1
|
Niu M, Whang H, Wu Z, Jiang S, Chen L. Deletion of Asb15b gene can lead to a significant decrease in zebrafish intermuscular bone. Gene 2024; 923:148561. [PMID: 38754570 DOI: 10.1016/j.gene.2024.148561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/01/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Intermuscular bones, which are present in numerous economically significant fish species, have a negative impact on the development of aquaculture. The Asb15b gene, primarily expressed in skeletal muscle, plays a crucial role in regulating protein turnover and the development of muscle fibers. It stimulates protein synthesis and controls the differentiation of muscle fibers. In this study, we employed CRISPR/Cas9 technology to generate homozygous zebrafish strains with 7 bp and 49 bp deletions in the Asb15b gene. Subsequent analyses using skeleton staining demonstrated a substantial reduction in the number of intermuscular bones in adult Asb15b-/- -7 bp and Asb15b-/- -49 bp mutants compared to the wild-type zebrafish, with decreases of 30 % (P < 0.001) and 40 % (P < 0.0001), respectively. Histological experiments further revealed that the diameter and number of muscle fibers in adult Asb15b-/- mutants did not exhibit significant changes when compared to wild-type zebrafish. Moreover, qRT-PCR experiments demonstrated significant differences in the expression of bmp6 and runx2b genes, which are key regulators of intermuscular bone development, during different stages of intermuscular bone development in Asb15b-/- mutants. This study strongly suggests that the Asb15b gene plays a crucial role in regulating intermuscular bone development in fish and lays the groundwork for further exploration of the role of the Asb15b gene in zebrafish intermuscular bone development.
Collapse
Affiliation(s)
- Minghui Niu
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Fishery Germplasm Resources Exploration and Utilization, Ministry of Education, Shanghai 201306, China
| | - Huamin Whang
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Fishery Germplasm Resources Exploration and Utilization, Ministry of Education, Shanghai 201306, China
| | - Zhichao Wu
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Fishery Germplasm Resources Exploration and Utilization, Ministry of Education, Shanghai 201306, China
| | - Shouwen Jiang
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Fishery Germplasm Resources Exploration and Utilization, Ministry of Education, Shanghai 201306, China
| | - Liangbiao Chen
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Fishery Germplasm Resources Exploration and Utilization, Ministry of Education, Shanghai 201306, China.
| |
Collapse
|
2
|
Li Y, Selvaraj V, Saravanan S, Abullais SS, Wankhade V. Exploring the osteogenic potential of chitosan-quercetin bio-conjugate: In vitro and in vivo investigations in osteoporosis models. Int J Biol Macromol 2024; 274:133492. [PMID: 38944072 DOI: 10.1016/j.ijbiomac.2024.133492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/07/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Anti-osteoporotic agents are clinically employed to improve bone health and prevent osteoporotic fractures. In the current study, we investigated the potential of chitosan-quercetin bio-conjugate as an anti-osteoporotic agent. The conjugate was prepared and characterized by FTIR and found notable interactions between chitosan and quercetin. Treating mouse MSCs with the bioconjugate in osteogenic conditions for a week led to elevated expression of differentiation markers Runx2, ALP, and Col-I, as determined by real-time PCR analysis. Evaluation at the cellular level using alizarin red staining demonstrated enhanced calcium deposition in MSCs following treatment with the bioconjugate. Likewise, ELISA analysis showed significantly elevated levels of secretory osteocalcin and osteonectin in groups treated with the conjugate. To broaden our comprehension, we utilized a zebrafish-based in vivo model of dexamethasone-induced osteoporosis to investigate bone regeneration. Toxicity profiling with zebrafish larvae confirmed the bio-conjugate's compatibility at a concentration of 25 μg/ml, underscoring the significance of finding the right dosage. Furthermore, in zebrafish models of osteoporosis, the bio-conjugate demonstrated significant potential for bone regeneration, as indicated by improved bone calcification, callus formation, and overall bone healing in a tail fin fracture model. Additionally, the study revealed that the bio-conjugate inhibited osteoclastic activity, leading to reduced TRAP activity and hydroxyproline release, suggesting its effectiveness in mitigating bone resorption. In conclusion, our research provides compelling evidence for the osteogenic capabilities of the chitosan-quercetin bio-conjugate, highlighting its promising applications in regenerative medicine and the treatment of conditions like osteoporosis.
Collapse
Affiliation(s)
- Yi Li
- Department of Joint Surgery and Sports Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Vimalraj Selvaraj
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology-Madras, Chennai - 600 036, Tamil Nadu, India; Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600 077, Tamil Nadu, India.
| | - Sekaran Saravanan
- Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600 077, Tamil Nadu, India.
| | - Shahabe Saquib Abullais
- Department of Periodontics and Community Dental Science, King Khalid University, College of Dentistry, Abha, Saudi Arabia
| | - Varsha Wankhade
- Department of Zoology, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
3
|
Tan WH, Winkler C. Lineage Tracing of Bone Cells in the Regenerating Fin and During Repair of Bone Lesions. Methods Mol Biol 2024; 2707:99-110. [PMID: 37668907 DOI: 10.1007/978-1-0716-3401-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Small teleost fishes such as zebrafish and medaka show remarkable regeneration capabilities upon tissue injury or amputation. To elucidate cellular mechanisms of teleost tissue repair and regeneration processes, the Cre/LoxP recombination system for cell lineage tracing is a widely used technique. In this chapter, we describe protocols used for inducible Cre/LoxP recombination-mediated lineage tracing of osteoblast progenitors during medaka fin regeneration as well as during the repair of osteoporosis-like bone lesions in the medaka vertebral column. Our approach can be adapted for lineage tracing of other cell populations in the regenerating teleost fin or in other tissues undergoing repair.
Collapse
Affiliation(s)
- Wen Hui Tan
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
| | - Christoph Winkler
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
4
|
Gao W, Zhang Y, Zhang Y, Yuan Z, Chen K, Xie W, Li D, Zhang J, Zhang L. Nondestructive and high-resolution monitoring of inflammation-type skull defects regeneration on adult zebrafish with optical coherence tomography. JOURNAL OF BIOPHOTONICS 2024; 17:e202300268. [PMID: 37710141 DOI: 10.1002/jbio.202300268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/16/2023]
Abstract
Optimized animal models and effective imaging techniques are exceedingly important to study cranial defects in bone loss due to chronic inflammation. In this study, the assessment procedure on a zebrafish inflammation-type skull defects model was monitored in vivo with spectral-domain optical coherence tomography (SD-OCT), and the efficacy of etidronate disodium in bone regeneration was assessed. An acute skull defect injury model was established in adult zebrafish using a stereotaxic craniotomy device. SD-OCT imaging was performed immediately following the mechanical injury. Both SD-OCT and immunohistochemistry results demonstrated an increase in inflammation-induced skull destruction within 5 days, which was confirmed by pathological experiments.
Collapse
Affiliation(s)
- Weijian Gao
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yiqing Zhang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yuanhan Zhang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zishan Yuan
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Keer Chen
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Weilin Xie
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Dan Li
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jian Zhang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lan Zhang
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Rees L, König D, Jaźwińska A. Regeneration of the dermal skeleton and wound epidermis formation depend on BMP signaling in the caudal fin of platyfish. Front Cell Dev Biol 2023; 11:1134451. [PMID: 36846592 PMCID: PMC9946992 DOI: 10.3389/fcell.2023.1134451] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
Fin regeneration has been extensively studied in zebrafish, a genetic model organism. Little is known about regulators of this process in distant fish taxa, such as the Poeciliidae family, represented by the platyfish. Here, we used this species to investigate the plasticity of ray branching morphogenesis following either straight amputation or excision of ray triplets. This approach revealed that ray branching can be conditionally shifted to a more distal position, suggesting non-autonomous regulation of bone patterning. To gain molecular insights into regeneration of fin-specific dermal skeleton elements, actinotrichia and lepidotrichia, we localized expression of the actinodin genes and bmp2 in the regenerative outgrowth. Blocking of the BMP type-I receptor suppressed phospho-Smad1/5 immunoreactivity, and impaired fin regeneration after blastema formation. The resulting phenotype was characterized by the absence of bone and actinotrichia restoration. In addition, the wound epidermis displayed extensive thickening. This malformation was associated with expanded Tp63 expression from the basal epithelium towards more superficial layers, suggesting abnormal tissue differentiation. Our data add to the increasing evidence for the integrative role of BMP signaling in epidermal and skeletal tissue formation during fin regeneration. This expands our understanding of common mechanisms guiding appendage restoration in diverse clades of teleosts.
Collapse
Affiliation(s)
- Lana Rees
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Désirée König
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | |
Collapse
|
6
|
Lin WY, Dharini KK, Peng CH, Lin CY, Yeh KT, Lee WC, Lin MD. Zebrafish models for glucocorticoid-induced osteoporosis. Tzu Chi Med J 2022; 34:373-380. [PMID: 36578638 PMCID: PMC9791848 DOI: 10.4103/tcmj.tcmj_80_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/10/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022] Open
Abstract
Glucocorticoid-induced osteoporosis (GIOP) is the most common form of secondary osteoporosis due to excessive or long-term glucocorticoid administration, disturbing the homeostasis between bone formation and bone resorption. The bone biology of zebrafish shares a high degree of similarities with mammals. In terms of molecular level, genes and signaling pathways related to skeletogenesis are also highly correlated between zebrafish and humans. Therefore, zebrafish have been utilized to develop multiple GIOP models. Taking advantage of the transparency of zebrafish larvae, their skeletal development and bone mineralization can be readily visualized through in vivo staining without invasive experimental handlings. Moreover, the feasibility of using scales or fin rays to study bone remodeling makes adult zebrafish an ideal model for GIOP research. Here, we reviewed current zebrafish models for GIOP research, focused on the tools and methods established for examining bone homeostasis. As an in vivo, convenient, and robust model, zebrafish have an advantage in performing high-throughput drug screening and could be used to investigate the action mechanisms of therapeutic drugs.
