1
|
Yang H, Xu Y, Yuan Y, Liu X, Zhang J, Li J, Zhang R, Cao J, Cheng T, Liu C. Identification and function of the Pax gene Bmgsb in the silk gland of Bombyx mori. INSECT MOLECULAR BIOLOGY 2024; 33:173-184. [PMID: 38238257 DOI: 10.1111/imb.12886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/29/2023] [Indexed: 05/08/2024]
Abstract
Paired box (Pax) genes are highly conserved throughout evolution, and the Pax protein is an important transcription factor of embryonic development. The Pax gene Bmgsb is expressed in the silk glands of silkworm, but its biological functions remain unclear. This study aimed to investigate the expression pattern of Bmgsb in the silk gland and explore its functions using RNA interference (RNAi). Here, we identified eight Pax genes in Bombyx mori. Phylogenetic analysis showed that the B. mori Pax genes were highly homologous to the Pax genes in other insects and highly evolutionarily conserved. The tissue expression profile showed that Bmgsb was expressed in the anterior silk gland and anterior part of the middle silk gland (AMSG). RNAi of Bmgsb resulted in defective development of the AMSG, and the larvae were mostly unable to cocoon in the wandering stage. RNA-seq analysis showed that the fibroin genes fib-l, fib-h and p25, cellular heat shock response-related genes and phenol oxidase genes were considerably upregulated upon Bmgsb knockdown. Furthermore, quantitative reverse transcription-PCR results showed that the fibroin genes and ubiquitin proteolytic enzyme-related genes were significantly upregulated in the AMSG after Bmgsb knockdown. This study provides a foundation for future research on the biological functions of B. mori Pax genes. In addition, it demonstrates the important roles of Bmgsb in the transcriptional regulation of fibroin genes and silk gland development.
Collapse
Affiliation(s)
- Hongguo Yang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Yongping Xu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Yutong Yuan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Xuebing Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Jikailang Zhang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Jiaojiao Li
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Ran Zhang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Jun Cao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Tingcai Cheng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Jinfeng Laboratory, Chongqing, China
| | - Chun Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Jinfeng Laboratory, Chongqing, China
| |
Collapse
|
2
|
Saha S, Spinelli L, Castro Mondragon JA, Kervadec A, Lynott M, Kremmer L, Roder L, Krifa S, Torres M, Brun C, Vogler G, Bodmer R, Colas AR, Ocorr K, Perrin L. Genetic architecture of natural variation of cardiac performance from flies to humans. eLife 2022; 11:82459. [DOI: 10.7554/elife.82459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
Deciphering the genetic architecture of human cardiac disorders is of fundamental importance but their underlying complexity is a major hurdle. We investigated the natural variation of cardiac performance in the sequenced inbred lines of the Drosophila Genetic Reference Panel (DGRP). Genome-wide associations studies (GWAS) identified genetic networks associated with natural variation of cardiac traits which were used to gain insights as to the molecular and cellular processes affected. Non-coding variants that we identified were used to map potential regulatory non-coding regions, which in turn were employed to predict transcription factors (TFs) binding sites. Cognate TFs, many of which themselves bear polymorphisms associated with variations of cardiac performance, were also validated by heart-specific knockdown. Additionally, we showed that the natural variations associated with variability in cardiac performance affect a set of genes overlapping those associated with average traits but through different variants in the same genes. Furthermore, we showed that phenotypic variability was also associated with natural variation of gene regulatory networks. More importantly, we documented correlations between genes associated with cardiac phenotypes in both flies and humans, which supports a conserved genetic architecture regulating adult cardiac function from arthropods to mammals. Specifically, roles for PAX9 and EGR2 in the regulation of the cardiac rhythm were established in both models, illustrating that the characteristics of natural variations in cardiac function identified in Drosophila can accelerate discovery in humans.
