sci Rep 2015; 5:17408. [PMID: 26616419 PMCID: PMC4663790 DOI: 10.1038/srep17408] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 10/28/2015] [Indexed: 11/12/2022] Open
Abstract
Chromosomes occupy specific distinct areas in the nucleus of the sperm cell that may be altered in males with disrupted spermatogenesis. Here, we present alterations in the positioning of the human chromosomes 15, 18, X and Y between spermatozoa with the small supernumerary marker chromosome (sSMC; sSMC+) and spermatozoa with normal chromosome complement (sSMC−), for the first time described in the same ejaculate of an infertile, phenotypically normal male patient. Using classical and confocal fluorescent microscopy, the nuclear colocalization of chromosomes 15 and sSMC was analyzed. The molecular cytogenetic characteristics of sSMC delineated the karyotype as 47,XY,+der(15)(pter->p11.2::q11.1->q11.2::p11.2->pter)mat. Analysis of meiotic segregation showed a 1:1 ratio of sSMC+ to sSMC− spermatozoa, while evaluation of sperm aneuploidy status indicated an increased level of chromosome 13, 18, 21 and 22 disomy, up to 7 × (2.7 − 15.1). Sperm chromatin integrity assessment did not reveal any increase in deprotamination in the patient’s sperm chromatin. Importantly, we found significant repositioning of chromosomes X and Y towards the nuclear periphery, where both chromosomes were localized in close proximity to the sSMC. This suggests the possible influence of sSMC/XY colocalization on meiotic chromosome division, resulting in abnormal chromosome segregation, and leading to male infertility in the patient.
Collapse
Affiliation(s)
- Marta Olszewska
- Institute of Human Genetics, Polish Academy of Sciences, Department of Reproductive Biology and Stem Cells, Strzeszynska 32, 60-479 Poznan, Poland
| | - Elzbieta Wanowska
- Institute of Human Genetics, Polish Academy of Sciences, Department of Reproductive Biology and Stem Cells, Strzeszynska 32, 60-479 Poznan, Poland
| | - Archana Kishore
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh 15213, PA, USA
| | - Nataliya Huleyuk
- Institute of Hereditary Pathology, Ukrainian Academy of Medical Sciences, Lysenko Str. 31a, 79000 Lviv, Ukraine
| | - Andrew P Georgiadis
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh 15213, PA, USA
| | - Alexander N Yatsenko
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh 15213, PA, USA
| | - Mariya Mikula
- Institute of Hereditary Pathology, Ukrainian Academy of Medical Sciences, Lysenko Str. 31a, 79000 Lviv, Ukraine
| | - Danuta Zastavna
- Institute of Hereditary Pathology, Ukrainian Academy of Medical Sciences, Lysenko Str. 31a, 79000 Lviv, Ukraine
| | - Ewa Wiland
- Institute of Human Genetics, Polish Academy of Sciences, Department of Reproductive Biology and Stem Cells, Strzeszynska 32, 60-479 Poznan, Poland
| | - Maciej Kurpisz
- Institute of Human Genetics, Polish Academy of Sciences, Department of Reproductive Biology and Stem Cells, Strzeszynska 32, 60-479 Poznan, Poland
| |
Collapse
|
31
|
Iuso D, Czernik M, Toschi P, Fidanza A, Zacchini F, Feil R, Curtet S, Buchou T, Shiota H, Khochbin S, Ptak GE, Loi P. Exogenous Expression of Human Protamine 1 (hPrm1) Remodels Fibroblast Nuclei into Spermatid-like Structures. Cell Rep 2015; 13:1765-71. [PMID: 26628361 PMCID: PMC4675893 DOI: 10.1016/j.celrep.2015.10.066] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 09/04/2015] [Accepted: 10/21/2015] [Indexed: 11/26/2022] Open
Abstract