Collapse
Affiliation(s)
- Wen-Ying Lin
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | | | - Cheng-Huan Peng
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan,Institute of Medical Science, Tzu Chi University, Hualien, Taiwan,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chung-Yen Lin
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - Kuang-Ting Yeh
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wen-Chih Lee
- Research Center for Global SDGs Challenges, Office of Research and Development, Tzu Chi University, Hualien, Taiwan,Address for correspondence: Dr. Wen-Chih Lee, Research Center for Global SDGs Challenges, Office of Research and Development, Tzu Chi University, 701, Zhongyang Road, Section 3, Hualien, Taiwan. E-mail:
Prof. Ming-Der Lin, Department of Molecular Biology and Human Genetics, Tzu Chi University, 701, Zhongyang Road, Section 3, Hualien, Taiwan. E-mail:
| | - Ming-Der Lin
- Institute of Medical Science, Tzu Chi University, Hualien, Taiwan,Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan,Address for correspondence: Dr. Wen-Chih Lee, Research Center for Global SDGs Challenges, Office of Research and Development, Tzu Chi University, 701, Zhongyang Road, Section 3, Hualien, Taiwan. E-mail:
Prof. Ming-Der Lin, Department of Molecular Biology and Human Genetics, Tzu Chi University, 701, Zhongyang Road, Section 3, Hualien, Taiwan. E-mail:
| |
Collapse
|
7
|
Rosa JT, Tarasco M, Gavaia PJ, Cancela ML, Laizé V. Screening of Mineralogenic and Osteogenic Compounds in Zebrafish—Tools to Improve Assay Throughput and Data Accuracy. Pharmaceuticals (Basel) 2022; 15:ph15080983. [PMID: 36015130 PMCID: PMC9412667 DOI: 10.3390/ph15080983] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/24/2022] [Accepted: 08/03/2022] [Indexed: 12/16/2022] Open
Abstract
Bone disorders affect millions of people worldwide and treatments currently available often produce undesirable secondary effects or have limited efficacy. It is therefore of the utmost interest for patients to develop more efficient drugs with reduced off-target activities. In the long process of drug development, screening and preclinical validation have recently gained momentum with the increased use of zebrafish as a model organism to study pathological processes related to human bone disorders, and the development of zebrafish high-throughput screening assays to identify bone anabolic compounds. In this review, we provided a comprehensive overview of the literature on zebrafish bone-related assays and evaluated their performance towards an integration into screening pipelines for the discovery of mineralogenic/osteogenic compounds. Tools available to standardize fish housing and feeding procedures, synchronize embryo production, and automatize specimen sorting and image acquisition/analysis toward faster and more accurate screening outputs were also presented.
Collapse
Affiliation(s)
- Joana T. Rosa
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
- S2AQUA—Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, 8700-194 Olhão, Portugal
| | - Marco Tarasco
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Paulo J. Gavaia
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, 8005-139 Faro, Portugal
- GreenColab—Associação Oceano Verde, University of Algarve, 8005-139 Faro, Portugal
| | - M. Leonor Cancela
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, 8005-139 Faro, Portugal
- Algarve Biomedical Center, University of Algarve, 8005-139 Faro, Portugal
| | - Vincent Laizé
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
- S2AQUA—Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, 8700-194 Olhão, Portugal
- Correspondence:
| |
Collapse
|
8
|
Johanson Z, Liston J, Davesne D, Challands T, Meredith Smith M. Mechanisms of dermal bone repair after predatory attack in the giant stem-group teleost Leedsichthys problematicus Woodward, 1889a (Pachycormiformes). J Anat 2022; 241:393-406. [PMID: 35588137 PMCID: PMC9296021 DOI: 10.1111/joa.13689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/28/2022] Open
Abstract
Leedsichthys problematicus is a suspension-feeding member of the Mesozoic clade Pachycormiformes (stem-group Teleostei), and the largest known ray-finned fish (Actinopterygii). As in some larger fish, the skeleton is poorly ossified, but the caudal fin (tail) is well-preserved. Bony calluses have been found here, on the dermal fin rays, and when sectioned, show evidence of bone repair in response to damage. As part of this repair, distinctive tissue changes are observed, including the deposition of woven bone onto broken bone fragments and the surface of the lepidotrichium, after resorption of the edges of these fragments and the lepidotrichial surface itself. Within the woven bone are many clear elongate spaces, consistent with their interpretation as bundles of unmineralized collagen (Sharpey's fibres). These normally provide attachment within dermal bones, and here attach new bone to old, particularly to resorbed surfaces, identified by scalloped reversal lines. Haversian systems are retained in the old bone, from which vasculature initially invaded the callus, hence bringing stem cells committed to forming bone onto the surfaces of the damaged area. These observations provide strong evidence of a vital response through survival of a predatory attack by a large marine reptile, coeval with Leedsichthys in the Jurassic seas.
Collapse
Affiliation(s)
| | - Jeff Liston
- Royal Tyrrell Museum of PaleontologyDrumhellerCanada
- Fachruppe Paläoumwelt, GeoZentrum NordbayernFriedrich‐Alexander Universität Erlangen‐NürnbergErlangenGermany
- Palaeobiology Section, Department of Natural SciencesNational Museums ScotlandEdinburghUK
| | - Donald Davesne
- Museum für NaturkundeLeibniz‐Institut für Evolutions‐ und BiodiversitätsforschungBerlinGermany
| | - Tom Challands
- School of GeosciencesUniversity of EdinburghEdinburghUK
| | - Moya Meredith Smith
- Natural History MuseumLondonUK
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonUK
| |
Collapse
|
9
|
Bergen DJM, Tong Q, Shukla A, Newham E, Zethof J, Lundberg M, Ryan R, Youlten SE, Frysz M, Croucher PI, Flik G, Richardson RJ, Kemp JP, Hammond CL, Metz JR. Regenerating zebrafish scales express a subset of evolutionary conserved genes involved in human skeletal disease. BMC Biol 2022; 20:21. [PMID: 35057801 PMCID: PMC8780716 DOI: 10.1186/s12915-021-01209-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/07/2021] [Indexed: 12/23/2022] Open
Abstract
Background Scales are mineralised exoskeletal structures that are part of the dermal skeleton. Scales have been mostly lost during evolution of terrestrial vertebrates whilst bony fish have retained a mineralised dermal skeleton in the form of fin rays and scales. Each scale is a mineralised collagen plate that is decorated with both matrix-building and resorbing cells. When removed, an ontogenetic scale is quickly replaced following differentiation of the scale pocket-lining cells that regenerate a scale. Processes promoting de novo matrix formation and mineralisation initiated during scale regeneration are poorly understood. Therefore, we performed transcriptomic analysis to determine gene networks and their pathways involved in dermal scale regeneration. Results We defined the transcriptomic profiles of ontogenetic and regenerating scales of zebrafish and identified 604 differentially expressed genes (DEGs). These were enriched for extracellular matrix, ossification, and cell adhesion pathways, but not in enamel or dentin formation processes indicating that scales are reminiscent to bone. Hypergeometric tests involving monogenetic skeletal disorders showed that DEGs were strongly enriched for human orthologues that are mutated in low bone mass and abnormal bone mineralisation diseases (P< 2× 10−3). The DEGs were also enriched for human orthologues associated with polygenetic skeletal traits, including height (P< 6× 10−4), and estimated bone mineral density (eBMD, P< 2× 10−5). Zebrafish mutants of two human orthologues that were robustly associated with height (COL11A2, P=6× 10−24) or eBMD (SPP1, P=6× 10−20) showed both exo- and endo- skeletal abnormalities as predicted by our genetic association analyses; col11a2Y228X/Y228X mutants showed exoskeletal and endoskeletal features consistent with abnormal growth, whereas spp1P160X/P160X mutants predominantly showed mineralisation defects. Conclusion We show that scales have a strong osteogenic expression profile comparable to other elements of the dermal skeleton, enriched in genes that favour collagen matrix growth. Despite the many differences between scale and endoskeletal developmental processes, we also show that zebrafish scales express an evolutionarily conserved sub-population of genes that are relevant to human skeletal disease. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01209-8.
Collapse
|
10
|
Foessl I, Bassett JHD, Bjørnerem Å, Busse B, Calado Â, Chavassieux P, Christou M, Douni E, Fiedler IAK, Fonseca JE, Hassler E, Högler W, Kague E, Karasik D, Khashayar P, Langdahl BL, Leitch VD, Lopes P, Markozannes G, McGuigan FEA, Medina-Gomez C, Ntzani E, Oei L, Ohlsson C, Szulc P, Tobias JH, Trajanoska K, Tuzun Ş, Valjevac A, van Rietbergen B, Williams GR, Zekic T, Rivadeneira F, Obermayer-Pietsch B. Bone Phenotyping Approaches in Human, Mice and Zebrafish - Expert Overview of the EU Cost Action GEMSTONE ("GEnomics of MusculoSkeletal traits TranslatiOnal NEtwork"). Front Endocrinol (Lausanne) 2021; 12:720728. [PMID: 34925226 PMCID: PMC8672201 DOI: 10.3389/fendo.2021.720728] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/21/2021] [Indexed: 12/16/2022] Open
Abstract
A synoptic overview of scientific methods applied in bone and associated research fields across species has yet to be published. Experts from the EU Cost Action GEMSTONE ("GEnomics of MusculoSkeletal Traits translational Network") Working Group 2 present an overview of the routine techniques as well as clinical and research approaches employed to characterize bone phenotypes in humans and selected animal models (mice and zebrafish) of health and disease. The goal is consolidation of knowledge and a map for future research. This expert paper provides a comprehensive overview of state-of-the-art technologies to investigate bone properties in humans and animals - including their strengths and weaknesses. New research methodologies are outlined and future strategies are discussed to combine phenotypic with rapidly developing -omics data in order to advance musculoskeletal research and move towards "personalised medicine".
