1
|
Joo SY, Min H, Kim JA, Kim SJ, Jang SH, Lee H, Kim KM, Seong JK, Choi JY, Jung J, Bok J, Gee HY. Biallelic variants of SEMA3F are associated with nonsyndromic hearing loss. Mol Cells 2025; 48:100190. [PMID: 39909336 PMCID: PMC11879669 DOI: 10.1016/j.mocell.2025.100190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/22/2025] [Accepted: 01/30/2025] [Indexed: 02/07/2025] Open
Abstract
It is crucial to manage hearing loss and its associated public health impacts. In this study, we aimed to understand the role of Sema3f in the development and maintenance of the auditory system. Inner ear-specific Sema3f knockout mice exhibited hearing loss at 8 weeks with an elevated threshold for auditory brainstem response and an absent threshold for distortion product optoacoustic emission tests. Additionally, an increased number of outer hair cells and abnormal patterns of spiral ganglion neuron projections in the outer hair cell regions were observed. Through the analyses of sequencing data from 558 families with hearing loss, we identified biallelic variants of SEMA3F, which encodes semaphorin-3F, in one of the families. In the family, the proband showed profound progressive nonsyndromic hearing loss with congenital onset. In vitro analysis revealed that the identified missense variants decreased the furin-mediated processing of SEMA3F and abolished the cellular abilities of SEMA3F, which collapsed the filamentous actin cytoskeleton in human umbilical vein-derived endothelial cells. Our data suggest that SEMA3F is essential for normal hearing and is associated with nonsyndromic hearing loss in humans.
Collapse
Affiliation(s)
- Sun Young Joo
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Won Sang Institute for Hearing Loss, Seoul 03722, Republic of Korea
| | - Hyehyun Min
- Department of Anatomy, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jung Ah Kim
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Won Sang Institute for Hearing Loss, Seoul 03722, Republic of Korea
| | - Se Jin Kim
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Won Sang Institute for Hearing Loss, Seoul 03722, Republic of Korea
| | - Seung Hyun Jang
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Won Sang Institute for Hearing Loss, Seoul 03722, Republic of Korea
| | - Ho Lee
- Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si 10408, Republic of Korea
| | - Kyu Min Kim
- Won Sang Institute for Hearing Loss, Seoul 03722, Republic of Korea; Laboratory of Developmental Biology and Genomics, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae Young Choi
- Won Sang Institute for Hearing Loss, Seoul 03722, Republic of Korea; Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jinsei Jung
- Won Sang Institute for Hearing Loss, Seoul 03722, Republic of Korea; Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| | - Jinwoong Bok
- Won Sang Institute for Hearing Loss, Seoul 03722, Republic of Korea; Department of Anatomy, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| | - Heon Yung Gee
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Won Sang Institute for Hearing Loss, Seoul 03722, Republic of Korea; Woo Choo Lee Institute for Precision Drug Development, Seoul 03722, Republic of Korea.
| |
Collapse
|
2
|
Serafin EK, Yoo JJ, Li J, Dong X, Baccei ML. Development and characterization of a Gucy2d-cre mouse to selectively manipulate a subset of inhibitory spinal dorsal horn interneurons. PLoS One 2024; 19:e0300282. [PMID: 38483883 PMCID: PMC10939219 DOI: 10.1371/journal.pone.0300282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/24/2024] [Indexed: 03/17/2024] Open
Abstract
Recent transcriptomic studies identified Gucy2d (encoding guanylate cyclase D) as a highly enriched gene within inhibitory dynorphin interneurons in the mouse spinal dorsal horn. To facilitate investigations into the role of the Gucy2d+ population in somatosensation, Gucy2d-cre transgenic mice were created to permit chemogenetic or optogenetic manipulation of this subset of spinal neurons. Gucy2d-cre mice created via CRISPR/Cas9 genomic knock-in were bred to mice expressing a cre-dependent reporter (either tdTomato or Sun1.GFP fusion protein), and the resulting offspring were characterized. Surprisingly, a much wider population of spinal neurons was labeled by cre-dependent reporter expression than previous mRNA-based studies would suggest. Although the cre-dependent reporter expression faithfully labeled ~75% of cells expressing Gucy2d mRNA in the adult dorsal horn, it also labeled a substantial number of additional inhibitory neurons in which no Gucy2d or Pdyn mRNA was detected. Moreover, cre-dependent reporter was also expressed in various regions of the brain, including the spinal trigeminal nucleus, cerebellum, thalamus, somatosensory cortex, and anterior cingulate cortex. Injection of AAV-CAG-FLEX-tdTomato viral vector into adult Gucy2d-cre mice produced a similar pattern of cre-dependent reporter expression in the spinal cord and brain, which excludes the possibility that the unexpected reporter-labeling of cells in the deep dorsal horn and brain was due to transient Gucy2d expression during early stages of development. Collectively, these results suggest that Gucy2d is expressed in a wider population of cells than previously thought, albeit at levels low enough to avoid detection with commonly used mRNA-based assays. Therefore, it is unlikely that these Gucy2d-cre mice will permit selective manipulation of inhibitory signaling mediated by spinal dynorphin interneurons, but this novel cre driver line may nevertheless be useful to target a broader population of inhibitory spinal dorsal horn neurons.
Collapse
Affiliation(s)
- Elizabeth K. Serafin
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Judy J. Yoo
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
- Medical Scientist Training Program, University of Cincinnati, Cincinnati, OH, USA
| | - Jie Li
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Xinzhong Dong
- Departments of Neuroscience, Neurosurgery and Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mark L. Baccei
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| |
Collapse
|
3
|
Ortiz-Leal I, Torres MV, Vargas-Barroso V, Fidalgo LE, López-Beceiro AM, Larriva-Sahd JA, Sánchez-Quinteiro P. The olfactory limbus of the red fox ( Vulpes vulpes). New insights regarding a noncanonical olfactory bulb pathway. Front Neuroanat 2023; 16:1097467. [PMID: 36704406 PMCID: PMC9871471 DOI: 10.3389/fnana.2022.1097467] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction: The olfactory system in most mammals is divided into several subsystems based on the anatomical locations of the neuroreceptor cells involved and the receptor families that are expressed. In addition to the main olfactory system and the vomeronasal system, a range of olfactory subsystems converge onto the transition zone located between the main olfactory bulb (MOB) and the accessory olfactory bulb (AOB), which has been termed the olfactory limbus (OL). The OL contains specialized glomeruli that receive noncanonical sensory afferences and which interact with the MOB and AOB. Little is known regarding the olfactory subsystems of mammals other than laboratory rodents. Methods: We have focused on characterizing the OL in the red fox by performing general and specific histological stainings on serial sections, using both single and double immunohistochemical and lectin-histochemical labeling techniques. Results: As a result, we have been able to determine that the OL of the red fox (Vulpes vulpes) displays an uncommonly high degree of development and complexity. Discussion: This makes this species a novel mammalian model, the study of which could improve our understanding of the noncanonical pathways involved in the processing of chemosensory cues.
Collapse
Affiliation(s)
- Irene Ortiz-Leal
- Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Mateo V. Torres
- Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Víctor Vargas-Barroso
- Cellular Neuroscience, IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria
| | | | | | - Jorge A. Larriva-Sahd
- Institute of Neurobiology, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Pablo Sánchez-Quinteiro
- Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain,*Correspondence: Pablo Sanchez-Quinteiro
| |
Collapse
|
4
|
Hehr CL, Halabi R, McFarlane S. Spatial regulation of amacrine cell genesis by Semaphorin 3f. Dev Biol 2022; 491:66-81. [PMID: 36058267 DOI: 10.1016/j.ydbio.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE The axonal projections of retinal ganglion cells (RGCs) of the eye are topographically organized so that spatial information from visual images is preserved. This retinotopic organization is established during development by secreted morphogens that pattern domains of transcription factor expression within naso-temporal and dorso-ventral quadrants of the embryonic eye. Poorly understood are the downstream signaling molecules that generate the topographically organized retinal cells and circuits. The secreted signaling molecule Semaphorin 3fa (Sema3fa) belongs to the Sema family of molecules that provide positional information to developing cells. Here, we test a role for Sema3fa in cell genesis of the temporal zebrafish retina. METHODS We compare retinal cell genesis in wild type and sema3fa CRISPR zebrafish mutants by in situ hybridization and immunohistochemistry. RESULTS We find that mRNAs for sema3fa and known receptors, neuropilin2b (nrp2b) and plexina1a (plxna1a), are expressed by progenitors of the temporal, but not nasal zebrafish embryonic retina. In the sema3faca304/ca304 embryo, initially the domains of expression for atoh7 and neurod4, transcription factors necessary for the specification of RGCs and amacrine cells, respectively, are disrupted. Yet, post-embryonically only amacrine cells of the temporal retina are reduced in numbers, with both GABAergic and glycinergic subtypes affected. CONCLUSIONS These data suggest that Sema3fa acts early on embryonic temporal progenitors to control in a spatially-dependent manner the production of amacrine cells, possibly to allow the establishment of neural circuits with domain-specific functions. We propose that spatially restricted extrinsic signals in the neural retina control cell genesis in a domain-dependent manner.
Collapse
Affiliation(s)
- Carrie Lynn Hehr
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Rami Halabi
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Sarah McFarlane
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
5
|
Aoyama BB, Zanetti GG, Dias EV, Athié MCP, Lopes-Cendes I, Schwambach Vieira A. Transcriptomic analysis of dorsal and ventral subiculum after induction of acute seizures by electric stimulation of the perforant pathway in rats. Hippocampus 2022; 32:436-448. [PMID: 35343006 DOI: 10.1002/hipo.23417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 11/09/2022]
Abstract
Preconditioning is a mechanism in which injuries induced by non-lethal hypoxia or seizures trigger cellular resistance to subsequent events. Norwood et al., in a 2010 study, showed that an 8-h-long period of electrical stimulation of the perforant pathway in rats is required for the induction of hippocampal sclerosis. However, in order to avoid generalized seizures, status epilepticus (SE), and death, a state of resistance to seizures must be induced in the hippocampus by a preconditioning paradigm consisting of two daily 30-min stimulation periods. Due to the importance of the subiculum in the hippocampal formation, this study aims to investigate differential gene expression patterns in the dorsal and ventral subiculum using RNA-sequencing, after induction of a preconditioning protocol by electrical stimulation of the perforant pathway. The dorsal (dSub) and ventral (vSub) subiculum regions were collected by laser-microdissection 24 h after preconditioning protocol induction in rats. RNA sequencing was performed in a Hiseq 4000 platform, reads were aligned using the STAR and DESEq2 statistics package was used to estimate gene expression. We identified 1176 differentially expressed genes comparing control to preconditioned subiculum regions, 204 genes were differentially expressed in dSub and 972 in vSub. The gene ontology enrichment analysis showed that the most significant common enrichment pathway considering up-regulated genes in dSub and vSub was steroid metabolism. In contrast, the most significant enrichment pathway considering down-regulated genes in vSub was axon guidance. Our results indicate that preconditioning induces changes in the expression of genes related to synaptic reorganization, increased cholesterol metabolism, and astrogliosis in both dSub and vSub. Both regions also presented a decrease in the expression of genes related to glutamatergic transmission and an increase in expression of genes related to complement system activation and GABAergic transmission. The down-regulation of proapoptotic and axon guidance genes in the ventral subiculum suggests that preconditioning may induce a neuroprotective environment in this region.