Protamines confer a compact structure to the genome of male gametes. Here, we find that somatic cells can be remodeled by transient expression of protamine 1 (Prm1). Ectopically expressed Prm1 forms scattered foci in the nuclei of fibroblasts, which coalescence into spermatid-like structures, concomitant with a loss of histones and a reprogramming barrier, H3 lysine 9 methylation. Protaminized nuclei injected into enucleated oocytes efficiently underwent protamine to maternal histone TH2B exchange and developed into normal blastocyst stage embryos in vitro. Altogether, our findings present a model to study male-specific chromatin remodeling, which can be exploited for the improvement of somatic cell nuclear transfer. In vitro protaminization of somatic cell nuclei Conversion of interphase somatic nuclei into “spermatid-like” structures Protaminization of somatic nuclei that is reversed upon injection into enucleated oocytes A simplified model of nuclear remodeling and reprogramming in vitro
Collapse
Affiliation(s)
- Domenico Iuso
- Faculty of Veterinary Medicine, University of Teramo, Renato Balzarini Street 1, Campus Coste Sant'Agostino, 64100 Teramo, Italy
| | - Marta Czernik
- Faculty of Veterinary Medicine, University of Teramo, Renato Balzarini Street 1, Campus Coste Sant'Agostino, 64100 Teramo, Italy
| | - Paola Toschi
- Faculty of Veterinary Medicine, University of Teramo, Renato Balzarini Street 1, Campus Coste Sant'Agostino, 64100 Teramo, Italy
| | - Antonella Fidanza
- Faculty of Veterinary Medicine, University of Teramo, Renato Balzarini Street 1, Campus Coste Sant'Agostino, 64100 Teramo, Italy
| | - Federica Zacchini
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postepu 36A, Jastrzębiec, 05-552 Magdalenka, Poland
| | - Robert Feil
- Institute of Molecular Genetics (IGMM), CNRS UMR-5535 and University of Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Sandrine Curtet
- INSERM, U823, Institut Albert Bonniot, Université Grenoble Alpes, 38700 Grenoble, France
| | - Thierry Buchou
- INSERM, U823, Institut Albert Bonniot, Université Grenoble Alpes, 38700 Grenoble, France
| | - Hitoshi Shiota
- INSERM, U823, Institut Albert Bonniot, Université Grenoble Alpes, 38700 Grenoble, France
| | - Saadi Khochbin
- INSERM, U823, Institut Albert Bonniot, Université Grenoble Alpes, 38700 Grenoble, France
| | - Grazyna Ewa Ptak
- Faculty of Veterinary Medicine, University of Teramo, Renato Balzarini Street 1, Campus Coste Sant'Agostino, 64100 Teramo, Italy; Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postepu 36A, Jastrzębiec, 05-552 Magdalenka, Poland; National Research Institute of Animal Production 1, Krakowska Street, 32-083 Balice n/Krakow, Poland
| | - Pasqualino Loi
- Faculty of Veterinary Medicine, University of Teramo, Renato Balzarini Street 1, Campus Coste Sant'Agostino, 64100 Teramo, Italy.
| |
Collapse
|
32
|
Mapping of post-translational modifications of spermatid-specific linker histone H1-like protein, HILS1. J Proteomics 2015; 128:218-30. [PMID: 26257145 DOI: 10.1016/j.jprot.2015.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/31/2015] [Accepted: 08/01/2015] [Indexed: 12/29/2022]
Abstract
In mammalian spermiogenesis, haploid round spermatids undergo dramatic biochemical and morphological changes and transform into motile mature spermatozoa. A majority of the histones are replaced by transition proteins during mid-spermiogenesis and later replaced by protamines, which occupy the sperm chromatin. In mammals, 11 linker histone H1 subtypes have been reported. Among them, H1t, HILS1, and H1T2 are uniquely expressed in testis, with the expression of HILS1 and H1T2 restricted to spermiogenesis. However, there is a lack of knowledge about linker histone role in the nuclear reorganization during mammalian spermiogenesis. Here, we report a method for separation of endogenous HILS1 protein from other rat testis linker histones by reversed-phase high-performance liquid chromatography (RP-HPLC) and identification of 15 novel post-translational modifications of HILS1, which include lysine acetylation and serine/threonine/tyrosine phosphorylation sites. Immunofluorescence studies demonstrate the presence of linker histone HILS1 and HILS1Y78p during different steps of spermiogenesis from early elongating to condensing spermatids.