Collapse
Affiliation(s)
- Ines Foessl
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Endocrine Lab Platform, Medical University of Graz, Graz, Austria
| | - J. H. Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Åshild Bjørnerem
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- Norwegian Research Centre for Women’s Health, Oslo University Hospital, Oslo, Norway
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Ângelo Calado
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisboa, Portugal
| | | | - Maria Christou
- Department of Hygiene and Epidemiology, Medical School, University of Ioannina, Ioannina, Greece
| | - Eleni Douni
- Institute for Bioinnovation, Biomedical Sciences Research Center “Alexander Fleming”, Vari, Greece
- Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Imke A. K. Fiedler
- Department of Osteology and Biomechanics, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - João Eurico Fonseca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisboa, Portugal
- Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisbon Academic Medical Centre, Lisbon, Portugal
| | - Eva Hassler
- Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University Graz, Graz, Austria
| | - Wolfgang Högler
- Department of Paediatrics and Adolescent Medicine, Johannes Kepler University Linz, Linz, Austria
| | - Erika Kague
- The School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, United Kingdom
| | - David Karasik
- Azrieli Faculty of Medicine, Bar-Ilan University, Ramat Gan, Israel
| | - Patricia Khashayar
- Center for Microsystems Technology, Imec and Ghent University, Ghent, Belgium
| | - Bente L. Langdahl
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Victoria D. Leitch
- Innovative Manufacturing Cooperative Research Centre, Royal Melbourne Institute of Technology, School of Engineering, Carlton, VIC, Australia
| | - Philippe Lopes
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Georgios Markozannes
- Department of Hygiene and Epidemiology, Medical School, University of Ioannina, Ioannina, Greece
| | | | | | - Evangelia Ntzani
- Department of Hygiene and Epidemiology, Medical School, University of Ioannina, Ioannina, Greece
- Department of Health Services, Policy and Practice, Center for Research Synthesis in Health, School of Public Health, Brown University, Providence, RI, United States
| | - Ling Oei
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Drug Treatment, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Pawel Szulc
- INSERM UMR 1033, University of Lyon, Lyon, France
| | - Jonathan H. Tobias
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- MRC Integrative Epidemiology Unit, Bristol Medical School, Bristol, University of Bristol, Bristol, United Kingdom
| | - Katerina Trajanoska
- Department of Internal Medicine, Erasmus MC Rotterdam, Rotterdam, Netherlands
| | - Şansın Tuzun
- Physical Medicine & Rehabilitation Department, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Amina Valjevac
- Department of Human Physiology, School of Medicine, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Bert van Rietbergen
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Graham R. Williams
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Tatjana Zekic
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, Clinical Hospital Center Rijeka, Rijeka, Croatia
| | | | - Barbara Obermayer-Pietsch
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Endocrine Lab Platform, Medical University of Graz, Graz, Austria
| |
Collapse
|
11
|
Regenerative Polarity of the Fin Ray in Zebrafish Caudal Fin and Related Tissue Formation on the Cut Surface. J Dev Biol 2021; 9:jdb9040050. [PMID: 34842743 PMCID: PMC8629015 DOI: 10.3390/jdb9040050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 01/23/2023] Open
Abstract
Zebrafish caudal fin rays are used as a model system for regeneration because of their high regenerative ability, but studies on the regeneration polarity of the fin ray are limited. To investigate this regeneration polarity, we made a hole to excise part of the fin ray and analyzed the regeneration process. We confirmed that the fin rays always regenerated from the proximal margin toward the distal margin, as previously reported; however, regeneration-related genes were expressed at both the proximal and distal edges of the hole in the early stage of regeneration, suggesting that the regenerative response also occurs at the distal edge. One difference between the proximal and distal margins is a sheet-like tissue that is formed on the apical side of the regenerated tissue at the proximal margin. This sheet-like tissue was not observed at the distal edge. To investigate whether the distal margin was also capable of forming this sheet-like tissue and subsequent regeneration, we kept the distal margin separated from the proximal margin by manipulation. Consequently, the sheet-like tissue was formed at the distal margin and regeneration of the fin ray was also induced. The regenerated fin rays from the distal margin protruded laterally from the caudal fin and then bent distally, and their ends showed the same characteristics as those of the normal fin rays. These results suggest that fin rays have an ability to regenerate in both directions; however, under normal conditions, regeneration is restricted to the proximal margin because the sheet-like tissue is preferentially formed on the apical side of the regenerating tissue from the proximal margin.
Collapse
|
12
|
Kaliya-Perumal AK, Ingham PW. Musculoskeletal regeneration: A zebrafish perspective. Biochimie 2021; 196:171-181. [PMID: 34715269 DOI: 10.1016/j.biochi.2021.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/17/2021] [Accepted: 10/22/2021] [Indexed: 12/18/2022]
Abstract
Musculoskeletal injuries are common in humans. The cascade of cellular and molecular events following such injuries results either in healing with functional recovery or scar formation. While fibrotic scar tissue serves to bridge between injured planes, it undermines functional integrity. Hence, faithful regeneration is the most desired outcome; however, the potential to regenerate is limited in humans. In contrast, various non-mammalian vertebrates have fascinating capabilities of regenerating even an entire appendage following amputation. Among them, zebrafish is an important and accessible laboratory model organism, sharing striking similarities with mammalian embryonic musculoskeletal development. Moreover, clinically relevant muscle and skeletal injury zebrafish models recapitulate mammalian regeneration. Upon muscle injury, quiescent stem cells - known as satellite cells - become activated, proliferate, differentiate and fuse to form new myofibres, while bone fracture results in a phased response involving hematoma formation, inflammation, fibrocartilaginous callus formation, bony callus formation and remodelling. These models are well suited to testing gene- or pharmaco-therapy for the benefit of conditions like muscle tears and fractures. Insights from further studies on whole body part regeneration, a hallmark of the zebrafish model, have the potential to complement regenerative strategies to achieve faster and desired healing following injuries without any scar formation and, in the longer run, drive progress towards the realisation of large-scale regeneration in mammals. Here, we provide an overview of the basic mechanisms of musculoskeletal regeneration, highlight the key features of zebrafish as a regenerative model and outline the relevant studies that have contributed to the advancement of this field.
Collapse
Affiliation(s)
- Arun-Kumar Kaliya-Perumal
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore.
| | - Philip W Ingham
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore.
| |
Collapse
|
13
|
Bohaud C, Johansen MD, Jorgensen C, Ipseiz N, Kremer L, Djouad F. The Role of Macrophages During Zebrafish Injury and Tissue Regeneration Under Infectious and Non-Infectious Conditions. Front Immunol 2021; 12:707824. [PMID: 34367168 PMCID: PMC8334857 DOI: 10.3389/fimmu.2021.707824] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/02/2021] [Indexed: 12/20/2022] Open
Abstract
The future of regenerative medicine relies on our understanding of the mechanistic processes that underlie tissue regeneration, highlighting the need for suitable animal models. For many years, zebrafish has been exploited as an adequate model in the field due to their very high regenerative capabilities. In this organism, regeneration of several tissues, including the caudal fin, is dependent on a robust epimorphic regenerative process, typified by the formation of a blastema, consisting of highly proliferative cells that can regenerate and completely grow the lost limb within a few days. Recent studies have also emphasized the crucial role of distinct macrophage subpopulations in tissue regeneration, contributing to the early phases of inflammation and promoting tissue repair and regeneration in late stages once inflammation is resolved. However, while most studies were conducted under non-infectious conditions, this situation does not necessarily reflect all the complexities of the interactions associated with injury often involving entry of pathogenic microorganisms. There is emerging evidence that the presence of infectious pathogens can largely influence and modulate the host immune response and the regenerative processes, which is sometimes more representative of the true complexities underlying regenerative mechanics. Herein, we present the current knowledge regarding the paths involved in the repair of non-infected and infected wounds using the zebrafish model.
Collapse
Affiliation(s)
| | - Matt D Johansen
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France.,Centre for Inflammation, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Christian Jorgensen
- IRMB, Univ Montpellier, INSERM, Montpellier, France.,Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Department of Rheumatology, CHU, Montpellier, France
| | - Natacha Ipseiz
- Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France.,IRIM, INSERM, Montpellier, France
| | | |
Collapse
|
14
|
Rosa JT, Laizé V, Gavaia PJ, Cancela ML. Fish Models of Induced Osteoporosis. Front Cell Dev Biol 2021; 9:672424. [PMID: 34179000 PMCID: PMC8222987 DOI: 10.3389/fcell.2021.672424] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/28/2021] [Indexed: 12/13/2022] Open
Abstract
Osteopenia and osteoporosis are bone disorders characterized by reduced bone mineral density (BMD), altered bone microarchitecture and increased bone fragility. Because of global aging, their incidence is rapidly increasing worldwide and novel treatments that would be more efficient at preventing disease progression and at reducing the risk of bone fractures are needed. Preclinical studies are today a major bottleneck to the collection of new data and the discovery of new drugs, since they are commonly based on rodent in vivo systems that are time consuming and expensive, or in vitro systems that do not exactly recapitulate the complexity of low BMD disorders. In this regard, teleost fish, in particular zebrafish and medaka, have recently emerged as suitable alternatives to study bone formation and mineralization and to model human bone disorders. In addition to the many technical advantages that allow faster and larger studies, the availability of several fish models that efficiently mimic human osteopenia and osteoporosis phenotypes has stimulated the interest of the academia and industry toward a better understanding of the mechanisms of pathogenesis but also toward the discovery of new bone anabolic or antiresorptive compounds. This mini review recapitulates the in vivo teleost fish systems available to study low BMD disorders and highlights their applications and the recent advances in the field.