Collapse
Affiliation(s)
- Beatriz B Aoyama
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| | - Gabriel G Zanetti
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| | - Elayne V Dias
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| | - Maria C P Athié
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil.,Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Iscia Lopes-Cendes
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil.,Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - André Schwambach Vieira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| |
Collapse
|
6
|
Manzini I, Schild D, Di Natale C. Principles of odor coding in vertebrates and artificial chemosensory systems. Physiol Rev 2021; 102:61-154. [PMID: 34254835 DOI: 10.1152/physrev.00036.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The biological olfactory system is the sensory system responsible for the detection of the chemical composition of the environment. Several attempts to mimic biological olfactory systems have led to various artificial olfactory systems using different technical approaches. Here we provide a parallel description of biological olfactory systems and their technical counterparts. We start with a presentation of the input to the systems, the stimuli, and treat the interface between the external world and the environment where receptor neurons or artificial chemosensors reside. We then delineate the functions of receptor neurons and chemosensors as well as their overall I-O relationships. Up to this point, our account of the systems goes along similar lines. The next processing steps differ considerably: while in biology the processing step following the receptor neurons is the "integration" and "processing" of receptor neuron outputs in the olfactory bulb, this step has various realizations in electronic noses. For a long period of time, the signal processing stages beyond the olfactory bulb, i.e., the higher olfactory centers were little studied. Only recently there has been a marked growth of studies tackling the information processing in these centers. In electronic noses, a third stage of processing has virtually never been considered. In this review, we provide an up-to-date overview of the current knowledge of both fields and, for the first time, attempt to tie them together. We hope it will be a breeding ground for better information, communication, and data exchange between very related but so far little connected fields.
Collapse
Affiliation(s)
- Ivan Manzini
- Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Gießen, Gießen, Germany
| | - Detlev Schild
- Institute of Neurophysiology and Cellular Biophysics, University Medical Center, University of Göttingen, Göttingen, Germany
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
7
|
Bloom ML, Johnston LB, Datta SR. Renewal and Differentiation of GCD Necklace Olfactory Sensory Neurons. Chem Senses 2021; 45:333-346. [PMID: 32333759 DOI: 10.1093/chemse/bjaa027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Both canonical olfactory sensory neurons (OSNs) and sensory neurons belonging to the guanylate cyclase D (GCD) "necklace" subsystem are housed in the main olfactory epithelium, which is continuously bombarded by toxins, pathogens, and debris from the outside world. Canonical OSNs address this challenge, in part, by undergoing renewal through neurogenesis; however, it is not clear whether GCD OSNs also continuously regenerate and, if so, whether newborn GCD precursors follow a similar developmental trajectory to that taken by canonical OSNs. Here, we demonstrate that GCD OSNs are born throughout adulthood and can persist in the epithelium for several months. Phosphodiesterase 2A is upregulated early in the differentiation process, followed by the sequential downregulation of β-tubulin and the upregulation of CART protein. The GCD and MS4A receptors that confer sensory responses upon GCD neurons are initially expressed midway through this process but become most highly expressed once CART levels are maximal late in GCD OSN development. GCD OSN maturation is accompanied by a horizontal migration of neurons toward the central, curved portions of the cul-de-sac regions where necklace cells are concentrated. These findings demonstrate that-like their canonical counterparts-GCD OSNs undergo continuous renewal and define a GCD-specific developmental trajectory linking neurogenesis, maturation, and migration.
Collapse
|
8
|
The Grueneberg ganglion: signal transduction and coding in an olfactory and thermosensory organ involved in the detection of alarm pheromones and predator-secreted kairomones. Cell Tissue Res 2021; 383:535-548. [PMID: 33404842 DOI: 10.1007/s00441-020-03380-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/06/2020] [Indexed: 12/26/2022]
Abstract
In numerous mammalian species, the nose harbors several compartments populated by chemosensory cells. Among them, the Grueneberg ganglion (GG) located in the anterior nasal region comprises sensory neurons activated by given substances. In rodents, in which the GG has been best studied, these chemical cues mainly include heterocyclic compounds released by predators or by conspecifics. Since some of these substances evoke fear- or stress-associated responses, the GG is considered as a detector for alerting semiochemicals. In fact, certain behavioral and physiological reactions to alarm pheromones and predator-secreted kairomones are attenuated in the absence of a functional GG. Intriguingly, GG neurons are also stimulated by cool temperatures. Moreover, ambient temperatures modulate olfactory responsiveness in the GG, indicating that cross-talks exist between the transduction pathways mediating chemo- and thermosensory signaling in this organ. In this context, exploring the relevant molecular cascades has demonstrated that some chemosensory transduction elements are also crucial for thermosensory signaling in the GG. Finally, for further processing of sensory information, axons of GG neurons project to the olfactory bulb of the brain where they innervate distinct glomerular structures belonging to the enigmatic necklace glomeruli. In this review, the stimuli activating GG neurons as well as the underlying transduction pathways are summarized. Because these stimuli do not exclusively activate GG neurons but also other sensory cells, the biological relevance of the GG is discussed, with a special focus on the role of the GG in detecting alarm signals.
Collapse
|
9
|
Zimmerman AD, Munger SD. Olfactory subsystems associated with the necklace glomeruli in rodents. Cell Tissue Res 2021; 383:549-557. [PMID: 33404845 DOI: 10.1007/s00441-020-03388-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/07/2020] [Indexed: 01/27/2023]
Abstract
The necklace glomeruli are a loosely defined group of glomeruli encircling the caudal main olfactory bulb in rodents. Initially defined by the expression of various immunohistochemical markers, they are now better understood in the context of the specialized chemosensory neurons of the main olfactory epithelium and Grueneberg ganglion that innervate them. It has become clear that the necklace region of the rodent main olfactory bulb is composed of multiple distinct groups of glomeruli, defined at least in part by their afferent inputs. In this review, we will explore the necklace glomeruli and the chemosensory neurons that innervate them.
Collapse
Affiliation(s)
- Arthur D Zimmerman
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, PO Box 100267, Gainesville, FL, 32610, USA
- Center for Smell and Taste, University of Florida, PO Box 100127, Gainesville, FL, 32610, USA
- Training Program in Chemosensory Science, University of Florida, PO Box 100127, Gainesville, FL, 32610, USA
| | - Steven D Munger
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, PO Box 100267, Gainesville, FL, 32610, USA.
- Center for Smell and Taste, University of Florida, PO Box 100127, Gainesville, FL, 32610, USA.
- Training Program in Chemosensory Science, University of Florida, PO Box 100127, Gainesville, FL, 32610, USA.
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Florida College of Medicine, PO Box 100266, Gainesville, FL, 32610, USA.
| |
Collapse
|
10
|
Sensory neurons expressing the atypical olfactory receptor guanylyl cyclase D are required for the acquisition of odor preferences by mice in diverse social contexts. Physiol Behav 2020; 227:113150. [PMID: 32841674 DOI: 10.1016/j.physbeh.2020.113150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/10/2020] [Accepted: 08/21/2020] [Indexed: 12/19/2022]
Abstract
Animals use social communication to learn important information from conspecifics that can guide appropriate behavioral choices. For example, during the social transmission of food preference (STFP), conspecific semiochemicals detected by mouse olfactory sensory neurons (OSNs) expressing the atypical olfactory receptor guanylyl cyclase D (GC-D+ OSNs) promote the acquisition of food preferences in the recipient animal, mitigating the risk of ingesting food contaminated with toxins or pathogens. However, it is unclear if GC-D+ OSNs mediate preference learning outside this specific context. Here, we report that GC-D+ OSNs are required for the acquisition of odor preferences by both adult and juvenile mice, and that GC-DD-dependent preference could be formed for conditionally aversive odors. We used a two-choice olfactory behavioral test to assess odor preferences in adult Gucy2d +/+, +/- and -/- mice that encountered novel odors together with GC-D+ OSN stimuli (guanylin family peptides), during social investigation of a live conspecific, or during suckling as pups. Gucy2d +/+ and +/- mice (which express functional GC-D), but not Gucy2d -/- littermates, successfully acquire a preference for the demonstrated odor in any of these behavioral paradigms. Mice could even acquire a GC-D-dependent preference for odors to which they had recently formed a conditioned aversion. Together, these results demonstrate that GC-D+ OSNs mediate the acquisition of socially-transmitted odor preferences in different social and experiential contexts and at different life stages.
Collapse
|
11
|
Ryu JR, Kim JH, Cho HM, Jo Y, Lee B, Joo S, Chae U, Nam Y, Cho IJ, Sun W. A monitoring system for axonal growth dynamics using micropatterns of permissive and Semaphorin 3F chemorepulsive signals. LAB ON A CHIP 2019; 19:291-305. [PMID: 30539180 DOI: 10.1039/c8lc00845k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Neurons reach their correct targets by directional outgrowth of axons, which is mediated by attractive or repulsive cues. Growing axons occasionally cross a field of repulsive cues and stop at intermediate targets on the journey to their final destination. However, it is not well-understood how individual growth cones make decisions, and pass through repulsive territory to reach their permissive target regions. We developed a microcontact printing culture system that could trap individual axonal tips in a permissive dot area surrounded by the repulsive signal, semaphorin 3F (Sema3F). Axons of rat hippocampal neurons on the Sema3F/PLL dot array extended in the checkboard pattern with a significantly slow growth rate. The detailed analysis of the behaviors of axonal growth cones revealed the saccadic dynamics in the dot array system. The trapped axonal tips in the permissive area underwent growth cone enlargement with remarkably spiky filopodia, promoting their escape from the Sema3F constraints with straight extension of axons. This structured axonal growth on the dot pattern was disrupted by increased inter-dot distance, or perturbing intracellular signaling machineries. These data indicate that axons grow against repulsive signals by jumping over the repulsive cues, depending on contact signals and intracellular milieu. Our study suggests that our dot array culture system can be used as a screening system to easily and efficiently evaluate ECM or small molecule inhibitors interfering growth cone dynamics leading to controlling axonal growth.