Collapse
Affiliation(s)
- Saswati Saha
- Aix-Marseille University, INSERM, TAGC, Turing Center for Living systems
| | - Lionel Spinelli
- Aix-Marseille University, INSERM, TAGC, Turing Center for Living systems
| | | | - Anaïs Kervadec
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute
| | - Michaela Lynott
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute
| | - Laurent Kremmer
- Aix-Marseille University, INSERM, TAGC, Turing Center for Living systems
| | - Laurence Roder
- Aix-Marseille University, INSERM, TAGC, Turing Center for Living systems
| | - Sallouha Krifa
- Aix-Marseille University, INSERM, TAGC, Turing Center for Living systems
| | - Magali Torres
- Aix-Marseille University, INSERM, TAGC, Turing Center for Living systems
| | - Christine Brun
- Aix-Marseille University, INSERM, TAGC, Turing Center for Living systems
- CNRS
| | - Georg Vogler
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute
| | - Rolf Bodmer
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute
| | - Alexandre R Colas
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute
| | - Karen Ocorr
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute
| | - Laurent Perrin
- Aix-Marseille University, INSERM, TAGC, Turing Center for Living systems
- CNRS
| |
Collapse
|
3
|
Almazán A, Çevrim Ç, Musser JM, Averof M, Paris M. Crustacean leg regeneration restores complex microanatomy and cell diversity. SCIENCE ADVANCES 2022; 8:eabn9823. [PMID: 36001670 PMCID: PMC9401613 DOI: 10.1126/sciadv.abn9823] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Animals can regenerate complex organs, yet this process frequently results in imprecise replicas of the original structure. In the crustacean Parhyale, embryonic and regenerating legs differ in gene expression dynamics but produce apparently similar mature structures. We examine the fidelity of Parhyale leg regeneration using complementary approaches to investigate microanatomy, sensory function, cellular composition, and cell molecular profiles. We find that regeneration precisely replicates the complex microanatomy and spatial distribution of external sensory organs and restores their sensory function. Single-nuclei sequencing shows that regenerated and uninjured legs are indistinguishable in terms of cell-type composition and transcriptional profiles. This remarkable fidelity highlights the ability of organisms to achieve identical outcomes via distinct processes.
Collapse
Affiliation(s)
- Alba Almazán
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Centre National de la Recherche Scientifique (CNRS), École Normale Supérieure de Lyon and Université Claude Bernard Lyon 1, 69007 Lyon, France
| | - Çağrı Çevrim
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Centre National de la Recherche Scientifique (CNRS), École Normale Supérieure de Lyon and Université Claude Bernard Lyon 1, 69007 Lyon, France
| | - Jacob M. Musser
- European Molecular Biology Laboratory, Developmental Biology Unit, Meyerhofstrasse 1, Heidelberg 69117, Germany
| | - Michalis Averof
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Centre National de la Recherche Scientifique (CNRS), École Normale Supérieure de Lyon and Université Claude Bernard Lyon 1, 69007 Lyon, France
| | - Mathilde Paris
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Centre National de la Recherche Scientifique (CNRS), École Normale Supérieure de Lyon and Université Claude Bernard Lyon 1, 69007 Lyon, France
| |
Collapse
|
4
|
Poovathumkadavil P, Jagla K. Genetic Control of Muscle Diversification and Homeostasis: Insights from Drosophila. Cells 2020; 9:cells9061543. [PMID: 32630420 PMCID: PMC7349286 DOI: 10.3390/cells9061543] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022] Open
Abstract
In the fruit fly, Drosophila melanogaster, the larval somatic muscles or the adult thoracic flight and leg muscles are the major voluntary locomotory organs. They share several developmental and structural similarities with vertebrate skeletal muscles. To ensure appropriate activity levels for their functions such as hatching in the embryo, crawling in the larva, and jumping and flying in adult flies all muscle components need to be maintained in a functionally stable or homeostatic state despite constant strain. This requires that the muscles develop in a coordinated manner with appropriate connections to other cell types they communicate with. Various signaling pathways as well as extrinsic and intrinsic factors are known to play a role during Drosophila muscle development, diversification, and homeostasis. In this review, we discuss genetic control mechanisms of muscle contraction, development, and homeostasis with particular emphasis on the contractile unit of the muscle, the sarcomere.