Collapse
Affiliation(s)
- Joana T Rosa
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Vincent Laizé
- Centre of Marine Sciences, University of Algarve, Faro, Portugal.,S2 AQUA - Sustainable and Smart Aquaculture Collaborative Laboratory, Olhão, Portugal
| | - Paulo J Gavaia
- Centre of Marine Sciences, University of Algarve, Faro, Portugal.,GreenCoLab - Associação Oceano Verde, Faro, Portugal.,Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - M Leonor Cancela
- Centre of Marine Sciences, University of Algarve, Faro, Portugal.,Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal.,Algarve Biomedical Center, University of Algarve, Faro, Portugal
| |
Collapse
|
15
|
Peng W, Zhang W, Wu Q, Cai S, Jia T, Sun J, Lin Z, Alitongbieke G, Chen Y, Su Y, Lin J, Cai L, Sun Y, Pan Y, Xue Y. Agaricus bisporus-Derived Glucosamine Hydrochloride Facilitates Skeletal Injury Repair through Bmp Signaling in Zebrafish Osteoporosis Model. JOURNAL OF NATURAL PRODUCTS 2021; 84:1294-1305. [PMID: 33635072 DOI: 10.1021/acs.jnatprod.1c00002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Glucosamine hydrochloride (GAH), one of the most basic and important derivatives of chitin, is obtained by hydrolysis of chitin in concentrated hydrochloric acid. At present, little is known about how GAH functions in skeletal development. In this report, we demonstrate that GAH, extracted from the cell wall of Agaricus bisporus, acts in a dose-dependent manner to promote not only cartilage and bone development in larvae but also caudal fin regeneration in adult fish. Furthermore, GAH treatment causes a significant increase in expression of bone-related marker genes, indicating its important role in promoting skeletal development. We show that in both larval and adult osteoporosis models induced by high iron osteogenic defects are significantly ameliorated after treatment with GAH, which regulates expression of a series of bone-related genes. Finally, we demonstrate that GAH promotes skeletal development and injury repair through bone morphogenetic protein (Bmp) signaling, and it works at the downstream of the receptor level. Taken together, our findings not only provide a strong research foundation and strategy for the screening of natural osteoporosis drugs and product development using a zebrafish model but also establish the potential for the development of Agaricus bisporus-derived GAH as a new drug for osteoporosis treatment.
Collapse
Affiliation(s)
- Wei Peng
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou, Fujian 363000, China
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou, Fujian 363000, China
| | - Wenjuan Zhang
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou, Fujian 363000, China
- Anhui Zhifei Longcom Biopharmaceutical Co., Ltd., Hefei, Anhui 230088, China
| | - Qici Wu
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou, Fujian 363000, China
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou, Fujian 363000, China
| | - Shunyou Cai
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry, Chemical Engineering, and Environment, Minnan Normal University, Zhangzhou, Fujian 363000, China
| | - Tingting Jia
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou, Fujian 363000, China
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou, Fujian 363000, China
| | - Jiarui Sun
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou, Fujian 363000, China
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou, Fujian 363000, China
| | - Zhichao Lin
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou, Fujian 363000, China
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou, Fujian 363000, China
| | - Gulimiran Alitongbieke
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou, Fujian 363000, China
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou, Fujian 363000, China
| | - Yixuan Chen
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou, Fujian 363000, China
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou, Fujian 363000, China
| | - Yi Su
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou, Fujian 363000, China
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou, Fujian 363000, China
| | - Jinmei Lin
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou, Fujian 363000, China
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou, Fujian 363000, China
| | - Lisheng Cai
- Zhangzhou Municipal Hospital, Zhangzhou, Fujian 363000, China
| | - Yuqin Sun
- Zhangzhou Municipal Hospital, Zhangzhou, Fujian 363000, China
| | - Yutian Pan
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou, Fujian 363000, China
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou, Fujian 363000, China
| | - Yu Xue
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou, Fujian 363000, China
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou, Fujian 363000, China
| |
Collapse
|
16
|
Khajuria DK, Karasik D. Novel model of restricted mobility induced osteopenia in zebrafish. JOURNAL OF FISH BIOLOGY 2021; 98:1031-1038. [PMID: 32383168 DOI: 10.1111/jfb.14369] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 03/31/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Immobilization, such as prolonged bed rest, is a risk factor for bone loss in humans. Motivated by the emerging utility of zebrafish (Danio rerio) as an animal of choice for the study of musculoskeletal disease, here we report a model of restricted mobility induced osteopenia in adult zebrafish. Aquatic tanks with small cubical compartments to restrict the movement and locomotion of single fish were designed and fabricated for this study. Adult zebrafish were divided into two groups: a normal control (CONT) and a restricted mobility group (RMG) (18 fish/group). Six fish from each group were euthanized on days 14, 21 and 35 of the movement restriction. By using microcomputed tomography (micro-CT), we assessed bone volume/tissue volume (BV/TV) and bone density in the whole skeleton of the fish. Furthermore, we assessed skeletal shape in the vertebrae (radius, length, volume, neural and haemal arch aperture areas, neural and haemal arch angle, and thickness of the intervertebral space), single vertebra bone volume and bone density. Movement restriction significantly decreased vertebral skeletal parameters such as radius, length, volume, arch aperture areas and angles as well as the thickness of the intervertebral space in RMG. Furthermore, restricted mobility significantly (P < 0.001) decreased BV/TV and bone density as compared to the CONT group, starting as early as 14 days. By analysing zebrafish from CONT and RMG, we show that micro-CT imaging is a sensitive method to quantify distinct skeletal properties in zebrafish. We further defined the micro-CT parameters which can be used to examine the effects of restricted mobility on the skeleton of the fish. Our findings propose a rapid and effective osteopenia "stabulation" model, which could be used widely for osteoporosis drug screening.
Collapse
Affiliation(s)
- Deepak Kumar Khajuria
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Department of Orthopaedics and Rehabilitation, Penn State University, College of Medicine, Hershey, Pennsylvania, USA
| | - David Karasik
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
17
|
Nakajima H, Chiba A, Fukumoto M, Morooka N, Mochizuki N. Zebrafish Vascular Development: General and Tissue-Specific Regulation. J Lipid Atheroscler 2021; 10:145-159. [PMID: 34095009 PMCID: PMC8159758 DOI: 10.12997/jla.2021.10.2.145] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/07/2021] [Accepted: 01/29/2021] [Indexed: 01/03/2023] Open
Abstract
Circulation is required for the delivery of oxygen and nutrition to tissues and organs, as well as waste collection. Therefore, the heart and vessels develop first during embryogenesis. The circulatory system consists of the heart, blood vessels, and blood cells, which originate from the mesoderm. The gene expression pattern required for blood vessel development is predetermined by the hierarchical and sequential regulation of genes for the differentiation of mesodermal cells. Herein, we review how blood vessels form distinctly in different tissues or organs of zebrafish and how vessel formation is universally or tissue-specifically regulated by signal transduction pathways and blood flow. In addition, the unsolved issues of mutual contacts and interplay of circulatory organs during embryogenesis are discussed.