Collapse
Affiliation(s)
- Jae Ryun Ryu
- Department of Anatomy, Brain Korea 21, Korea University College of Medicine, Anam-Dong, Sungbuk-Gu, Seoul, 136-705, Republic of Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Crespo C, Liberia T, Blasco-Ibáñez JM, Nácher J, Varea E. Cranial Pair I: The Olfactory Nerve. Anat Rec (Hoboken) 2018; 302:405-427. [PMID: 29659152 DOI: 10.1002/ar.23816] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/29/2017] [Accepted: 06/15/2017] [Indexed: 12/13/2022]
Abstract
The olfactory nerve constitutes the first cranial pair. Compared with other cranial nerves, it depicts some atypical features. First, the olfactory nerve does not form a unique bundle. The olfactory axons join other axons and form several small bundles or fascicles: the fila olfactoria. These fascicles leave the nasal cavity, pass through the lamina cribrosa of the ethmoid bone and enter the brain. The whole of these fascicles is what is known as the olfactory nerve. Second, the olfactory sensory neurons, whose axons integrate the olfactory nerve, connect the nasal cavity and the brain without any relay. Third, the olfactory nerve is composed by unmyelinated axons. Fourth, the olfactory nerve contains neither Schwann cells nor oligodendrocytes wrapping its axons. But it contains olfactory ensheathing glia, which is a type of glia unique to this nerve. Fifth, the olfactory axons participate in the circuitry of certain spherical structures of neuropil that are unique in the brain: the olfactory glomeruli. Sixth, the axons of the olfactory nerve are continuously replaced and their connections in the central nervous system are remodeled continuously. Therefore, the olfactory nerve is subject to lifelong plasticity. Finally seventh, the olfactory nerve can be a gateway for the direct entrance of viruses, neurotoxins and other xenobiotics to the brain. In the same way, it can be used as a portal of entry to the brain for therapeutic substances, bypassing the blood-brain barrier. In this article, we analyze some features of the anatomy and physiology of the first cranial pair. Anat Rec, 302:405-427, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Carlos Crespo
- Department of Cell Biology, Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
| | - Teresa Liberia
- Departments of Neurosurgery and Neuroscience, Yale University School of Medicine, New Haven, Connecticut
| | - José Miguel Blasco-Ibáñez
- Department of Cell Biology, Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
| | - Juan Nácher
- Department of Cell Biology, Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
| | - Emilio Varea
- Department of Cell Biology, Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
| |
Collapse
|
13
|
Munro DAD, Hohenstein P, Coate TM, Davies JA. Refuting the hypothesis that semaphorin-3f/neuropilin-2 exclude blood vessels from the cap mesenchyme in the developing kidney. Dev Dyn 2017; 246:1047-1056. [PMID: 28929539 DOI: 10.1002/dvdy.24592] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/16/2017] [Accepted: 09/16/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND During murine kidney development, new cortical blood vessels form and pattern in cycles that coincide with cycles of collecting duct branching and the accompanying splitting of the cap mesenchyme (nephron progenitor cell populations that "cap" collecting duct ends). At no point in the patterning cycle do blood vessels enter the cap mesenchyme. We hypothesized that the exclusion of blood vessels from the cap mesenchyme may be controlled, at least in part, by an anti-angiogenic signal expressed by the cap mesenchyme cells. RESULTS We show that semaphorin-3f (Sema3f), a known anti-angiogenic factor, is expressed in cap mesenchymal cells and its receptor, neuropilin-2 (Nrp2), is expressed by newly forming blood vessels in the cortex of the developing kidney. We hypothesized that Sema3f/Nrp2 signaling excludes vessels from the cap mesenchyme. Genetic ablation of Sema3f and of Nrp2, however, failed to result in vessels invading the cap mesenchyme. CONCLUSIONS Despite complementary expression patterns, our data suggest that Sema3f and Nrp2 are dispensable for the exclusion of vessels from the cap mesenchyme during kidney development. These results should provoke additional experiments to ascertain the biological significance of Sema3f/Nrp2 expression in the developing kidney. Developmental Dynamics 246:1047-1056, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David A D Munro
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter Hohenstein
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Thomas M Coate
- Georgetown University, Department of Biology, Washington, DC
| | - Jamie A Davies
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
14
|
Regano D, Visintin A, Clapero F, Bussolino F, Valdembri D, Maione F, Serini G, Giraudo E. Sema3F (Semaphorin 3F) Selectively Drives an Extraembryonic Proangiogenic Program. Arterioscler Thromb Vasc Biol 2017; 37:1710-1721. [PMID: 28729362 PMCID: PMC5567401 DOI: 10.1161/atvbaha.117.308226] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 07/07/2017] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Molecular pathways governing blood vessel patterning are vital to vertebrate development. Because of their ability to counteract proangiogenic factors, antiangiogenic secreted Sema3 (class 3 semaphorins) control embryonic vascular morphogenesis. However, if and how Sema3 may play a role in the control of extraembryonic vascular development is presently unknown. APPROACH AND RESULTS By characterizing genetically modified mice, here, we show that surprisingly Sema3F acts instead as a selective extraembryonic, but not intraembryonic proangiogenic cue. Both in vivo and in vitro, in visceral yolk sac epithelial cells, Sema3F signals to inhibit the phosphorylation-dependent degradation of Myc, a transcription factor that drives the expression of proangiogenic genes, such as the microRNA cluster 17/92. In Sema3f-null yolk sacs, the transcription of Myc-regulated microRNA 17/92 cluster members is impaired, and the synthesis of Myc and microRNA 17/92 foremost antiangiogenic target Thbs1 (thrombospondin 1) is increased, whereas Vegf (vascular endothelial growth factor) signaling is inhibited in yolk sac endothelial cells. Consistently, exogenous recombinant Sema3F inhibits the phosphorylation-dependent degradation of Myc and the synthesis of Thbs1 in mouse F9 teratocarcinoma stem cells that were in vitro differentiated in visceral yolk sac epithelial cells. Sema3f-/- mice placentas are also highly anemic and abnormally vascularized. CONCLUSIONS Sema3F functions as an unconventional Sema3 that promotes extraembryonic angiogenesis by inhibiting the Myc-regulated synthesis of Thbs1 in visceral yolk sac epithelial cells.
Collapse
Affiliation(s)
- Donatella Regano
- From the Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia, Istituto di Ricovero e Cura a Carattere Scientifico, Candiolo, Torino, Italy (D.R., A.V., F.C., F.B., D.V., F.M., G.S., E.G.); Department of Science and Drug Technology, University of Torino, Italy (D.R., A.V., F.M., E.G.); and Department of Oncology, University of Torino School of Medicine, Candiolo, Italy (F.C., F.B., D.V., G.S.)
| | - Alessia Visintin
- From the Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia, Istituto di Ricovero e Cura a Carattere Scientifico, Candiolo, Torino, Italy (D.R., A.V., F.C., F.B., D.V., F.M., G.S., E.G.); Department of Science and Drug Technology, University of Torino, Italy (D.R., A.V., F.M., E.G.); and Department of Oncology, University of Torino School of Medicine, Candiolo, Italy (F.C., F.B., D.V., G.S.)
| | - Fabiana Clapero
- From the Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia, Istituto di Ricovero e Cura a Carattere Scientifico, Candiolo, Torino, Italy (D.R., A.V., F.C., F.B., D.V., F.M., G.S., E.G.); Department of Science and Drug Technology, University of Torino, Italy (D.R., A.V., F.M., E.G.); and Department of Oncology, University of Torino School of Medicine, Candiolo, Italy (F.C., F.B., D.V., G.S.)
| | - Federico Bussolino
- From the Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia, Istituto di Ricovero e Cura a Carattere Scientifico, Candiolo, Torino, Italy (D.R., A.V., F.C., F.B., D.V., F.M., G.S., E.G.); Department of Science and Drug Technology, University of Torino, Italy (D.R., A.V., F.M., E.G.); and Department of Oncology, University of Torino School of Medicine, Candiolo, Italy (F.C., F.B., D.V., G.S.)
| | - Donatella Valdembri
- From the Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia, Istituto di Ricovero e Cura a Carattere Scientifico, Candiolo, Torino, Italy (D.R., A.V., F.C., F.B., D.V., F.M., G.S., E.G.); Department of Science and Drug Technology, University of Torino, Italy (D.R., A.V., F.M., E.G.); and Department of Oncology, University of Torino School of Medicine, Candiolo, Italy (F.C., F.B., D.V., G.S.)
| | - Federica Maione
- From the Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia, Istituto di Ricovero e Cura a Carattere Scientifico, Candiolo, Torino, Italy (D.R., A.V., F.C., F.B., D.V., F.M., G.S., E.G.); Department of Science and Drug Technology, University of Torino, Italy (D.R., A.V., F.M., E.G.); and Department of Oncology, University of Torino School of Medicine, Candiolo, Italy (F.C., F.B., D.V., G.S.)
| | - Guido Serini
- From the Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia, Istituto di Ricovero e Cura a Carattere Scientifico, Candiolo, Torino, Italy (D.R., A.V., F.C., F.B., D.V., F.M., G.S., E.G.); Department of Science and Drug Technology, University of Torino, Italy (D.R., A.V., F.M., E.G.); and Department of Oncology, University of Torino School of Medicine, Candiolo, Italy (F.C., F.B., D.V., G.S.).
| | - Enrico Giraudo
- From the Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia, Istituto di Ricovero e Cura a Carattere Scientifico, Candiolo, Torino, Italy (D.R., A.V., F.C., F.B., D.V., F.M., G.S., E.G.); Department of Science and Drug Technology, University of Torino, Italy (D.R., A.V., F.M., E.G.); and Department of Oncology, University of Torino School of Medicine, Candiolo, Italy (F.C., F.B., D.V., G.S.).
| |
Collapse
|
15
|
Loss of Kirrel family members alters glomerular structure and synapse numbers in the accessory olfactory bulb. Brain Struct Funct 2017; 223:307-319. [DOI: 10.1007/s00429-017-1485-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 07/24/2017] [Indexed: 10/19/2022]
|
16
|
Uytingco CR, Puche AC, Munger SD. Interglomerular Connectivity within the Canonical and GC-D/Necklace Olfactory Subsystems. PLoS One 2016; 11:e0165343. [PMID: 27902696 PMCID: PMC5130179 DOI: 10.1371/journal.pone.0165343] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/10/2016] [Indexed: 01/25/2023] Open
Abstract
The mammalian main olfactory system contains several subsystems that differ not only in the receptors they express and the glomerular targets they innervate within the main olfactory bulb (MOB), but also in the strategies they use to process odor information. The canonical main olfactory system employs a combinatorial coding strategy that represents odorant identity as a pattern of glomerular activity. By contrast, the "GC-D/necklace" olfactory subsystem—formed by olfactory sensory neurons expressing the receptor guanylyl cyclase GC-D and their target necklace glomeruli (NGs) encircling the caudal MOB—is critical for the detection of a small number of semiochemicals that promote the acquisition of food preferences. The formation of these socially-transmitted food preferences requires the animal to integrate information about two types of olfactory stimuli: these specialized social chemosignals and the food odors themselves. However, the neural mechanisms with which the GC-D/necklace subsystem processes this information are unclear. We used stimulus-induced increases in intrinsic fluorescence signals to map functional circuitry associated with NGs and canonical glomeruli (CGs) in the MOB. As expected, CG-associated activity spread laterally through both the glomerular and external plexiform layers associated with activated glomeruli. Activation of CGs or NGs resulted in activity spread between the two types of glomeruli; there was no evidence of preferential connectivity between individual necklace glomeruli. These results support previous anatomical findings that suggest the canonical and GC-D/necklace subsystems are functionally connected and may integrate general odor and semiochemical information in the MOB.