Collapse
|
33
|
Elkhatib R, Longepied G, Paci M, Achard V, Grillo JM, Levy N, Mitchell MJ, Metzler-Guillemain C. Nuclear envelope remodelling during human spermiogenesis involves somatic B-type lamins and a spermatid-specific B3 lamin isoform. Mol Hum Reprod 2015; 21:225-36. [PMID: 25477337 DOI: 10.1093/molehr/gau111] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The nuclear lamina (NL) is a filamentous protein meshwork, composed essentially of lamins, situated between the inner nuclear membrane and the chromatin. There is mounting evidence that the NL plays a role in spermatid differentiation during spermiogenesis. The mouse spermatid NL is composed of the ubiquitous lamin B1 and the spermatid-specific lamin B3, an N-terminally truncated isoform of lamin B2. However, nothing is known about the NL in human spermatids. We therefore investigated the expression pattern and localization of A-type lamins (A, C and C2) and B-type lamins (B1, B2 and B3) during human spermiogenesis. Here, we show that a lamin B3 transcript is present in human spermatids and that B-type lamins are the only lamins detectable in human spermatids. We determine that, as shown for their mouse counterparts, human lamin B3, but not lamin B2, induces strong nuclear deformation, when ectopically expressed in HeLa cells. Co-immunofluorescence revealed that, in human spermatids, B-type lamins are present at the nuclear periphery, except in the region covered by the acrosome, and that as the spermatid matures the B-type lamins recede towards the posterior pole. Only lamin B1 remains detectable on 33-47% of ejaculated spermatozoa. On spermatozoa selected for normal head density, however, this fell to <6%, suggesting that loss of the NL signal may be linked to complete sperm nucleus compaction. The similarities revealed between lamin expression during human and rodent spermiogenesis, strengthen evidence that the NL and lamin B3 have conserved functions during the intense remodelling of the mammalian spermatid nucleus.
Collapse
Affiliation(s)
- Razan Elkhatib
- Aix Marseille Université, INSERM, GMGF UMR_S 910, 13385, Marseille, France
| | - Guy Longepied
- Aix Marseille Université, INSERM, GMGF UMR_S 910, 13385, Marseille, France
| | - Marine Paci
- Aix Marseille Université, INSERM, GMGF UMR_S 910, 13385, Marseille, France APHM Hôpital La Conception, Gynépôle, Laboratoire de Biologie de la Reproduction-CECOS, 13385 Marseille Cedex 5, France
| | - Vincent Achard
- APHM Hôpital La Conception, Gynépôle, Laboratoire de Biologie de la Reproduction-CECOS, 13385 Marseille Cedex 5, France
| | - Jean-Marie Grillo
- APHM Hôpital La Conception, Gynépôle, Laboratoire de Biologie de la Reproduction-CECOS, 13385 Marseille Cedex 5, France Aix Marseille Université, Laboratoire de Biogénotoxicologie et Mutagenèse Environnementale, EA 1784 - Fédération de Recherche CNRS no 3098 Ecosystèmes Continentaux et Risques Environnementaux, 13385 Marseille Cedex 5, France
| | - Nicolas Levy
- Aix Marseille Université, INSERM, GMGF UMR_S 910, 13385, Marseille, France
| | - Michael J Mitchell
- Aix Marseille Université, INSERM, GMGF UMR_S 910, 13385, Marseille, France
| | - Catherine Metzler-Guillemain
- Aix Marseille Université, INSERM, GMGF UMR_S 910, 13385, Marseille, France APHM Hôpital La Conception, Gynépôle, Laboratoire de Biologie de la Reproduction-CECOS, 13385 Marseille Cedex 5, France
| |
Collapse
|
34
|
Abstract
During spermiogenesis, the postmeiotic phase of mammalian spermatogenesis, transcription is progressively repressed as nuclei of haploid spermatids are compacted through a dramatic chromatin reorganization involving hyperacetylation and replacement of most histones with protamines. Although BRDT functions in transcription and histone removal in spermatids, it is unknown whether other BET family proteins play a role. Immunofluorescence of spermatogenic cells revealed BRD4 in a ring around the nuclei of spermatids containing hyperacetylated histones. The ring lies directly adjacent to the acroplaxome, the cytoskeletal base of the acrosome, previously linked to chromatin reorganization. The BRD4 ring does not form in acrosomal mutant mice. Chromatin immunoprecipitation followed by sequencing in spermatids revealed enrichment of BRD4 and acetylated histones at the promoters of active genes. BRD4 and BRDT show distinct and synergistic binding patterns, with a pronounced enrichment of BRD4 at spermatogenesis-specific genes. Direct association of BRD4 with acetylated H4 decreases in late spermatids as acetylated histones are removed from the condensing nucleus in a wave following the progressing acrosome. These data provide evidence of a prominent transcriptional role for BRD4 and suggest a possible removal mechanism for chromatin components from the genome via the progressing acrosome as transcription is repressed and chromatin is compacted during spermiogenesis.