Collapse
Affiliation(s)
- Hiroyuki Nakajima
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Ayano Chiba
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Moe Fukumoto
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Nanami Morooka
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| |
Collapse
|
18
|
Dietrich K, Fiedler IA, Kurzyukova A, López-Delgado AC, McGowan LM, Geurtzen K, Hammond CL, Busse B, Knopf F. Skeletal Biology and Disease Modeling in Zebrafish. J Bone Miner Res 2021; 36:436-458. [PMID: 33484578 DOI: 10.1002/jbmr.4256] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022]
Abstract
Zebrafish are teleosts (bony fish) that share with mammals a common ancestor belonging to the phylum Osteichthyes, from which their endoskeletal systems have been inherited. Indeed, teleosts and mammals have numerous genetically conserved features in terms of skeletal elements, ossification mechanisms, and bone matrix components in common. Yet differences related to bone morphology and function need to be considered when investigating zebrafish in skeletal research. In this review, we focus on zebrafish skeletal architecture with emphasis on the morphology of the vertebral column and associated anatomical structures. We provide an overview of the different ossification types and osseous cells in zebrafish and describe bone matrix composition at the microscopic tissue level with a focus on assessing mineralization. Processes of bone formation also strongly depend on loading in zebrafish, as we elaborate here. Furthermore, we illustrate the high regenerative capacity of zebrafish bones and present some of the technological advantages of using zebrafish as a model. We highlight zebrafish axial and fin skeleton patterning mechanisms, metabolic bone disease such as after immunosuppressive glucocorticoid treatment, as well as osteogenesis imperfecta (OI) and osteopetrosis research in zebrafish. We conclude with a view of why larval zebrafish xenografts are a powerful tool to study bone metastasis. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Kristin Dietrich
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Healthy Aging TU Dresden, Dresden, Germany
| | - Imke Ak Fiedler
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anastasia Kurzyukova
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Healthy Aging TU Dresden, Dresden, Germany
| | - Alejandra C López-Delgado
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Healthy Aging TU Dresden, Dresden, Germany
| | - Lucy M McGowan
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Karina Geurtzen
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Healthy Aging TU Dresden, Dresden, Germany
| | - Chrissy L Hammond
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Interdisciplinary Competence Center for Interface Research (ICCIR), Hamburg, Germany
| | - Franziska Knopf
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Healthy Aging TU Dresden, Dresden, Germany
| |
Collapse
|
19
|
Vimalraj S, Yuvashree R, Hariprabu G, Subramanian R, Murali P, Veeraiyan DN, Thangavelu L. Zebrafish as a potential biomaterial testing platform for bone tissue engineering application: A special note on chitosan based bioactive materials. Int J Biol Macromol 2021; 175:379-395. [PMID: 33556401 DOI: 10.1016/j.ijbiomac.2021.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022]
Abstract
Biomaterials function as an essential aspect of tissue engineering and have a profound impact on cell growth and subsequent tissue regeneration. The development of new biomaterials requires a potential platform to understand the host-biomaterial interaction, which is crucial for successful biomaterial implantation. Biomaterials analyzed in rodent models for in vivo research are cost-effective but tedious, and the practice has many technical difficulties. As an alternative, zebrafish provide an excellent biomaterial testing platform over the current rodent models. During growth and recovery, zebrafish bone morphogenesis shows a variety of inductive signals involved in the cycle that are close to those influencing differentiation of bone and cartilage in mammals, including humans. This platform is cheap, optically transparent, quick to change genes, and provides reliable reproducibility on short life cycles. Chitosan is a well-known biomaterial in the field of tissue engineering. In view of its documented use in bone regeneration, the biological characterization of chitosan-based bioactive materials in the zebrafish model has been featured in an outstanding note. We, therefore, outlined this review of the zebrafish as a potential in vivo research model for the rapid characterization of the biological properties of new biomaterials for bone tissue engineering applications.
Collapse
Affiliation(s)
- Selvaraj Vimalraj
- Centre for Biotechnology, Anna University, Chennai 600 025, Tamil Nadu, India; Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600 077, Tamil Nadu, India.
| | | | - Gopal Hariprabu
- Centre for Biotechnology, Anna University, Chennai 600 025, Tamil Nadu, India
| | - Raghunandhakumar Subramanian
- Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600 077, Tamil Nadu, India
| | - Palraju Murali
- Department of Zoology, N.M.S.S. Vellaichamy Nadar College, Nagamalai, Madurai, Tamil Nadu, India
| | - Deepak Nallaswamy Veeraiyan
- Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600 077, Tamil Nadu, India
| | - Lakshmi Thangavelu
- Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600 077, Tamil Nadu, India
| |
Collapse
|
20
|
Moss JJ, Hammond CL, Lane JD. Zebrafish as a model to study autophagy and its role in skeletal development and disease. Histochem Cell Biol 2020; 154:549-564. [PMID: 32915267 PMCID: PMC7609422 DOI: 10.1007/s00418-020-01917-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2020] [Indexed: 12/13/2022]
Abstract
In the last twenty years, research using zebrafish as a model organism has increased immensely. With the many advantages that zebrafish offer such as high fecundity, optical transparency, ex vivo development, and genetic tractability, they are well suited to studying developmental processes and the effect of genetic mutations. More recently, zebrafish models have been used to study autophagy. This important protein degradation pathway is needed for cell and tissue homeostasis in a variety of contexts. Correspondingly, its dysregulation has been implicated in multiple diseases including skeletal disorders. In this review, we explore how zebrafish are being used to study autophagy in the context of skeletal development and disease, and the ways these areas are intersecting to help identify potential therapeutic targets for skeletal disorders.
Collapse
Affiliation(s)
- Joanna J Moss
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol, UK.,School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, UK
| | - Chrissy L Hammond
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, UK.
| | - Jon D Lane
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol, UK.
| |
Collapse
|
21
|
Wang Y, Ping L, Luan X, Chen Y, Fan X, Li L, Liu Y, Wang P, Zhang S, Zhang B, Chen X. A Mutation in VWA1, Encoding von Willebrand Factor A Domain-Containing Protein 1, Is Associated With Hemifacial Microsomia. Front Cell Dev Biol 2020; 8:571004. [PMID: 33015062 PMCID: PMC7509151 DOI: 10.3389/fcell.2020.571004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/19/2020] [Indexed: 12/31/2022] Open
Abstract
Background Hemifacial microsomia (HFM) is a type of rare congenital syndrome caused by developmental disorders of the first and second pharyngeal arches that occurs in one out of 5,600 live births. There are significant gaps in our knowledge of the pathogenic genes underlying this syndrome. Methods Whole exome sequencing (WES) was performed on five patients, one asymptomatic carrier, and two marry-in members of a five-generation pedigree. Structure of WARP (product of VWA1) was predicted using the Phyre2 web portal. In situ hybridization and vwa1-knockdown/knockout studies in zebrafish using morpholino and CRISPR/Cas9 techniques were performed. Cartilage staining and immunofluorescence were carried out. Results Through WES and a set of filtration, we identified a c.G905A:p.R302Q point mutation in a novel candidate pathogenic gene, VWA1. The Phyre2 web portal predicted alterations in secondary and tertiary structures of WARP, indicating changes in its function as well. Predictions of protein-to-protein interactions in five pathways related to craniofacial development revealed possible interactions with four proteins in the FGF pathway. Knockdown/knockout studies of the zebrafish revealed deformities of pharyngeal cartilage. A decrease of the proliferation of cranial neural crest cells (CNCCs) and alteration of the structure of pharyngeal chondrocytes were observed in the morphants as well. Conclusion Our data suggest that a mutation in VWA1 is functionally linked to HFM through suppression of CNCC proliferation and disruption of the organization of pharyngeal chondrocytes.
Collapse
Affiliation(s)
- Yibei Wang
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Otolaryngology, China-Japan Friendship Hospital, Beijing, China
| | - Lu Ping
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaodong Luan
- School of Medicine, Tsinghua University, Beijing, China.,Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Yushan Chen
- Department of Otolaryngology, The Ohio State University, Columbus, OH, United States
| | - Xinmiao Fan
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lianyan Li
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Yaping Liu
- Department of Medical Genetics and National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pu Wang
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Otolaryngology Head and Neck Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shuyang Zhang
- School of Medicine, Tsinghua University, Beijing, China.,Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Bo Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Xiaowei Chen
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
22
|
Busse B, Galloway JL, Gray RS, Harris MP, Kwon RY. Zebrafish: An Emerging Model for Orthopedic Research. J Orthop Res 2020; 38:925-936. [PMID: 31773769 PMCID: PMC7162720 DOI: 10.1002/jor.24539] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/16/2019] [Indexed: 02/04/2023]
Abstract
Advances in next-generation sequencing have transformed our ability to identify genetic variants associated with clinical disorders of the musculoskeletal system. However, the means to functionally validate and analyze the physiological repercussions of genetic variation have lagged behind the rate of genetic discovery. The zebrafish provides an efficient model to leverage genetic analysis in an in vivo context. Its utility for orthopedic research is becoming evident in regard to both candidate gene validation as well as therapeutic discovery in tissues such as bone, tendon, muscle, and cartilage. With the development of new genetic and analytical tools to better assay aspects of skeletal tissue morphology, mineralization, composition, and biomechanics, researchers are emboldened to systematically approach how the skeleton develops and to identify the root causes, and potential treatments, of skeletal disease. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:925-936, 2020.
Collapse
Affiliation(s)
- Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529, Hamburg, Germany,all authors contributed equally to this work and are listed in alphabetical order
| | - Jenna L. Galloway
- Center for Regenerative Medicine, Harvard Stem Cell Institute, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street Boston, MA 02114, United States of America,all authors contributed equally to this work and are listed in alphabetical order
| | - Ryan S. Gray
- Department of Pediatrics, Dell Pediatric Research Institute, The University of Texas at Austin, Dell Medical School, Austin, Texas, United States of America,all authors contributed equally to this work and are listed in alphabetical order
| | - Matthew P. Harris
- Department of Genetics, Harvard Medical School; Department of Orthopedic Research, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA, 02115, United States of America.,all authors contributed equally to this work and are listed in alphabetical order
| | - Ronald Y. Kwon
- Department of Orthopaedics and Sports Medicine; Department of Mechanical Engineering; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America,all authors contributed equally to this work and are listed in alphabetical order
| |
Collapse
|
23
|
Zebrafish Models of Human Skeletal Disorders: Embryo and Adult Swimming Together. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1253710. [PMID: 31828085 PMCID: PMC6886339 DOI: 10.1155/2019/1253710] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 10/11/2019] [Accepted: 11/01/2019] [Indexed: 02/06/2023]
Abstract
Danio rerio (zebrafish) is an elective model organism for the study of vertebrate development because of its high degree of homology with human genes and organs, including bone. Zebrafish embryos, because of the optical clarity, small size, and fast development, can be easily used in large-scale mutagenesis experiments to isolate mutants with developmental skeletal defects and in high-throughput screenings to find new chemical compounds for the ability to revert the pathological phenotype. On the other hand, the adult zebrafish represents another powerful resource for pathogenic and therapeutic studies about adult human bone diseases. In fish, some characteristics such as bone turnover, reparation, and remodeling of the adult bone tissue cannot be found at the embryonic stage. Several pathological models have been established in adult zebrafish such as bone injury models, osteoporosis, and genetic diseases such as osteogenesis imperfecta. Given the growing interest for metabolic diseases and their complications, adult zebrafish models of type 2 diabetes and obesity have been recently generated and analyzed for bone complications using scales as model system. Interestingly, an osteoporosis-like phenotype has been found to be associated with metabolic alterations suggesting that bone complications share the same mechanisms in humans and fish. Embryo and adult represent powerful resources in rapid development to study bone physiology and pathology from different points of view.