Collapse
Affiliation(s)
- Cedric R. Uytingco
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Adam C. Puche
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Steven D. Munger
- Center for Smell and Taste, University of Florida, Gainesville, Florida, United States of America
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, United States of America
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
17
|
Sorel O, Tuddenham L, Myster F, Palmeira L, Kerkhofs P, Pfeffer S, Vanderplasschen A, Dewals BG. Small RNA deep sequencing identifies viral microRNAs during malignant catarrhal fever induced by alcelaphine herpesvirus 1. J Gen Virol 2016; 96:3360-3372. [PMID: 26329753 DOI: 10.1099/jgv.0.000272] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Alcelaphine herpesvirus 1 (AlHV-1) is a c-herpesvirus (c-HV) carried asymptomatically by wildebeest. Upon cross-species transmission, AlHV-1 induces a fatal lymphoproliferative disease named malignant catarrhal fever (MCF) in many ruminants, including cattle, and the rabbit model. Latency has been shown to be essential for MCF induction. However, the mechanisms causing the activation and proliferation of infected CD8+T cells are unknown. Many c-HVs express microRNAs (miRNAs). These small non-coding RNAs can regulate expression of host or viral target genes involved in various pathways and are thought to facilitate viral infection and/or mediate activation and proliferation of infected lymphocytes. The AlHV-1 genome has been predicted to encode a large number of miRNAs. However, their precise contribution in viral infection and pathogenesis in vivo remains unknown. Here, using cloning and sequencing of small RNAs we identified 36 potential miRNAs expressed in a lymphoblastoid cell line propagated from a calf infected with AlHV-1 and developing MCF. Among the sequenced candidate miRNAs, 32 were expressed on the reverse strand of the genome in two main clusters. The expression of these 32 viral miRNAs was further validated using Northern blot and quantitative reverse transcription PCR in lymphoid organs of MCF developing calves or rabbits. To determine the concerted contribution in MCF of 28 viralmiRNAs clustered in the non-protein-coding region of the AlHV-1 genome, a recombinant virus was produced. The absence of these 28 miRNAs did not affect viral growth in vitro or MCF induction in rabbits, indicating that the AlHV-1 miRNAs clustered in this non-protein-coding genomic region are dispensable for MCF induction.
Collapse
Affiliation(s)
- Océane Sorel
- Fundamental and Applied Research in Animals and Health (FARAH), Immunology-Vaccinology, Faculty of Veterinary Medicine (B43b), University of Liège, Belgium
| | - Lee Tuddenham
- Architecture et Réactivité de l'ARN - UPR 9002, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, 15 rue René Descartes, F-67084 Strasbourg Cedex, France
| | - Françoise Myster
- Fundamental and Applied Research in Animals and Health (FARAH), Immunology-Vaccinology, Faculty of Veterinary Medicine (B43b), University of Liège, Belgium
| | - Leonor Palmeira
- Fundamental and Applied Research in Animals and Health (FARAH), Immunology-Vaccinology, Faculty of Veterinary Medicine (B43b), University of Liège, Belgium
| | - Pierre Kerkhofs
- Veterinary and Agrochemical Research Center (CODA-CERVA), Brussels, Belgium
| | - Sébastien Pfeffer
- Architecture et Réactivité de l'ARN - UPR 9002, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, 15 rue René Descartes, F-67084 Strasbourg Cedex, France
| | - Alain Vanderplasschen
- Fundamental and Applied Research in Animals and Health (FARAH), Immunology-Vaccinology, Faculty of Veterinary Medicine (B43b), University of Liège, Belgium
| | - Benjamin G Dewals
- Fundamental and Applied Research in Animals and Health (FARAH), Immunology-Vaccinology, Faculty of Veterinary Medicine (B43b), University of Liège, Belgium
| |
Collapse
|
18
|
Brignall AC, Cloutier JF. Neural map formation and sensory coding in the vomeronasal system. Cell Mol Life Sci 2015; 72:4697-709. [PMID: 26329476 PMCID: PMC11113928 DOI: 10.1007/s00018-015-2029-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/31/2015] [Accepted: 08/20/2015] [Indexed: 10/23/2022]
Abstract
Sensory systems enable us to encode a clear representation of our environment in the nervous system by spatially organizing sensory stimuli being received. The organization of neural circuitry to form a map of sensory activation is critical for the interpretation of these sensory stimuli. In rodents, social communication relies strongly on the detection of chemosignals by the vomeronasal system, which regulates a wide array of behaviours, including mate recognition, reproduction, and aggression. The binding of these chemosignals to receptors on vomeronasal sensory neurons leads to activation of second-order neurons within glomeruli of the accessory olfactory bulb. Here, vomeronasal receptor activation by a stimulus is organized into maps of glomerular activation that represent phenotypic qualities of the stimuli detected. Genetic, electrophysiological and imaging studies have shed light on the principles underlying cell connectivity and sensory map formation in the vomeronasal system, and have revealed important differences in sensory coding between the vomeronasal and main olfactory system. In this review, we summarize the key factors and mechanisms that dictate circuit formation and sensory coding logic in the vomeronasal system, emphasizing differences with the main olfactory system. Furthermore, we discuss how detection of chemosignals by the vomeronasal system regulates social behaviour in mice, specifically aggression.
Collapse
Affiliation(s)
- Alexandra C Brignall
- Montreal Neurological Institute, Centre for Neuronal Survival, 3801 University, Room MP105, Montréal, QC, H3A 2B4, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, Canada
| | - Jean-François Cloutier
- Montreal Neurological Institute, Centre for Neuronal Survival, 3801 University, Room MP105, Montréal, QC, H3A 2B4, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada.
- Department of Anatomy and Cell Biology, McGill University, Montréal, Canada.
| |
Collapse
|
19
|
Coate TM, Spita NA, Zhang KD, Isgrig KT, Kelley MW. Neuropilin-2/Semaphorin-3F-mediated repulsion promotes inner hair cell innervation by spiral ganglion neurons. eLife 2015; 4. [PMID: 26302206 PMCID: PMC4566076 DOI: 10.7554/elife.07830] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/22/2015] [Indexed: 12/18/2022] Open
Abstract
Auditory function is dependent on the formation of specific innervation patterns between mechanosensory hair cells (HCs) and afferent spiral ganglion neurons (SGNs). In particular, type I SGNs must precisely connect with inner HCs (IHCs) while avoiding connections with nearby outer HCs (OHCs). The factors that mediate these patterning events are largely unknown. Using sparse-labeling and time-lapse imaging, we visualized for the first time the behaviors of developing SGNs including active retraction of processes from OHCs, suggesting that some type I SGNs contact OHCs before forming synapses with IHCs. In addition, we demonstrate that expression of Semaphorin-3F in the OHC region inhibits type I SGN process extension by activating Neuropilin-2 receptors expressed on SGNs. These results suggest a model in which cochlear innervation patterns by type I SGNs are determined, at least in part, through a Semaphorin-3F-mediated inhibitory signal that impedes processes from extending beyond the IHC region. DOI:http://dx.doi.org/10.7554/eLife.07830.001 The process of hearing begins when sound waves enter the outer ear, causing the eardrum to vibrate. The three small bones of the middle ear pass these vibrations on to the cochlea, a fluid-filled structure shaped like a spiral. Tiny hair cells inside the cochlea move in response to the vibrations and convert them into electrical signals, which are transmitted by cells called spiral ganglion neurons (SGNs) to the brain. Hair cells can be divided into ‘inner’ and ‘outer’ hair cells. Inner hair cells transmit most of the information about a sound to the brain, via connections with type I SGNs. Outer hair cells are thought to amplify sound and connect to type II SGNs. How the type I and II SGNs connect to the correct type of hair cell as the ear develops is not well understood, despite these connections being essential for hearing. Coate et al. have now used time-lapse imaging and fixed specimens to follow individually labeled SGNs as they establish these connections within the cochlea of a mouse embryo. Although the type I SGNs ultimately formed connections with inner hair cells, many of them made contact with outer hair cells first. These contacts were short-lived thanks to a protein found near the outer hair cells, named Semaphorin-3F. This protein repels the type I SGNs by activating a receptor on their surface called Neuropilin-2, and so directs the type I SGNs towards the inner hair cells. One of the mysteries that remains to be solved is how type II SGNs are ‘permitted’ to extend into the outer hair cell region, even though they are also confronted by Semaphorin-3F. In addition, it will also be important to determine how SGNs adapt to cues from different Semaphorins from different parts of the cochlea as they navigate into different hair cell regions. DOI:http://dx.doi.org/10.7554/eLife.07830.002
Collapse
Affiliation(s)
- Thomas M Coate
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, Bethesda, United States
| | - Nathalie A Spita
- Department of Biology, Georgetown University, Washington, United States
| | - Kaidi D Zhang
- Department of Biology, Georgetown University, Washington, United States
| | - Kevin T Isgrig
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, Bethesda, United States
| | - Matthew W Kelley
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, Bethesda, United States
| |
Collapse
|
20
|
Intergenerational transmission of emotional trauma through amygdala-dependent mother-to-infant transfer of specific fear. Proc Natl Acad Sci U S A 2014; 111:12222-7. [PMID: 25071168 DOI: 10.1073/pnas.1316740111] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Emotional trauma is transmitted across generations. For example, children witnessing their parent expressing fear to specific sounds or images begin to express fear to those cues. Within normal range, this is adaptive, although pathological fear, such as occurs in posttraumatic stress disorder or specific phobias, is also socially transmitted to children and is thus of clinical concern. Here, using a rodent model, we report a mother-to-infant transfer of fear to a novel peppermint odor, which is dependent on the mother expressing fear to that smell in pups' presence. Examination of pups' neural activity using c-Fos early gene expression and (14)C 2-deoxyglucose autoradiography during mother-to-infant fear transmission revealed lateral and basal amygdala nuclei activity, with a causal role highlighted by pharmacological inactivation of pups' amygdala preventing the fear transmission. Maternal presence was not needed for fear transmission, because an elevation of pups' corticosterone induced by the odor of the frightened mother along with a novel peppermint odor was sufficient to produce pups' subsequent aversion to that odor. Disruption of axonal tracts from the Grueneberg ganglion, a structure implicated in alarm chemosignaling, or blockade of pups' alarm odor-induced corticosterone increase prevented transfer of fear. These memories are acquired at younger ages compared with amygdala-dependent odor-shock conditioning and are more enduring following minimal conditioning. Our results provide clues to understanding transmission of specific fears across generations and its dependence upon maternal induction of pups' stress response paired with the cue to induce amygdala-dependent learning plasticity. Results are discussed within the context of caregiver emotional responses and adaptive vs. pathological fears social transmission.
Collapse
|
21
|
Barrios AW, Núñez G, Sánchez Quinteiro P, Salazar I. Anatomy, histochemistry, and immunohistochemistry of the olfactory subsystems in mice. Front Neuroanat 2014; 8:63. [PMID: 25071468 PMCID: PMC4094888 DOI: 10.3389/fnana.2014.00063] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 06/23/2014] [Indexed: 11/13/2022] Open
Abstract
The four regions of the murine nasal cavity featuring olfactory neurons were studied anatomically and by labeling with lectins and relevant antibodies with a view to establishing criteria for the identification of olfactory subsystems that are readily applicable to other mammals. In the main olfactory epithelium and the septal organ the olfactory sensory neurons (OSNs) are embedded in quasi-stratified columnar epithelium; vomeronasal OSNs are embedded in epithelium lining the medial interior wall of the vomeronasal duct and do not make contact with the mucosa of the main nasal cavity; and in Grüneberg's ganglion a small isolated population of OSNs lies adjacent to, but not within, the epithelium. With the exception of Grüneberg's ganglion, all the tissues expressing olfactory marker protein (OMP) (the above four nasal territories, the vomeronasal and main olfactory nerves, and the main and accessory olfactory bulbs) are also labeled by Lycopersicum esculentum agglutinin, while Ulex europaeus agglutinin I labels all and only tissues expressing Gαi2 (the apical sensory neurons of the vomeronasal organ, their axons, and their glomerular destinations in the anterior accessory olfactory bulb). These staining patterns of UEA-I and LEA may facilitate the characterization of olfactory anatomy in other species. A 710-section atlas of the anatomy of the murine nasal cavity has been made available on line.