Collapse
|
5
|
Lavergne G, Zmojdzian M, Da Ponte JP, Junion G, Jagla K. Drosophila adult muscle precursor cells contribute to motor axon pathfinding and proper innervation of embryonic muscles. Development 2020; 147:dev.183004. [PMID: 32001438 DOI: 10.1242/dev.183004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/21/2020] [Indexed: 11/20/2022]
Abstract
Despites several decades of studies on the neuromuscular system, the relationship between muscle stem cells and motor neurons remains elusive. Using the Drosophila model, we provide evidence that adult muscle precursors (AMPs), the Drosophila muscle stem cells, interact with the motor axons during embryogenesis. AMPs not only hold the capacity to attract the navigating intersegmental (ISN) and segmental a (SNa) nerve branches, but are also mandatory to the innervation of muscles in the lateral field. This so-far-ignored AMP role involves their filopodia-based interactions with nerve growth cones. In parallel, we report the previously undetected expression of the guidance molecule-encoding genes sidestep and side IV in AMPs. Altogether, our data support the view that Drosophila muscle stem cells represent spatial landmarks for navigating motor neurons and reveal that their positioning is crucial for the muscles innervation in the lateral region. Furthermore, AMPs and motor axons are interdependent, as the genetic ablation of SNa leads to a specific loss of SNa-associated lateral AMPs.
Collapse
Affiliation(s)
- Guillaume Lavergne
- Genetics Reproduction and Development Institute (GReD), University of Clermont Auvergne, UMR - INSERM 1103, CNRS 6293, 28 place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Monika Zmojdzian
- Genetics Reproduction and Development Institute (GReD), University of Clermont Auvergne, UMR - INSERM 1103, CNRS 6293, 28 place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Jean Philippe Da Ponte
- Genetics Reproduction and Development Institute (GReD), University of Clermont Auvergne, UMR - INSERM 1103, CNRS 6293, 28 place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Guillaume Junion
- Genetics Reproduction and Development Institute (GReD), University of Clermont Auvergne, UMR - INSERM 1103, CNRS 6293, 28 place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Krzysztof Jagla
- Genetics Reproduction and Development Institute (GReD), University of Clermont Auvergne, UMR - INSERM 1103, CNRS 6293, 28 place Henri-Dunant, 63000 Clermont-Ferrand, France
| |
Collapse
|
6
|
Lavergne G, Soler C, Zmojdzian M, Jagla K. Characterization of Drosophila Muscle Stem Cell-Like Adult Muscle Precursors. Methods Mol Biol 2017; 1556:103-116. [PMID: 28247346 DOI: 10.1007/978-1-4939-6771-1_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Uncovering how muscle stem cells behave in quiescent and activated states is central to understand the basic rules governing normal muscle development and regeneration in pathological conditions. Specification of mesodermal lineages including muscle stemlike adult muscle precursors (AMPs) has been extensively studied in Drosophila providing an attractive framework for investigating muscle stem cell properties. Restricted number of AMP cells, relative ease in following their behavior, and large number of genetic tools available make fruit fly an attractive model system for studying muscle stem cells. In this chapter, we describe the recently developed tools to visualize and target the body wall and imaginal AMPs.
Collapse
Affiliation(s)
- Guillaume Lavergne
- GReD (Genetics, Reproduction and Development laboratory), INSERM 1103, CNRS 6293, University of Clermont Auvergne, 28 place Henri Dunant, 63000, Clermont-Ferrand, France
| | - Cedric Soler
- GReD (Genetics, Reproduction and Development laboratory), INSERM 1103, CNRS 6293, University of Clermont Auvergne, 28 place Henri Dunant, 63000, Clermont-Ferrand, France
| | - Monika Zmojdzian
- GReD (Genetics, Reproduction and Development laboratory), INSERM 1103, CNRS 6293, University of Clermont Auvergne, 28 place Henri Dunant, 63000, Clermont-Ferrand, France
| | - Krzysztof Jagla
- GReD (Genetics, Reproduction and Development laboratory), INSERM 1103, CNRS 6293, University of Clermont Auvergne, 28 place Henri Dunant, 63000, Clermont-Ferrand, France.