Collapse
|
24
|
Tomecka MJ, Ethiraj LP, Sánchez LM, Roehl HH, Carney TJ. Clinical pathologies of bone fracture modelled in zebrafish. Dis Model Mech 2019; 12:dmm.037630. [PMID: 31383797 PMCID: PMC6765199 DOI: 10.1242/dmm.037630] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 07/24/2019] [Indexed: 01/24/2023] Open
Abstract
Reduced bone quality or mineral density predict susceptibility to fracture and also attenuate subsequent repair. Bone regrowth is also compromised by bacterial infection, which exacerbates fracture site inflammation. Because of the cellular complexity of fracture repair, as well as genetic and environmental influences, there is a need for models that permit visualisation of the fracture repair process under clinically relevant conditions. To characterise the process of fracture repair in zebrafish, we employed a crush fracture of fin rays, coupled with histological and transgenic labelling of cellular responses; the results demonstrate a strong similarity to the phased response in humans. We applied our analysis to a zebrafish model of osteogenesis imperfecta (OI), which shows reduced bone quality, spontaneous fractures and propensity for non-unions. We found deficiencies in the formation of a bone callus during fracture repair in our OI model and showed that clinically employed antiresorptive bisphosphonates can reduce spontaneous fractures in OI fish and also measurably reduce fracture callus remodelling in wild-type fish. The csf1ra mutant, which has reduced osteoclast numbers, also showed reduced callus remodelling. Exposure to excessive bisphosphonate, however, disrupted callus repair. Intriguingly, neutrophils initially colonised the fracture site, but were later completely excluded. However, when fractures were infected with Staphylococcus aureus, neutrophils were retained and compromised repair. This work elevates the zebrafish bone fracture model and indicates its utility in assessing conditions of relevance to an orthopaedic setting with medium throughput. This article has an associated First Person interview with the first author of the paper. Summary: The effect of osteogenesis imperfecta, bisphosphonate treatment and bacterial infection on phases of bone fracture repair are determined using a zebrafish fracture model.
Collapse
Affiliation(s)
- Monika J Tomecka
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos, 138673, Singapore.,Department of Biomedical Science, Firth Court, Western Bank, The University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Lalith P Ethiraj
- Lee Kong Chian School of Medicine, Experimental Medicine Building, Yunnan Garden Campus, 59 Nanyang Drive, Nanyang Technological University 636921, Singapore
| | - Luis M Sánchez
- Department of Biomedical Science, Firth Court, Western Bank, The University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Henry H Roehl
- Department of Biomedical Science, Firth Court, Western Bank, The University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Tom J Carney
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos, 138673, Singapore .,Lee Kong Chian School of Medicine, Experimental Medicine Building, Yunnan Garden Campus, 59 Nanyang Drive, Nanyang Technological University 636921, Singapore
| |
Collapse
|
25
|
Thuong NP, Prondvai E, De Kegel B, De Wolf T, Witten PE, Adriaens D. Morphological and histological characterization of an ectopically mineralized structure in a gilthead sea bream Sparus aurata with opercular deformation. JOURNAL OF FISH DISEASES 2019; 42:1259-1270. [PMID: 31197843 DOI: 10.1111/jfd.13044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 06/09/2023]
Abstract
In this study, we describe an abnormal ectopically mineralized structure (EMS) that was found inside the skull of a juvenile Sparus aurata that also showed a bilateral opercular deformation. The overall phenotype and tissue composition were studied using micro-CT scanning and histological analyses. The ectopic structure occupies a large volume of the brain cavity, partially extruding into the gill cavity. It shows a dense mineralization and an extracellular matrix-rich phenotype, with variation in both the morphology and size of the cell lacunae, combined with an irregular fibre organization inside the matrix. This study is the first to report such an EMS in a juvenile teleost fish, where the tissue does not resemble any other connective tissue type described in bony fish so far. The tissue phenotype seems to rule out that the EMS corresponds to a tumorous cartilage. Yet, it is rather reminiscent of a highly mineralized structure found in cartilaginous fish, where it is suggested to be associated with damage repair.
Collapse
Affiliation(s)
- Nguyen Phuc Thuong
- Evolutionary Morphology of Vertebrates, Ghent University, Ghent, Belgium
- Faculty of Fisheries, Nong Lam University - Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Edina Prondvai
- Evolutionary Morphology of Vertebrates, Ghent University, Ghent, Belgium
| | - Barbara De Kegel
- Evolutionary Morphology of Vertebrates, Ghent University, Ghent, Belgium
| | - Tania De Wolf
- INVE, Maricoltura di Rosignano Solvay, srl, Rosignano Solvay, Italy
| | | | - Dominique Adriaens
- Evolutionary Morphology of Vertebrates, Ghent University, Ghent, Belgium
| |
Collapse
|
26
|
Kwon RY, Watson CJ, Karasik D. Using zebrafish to study skeletal genomics. Bone 2019; 126:37-50. [PMID: 30763636 PMCID: PMC6626559 DOI: 10.1016/j.bone.2019.02.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/20/2019] [Accepted: 02/09/2019] [Indexed: 12/26/2022]
Abstract
While genome-wide association studies (GWAS) have revolutionized our understanding of the genetic architecture of skeletal diseases, animal models are required to identify causal mechanisms and to translate underlying biology into new therapies. Despite large-scale knockout mouse phenotyping efforts, the skeletal functions of most genes residing at GWAS-identified loci remain unknown, highlighting a need for complementary model systems to accelerate gene discovery. Over the past several decades, zebrafish (Danio rerio) has emerged as a powerful system for modeling the genetics of human diseases. In this review, our goal is to outline evidence supporting the utility of zebrafish for accelerating our understanding of human skeletal genomics, as well as gaps in knowledge that need to be filled for this purpose. We do this by providing a basic foundation of the zebrafish skeletal morphophysiology and phenotypes, and surveying evidence of skeletal gene homology and the use of zebrafish for post-GWAS analysis in other tissues and organs. We also outline challenges in translating zebrafish mutant phenotypes. Finally, we conclude with recommendations of future directions and how to leverage the large body of tools and knowledge of skeletal genetics in zebrafish for the needs of human skeletal genomic exploration. Due to their amenability to rapid genetic approaches, as well as the large number of conserved genetic and phenotypic features, there is a strong rationale supporting the use of zebrafish for human skeletal genomic studies.
Collapse
Affiliation(s)
- Ronald Y Kwon
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA; Department of Mechanical Engineering, University of Washington, Seattle, WA, USA.
| | - Claire J Watson
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - David Karasik
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel; Hebrew SeniorLife, Hinda and Arthur Marcus Institute for Aging Research, Boston, MA, USA.
| |
Collapse
|
27
|
Bergen DJM, Kague E, Hammond CL. Zebrafish as an Emerging Model for Osteoporosis: A Primary Testing Platform for Screening New Osteo-Active Compounds. Front Endocrinol (Lausanne) 2019; 10:6. [PMID: 30761080 PMCID: PMC6361756 DOI: 10.3389/fendo.2019.00006] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/09/2019] [Indexed: 12/16/2022] Open
Abstract
Osteoporosis is metabolic bone disease caused by an altered balance between bone anabolism and catabolism. This dysregulated balance is responsible for fragile bones that fracture easily after minor falls. With an aging population, the incidence is rising and as yet pharmaceutical options to restore this imbalance is limited, especially stimulating osteoblast bone-building activity. Excitingly, output from large genetic studies on people with high bone mass (HBM) cases and genome wide association studies (GWAS) on the population, yielded new insights into pathways containing osteo-anabolic players that have potential for drug target development. However, a bottleneck in development of new treatments targeting these putative osteo-anabolic genes is the lack of animal models for rapid and affordable testing to generate functional data and that simultaneously can be used as a compound testing platform. Zebrafish, a small teleost fish, are increasingly used in functional genomics and drug screening assays which resulted in new treatments in the clinic for other diseases. In this review we outline the zebrafish as a powerful model for osteoporosis research to validate potential therapeutic candidates, describe the tools and assays that can be used to study bone homeostasis, and affordable (semi-)high-throughput compound testing.
Collapse
Affiliation(s)
- Dylan J. M. Bergen
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, Southmead Hospital, University of Bristol, Bristol, United Kingdom
| | - Erika Kague
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
| | - Chrissy L. Hammond
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
28
|
Fjelldal PG, van der Meeren T, Fraser TWK, Sambraus F, Jawad L, Hansen TJ. Radiological changes during fracture and repair in neural and haemal spines of Atlantic cod (Gadus morhua). JOURNAL OF FISH DISEASES 2018; 41:1871-1875. [PMID: 30294918 DOI: 10.1111/jfd.12899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/28/2018] [Accepted: 08/28/2018] [Indexed: 06/08/2023]
Abstract
Although spinal injuries in fish have been associated with electric stimuli applied during electrofishing and electrotrawling, bone fracture and repair in the axial skeleton have yet not been studied. To study this, we radiographed a group (n = 64) of individually tagged farmed cod twice, with a 1-year interval (∼36 cm at first and ∼ 50 cm at second inspection). The study focus was on the neural and haemal spines. These structures are un-paired and are not covered by other bones laterally, making them useful for radiological studies on axial skeletal fracture in live fish. At the first examination, four animals showed radiological changes in their neural and haemal spines. Two animals had fractures, and two had callus formations. One year later, at the second radiological examination, the fractures had developed into calluses or into normal morphology, and calluses either remained as calluses or had developed into normal morphology. A further 14 animals that were all normal at the first inspection had developed changes in their neural and haemal spines, both fractures and callus formations. This is the first record of spontaneous bone fracture in fish; the fractures observed occurred under normal farming conditions and were not induced. The results show that cod have a functional fracture healing mechanism in their neural and haemal spines. The findings are discussed in relation to fish hyperostosis.