Collapse
Affiliation(s)
- Arthur W Barrios
- Unit of Anatomy and Embryology, Department of Anatomy and Animal Production, Faculty of Veterinary, University of Santiago de Compostela Lugo, Spain
| | | | - Pablo Sánchez Quinteiro
- Unit of Anatomy and Embryology, Department of Anatomy and Animal Production, Faculty of Veterinary, University of Santiago de Compostela Lugo, Spain
| | - Ignacio Salazar
- Unit of Anatomy and Embryology, Department of Anatomy and Animal Production, Faculty of Veterinary, University of Santiago de Compostela Lugo, Spain
| |
Collapse
|
22
|
Omura M, Mombaerts P. Trpc2-expressing sensory neurons in the main olfactory epithelium of the mouse. Cell Rep 2014; 8:583-95. [PMID: 25001287 DOI: 10.1016/j.celrep.2014.06.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 05/30/2014] [Accepted: 06/09/2014] [Indexed: 01/18/2023] Open
Abstract
The mouse olfactory system contains two distinct chemosensory epithelia, the main olfactory epithelium (MOE) and the vomeronasal epithelium (VNE). Their sensory neurons express odorant receptor genes and vomeronasal receptor genes, respectively, and differ fundamentally in their signal transduction pathways. Genes required for chemosensory transduction are the cyclic nucleotide-gated channel subunit Cnga2 and the transient receptor potential cation channel Trpc2, respectively. Here, we document two previously unrecognized types of Trpc2+ neurons in the MOE of mice of various ages, including adults. These cell types express Cnga2 and can be distinguished by expression of adenylate cyclase Adcy3 (positive: type A; negative: type B). A third of MOE neurons that express the odorant receptor genes Olfr68/Olfr69 coexpress Trpc2 and are type A cells. In Trpc2-IRES-taulacZ gene-targeted mice, some labeled axons coalesce into glomeruli in the main olfactory bulb. Our findings have implications for the conventional VNE-centric interpretation of the behavioral phenotypes of Trpc2 knockout mice.
Collapse
Affiliation(s)
- Masayo Omura
- Max Planck Research Unit for Neurogenetics, 60438 Frankfurt, Germany
| | - Peter Mombaerts
- Max Planck Research Unit for Neurogenetics, 60438 Frankfurt, Germany.
| |
Collapse
|
23
|
Roosing S, Thiadens AAHJ, Hoyng CB, Klaver CCW, den Hollander AI, Cremers FPM. Causes and consequences of inherited cone disorders. Prog Retin Eye Res 2014; 42:1-26. [PMID: 24857951 DOI: 10.1016/j.preteyeres.2014.05.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 04/29/2014] [Accepted: 05/06/2014] [Indexed: 11/18/2022]
Abstract
Hereditary cone disorders (CDs) are characterized by defects of the cone photoreceptors or retinal pigment epithelium underlying the macula, and include achromatopsia (ACHM), cone dystrophy (COD), cone-rod dystrophy (CRD), color vision impairment, Stargardt disease (STGD) and other maculopathies. Forty-two genes have been implicated in non-syndromic inherited CDs. Mutations in the 5 genes implicated in ACHM explain ∼93% of the cases. On the contrary, only 21% of CRDs (17 genes) and 25% of CODs (8 genes) have been elucidated. The fact that the large majority of COD and CRD-associated genes are yet to be discovered hints towards the existence of unknown cone-specific or cone-sensitive processes. The ACHM-associated genes encode proteins that fulfill crucial roles in the cone phototransduction cascade, which is the most frequently compromised (10 genes) process in CDs. Another 7 CD-associated proteins are required for transport processes towards or through the connecting cilium. The remaining CD-associated proteins are involved in cell membrane morphogenesis and maintenance, synaptic transduction, and the retinoid cycle. Further novel genes are likely to be identified in the near future by combining large-scale DNA sequencing and transcriptomics technologies. For 31 of 42 CD-associated genes, mammalian models are available, 14 of which have successfully been used for gene augmentation studies. However, gene augmentation for CDs should ideally be developed in large mammalian models with cone-rich areas, which are currently available for only 11 CD genes. Future research will aim to elucidate the remaining causative genes, identify the molecular mechanisms of CD, and develop novel therapies aimed at preventing vision loss in individuals with CD in the future.
Collapse
Affiliation(s)
- Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | | - Carel B Hoyng
- Department of Ophthalmology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Caroline C W Klaver
- Department of Ophthalmology Erasmus Medical Centre, 3000 CA, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus Medical Centre, 3000 CA, Rotterdam, The Netherlands
| | - Anneke I den Hollander
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, PO Box 9101, 6500 HB, Nijmegen, The Netherlands; Department of Ophthalmology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
24
|
Prince JEA, Brignall AC, Cutforth T, Shen K, Cloutier JF. Kirrel3 is required for the coalescence of vomeronasal sensory neuron axons into glomeruli and for male-male aggression. Development 2013; 140:2398-408. [PMID: 23637329 DOI: 10.1242/dev.087262] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The accessory olfactory system controls social and sexual interactions in mice that are crucial for survival. Vomeronasal sensory neurons (VSNs) form synapses with dendrites of second order neurons in glomeruli of the accessory olfactory bulb (AOB). Axons of VSNs expressing the same vomeronasal receptor coalesce into multiple glomeruli within spatially conserved regions of the AOB. Here we examine the role of the Kirrel family of transmembrane proteins in the coalescence of VSN axons within the AOB. We find that Kirrel2 and Kirrel3 are differentially expressed in subpopulations of VSNs and that their expression is regulated by activity. Although Kirrel3 expression is not required for early axonal guidance events, such as fasciculation of the vomeronasal tract and segregation of apical and basal VSN axons in the AOB, it is necessary for proper coalescence of axons into glomeruli. Ablation of Kirrel3 expression results in disorganization of the glomerular layer of the posterior AOB and formation of fewer, larger glomeruli. Furthermore, Kirrel3(-/-) mice display a loss of male-male aggression in a resident-intruder assay. Taken together, our results indicate that differential expression of Kirrels on vomeronasal axons generates a molecular code that dictates their proper coalescence into glomeruli within the AOB.
Collapse
Affiliation(s)
- Janet E A Prince
- Montreal Neurological Institute, Centre for Neuronal Survival, 3801 University, Montréal, Québec, H3A 2B4, Canada
| | | | | | | | | |
Collapse
|
25
|
Matsuo T, Rossier DA, Kan C, Rodriguez I. The wiring of Grueneberg ganglion axons is dependent on neuropilin 1. Development 2012; 139:2783-91. [PMID: 22745317 DOI: 10.1242/dev.077008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The Grueneberg ganglion is a specialized olfactory sensor. In mice, its activation induces freezing behavior. The topographical map corresponding to the central projections of its sensory axons is poorly defined, as well as the guidance molecules involved in its establishment. We took a transgenic approach to label exclusively Grueneberg sensory neurons and their axonal projections. We observed that a stereotyped convergence map in a series of coalescent neuropil-rich structures is already present at birth. These structures are part of a peculiar and complex neuronal circuit, composed of a chain of glomeruli organized in a necklace pattern that entirely surrounds the trunk of the olfactory bulb. We found that the necklace chain is composed of two different sets of glomeruli: one exclusively innervated by Grueneberg ganglion neurons, the other by axonal inputs from the main olfactory neuroepithelium. Combining the transgenic Grueneberg reporter mouse with a conditional null genetic approach, we then show that the axonal wiring of Grueneberg neurons is dependent on neuropilin 1 expression. Neuropilin 1-deficient Grueneberg axonal projections lose their strict and characteristic avoidance of vomeronasal glomeruli, glomeruli that are innervated by secondary neurons expressing the repulsive guidance cue and main neuropilin 1 ligand Sema3a. Taken together, our observations represent a first step in the understanding of the circuitry and the coding strategy used by the Grueneberg system.
Collapse
Affiliation(s)
- Tomohiko Matsuo
- Department of Genetics and Evolution and National Research Center Frontiers in Genetics, University of Geneva, Geneva 4, Switzerland
| | | | | | | |
Collapse
|
26
|
Grybko MJ, Hahm ET, Perrine W, Parnes JA, Chick WS, Sharma G, Finger TE, Vijayaraghavan S. A transgenic mouse model reveals fast nicotinic transmission in hippocampal pyramidal neurons. Eur J Neurosci 2011; 33:1786-98. [PMID: 21501254 DOI: 10.1111/j.1460-9568.2011.07671.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The relative contribution to brain cholinergic signaling by synaptic- and diffusion-based mechanisms remains to be elucidated. In this study, we examined the prevalence of fast nicotinic signaling in the hippocampus. We describe a mouse model where cholinergic axons are labeled with the tauGFP fusion protein driven by the choline acetyltransferase promoter. The model provides for the visualization of individual cholinergic axons at greater resolution than other available models and techniques, even in thick, live, slices. Combining calcium imaging and electrophysiology, we demonstrate that local stimulation of visualized cholinergic fibers results in rapid excitatory postsynaptic currents mediated by the activation of α7-subunit-containing nicotinic acetylcholine receptors (α7-nAChRs) on CA3 pyramidal neurons. These responses were blocked by the α7-nAChR antagonist methyllycaconitine and potentiated by the receptor-specific allosteric modulator 1-(5-chloro-2,4-dimethoxy-phenyl)-3-(5-methyl-isoxanol-3-yl)-urea (PNU-120596). Our results suggest, for the first time, that synaptic nAChRs can modulate pyramidal cell plasticity and development. Fast nicotinic transmission might play a greater role in cholinergic signaling than previously assumed. We provide a model for the examination of synaptic properties of basal forebrain cholinergic innervation in the brain.
Collapse
Affiliation(s)
- Michael J Grybko
- Department of Physiology and Biophysics, School of Medicine, University of Colorado, Aurora, CO, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
In the mammalian olfactory system, there exist several parallel specialized subsystems, one of which is the necklace olfactory system. This subsystem has several interesting features in its anatomical organization and physiological responses. Its olfactory sensory neurons (OSNs) in the olfactory epithelium project their axons to a set of glomeruli in the caudal olfactory bulb, forming the shape of "beads-on-a-string" and thus being named as "necklace glomeruli." Physiologically, necklace OSNs lack components suggesting cAMP as the second messenger in the signal transduction cascade as those observed in the OSNs of the canonical olfactory system. In contrast, necklace OSNs possess several signaling components suggesting cGMP as the second messenger. Our recent studies demonstrate that one of the major functions of the necklace olfactory system is to detect atmospheric carbon dioxide (CO2) and mediate avoidance behavior, suggesting novel molecular and cellular mechanisms of CO2 sensing. Here, I will review recent progresses on our understanding of the organization and function of the necklace olfactory subsystem. These recent studies suggest the exciting potentials of using the necklace olfactory system as an advantageous model system for studying neural circuits underlying innate avoidance behavior.