| |
Collapse
|
7
|
Chandler JC, Aizen J, Elizur A, Battaglene SC, Ventura T. Male Sexual Development and the Androgenic Gland: Novel Insights through the de novo Assembled Transcriptome of the Eastern Spiny Lobster, Sagmariasus verreauxi. Sex Dev 2016; 9:338-54. [PMID: 26927314 DOI: 10.1159/000443943] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2015] [Indexed: 11/19/2022] Open
Abstract
The Eastern spiny lobster, Sagmariasus verreauxi, is commercially important in fisheries, with growing aquaculture potential, driving an interest to better understand male sexual differentiation. Amongst the Decapoda, the androgenic gland (AG) and the insulin-like androgenic gland hormone (IAG) have a well-defined function in male sexual differentiation. However, IAG is not a sex determinant and therefore must be considered as part of a broader, integrated pathway. This work uses a transcriptomic, multi-tissue approach to provide an integrated description of male-biased expression as mediated through the AG. Transcriptomic analyses demonstrate that IAG expression is stage- and eyestalk-regulated (low in immature, high in mature and 6-times higher in hypertrophied glands), with IAG being the predominant AG-specific factor. The low expression of this key factor in immature males suggests the involvement of other tissues in male sexual differentiation. Across tissues, the gonad (87.8%) and antennal gland (73.5%) show the highest male-biased differential expression of transcripts and also express 4 sex-determination regulators, known as Dmrts, with broader expression of Sv-Sxl and Sv-TRA-2. In order to better understand male sexual differentiation, tissues other than the AG must also be considered. This research highlights the gonad and antennal gland as showing significant male-biased expression patterns, including the Sv-Dmrts.
Collapse
Affiliation(s)
- Jennifer C Chandler
- GeneCology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast (USC), Maroochydore, Qld., Australia
| | | | | | | | | |
Collapse
|
8
|
Chen M, Wang C, Wang W, Ji G, Hu B, Du M, Liu G, Li Z, Wang W, Lin X, Zheng W, Chen J. De Novo Assembly and Characterization of Early Embryonic Transcriptome of the Horseshoe Crab Tachypleus tridentatus. PLoS One 2016; 11:e0145825. [PMID: 26731763 PMCID: PMC4711587 DOI: 10.1371/journal.pone.0145825] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 11/02/2015] [Indexed: 01/09/2023] Open
Abstract
The horseshoe crab Tachypleus tridentatus is a unique marine species and a potential model for marine invertebrate. Limited genomic and transcriptional data are currently available to understand the molecular mechanisms underlying the embryonic development of T. tridentatus. Here, we reported for the first time the de novo transcriptome assembly for T. tridentatus at embryonic developmental stage using Illumina RNA-seq platform. Approximate 38 million reads were obtained and further assembled into 133,212 unigenes. Sequence homology analysis against public databases revealed that 33,796 unigenes could be annotated with gene descriptions. Of the annotated unigenes, we identified a number of key components of several conserved metazoan signaling pathways (Hedgehog, Wnt, TGF-beta and Notch pathways) and other important regulatory genes involved in embryonic development. Targeted searching of Pax family genes which play critical roles in the formation of tissue and organ during embryonic development identified a complete set of Pax family genes. Moreover, the full length T. tridentatus Pax1/9a (TtPax1/9a) and Pax1/9b (TtPax1/9b) cDNA sequences were determined based on the transcriptome, demonstrating the immediate application of our database. Using quantitative real time PCR, we analyzed the expression patterns of TtPax1/9a and TtPax1/9b in different tissues of horseshoe crab. Taking advantage of Drosophila model, we further found that TtPax1/9b, but not TtPax1/9a, can partly rescue the Drosophila homolog Poxm dysfunction-caused lethality at the larval stage. Our study provides the embryonic transcriptome of T. tridentatus which could be immediately used for gene discovery and characterization, functional genomics studies in T. tridentatus. This transcriptome database will also facilitate the investigations of molecular mechanisms underlying embryonic development of T. tridentatus and other marine arthropods as well.