Collapse
Affiliation(s)
- Per Gunnar Fjelldal
- Institute of Marine Research (IMR), Matre Aquaculture Research Station, Matredal, Norway
| | | | - Thomas W K Fraser
- Institute of Marine Research (IMR), Matre Aquaculture Research Station, Matredal, Norway
| | - Florian Sambraus
- Institute of Marine Research (IMR), Matre Aquaculture Research Station, Matredal, Norway
| | | | - Tom Johnny Hansen
- Institute of Marine Research (IMR), Matre Aquaculture Research Station, Matredal, Norway
| |
Collapse
|
29
|
Topczewska JM, Shoela RA, Tomaszewski JP, Mirmira RB, Gosain AK. The Morphogenesis of Cranial Sutures in Zebrafish. PLoS One 2016; 11:e0165775. [PMID: 27829009 PMCID: PMC5102434 DOI: 10.1371/journal.pone.0165775] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 10/18/2016] [Indexed: 12/11/2022] Open
Abstract
Using morphological, histological, and TEM analyses of the cranium, we provide a detailed description of bone and suture growth in zebrafish. Based on expression patterns and localization, we identified osteoblasts at different degrees of maturation. Our data confirm that, unlike in humans, zebrafish cranial sutures maintain lifelong patency to sustain skull growth. The cranial vault develops in a coordinated manner resulting in a structure that protects the brain. The zebrafish cranial roof parallels that of higher vertebrates and contains five major bones: one pair of frontal bones, one pair of parietal bones, and the supraoccipital bone. Parietal and frontal bones are formed by intramembranous ossification within a layer of mesenchyme positioned between the dermal mesenchyme and meninges surrounding the brain. The supraoccipital bone has an endochondral origin. Cranial bones are separated by connective tissue with a distinctive architecture of osteogenic cells and collagen fibrils. Here we show RNA in situ hybridization for col1a1a, col2a1a, col10a1, bglap/osteocalcin, fgfr1a, fgfr1b, fgfr2, fgfr3, foxq1, twist2, twist3, runx2a, runx2b, sp7/osterix, and spp1/ osteopontin, indicating that the expression of genes involved in suture development in mammals is preserved in zebrafish. We also present methods for examining the cranium and its sutures, which permit the study of the mechanisms involved in suture patency as well as their pathological obliteration. The model we develop has implications for the study of human disorders, including craniosynostosis, which affects 1 in 2,500 live births.
Collapse
Affiliation(s)
- Jolanta M. Topczewska
- Division of Pediatric Plastic Surgery, Stanley Manne Children’s Research Institute, Northwestern University Feinberg School of Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| | - Ramy A. Shoela
- Division of Pediatric Plastic Surgery, Stanley Manne Children’s Research Institute, Northwestern University Feinberg School of Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, United States of America
| | - Joanna P. Tomaszewski
- Division of Pediatric Plastic Surgery, Stanley Manne Children’s Research Institute, Northwestern University Feinberg School of Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, United States of America
| | - Rupa B. Mirmira
- Division of Pediatric Plastic Surgery, Stanley Manne Children’s Research Institute, Northwestern University Feinberg School of Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, United States of America
| | - Arun K. Gosain
- Division of Pediatric Plastic Surgery, Stanley Manne Children’s Research Institute, Northwestern University Feinberg School of Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
30
|
Abstract
Although fin regeneration following an amputation procedure has been well characterized, little is known about the impact of prolonged tissue damage on the execution of the regenerative programme in the zebrafish appendages. To induce histolytic processes in the caudal fin, we developed a new cryolesion model that combines the detrimental effects of freezing/thawing and ischemia. In contrast to the common transection model, the damaged part of the fin was spontaneously shed within two days after cryoinjury. The remaining stump contained a distorted margin with a mixture of dead material and healthy cells that concomitantly induced two opposing processes of tissue debris degradation and cellular proliferation, respectively. Between two and seven days after cryoinjury, this reparative/proliferative phase was morphologically featured by displaced fragments of broken bones. A blastemal marker msxB was induced in the intact mesenchyme below the damaged stump margin. Live imaging of epithelial and osteoblastic transgenic reporter lines revealed that the tissue-specific regenerative programmes were initiated after the clearance of damaged material. Despite histolytic perturbation during the first week after cryoinjury, the fin regeneration resumed and was completed without further alteration in comparison to the simple amputation model. This model reveals the powerful ability of the zebrafish to restore the original appendage architecture after the extended histolysis of the stump. Summary: Fin cryolesion resulted in histolysis and a delayed tissue loss. Despite prolonged destruction of the stump architecture, fin regeneration resumed and was normally completed, revealing robustness of the regenerative capacity.
Collapse
Affiliation(s)
- Bérénice Chassot
- Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg 1700, Switzerland
| | - David Pury
- Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg 1700, Switzerland
| | - Anna Jaźwińska
- Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg 1700, Switzerland
| |
Collapse
|
31
|
Hui SP, Nag TC, Ghosh S. Characterization of Proliferating Neural Progenitors after Spinal Cord Injury in Adult Zebrafish. PLoS One 2015; 10:e0143595. [PMID: 26630262 PMCID: PMC4667880 DOI: 10.1371/journal.pone.0143595] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 11/06/2015] [Indexed: 12/14/2022] Open
Abstract
Zebrafish can repair their injured brain and spinal cord after injury unlike adult mammalian central nervous system. Any injury to zebrafish spinal cord would lead to increased proliferation and neurogenesis. There are presences of proliferating progenitors from which both neuronal and glial loss can be reversed by appropriately generating new neurons and glia. We have demonstrated the presence of multiple progenitors, which are different types of proliferating populations like Sox2+ neural progenitor, A2B5+ astrocyte/ glial progenitor, NG2+ oligodendrocyte progenitor, radial glia and Schwann cell like progenitor. We analyzed the expression levels of two common markers of dedifferentiation like msx-b and vimentin during regeneration along with some of the pluripotency associated factors to explore the possible role of these two processes. Among the several key factors related to pluripotency, pou5f1 and sox2 are upregulated during regeneration and associated with activation of neural progenitor cells. Uncovering the molecular mechanism for endogenous regeneration of adult zebrafish spinal cord would give us more clues on important targets for future therapeutic approach in mammalian spinal cord repair and regeneration.
Collapse
Affiliation(s)
- Subhra Prakash Hui
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, A. P. C. Road, Kolkata—700009, India
| | - Tapas Chandra Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi- 110029, India
| | - Sukla Ghosh
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, A. P. C. Road, Kolkata—700009, India
- * E-mail:
| |
Collapse
|
32
|
Abstract
Bone defects do not heal in 5-10% of the fractures. In order to enhance bone regeneration, drug delivery systems are needed. They comprise a scaffold with or without inducing factors and/or cells. To test these drug delivery systems before application in patients, they finally need to be tested in animal models. The choice of animal model depends on the main research question; is a functional or mechanistic evaluation needed? Furthermore, which type of bone defects are investigated: load-bearing (i.e. orthopedic) or non-load-bearing (i.e. craniomaxillofacial)? This determines the type of model and in which type of animal. The experiments need to be set-up using the 3R principle and must be reported following the ARRIVE guidelines.
Collapse
|
33
|
Mariotti M, Carnovali M, Banfi G. Danio rerio: the Janus of the bone from embryo to scale. ACTA ACUST UNITED AC 2015; 12:188-94. [PMID: 26604948 DOI: 10.11138/ccmbm/2015.12.2.188] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Danio rerio (zebrafish), like the Roman god Janus, is an old animal model which is recently emerged and looks to the future with an increasing scientific success. Unlike other traditional animal models, zebrafish represents a versatile way to approach the study of the skeleton. Transparency of the larval stage, genetic manipulability and unique anatomical structures (scales) makes zebrafish a powerful and versatile instrument to investigate the bone tissue in terms of structure and function. Like Janus, zebrafish offers two different faces, or better, two models in one animal: larval and adult stage. The embryo can be used to isolate new genes involved in osteogenesis by large-scale mutagenesis screenings. The behavior of bone cells and genes in osteogenesis can be investigate by using transgenic lines, vital dyes, mutants and traditional molecular biology techniques. The adult zebrafish represents an important resource to study the pathways related to the bone metabolism and turnover. In particular, the properties of the caudal fin allow to study mechanisms of bone regeneration and reparation whereas the elasmoid scale represents an unique tool to investigate the bone metabolism under physiological or pathological conditions.