Collapse
Affiliation(s)
- Minmin Luo
- National Institute of Biological Sciences, Beijing, China.
| |
Collapse
|
28
|
Abstract
AbstractThe olfactory system represents a perfect model to study the interactions between the central and peripheral nervous systems in order to establish a neural circuit during early embryonic development. In addition, another important feature of this system is the capability to integrate new cells generated in two neurogenic zones: the olfactory epithelium in the periphery and the wall of the lateral ventricles in the CNS, both during development and adulthood. In all these processes the combination and sequence of specific molecular signals plays a critical role in the wiring of the olfactory axons, as well as the precise location of the incoming cell populations to the olfactory bulb. The purpose of this review is to summarize recent insights into the cellular and molecular events that dictate cell settling position and axonal trajectories from their origin in the olfactory placode to the formation of synapses in the olfactory bulb to ensure rapid and reliable transmission of olfactory information from the nose to the brain.
Collapse
|
29
|
Mamasuew K, Hofmann N, Breer H, Fleischer J. Grueneberg ganglion neurons are activated by a defined set of odorants. Chem Senses 2010; 36:271-82. [PMID: 21148269 DOI: 10.1093/chemse/bjq124] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Based on a variety of recent findings, the Grueneberg ganglion (GG) in the vestibule of the nasal cavity is considered as an olfactory compartment. However, defined chemical substances that activate GG neurons have not been identified. In this study, the responsiveness of murine GG cells to odorants was examined by monitoring the expression of the activity-dependent gene c-Fos. Testing a number of odorous compounds, cells in the GG were found to respond to dimethylpyrazine (DMP) and a few related substances. These responses were dose-dependent and restricted to early postnatal stages. The DMP-responsive GG cells belonged to the subset of GG neurons that coexpress the signaling elements V2r83, GC-G, and CNGA3. These cells have been previously reported to respond to cool ambient temperatures as well. In fact, cool temperatures enhanced DMP-evoked responses of GG cells. These findings support the concept that the GG of neonatal mice operates as a dual sensory organ that is stimulated by both the odorous compound DMP and cool ambient temperatures.
Collapse
Affiliation(s)
- Katharina Mamasuew
- Institute of Physiology, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | | | | | | |
Collapse
|
30
|
Gao L, Hu J, Zhong C, Luo M. Integration of CO2 and odorant signals in the mouse olfactory bulb. Neuroscience 2010; 170:881-92. [PMID: 20696215 DOI: 10.1016/j.neuroscience.2010.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 07/19/2010] [Accepted: 08/03/2010] [Indexed: 11/25/2022]
Abstract
Carbon dioxide (CO(2)) is an important environmental cue for many animal species. In both vertebrates and invertebrates, CO(2) is detected by a specialized subset of olfactory sensory neurons (OSNs) and mediates several stereotypical behaviors. It remains unknown how CO(2) cues are integrated with other olfactory signals in the mammalian olfactory bulb, the first stage of central olfactory processing. By recording from the mouse olfactory bulb in vivo, we found that CO(2)-activating neurons also respond selectively to odorants, many of which are putative mouse pheromones and natural odorants. In addition, many odorant-responsive bulbar neurons are inhibited by CO(2). For a substantial number of CO(2)-activating neurons, binary mixtures of CO(2) and a specific odorant produce responses that are distinct from those evoked by either CO(2) or the odorant alone. In addition, for a substantial number of CO(2)-inhibiting neurons, CO(2) addition can completely block the action potential firing of the cells to the odorants. These results indicate strong interaction between CO(2) signals and odorant signals in the olfactory bulb, suggesting important roles for the integration of these two signals in CO(2)-mediated behavioral responses.
Collapse
Affiliation(s)
- L Gao
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, PR China
| | | | | | | |
Collapse
|
31
|
Abstract
The Grueneberg ganglion is a newly appreciated nasal subsystem with neural connections to the olfactory forebrain, but its functional role has not been well defined. Here, we assess whether Grueneberg ganglion neurons (GGNs) function as thermosensors. By investigating the effect of acute temperature changes on the cytosolic Ca(2+) concentration of genetically labeled mouse GGNs (either gender), we demonstrate that GGNs are thermosensory neurons specialized to detect a temperature decline within a given temperature window. Furthermore, GGNs comprise a relatively homogeneous cell population with respect to temperature sensitivity. GGNs do not respond to ligands of the temperature-sensitive TRP channels TRPM8 and TRPA1, suggesting a novel mechanism for temperature sensing. One possibility is a cGMP-mediated mechanism, as GGNs express the receptor guanylyl cyclase GC-G, the cGMP-sensitive phosphodiesterase PDE2 and the cGMP-sensitive channel CNGA3. Surprisingly, Cnga3-null mice show normal cooling-induced Ca(2+) responses although cGMP-dependent Ca(2+) increases are absent in these mice. Rather, the cooling-induced Ca(2+) response of GGNs depends critically on the activity of a tetrodotoxin-sensitive voltage-gated sodium channel whereas the cGMP-dependent Ca(2+) signal does not. These findings establish the Grueneberg ganglion as a sensory organ mediating cold-evoked neural responses, possibly in conjunction with the sensing of other stress- or fear-related chemical social cues.
Collapse
|
32
|
Takahashi H, Yoshihara SI, Nishizumi H, Tsuboi A. Neuropilin-2 is required for the proper targeting of ventral glomeruli in the mouse olfactory bulb. Mol Cell Neurosci 2010; 44:233-45. [PMID: 20363325 DOI: 10.1016/j.mcn.2010.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 03/19/2010] [Accepted: 03/25/2010] [Indexed: 10/19/2022] Open
Abstract
Recent evidence shows that olfactory sensory neurons expressing a given odorant receptor (OR) are not necessarily confined to one of four zones, rather arranged in an overlapping manner in the olfactory epithelium (OE). In this study, in situ hybridization of OE sections with the OR probes indicated that the OR genes, the mRNAs of which were detected in an array of glomeruli on olfactory bulb (OB) along the anterodorsal/posteroventral (AD/PV) axis, are expressed in subareal zones within the most ventral zone, zone 4, along the dorsomedial/ventrolateral (DM/VL) axis. We also found that Neuropilin-2 (Nrp2) is expressed in a DM-low to VL-high gradient within zone 4 of OE. Furthermore, in Nrp2 mutant mice, we observed multiple glomeruli for zone 4 ORs in OB. These results suggest that the graded expression of Nrp2 in OE is required for the proper targeting of ventral glomeruli along the AD/PV axis in OB.
Collapse
Affiliation(s)
- Hiroo Takahashi
- Laboratory for Molecular Biology of Neural System, Advanced Medical Research Center, Nara Medical University, Nara, Japan
| | | | | | | |
Collapse
|
33
|
Samardzija M, Neuhauss SCF, Joly S, Kurz-Levin M, Grimm C. Animal Models for Retinal Degeneration. NEUROMETHODS 2010. [DOI: 10.1007/978-1-60761-541-5_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Zufall F, Munger SD. Receptor guanylyl cyclases in mammalian olfactory function. Mol Cell Biochem 2009; 334:191-7. [PMID: 19941039 DOI: 10.1007/s11010-009-0325-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Accepted: 11/04/2009] [Indexed: 11/24/2022]
Abstract
The contributions of guanylyl cyclases to sensory signaling in the olfactory system have been unclear. Recently, studies of a specialized subpopulation of olfactory sensory neurons (OSNs) located in the main olfactory epithelium have provided important insights into the neuronal function of one receptor guanylyl cyclase, GC-D. Mice expressing reporters such as beta-galactosidase and green fluorescent protein in OSNs that normally express GC-D have allowed investigators to identify these neurons in situ, facilitating anatomical and physiological studies of this sparse neuronal population. The specific perturbation of GC-D function in vivo has helped to resolve the role of this guanylyl cyclase in the transduction of olfactory stimuli. Similar approaches could be useful for the study of the orphan receptor GC-G, which is expressed in another distinct subpopulation of sensory neurons located in the Grueneberg ganglion. In this review, we discuss key findings that have reinvigorated the study of guanylyl cyclase function in the olfactory system.
Collapse
Affiliation(s)
- Frank Zufall
- Department of Physiology, University of Saarland School of Medicine, Gebäude 58, Kirrberger Str, 66421 Homburg, Germany.
| | | |
Collapse
|
35
|
Prince JEA, Cho JH, Dumontier E, Andrews W, Cutforth T, Tessier-Lavigne M, Parnavelas J, Cloutier JF. Robo-2 controls the segregation of a portion of basal vomeronasal sensory neuron axons to the posterior region of the accessory olfactory bulb. J Neurosci 2009; 29:14211-22. [PMID: 19906969 PMCID: PMC2821732 DOI: 10.1523/jneurosci.3948-09.2009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 09/23/2009] [Accepted: 09/25/2009] [Indexed: 11/21/2022] Open
Abstract
The ability of sensory systems to detect and process information from the environment relies on the elaboration of precise connections between sensory neurons in the periphery and second order neurons in the CNS. In mice, the accessory olfactory system is thought to regulate a wide variety of social and sexual behaviors. The expression of the Slit receptors Robo-1 and Robo-2 in vomeronasal sensory neurons (VSNs) suggests they may direct the stereotypic targeting of their axons to the accessory olfactory bulb (AOB). Here, we have examined the roles of Robo-1 and Robo-2 in the formation of connections by VSN axons within the AOB. While Robo-1 is not necessary for the segregation of VSN axons within the anterior and posterior regions of the AOB, Robo-2 is required for the targeting of some basal VSN axons to the posterior region of the AOB but is dispensable for the fasciculation of VSN axons. Furthermore, the specific ablation of Robo-2 expression in VSNs leads to mistargeting of a portion of basal VSN axons to the anterior region of the AOB, indicating that Robo-2 expression is required on projecting VSN axons. Together, these results identify Robo-2 as a receptor that controls the targeting of basal VSN axons to the posterior AOB.