Collapse
Affiliation(s)
- Mingliang Chen
- State Key Laboratory Breeding Base of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen, Fujian Province, China
| | - Chenying Wang
- State Key Laboratory Breeding Base of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen, Fujian Province, China
| | - Wei Wang
- State Key Laboratory Breeding Base of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen, Fujian Province, China
| | - Gubiao Ji
- State Key Laboratory Breeding Base of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen, Fujian Province, China
| | - Bin Hu
- State Key Laboratory Breeding Base of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen, Fujian Province, China
| | - Mi Du
- State Key Laboratory Breeding Base of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen, Fujian Province, China
| | - Guosheng Liu
- State Key Laboratory Breeding Base of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen, Fujian Province, China
| | - Zengpeng Li
- State Key Laboratory Breeding Base of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen, Fujian Province, China
| | - Weiyi Wang
- State Key Laboratory Breeding Base of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen, Fujian Province, China
| | - Xiangzhi Lin
- Center of Marine Biotechnology, Third Institute of Oceanography, State Oceanic Administration, Xiamen, Fujian Province, China
| | - Weibing Zheng
- Center of Marine Biotechnology, Third Institute of Oceanography, State Oceanic Administration, Xiamen, Fujian Province, China
| | - Jianming Chen
- State Key Laboratory Breeding Base of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen, Fujian Province, China
- * E-mail:
| |
Collapse
|
9
|
Dobi KC, Schulman VK, Baylies MK. Specification of the somatic musculature in Drosophila. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2015; 4:357-75. [PMID: 25728002 PMCID: PMC4456285 DOI: 10.1002/wdev.182] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 01/16/2015] [Accepted: 02/04/2015] [Indexed: 11/09/2022]
Abstract
The somatic muscle system formed during Drosophila embryogenesis is required for larvae to hatch, feed, and crawl. This system is replaced in the pupa by a new adult muscle set, responsible for activities such as feeding, walking, and flight. Both the larval and adult muscle systems are comprised of distinct muscle fibers to serve these specific motor functions. In this way, the Drosophila musculature is a valuable model for patterning within a single tissue: while all muscle cells share properties such as the contractile apparatus, properties such as size, position, and number of nuclei are unique for a particular muscle. In the embryo, diversification of muscle fibers relies first on signaling cascades that pattern the mesoderm. Subsequently, the combinatorial expression of specific transcription factors leads muscle fibers to adopt particular sizes, shapes, and orientations. Adult muscle precursors (AMPs), set aside during embryonic development, proliferate during the larval phases and seed the formation of the abdominal, leg, and flight muscles in the adult fly. Adult muscle fibers may either be formed de novo from the fusion of the AMPs, or are created by the binding of AMPs to an existing larval muscle. While less is known about adult muscle specification compared to the larva, expression of specific transcription factors is also important for its diversification. Increasingly, the mechanisms required for the diversification of fly muscle have found parallels in vertebrate systems and mark Drosophila as a robust model system to examine questions about how diverse cell types are generated within an organism.
Collapse
Affiliation(s)
- Krista C. Dobi
- Program in Developmental Biology, Sloan Kettering Institute, New York, NY, USA
| | - Victoria K. Schulman
- Program in Developmental Biology, Sloan Kettering Institute, New York, NY, USA
- Cell and Developmental Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| | - Mary K. Baylies
- Program in Developmental Biology, Sloan Kettering Institute, New York, NY, USA
- Cell and Developmental Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| |
Collapse
|
10
|
Franke FA, Schumann I, Hering L, Mayer G. Phylogenetic analysis and expression patterns of Pax genes in the onychophoran Euperipatoides rowelli reveal a novel bilaterian Pax subfamily. Evol Dev 2015; 17:3-20. [PMID: 25627710 DOI: 10.1111/ede.12110] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Pax family genes encode a class of transcription factors that regulate various developmental processes. To shed light on the evolutionary history of these genes in Panarthropoda (Onychophora + Tardigrada + Arthropoda), we analyzed the Pax repertoire in the embryonic and adult transcriptomes of the onychophoran Euperipatoides rowelli. Our data revealed homologs of all five major bilaterian Pax subfamilies in this species, including Pax2/5/8, Pax4/6, Pox-neuro, Pax1/9/Pox-meso, and Pax3/7. In addition, we identified a new Pax member, pax-α, which does not fall into any other known Pax subfamily but instead clusters in the heterogenic Pax-α/β clade containing deuterostome, ecdysozoan, and lophotrochozoan gene sequences. These findings suggest that the last common bilaterian ancestor possessed six rather than five Pax genes, which have been retained in the panarthropod lineage. The expression data of Pax orthologs in the onychophoran embryo revealed distinctive patterns, some of which might be related to their ancestral roles in the last common panarthropod ancestor, whereas others might be specific to the onychophoran lineage. The derived roles include, for example, an involvement of pax2/5/8, pox-neuro, and pax3/7 in onychophoran nephridiogenesis, and an additional function of pax2/5/8 in the formation of the ventral and preventral organs. Furthermore, our transcriptomic analyses suggest that at least some Pax genes, including pax6 and pax-α, are expressed in the adult onychophoran head, although the corresponding functions remain to be clarified. The remarkable diversity of the Pax expression patterns highlights the functional and evolutionary plasticity of these genes in panarthropods.