Collapse
Affiliation(s)
- Massimo Mariotti
- IRCCS Galeazzi Orthopedic Institute, Milan, Italy ; Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | | | - Giuseppe Banfi
- IRCCS Galeazzi Orthopedic Institute, Milan, Italy ; Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
34
|
Abstract
The zebrafish (Danio rerio) is now a widely used model organism in biomedical research. The species is also increasingly used for studying skeletal development and regeneration and for understanding human skeletal diseases. The small size of this model organism is an advantage and an extreme challenge for visualizing and diagnosing the animals' skeleton. This applies especially to early stages of skeletal development. Similar challenges arise for the analysis of the skeleton of other small fish species, such as medaka (Oryzias latipes). High quality histological preparations and knowledge about the special quality of the zebrafish skeleton remain prerequisites for a correct analysis. In addition, new methods for fast and high-resolution 2D and 3D skeletal tissue screening are required for a maximal understanding of skeletal development. We, in this study, review advantages and limitations of adapting current visualization techniques for zebrafish skeletal research. We discuss the methods for in toto visualization, such as X-raying, micro-CT, Alizarin red staining and optical projection tomography. Techniques for in vivo imaging, such as second harmonic generation microscopy and two-photon excitation fluorescence, are also discussed. Finally, we explore the possibilities of light-sheet microscopy for the analysis of the zebrafish skeleton.
Collapse
Affiliation(s)
- Bart Bruneel
- Department of Biology, Research Group Evolutionary Developmental Biology, Ghent University , Ghent , Belgium and
| | | |
Collapse
|
35
|
Recidoro AM, Roof AC, Schmitt M, Worton LE, Petrie T, Strand N, Ausk BJ, Srinivasan S, Moon RT, Gardiner EM, Kaminsky W, Bain SD, Allan CH, Gross TS, Kwon RY. Botulinum toxin induces muscle paralysis and inhibits bone regeneration in zebrafish. J Bone Miner Res 2014; 29:2346-56. [PMID: 24806738 PMCID: PMC5108653 DOI: 10.1002/jbmr.2274] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/31/2014] [Accepted: 04/14/2014] [Indexed: 01/05/2023]
Abstract
Intramuscular administration of Botulinum toxin (BTx) has been associated with impaired osteogenesis in diverse conditions of bone formation (eg, development, growth, and healing), yet the mechanisms of neuromuscular-bone crosstalk underlying these deficits have yet to be identified. Motivated by the emerging utility of zebrafish (Danio rerio) as a rapid, genetically tractable, and optically transparent model for human pathologies (as well as the potential to interrogate neuromuscular-mediated bone disorders in a simple model that bridges in vitro and more complex in vivo model systems), in this study, we developed a model of BTx-induced muscle paralysis in adult zebrafish, and we examined its effects on intramembranous ossification during tail fin regeneration. BTx administration induced rapid muscle paralysis in adult zebrafish in a manner that was dose-dependent, transient, and focal, mirroring the paralytic phenotype observed in animal and human studies. During fin regeneration, BTx impaired continued bone ray outgrowth, morphology, and patterning, indicating defects in early osteogenesis. Further, BTx significantly decreased mineralizing activity and crystalline mineral accumulation, suggesting delayed late-stage osteoblast differentiation and/or altered secondary bone apposition. Bone ray transection proximal to the amputation site focally inhibited bone outgrowth in the affected ray, implicating intra- and/or inter-ray nerves in this process. Taken together, these studies demonstrate the potential to interrogate pathological features of BTx-induced osteoanabolic dysfunction in the regenerating zebrafish fin, define the technological toolbox for detecting bone growth and mineralization deficits in this process, and suggest that pathways mediating neuromuscular regulation of osteogenesis may be conserved beyond established mammalian models of bone anabolic disorders.
Collapse
Affiliation(s)
- Anthony M Recidoro
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
In-vivo imaging of the fracture healing in medaka revealed two types of osteoclasts before and after the callus formation by osteoblasts. Dev Biol 2014; 394:292-304. [PMID: 25131195 DOI: 10.1016/j.ydbio.2014.08.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/28/2014] [Accepted: 08/09/2014] [Indexed: 11/22/2022]
Abstract
The fracture healing research, which has been performed in mammalian models not only for clinical application but also for bone metabolism, revealed that generally osteoblasts are induced to enter the fracture site before the induction of osteoclasts for bone remodeling. However, it remains unknown how and where osteoclasts and osteoblasts are induced, because it is difficult to observe osteoclasts and osteoblasts in a living animal. To answer these questions, we developed a new fracture healing model by using medaka. We fractured one side of lepidotrichia in a caudal fin ray without injuring the other soft tissues including blood vessels. Using the transgenic medaka in which osteoclasts and osteoblasts were visualized by GFP and DsRed, respectively, we found that two different types of functional osteoclasts were induced before and after osteoblast callus formation. The early-induced osteoclasts resorbed the bone fragments and the late-induced osteoclasts remodeled the callus. Both types of osteoclasts were induced near the surface on the blood vessels, while osteoblasts migrated from adjacent fin ray. Transmission electron microscopy revealed that no significant ruffled border and clear zone were observed in early-induced osteoclasts, whereas the late-induced osteoclasts had clear zones but did not have the typical ruffled border. In the remodeling of the callus, the expression of cox2 mRNA was up-regulated at the fracture site around vessels, and the inhibition of Cox2 impaired the induction of the late-induced osteoclasts, resulting in abnormal fracture healing. Finally, our developed medaka fracture healing model brings a new insight into the molecular mechanism for controlling cellular behaviors during the fracture healing.
Collapse
|
37
|
Geurtzen K, Knopf F, Wehner D, Huitema LFA, Schulte-Merker S, Weidinger G. Mature osteoblasts dedifferentiate in response to traumatic bone injury in the zebrafish fin and skull. Development 2014; 141:2225-34. [PMID: 24821985 DOI: 10.1242/dev.105817] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Zebrafish have an unlimited capacity to regenerate bone after fin amputation. In this process, mature osteoblasts dedifferentiate to osteogenic precursor cells and thus represent an important source of newly forming bone. By contrast, differentiated osteoblasts do not appear to contribute to repair of bone injuries in mammals; rather, osteoblasts form anew from mesenchymal stem cells. This raises the question whether osteoblast dedifferentiation is specific to appendage regeneration, a special feature of the lepidotrichia bone of the fish fin, or a process found more generally in fish bone. Here, we show that dedifferentiation of mature osteoblasts is not restricted to fin regeneration after amputation, but also occurs during repair of zebrafish fin fractures and skull injuries. In both models, mature osteoblasts surrounding the injury downregulate the expression of differentiation markers, upregulate markers of the pre-osteoblast state and become proliferative. Making use of photoconvertible Kaede protein as well as Cre-driven genetic fate mapping, we show that osteoblasts migrate to the site of injury to replace damaged tissue. Our findings suggest a fundamental role for osteoblast dedifferentiation in reparative bone formation in fish and indicate that adult fish osteoblasts display elevated cellular plasticity compared with mammalian bone-forming cells.
Collapse
Affiliation(s)
- Karina Geurtzen
- Biotechnology Center and CRTD, Technische Universität Dresden, 01307 Dresden, Germany
| | - Franziska Knopf
- Biotechnology Center and CRTD, Technische Universität Dresden, 01307 Dresden, Germany Kennedy Institute of Rheumatology, Oxford OX3 7FY, UK
| | - Daniel Wehner
- Institute for Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | | | - Stefan Schulte-Merker
- Hubrecht Institut-KNAW & UMC Utrecht, 3584 CT Utrecht, The Netherlands EZO, WUR, 6709 PG Wageningen, The Netherlands Institute of Cardiovascular Organogenesis and Regeneration, University of Münster, 48149 Münster, Germany
| | - Gilbert Weidinger
- Institute for Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
38
|
Combes RD. A critical review of anaesthetised animal models and alternatives for military research, testing and training, with a focus on blast damage, haemorrhage and resuscitation. Altern Lab Anim 2014; 41:385-415. [PMID: 24329746 DOI: 10.1177/026119291304100508] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Military research, testing, and surgical and resuscitation training, are aimed at mitigating the consequences of warfare and terrorism to armed forces and civilians. Traumatisation and tissue damage due to explosions, and acute loss of blood due to haemorrhage, remain crucial, potentially preventable, causes of battlefield casualties and mortalities. There is also the additional threat from inhalation of chemical and aerosolised biological weapons. The use of anaesthetised animal models, and their respective replacement alternatives, for military purposes -- particularly for blast injury, haemorrhaging and resuscitation training -- is critically reviewed. Scientific problems with the animal models include the use of crude, uncontrolled and non-standardised methods for traumatisation, an inability to model all key trauma mechanisms, and complex modulating effects of general anaesthesia on target organ physiology. Such effects depend on the anaesthetic and influence the cardiovascular system, respiration, breathing, cerebral haemodynamics, neuroprotection, and the integrity of the blood-brain barrier. Some anaesthetics also bind to the NMDA brain receptor with possible differential consequences in control and anaesthetised animals. There is also some evidence for gender-specific effects. Despite the fact that these issues are widely known, there is little published information on their potential, at best, to complicate data interpretation and, at worst, to invalidate animal models. There is also a paucity of detail on the anaesthesiology used in studies, and this can hinder correct data evaluation. Welfare issues relate mainly to the possibility of acute pain as a side-effect of traumatisation in recovered animals. Moreover, there is the increased potential for animals to suffer when anaesthesia is temporary, and the procedures invasive. These dilemmas can be addressed, however, as a diverse range of replacement approaches exist, including computer and mathematical dynamic modelling of the human body, cadavers, interactive human patient simulators for training, in vitro techniques involving organotypic cultures of target organs, and epidemiological and clinical studies. While the first four of these have long proven useful for developing protective measures and predicting the consequences of trauma, and although many phenomena and their sequelae arising from different forms of trauma in vivo can be induced and reproduced in vitro, non-animal approaches require further development, and their validation and use need to be coordinated and harmonised. Recommendations to these ends are proposed, and the scientific and welfare problems associated with animal models are addressed, with the future focus being on the use of batteries of complementary replacement methods deployed in integrated strategies, and on greater transparency and scientific cooperation.
Collapse
|