Collapse
Affiliation(s)
- Janet E. A. Prince
- Montreal Neurological Institute, Centre for Neuronal Survival, Montréal, Québec H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Jin Hyung Cho
- Montreal Neurological Institute, Centre for Neuronal Survival, Montréal, Québec H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Emilie Dumontier
- Montreal Neurological Institute, Centre for Neuronal Survival, Montréal, Québec H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3A 2B4, Canada
| | - William Andrews
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| | - Tyler Cutforth
- Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California 95064, and
| | | | - John Parnavelas
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| | - Jean-François Cloutier
- Montreal Neurological Institute, Centre for Neuronal Survival, Montréal, Québec H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3A 2B4, Canada
| |
Collapse
|
36
|
Liu CY, Fraser SE, Koos DS. Grueneberg ganglion olfactory subsystem employs a cGMP signaling pathway. J Comp Neurol 2009; 516:36-48. [PMID: 19565523 DOI: 10.1002/cne.22096] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The mammalian olfactory sense employs several olfactory subsystems situated at characteristic locations in the nasal cavity to detect and report on different classes of odors. These olfactory subsystems use different neuronal signal transduction pathways, receptor expression repertoires, and axonal projection targets. The Grueneberg ganglion (GG) is a newly appreciated olfactory subsystem with receptor neurons located just inside of the nostrils that project axons to a unique domain of interconnected glomeruli in the caudal olfactory bulb. It is not well understood how the GG relates to other olfactory subsystems in contributing to the olfactory sense. Furthermore, the range of chemoreceptors and the signal transduction cascade utilized by the GG have remained mysterious. To resolve these unknowns, we explored the molecular relationship between the GG and the GC-D neurons, another olfactory subsystem that innervates similarly interconnected glomeruli in the same bulbar region. We found that mouse GG neurons express the cGMP-associated signaling proteins phosphodiesterase 2a, cGMP-dependent kinase II, and cyclic nucleotide gated channel subunit A3 coupled to a chemoreceptor repertoire of cilia-localized particulate guanylyl cyclases (pGC-G and pGC-A). The primary cGMP signaling pathway of the GG is shared with the GC-D neurons, unifying their target glomeruli as a unique center of olfactory cGMP signal transduction. However, the distinct chemoreceptor repertoire in the GG suggests that the GG is an independent olfactory subsystem. This subsystem is well suited to detect a unique set of odors and to mediate behaviors that remained intact in previous olfactory perturbations.
Collapse
Affiliation(s)
- Cambrian Y Liu
- Biological Imaging Center, California Institute of Technology, Pasadena, California 91125, USA
| | | | | |
Collapse
|
37
|
Abstract
The mammalian olfactory system senses an almost unlimited number of chemical stimuli and initiates a process of neural recognition that influences nearly every aspect of life. This review examines the organizational principles underlying the recognition of olfactory stimuli. The olfactory system is composed of a number of distinct subsystems that can be distinguished by the location of their sensory neurons in the nasal cavity, the receptors they use to detect chemosensory stimuli, the signaling mechanisms they employ to transduce those stimuli, and their axonal projections to specific regions of the olfactory forebrain. An integrative approach that includes gene targeting methods, optical and electrophysiological recording, and behavioral analysis has helped to elucidate the functional significance of this subsystem organization for the sense of smell.
Collapse
Affiliation(s)
- Steven D Munger
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | | | |
Collapse
|
38
|
Fleischer J, Breer H, Strotmann J. Mammalian olfactory receptors. Front Cell Neurosci 2009; 3:9. [PMID: 19753143 PMCID: PMC2742912 DOI: 10.3389/neuro.03.009.2009] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 08/07/2009] [Indexed: 11/30/2022] Open
Abstract
Perception of chemical stimuli from the environment is essential to most animals; accordingly, they are equipped with a complex olfactory system capable of receiving a nearly unlimited number of odorous substances and pheromones. This enormous task is accomplished by olfactory sensory neurons (OSNs) arranged in several chemosensory compartments in the nose. The sensitive and selective responsiveness of OSNs to odorous molecules and pheromones is based on distinct receptors in their chemosensory membrane; consequently, olfactory receptors play a key role for a reliable recognition and an accurate processing of chemosensory information. They are therefore considered as key elements for an understanding of the principles and mechanisms underlying the sense of smell. The repertoire of olfactory receptors in mammals encompasses hundreds of different receptor types which are highly diverse and expressed in distinct subcompartments of the nose. Accordingly, they are categorized into several receptor families, including odorant receptors (ORs), vomeronasal receptors (V1Rs and V2Rs), trace amine-associated receptors (TAARs), formyl peptide receptors (FPRs), and the membrane guanylyl cyclase GC-D. This large and complex receptor repertoire is the basis for the enormous chemosensory capacity of the olfactory system.
Collapse
Affiliation(s)
- Joerg Fleischer
- Institute of Physiology, University of Hohenheim Stuttgart, Germany
| | | | | |
Collapse
|
39
|
Luo M, Sun L, Hu J. Neural detection of gases--carbon dioxide, oxygen--in vertebrates and invertebrates. Curr Opin Neurobiol 2009; 19:354-61. [PMID: 19640697 DOI: 10.1016/j.conb.2009.06.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 06/30/2009] [Accepted: 06/30/2009] [Indexed: 12/11/2022]
Abstract
Carbon dioxide (CO(2)) and oxygen (O(2)) are important cues that can signal the presence of food, predators, and environmental stress. Here we will review recent studies on the mechanisms of how the olfactory system detects these two molecules. In both vertebrates and invertebrates, the two molecules are detected by subsets of specialized olfactory neurons. In addition, the signal transduction cascades for sensing these two gases appear to be different from those for sensing typical odorants. CO(2) and O(2) signals can evoke stereotypical innate behaviors such as attraction and avoidance in many animal species. Future studies on the neural pathways underlying CO(2) and O(2) sensing may shed light on the circuit mechanisms of these behaviors.
Collapse
Affiliation(s)
- Minmin Luo
- National Institute of Biological Sciences, Beijing, China.
| | | | | |
Collapse
|
40
|
Degano AL, Pasterkamp RJ, Ronnett GV. MeCP2 deficiency disrupts axonal guidance, fasciculation, and targeting by altering Semaphorin 3F function. Mol Cell Neurosci 2009; 42:243-54. [PMID: 19628041 DOI: 10.1016/j.mcn.2009.07.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 06/24/2009] [Accepted: 07/09/2009] [Indexed: 10/20/2022] Open
Abstract
Rett syndrome (RTT) is an autism spectrum disorder that results from mutations in the transcriptional regulator methyl-CpG binding protein 2 (MECP2). In the present work, we demonstrate that MeCP2 deficiency disrupts the establishment of neural connections before synaptogenesis. Using both in vitro and in vivo approaches, we identify dynamic alterations in the expression of class 3 semaphorins that are accompanied by defects in axonal fasciculation, guidance, and targeting with MeCP2 deficiency. Olfactory axons from Mecp2 mutant mice display aberrant repulsion when co-cultured with mutant olfactory bulb explants. This defect is restored when mutant olfactory axons are co-cultured with wild type olfactory bulbs. Thus, a non-cell autonomous mechanism involving Semaphorin 3F function may underlie abnormalities in the establishment of connectivity with Mecp2 mutation. These findings have broad implications for the role of MECP2 in neurodevelopment and RTT, given the critical role of the semaphorins in the formation of neural circuits.
Collapse
Affiliation(s)
- Alicia L Degano
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
41
|
Zou DJ, Chesler A, Firestein S. How the olfactory bulb got its glomeruli: a just so story? Nat Rev Neurosci 2009; 10:611-8. [PMID: 19584894 DOI: 10.1038/nrn2666] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The nearly 2,000 glomeruli that cover the surface of the olfactory bulb are so distinctive that they were noted specifically in the earliest of Cajal's catalogues. They have variously been considered a functional unit, an organizational unit and a crucial component of the olfactory coding circuit. Despite their central position in olfactory processing, the development of the glomeruli has only recently begun to be investigated with new and powerful genetic tools. Some unexpected findings have been made that may lead to a new understanding of the processes involved in wiring sensory regions of the brain. It may no longer be sufficient to simply invoke genes, spikes and their interplay in the construction of brain circuits. The story of 'how the olfactory bulb got its glomeruli' may be more complex, and more revealing, than has been supposed.
Collapse
Affiliation(s)
- Dong-Jing Zou
- Department of Biological Sciences, Columbia University, 923 Fairchild Center M.C. 2438 New York, NY 10027, USA
| | | | | |
Collapse
|
42
|
Imai T, Sakano H. Odorant receptor-mediated signaling in the mouse. Curr Opin Neurobiol 2009; 18:251-60. [PMID: 18721880 DOI: 10.1016/j.conb.2008.07.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 07/16/2008] [Indexed: 11/17/2022]
Abstract
In the mouse olfactory system, there are approximately 1000 types of odorant receptors (ORs), which perform multiple functions in olfactory sensory neurons (OSNs). In addition to detecting odors, the functional OR protein ensures the singular gene choice of the OR by negative-feedback regulation. ORs also direct the axonal projection of OSNs both globally and locally by modulating the transcriptional levels of axon-guidance and axon-sorting molecules. In these latter processes, the second messenger, cAMP, plays differential roles in the fasciculation and targeting of axons. In this review, we will discuss how ORs differentially regulate intracellular signals for distinct functions.
Collapse
Affiliation(s)
- Takeshi Imai
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan.
| | | |
Collapse
|
43
|
Abstract
Sensing the chemical environment is critical for all organisms. Diverse animals from insects to mammals utilize highly organized olfactory system to detect, encode, and process chemostimuli that may carry important information critical for health, survival, social interactions and reproduction. Therefore, for animals to properly interpret and react to their environment it is imperative that the olfactory system recognizes chemical stimuli with appropriate selectivity and sensitivity. Because olfactory receptor proteins play such an essential role in the specific recognition of diverse stimuli, understanding how they interact with and transduce their cognate ligands is a high priority. In the nearly two decades since the discovery that the mammalian odorant receptor gene family constitutes the largest group of G protein-coupled receptor (GPCR) genes, much attention has been focused on the roles of GPCRs in vertebrate and invertebrate olfaction. However, is has become clear that the 'family' of olfactory receptors is highly diverse, with roles for enzymes and ligand-gated ion channels as well as GPCRs in the primary detection of olfactory stimuli.
Collapse
Affiliation(s)
- Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
44
|
Yamauchi K, Mizushima S, Tamada A, Yamamoto N, Takashima S, Murakami F. FGF8 signaling regulates growth of midbrain dopaminergic axons by inducing semaphorin 3F. J Neurosci 2009; 29:4044-55. [PMID: 19339600 PMCID: PMC6665371 DOI: 10.1523/jneurosci.4794-08.2009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 01/28/2009] [Accepted: 02/11/2009] [Indexed: 11/21/2022] Open
Abstract
Accumulating evidence indicates that signaling centers controlling the dorsoventral (DV) polarization of the neural tube, the roof plate and the floor plate, play crucial roles in axon guidance along the DV axis. However, the role of signaling centers regulating the rostrocaudal (RC) polarization of the neural tube in axon guidance along the RC axis remains unknown. Here, we show that a signaling center located at the midbrain-hindbrain boundary (MHB) regulates the rostrally directed growth of axons from midbrain dopaminergic neurons (mDANs). We found that beads soaked with fibroblast growth factor 8 (FGF8), a signaling molecule that mediates patterning activities of the MHB, repelled mDAN axons that extended through the diencephalon. This repulsion may be mediated by semaphorin 3F (sema3F) because (1) FGF8-soaked beads induced an increase in expression of sema3F, (2) sema3F expression in the midbrain was essentially abolished by the application of an FGF receptor tyrosine kinase inhibitor, and (3) mDAN axonal growth was also inhibited by sema3F. Furthermore, mDAN axons expressed a sema3F receptor, neuropilin-2 (nrp2), and the removal of nrp-2 by gene targeting caused caudal growth of mDAN axons. These results indicate that the MHB signaling center regulates the growth polarity of mDAN axons along the RC axis by inducing sema3F.