Collapse
Affiliation(s)
- Franziska Anni Franke
- Animal Evolution & Development, , Institute of Biology, University of Leipzig, Talstraße 33, D-04103, Leipzig, Germany
| | | | | | | |
Collapse
|
11
|
|
12
|
Passamaneck YJ, Hejnol A, Martindale MQ. Mesodermal gene expression during the embryonic and larval development of the articulate brachiopod Terebratalia transversa. EvoDevo 2015; 6:10. [PMID: 25897375 PMCID: PMC4404124 DOI: 10.1186/s13227-015-0004-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 03/19/2015] [Indexed: 12/21/2022] Open
Abstract
Background Brachiopods undergo radial cleavage, which is distinct from the stereotyped development of closely related spiralian taxa. The mesoderm has been inferred to derive from the archenteron walls following gastrulation, and the primary mesoderm derivative in the larva is a complex musculature. To investigate the specification and differentiation of the mesoderm in the articulate brachiopod Terebratalia transversa, we have identified orthologs of genes involved in mesoderm development in other taxa and investigated their spatial and temporal expression during the embryonic and larval development of T. transversa. Results Orthologs of 17 developmental regulatory genes with roles in the development of the mesoderm in other bilaterian animals were found to be expressed in the developing mesoderm of T. transversa. Five genes, Tt.twist, Tt.GATA456, Tt.dachshund, Tt.mPrx, and Tt.NK1, were found to have expression throughout the archenteron wall at the radial gastrula stage, shortly after the initiation of gastrulation. Three additional genes, Tt.Pax1/9, Tt.MyoD, and Tt.Six1/2, showed expression at this stage in only a portion of the archenteron wall. Tt.eya, Tt.FoxC, Tt.FoxF, Tt.Mox, Tt.paraxis, Tt.Limpet, and Tt.Mef2 all showed initial mesodermal expression during later gastrula or early larval stages. At the late larval stage, Tt.dachshund, Tt.Limpet, and Tt.Mef2 showed expression in nearly all mesoderm cells, while all other genes were localized to specific regions of the mesoderm. Tt.FoxD and Tt.noggin both showed expression in the ventral mesoderm at the larval stages, with gastrula expression patterns in the archenteron roof and blastopore lip, respectively. Conclusions Expression analyses support conserved roles for developmental regulators in the specification and differentiation of the mesoderm during the development of T. transversa. Expression of multiple mesodermal factors in the archenteron wall during gastrulation supports previous morphological observations that this region gives rise to larval mesoderm. Localized expression domains during gastrulation and larval development evidence early regionalization of the mesoderm and provide a basis for hypotheses regarding the molecular regulation underlying the complex system of musculature observed in the larva. Electronic supplementary material The online version of this article (doi:10.1186/s13227-015-0004-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yale J Passamaneck
- Kewalo Marine Laboratory, PBRC, University of Hawaii, 41 Ahui Street, Honolulu, HI 96813 USA ; The Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080 USA
| | - Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate, 55, 5008 Bergen, Norway
| | - Mark Q Martindale
- The Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080 USA
| |
Collapse
|
13
|
Kumar RP, Dobi KC, Baylies MK, Abmayr SM. Muscle cell fate choice requires the T-box transcription factor midline in Drosophila. Genetics 2015; 199:777-91. [PMID: 25614583 PMCID: PMC4349071 DOI: 10.1534/genetics.115.174300] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 01/11/2015] [Indexed: 11/18/2022] Open
Abstract
Drosophila Midline (Mid) is an ortholog of vertebrate Tbx20, which plays roles in the developing heart, migrating cranial motor neurons, and endothelial cells. Mid functions in cell-fate specification and differentiation of tissues that include the ectoderm, cardioblasts, neuroblasts, and egg chambers; however, a role in the somatic musculature has not been described. We identified mid in genetic and molecular screens for factors contributing to somatic muscle morphogenesis. Mid is expressed in founder cells (FCs) for several muscle fibers, and functions cooperatively with the T-box protein H15 in lateral oblique muscle 1 and the segment border muscle. Mid is particularly important for the specification and development of the lateral transverse (LT) muscles LT3 and LT4, which arise by asymmetric division of a single muscle progenitor. Mid is expressed in this progenitor and its two sibling FCs, but is maintained only in the LT4 FC. Both muscles were frequently missing in mid mutant embryos, and LT4-associated expression of the transcription factor Krüppel (Kr) was lost. When present, LT4 adopted an LT3-like morphology. Coordinately, mid misexpression caused LT3 to adopt an LT4-like morphology and was associated with ectopic Kr expression. From these data, we concluded that mid functions first in the progenitor to direct development of LT3 and LT4, and later in the FCs to influence whichever of these differentiation profiles is selected. Mid is the first T-box factor shown to influence LT3 and LT4 muscle identity and, along with the T-box protein Optomotor-blind-related-gene 1 (Org-1), is representative of a new class of transcription factors in muscle specification.