Collapse
|
35
|
Paternal heterochromatin formation in human embryos is H3K9/HP1 directed and primed by sperm-derived histone modifications. Nat Commun 2014; 5:5868. [PMID: 25519718 PMCID: PMC4284653 DOI: 10.1038/ncomms6868] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 11/14/2014] [Indexed: 12/22/2022] Open
Abstract
The different configurations of maternal and paternal chromatin, acquired during oogenesis and spermatogenesis, have to be rearranged after fertilization to form a functional embryonic genome. In the paternal genome, nucleosomal chromatin domains are re-established after the protamine-to-histone exchange. We investigated the formation of constitutive heterochromatin (cHC) in human preimplantation embryos. Our results show that histones carrying canonical cHC modifications are retained in cHC regions of sperm chromatin. These modified histones are transmitted to the oocyte and contribute to the formation of paternal embryonic cHC. Subsequently, the modifications are recognized by the H3K9/HP1 pathway maternal chromatin modifiers and propagated over the embryonic cleavage divisions. These results are in contrast to what has been described for mouse embryos, in which paternal cHC lacks canonical modifications and is initially established by Polycomb group proteins. Our results show intergenerational epigenetic inheritance of the cHC structure in human embryos.
Collapse
|
36
|
de Boer P, de Vries M, Ramos L. A mutation study of sperm head shape and motility in the mouse: lessons for the clinic. Andrology 2014; 3:174-202. [PMID: 25511638 DOI: 10.1111/andr.300] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 09/19/2014] [Accepted: 09/24/2014] [Indexed: 12/11/2022]
Abstract
Mouse mutants that show effects on sperm head shape, the sperm tail (flagellum), and motility were analysed in a systematic way. This was achieved by grouping mutations in the following classes: manchette, acrosome, Sertoli cell contact, chromatin remodelling, and mutations involved in complex regulations such as protein (de)phosphorylation and RNA stability, and flagellum/motility mutations. For all mutant phenotypes, flagellum function (motility) was affected. Head shape, including the nucleus, was also affected in spermatozoa of most mouse models, though with considerable variation. For the mutants that were categorized in the flagellum/motility group, generally normal head shapes were found, even when the flagellum did not develop or only poorly so. Most mutants are sterile, an occasional one semi-sterile. For completeness, the influence of the sex chromosomes on sperm phenotype is included. Functionally, the genes involved can be categorized as regulators of spermiogenesis. When extrapolating these data to human sperm samples, in vivo selection for motility would be the tool for weeding out the products of suboptimal spermiogenesis and epididymal sperm maturation. The striking dependency of motility on proper sperm head development is not easy to understand, but likely is of evolutionary benefit. Also, sperm competition after mating can never act against the long-term multi-generation interest of genetic integrity. Hence, it is plausible to suggest that short-term haplophase fitness i.e., motility, is developmentally integrated with proper nucleus maturation, including genetic integrity to protect multi-generation fitness. We hypothesize that, when the prime defect is in flagellum formation, apparently a feedback loop was not necessary as head morphogenesis in these mutants is mostly normal. Extrapolating to human-assisted reproductive techniques practice, this analysis would supply the arguments for the development of tools to select for motility as a continuous (non-discrete) parameter.
Collapse
Affiliation(s)
- P de Boer
- Department of Obstetrics and Gynaecology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | | |
Collapse
|
37
|
Simard O, Grégoire MC, Arguin M, Brazeau MA, Leduc F, Marois I, Richter MV, Boissonneault G. Instability of trinucleotidic repeats during chromatin remodeling in spermatids. Hum Mutat 2014; 35:1280-4. [PMID: 25136821 DOI: 10.1002/humu.22637] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 08/07/2014] [Indexed: 11/08/2022]
Abstract
Transient DNA breaks and evidence of DNA damage response have recently been reported during the chromatin remodeling process in haploid spermatids, creating a potential window of enhanced genetic instability. We used flow cytometry to achieve separation of differentiating spermatids into four highly purified populations using transgenic mice harboring 160 CAG repeats within exon 1 of the human Huntington disease gene (HTT). Trinucleotic repeat expansion was found to occur immediately following the chromatin remodeling steps, confirming the genetic instability of the process and pointing to the origin of paternal anticipation observed in some trinucleotidic repeats diseases.