Collapse
Affiliation(s)
- Kenta Yamauchi
- Laboratory of Neuroscience, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Shigeki Mizushima
- Laboratory of Neuroscience, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Atsushi Tamada
- Division of Behavior and Neurobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan, and
| | - Nobuhiko Yamamoto
- Laboratory of Neuroscience, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Seiji Takashima
- Department of Molecular Cardiology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Fujio Murakami
- Laboratory of Neuroscience, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
- Division of Behavior and Neurobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan, and
| |
Collapse
|
45
|
Afferent activity to necklace glomeruli is dependent on external stimuli. BMC Res Notes 2009; 2:31. [PMID: 19284705 PMCID: PMC2653044 DOI: 10.1186/1756-0500-2-31] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Accepted: 03/02/2009] [Indexed: 12/03/2022] Open
Abstract
Background The main olfactory epithelium (MOE) is a complex organ containing several functionally distinct subpopulations of sensory neurons. One such subpopulation is distinguished by its expression of the guanylyl cyclase GC-D. The axons of GC-D-expressing (GC-D+) neurons innervate 9–15 "necklace" glomeruli encircling the caudal main olfactory bulb (MOB). Chemosensory stimuli for GC-D+ neurons include two natriuretic peptides, uroguanylin and guanylin, and CO2. However, the biologically-relevant source of these chemostimuli is unclear: uroguanylin is both excreted in urine, a rich source of olfactory stimuli for rodents, and expressed in human nasal epithelium; CO2 is present in both inspired and expired air. Findings To determine whether the principal source of chemostimuli for GC-D+ neurons is external or internal to the nose, we assessed the consequences of removing external chemostimuli for afferent activity to the necklace glomeruli. To do so, we performed unilateral naris occlusions in Gucy2d-Mapt-lacZ +/- mice [which express a β-galactosidase (β-gal) reporter specifically in GC-D+ neurons] followed by immunohistochemistry for β-gal and a glomerular marker of afferent activity, tyrosine hydroxylase (TH). We observed a dramatic decrease in TH immunostaining, consistent with reduced or absent afferent activity, in both necklace and non-necklace glomeruli ipsilateral to the occluded naris. Conclusion Like other MOB glomeruli, necklace glomeruli exhibit a large decrease in afferent activity upon removal of external stimuli. Thus, we conclude that activity in GC-D+ neurons, which specifically innervate necklace glomeruli, is not dependent on internal stimuli. Instead, GC-D+ neurons, like other OSNs in the MOE, primarily sense the external world.
Collapse
|
46
|
Cockerham RE, Puche AC, Munger SD. Heterogeneous sensory innervation and extensive intrabulbar connections of olfactory necklace glomeruli. PLoS One 2009; 4:e4657. [PMID: 19247478 PMCID: PMC2645502 DOI: 10.1371/journal.pone.0004657] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Accepted: 01/21/2009] [Indexed: 11/24/2022] Open
Abstract
The mammalian nose employs several olfactory subsystems to recognize and transduce diverse chemosensory stimuli. These subsystems differ in their anatomical position within the nasal cavity, their targets in the olfactory forebrain, and the transduction mechanisms they employ. Here we report that they can also differ in the strategies they use for stimulus coding. Necklace glomeruli are the sole main olfactory bulb (MOB) targets of an olfactory sensory neuron (OSN) subpopulation distinguished by its expression of the receptor guanylyl cyclase GC-D and the phosphodiesterase PDE2, and by its chemosensitivity to the natriuretic peptides uroguanylin and guanylin and the gas CO2. In stark contrast to the homogeneous sensory innervation of canonical MOB glomeruli from OSNs expressing the same odorant receptor (OR), we find that each necklace glomerulus of the mouse receives heterogeneous innervation from at least two distinct sensory neuron populations: one expressing GC-D and PDE2, the other expressing olfactory marker protein. In the main olfactory system it is thought that odor identity is encoded by a combinatorial strategy and represented in the MOB by a pattern of glomerular activation. This combinatorial coding scheme requires functionally homogeneous sensory inputs to individual glomeruli by OSNs expressing the same OR and displaying uniform stimulus selectivity; thus, activity in each glomerulus reflects the stimulation of a single OSN type. The heterogeneous sensory innervation of individual necklace glomeruli by multiple, functionally distinct, OSN subtypes precludes a similar combinatorial coding strategy in this olfactory subsystem.
Collapse
Affiliation(s)
- Renee E. Cockerham
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Adam C. Puche
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Steven D. Munger
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
47
|
Larrivée B, Freitas C, Suchting S, Brunet I, Eichmann A. Guidance of vascular development: lessons from the nervous system. Circ Res 2009; 104:428-41. [PMID: 19246687 DOI: 10.1161/circresaha.108.188144] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The vascular system of vertebrates consists of an organized, branched network of arteries, veins, and capillaries that penetrates all the tissues of the body. One of the most striking features of the vascular system is that its branching pattern is highly stereotyped, with major and secondary branches forming at specific sites and developing highly conserved organ-specific vascular patterns. The factors controlling vascular patterning are not yet completely understood. Recent studies have highlighted the anatomic and structural similarities between blood vessels and nerves. The 2 networks are often aligned, with nerve fibers and blood vessels following parallel routes. Furthermore, both systems require precise control over their guidance and growth. Several molecules with attractive and repulsive properties have been found to modulate the proper guidance of both nerves and blood vessels. These include the Semaphorins, the Slits, and the Netrins and their receptors. In this review, we describe the molecular mechanisms by which blood vessels and axons achieve proper path finding and the molecular cues that are involved in their guidance.
Collapse
Affiliation(s)
- Bruno Larrivée
- Institut National de la Santé et de la Recherche Médicale, U833 and Collège de France, Paris, France
| | | | | | | | | |
Collapse
|
48
|
Guanylyl cyclase-D in the olfactory CO2 neurons is activated by bicarbonate. Proc Natl Acad Sci U S A 2009; 106:2041-6. [PMID: 19181845 DOI: 10.1073/pnas.0812220106] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Atmospheric CO(2) is an important environmental cue that regulates several types of animal behavior. In mice, CO(2) responses of the olfactory sensory neurons (OSNs) require the activity of carbonic anhydrase to catalyze the conversion of CO(2) to bicarbonate and the opening of cGMP-sensitive ion channels. However, it remains unknown how the enhancement of bicarbonate levels results in cGMP production. Here, we show that bicarbonate activates cGMP-producing ability of guanylyl cyclase-D (GC-D), a membrane GC exclusively expressed in the CO(2)-responsive OSNs, by directly acting on the intracellular cyclase domain of GC-D. Also, the molecular mechanism for GC-D activation is distinct from the commonly believed model of "release from repression" for other membrane GCs. Our results contribute to our understanding of the molecular mechanisms of CO(2) sensing and suggest diverse mechanisms of molecular activation among membrane GCs.
Collapse
|
49
|
Bannerman P, Ara J, Hahn A, Hong L, McCauley E, Friesen K, Pleasure D. Peripheral nerve regeneration is delayed in neuropilin 2-deficient mice. J Neurosci Res 2008; 86:3163-9. [PMID: 18615644 PMCID: PMC2574585 DOI: 10.1002/jnr.21766] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Peripheral nerve transection or crush induces expression of class 3 semaphorins by epineurial and perineurial cells at the injury site and of the neuropilins neuropilin-1 and neuropilin-2 by Schwann and perineurial cells in the nerve segment distal to the injury. Neuropilin-dependent class 3 semaphorin signaling guides axons during neural development, but the significance of this signaling system for regeneration of adult peripheral nerves is not known. To test the hypothesis that neuropilin-2 facilitates peripheral-nerve axonal regeneration, we crushed sciatic nerves of adult neuropilin-2-deficient and littermate control mice. Axonal regeneration through the crush site and into the distal nerve segment, repression by the regenerating axons of Schwann cell p75 neurotrophin receptor expression, remyelination of the regenerating axons, and recovery of normal gait were all significantly slower in the neuropilin-2-deficient mice than in the control mice. Thus, neuropilin-2 facilitates peripheral-nerve axonal regeneration.
Collapse
Affiliation(s)
- Peter Bannerman
- Institute for Pediatric Regenerative Medicine, UC Davis School of Medicine, Sacramento CA
| | - Jahan Ara
- Dep’t of Pediatrics, Drexel University College of Medicine, Philadelphia PA
| | | | - Lindy Hong
- Institute for Pediatric Regenerative Medicine, UC Davis School of Medicine, Sacramento CA
| | - Erica McCauley
- Institute for Pediatric Regenerative Medicine, UC Davis School of Medicine, Sacramento CA
| | - Katie Friesen
- Institute for Pediatric Regenerative Medicine, UC Davis School of Medicine, Sacramento CA
| | - David Pleasure
- Institute for Pediatric Regenerative Medicine, UC Davis School of Medicine, Sacramento CA
| |
Collapse
|
50
|
Fleischer J, Mamasuew K, Breer H. Expression of cGMP signaling elements in the Grueneberg ganglion. Histochem Cell Biol 2008; 131:75-88. [PMID: 18830617 DOI: 10.1007/s00418-008-0514-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2008] [Indexed: 01/01/2023]
Abstract
The Grueneberg ganglion (GG) is a cluster of neurons localized to the vestibule of the anterior nasal cavity. Based on axonal projections to the olfactory bulb of the brain, as well as expression of olfactory receptors and the olfactory marker protein, it is considered a chemosensory subsystem. Recently, it was observed that in mice, GG neurons respond to cool ambient temperatures. In mammals, coolness-induced responses in highly specialized neuronal cells are supposed to rely on the ion channel TRPM8, whereas in thermosensory neurons of the nematode worm Caenorhabditis elegans, detection of environmental temperature is mainly mediated by cyclic guanosine monophosphate (cGMP) pathways, in which cGMP is generated by transmembrane guanylyl cyclases. To unravel the molecular mechanisms underlying coolness-induced responses in GG neurons, potential expression of TRPM8 in the murine GG was investigated; however, no evidence was found that this ion channel is present in the GG. By contrast, a substantial number of GG neurons was observed to express the transmembrane guanylyl cyclase subtype GC-G. In the nose, GC-G expression appears to be confined to the GG since it was not detectable in other nasal compartments. In the GG, coolness-stimulated responses are only observed in neurons characterized by the expression of the olfactory receptor V2r83. Interestingly, expression of GC-G in the GG was found in this V2r83-positive subpopulation but not in other GG neurons. In addition to GC-G, V2r83-positive GG cells also co-express the phosphodiesterase PDE2A. Thus, in summary, coolness-sensitive V2r83-expressing GG neurons are endowed with a cGMP cascade which might underlie thermosensitivity of these cells, similar to the cGMP pathway mediating thermosensation in neurons of C. elegans.
Collapse
Affiliation(s)
- Joerg Fleischer
- Institute of Physiology, University of Hohenheim, Garbenstrasse 30, 70599 Stuttgart, Germany.
| | | | | |
Collapse
|