Collapse
Affiliation(s)
- Olivier Simard
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Castillo J, Amaral A, Azpiazu R, Vavouri T, Estanyol JM, Ballesca JL, Oliva R. Genomic and proteomic dissection and characterization of the human sperm chromatin. Mol Hum Reprod 2014; 20:1041-53. [DOI: 10.1093/molehr/gau079] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
39
|
Rathke C, Baarends WM, Awe S, Renkawitz-Pohl R. Chromatin dynamics during spermiogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:155-68. [DOI: 10.1016/j.bbagrm.2013.08.004] [Citation(s) in RCA: 339] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 08/06/2013] [Accepted: 08/09/2013] [Indexed: 01/25/2023]
|
40
|
Castillo J, Amaral A, Oliva R. Sperm nuclear proteome and its epigenetic potential. Andrology 2013; 2:326-38. [PMID: 24327354 DOI: 10.1111/j.2047-2927.2013.00170.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 11/08/2013] [Accepted: 11/11/2013] [Indexed: 11/29/2022]
Abstract
The main function of the sperm cell is to transmit the paternal genetic message and epigenetic information to the embryo. Importantly, the majority of the genes in the sperm chromatin are highly condensed by protamines, whereas genes potentially needed in the initial stages of development are associated with histones, representing a form of epigenetic marking. However, so far little attention has been devoted to other sperm chromatin-associated proteins that, in addition to histones and protamines, may also have an epigenetic role. Therefore, with the goal of contributing to cover this subject we have compiled, reviewed and report a list of 581 chromatin or nuclear proteins described in the human sperm cell. Furthermore, we have analysed their Gene Ontology Biological Process enriched terms and have grouped them into different functional categories. Remarkably, we show that 56% of the sperm nuclear proteins have a potential epigenetic activity, being involved in at least one of the following functions: chromosome organization, chromatin organization, protein-DNA complex assembly, DNA packaging, gene expression, transcription, chromatin modification and histone modification. In addition, we have also included and compared the sperm cell proteomes of different model species, demonstrating the existence of common trends in the chromatin composition in the mammalian mature male gamete. Taken together, our analyses suggest that the mammalian sperm cell delivers to the offspring a rich combination of histone variants, transcription factors, chromatin-associated and chromatin-modifying proteins which have the potential to encode and transmit an extremely complex epigenetic information.
Collapse
Affiliation(s)
- J Castillo
- Human Genetics Research Group, IDIBAPS, Faculty of Medicine, University of Barcelona, Barcelona, Spain; Biochemistry and Molecular Genetics Service, Hospital Clinic, Barcelona, Spain
| | | | | |
Collapse
|
41
|
de Vries M, Ramos L, Lacroix R, D'Hauwers K, Hendriks J, Kremer J, van der Vlag J, de Boer P. Chromatin remodelling initiation in spermatids: differences among human males. Andrology 2013; 1:421-30. [DOI: 10.1111/j.2047-2927.2013.00079.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 01/28/2013] [Accepted: 02/01/2013] [Indexed: 12/01/2022]
Affiliation(s)
- M. de Vries
- Department of Obstetrics and Gynaecology; Radboud University Nijmegen Medical Centre; Nijmegen; The Netherlands
| | - L. Ramos
- Department of Obstetrics and Gynaecology; Radboud University Nijmegen Medical Centre; Nijmegen; The Netherlands
| | - R. Lacroix
- Department of Obstetrics and Gynaecology; Radboud University Nijmegen Medical Centre; Nijmegen; The Netherlands
| | - K. D'Hauwers
- Department of Urology; Radboud University Nijmegen Medical Centre; Nijmegen; The Netherlands
| | - J.C.M. Hendriks
- Department for Health Evidence; Radboud University Nijmegen Medical Centre; Nijmegen; The Netherlands
| | - J.A.M. Kremer
- Department of Obstetrics and Gynaecology; Radboud University Nijmegen Medical Centre; Nijmegen; The Netherlands
| | - J. van der Vlag
- Nephrology Research Laboratory; Department of Nephrology; Nijmegen Centre for Molecular Life Sciences; Nijmegen; The Netherlands
| | - P. de Boer
- Department of Obstetrics and Gynaecology; Radboud University Nijmegen Medical Centre; Nijmegen; The Netherlands
| |
Collapse
|