Collapse
Affiliation(s)
- Ram P Kumar
- Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - Krista C Dobi
- Program in Developmental Biology, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Mary K Baylies
- Program in Developmental Biology, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Susan M Abmayr
- Stowers Institute for Medical Research, Kansas City, Missouri 64110 Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas 66160
| |
Collapse
|
14
|
Liu X, Wang H, Li G, Huang HZ, Wang YQ. The function of DrPax1b gene in the embryonic development of zebrafish. Genes Genet Syst 2014; 88:261-9. [PMID: 24463529 DOI: 10.1266/ggs.88.261] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Vertebrate Pax1 gene is a member of Pax gene family and encodes a transcription factor associated with crucial roles in the development of pharyngeal pouch, scletrotome and limb bud. In zebrafish, the genome contains two Pax1 paralogs, DrPax1a and DrPax1b, which share high sequence similarity with other Pax1 genes. To elucidate the function of zebrafish DrPax1b gene, we first examined the gene expression pattern and found that it was mainly expressed in the endodermal pharyngeal pouch, caudal somites, notochord, and fin bud. Then, we performed knockdown experiments using antisense morpholino oligonucleotides, which lead to the defects in the vertebral column, tail, pharyngeal skeleton, and pectoral fin. Additionally, we also found that the mouse MmPax1 mRNA, but not the amphioxus AmphiPax1/9 mRNA, could rescue the MO-induced defects. Furthermore, sequence alignment revealed that the N-terminal region of vertebrate Pax1 and amphioxus Pax1/9 were highly conserved, whereas their C-terminal regions were relatively divergent. However, the chimeric Am(N)Dr(C)Pax1, Mm(N)Dr(C)Pax1 and Dr(N)Mm(C)Pax1 mRNA could partially rescue the defects, while the Dr(N)Am(C)Pax1 mRNA could not. In conclusion, our data demonstrate a conserved function of DrPax1b in the development of the vertebral column, pectoral fin and pharyngeal skeleton formation in zebrafish and also provide critical insight into the functional evolution of Pax1 gene by changing its C-terminal sequence.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University
| | | | | | | | | |
Collapse
|
15
|
Whole-genome analysis of muscle founder cells implicates the chromatin regulator Sin3A in muscle identity. Cell Rep 2014; 8:858-70. [PMID: 25088419 DOI: 10.1016/j.celrep.2014.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 11/21/2013] [Accepted: 07/01/2014] [Indexed: 10/25/2022] Open
Abstract
Skeletal muscles are formed in numerous shapes and sizes, and this diversity impacts function and disease susceptibility. To understand how muscle diversity is generated, we performed gene expression profiling of two muscle subsets from Drosophila embryos. By comparing the transcriptional profiles of these subsets, we identified a core group of founder cell-enriched genes. We screened mutants for muscle defects and identified functions for Sin3A and 10 other transcription and chromatin regulators in the Drosophila embryonic somatic musculature. Sin3A is required for the morphogenesis of a muscle subset, and Sin3A mutants display muscle loss and misattachment. Additionally, misexpression of identity gene transcription factors in Sin3A heterozygous embryos leads to direct transformations of one muscle into another, whereas overexpression of Sin3A results in the reverse transformation. Our data implicate Sin3A as a key buffer controlling muscle responsiveness to transcription factors in the formation of muscle identity, thereby generating tissue diversity.
Collapse
|
16
|
Six homeoproteins directly activate Myod expression in the gene regulatory networks that control early myogenesis. PLoS Genet 2013; 9:e1003425. [PMID: 23637613 PMCID: PMC3636133 DOI: 10.1371/journal.pgen.1003425] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 02/14/2013] [Indexed: 01/16/2023] Open
Abstract
In mammals, several genetic pathways have been characterized that govern engagement of multipotent embryonic progenitors into the myogenic program through the control of the key myogenic regulatory gene Myod. Here we demonstrate the involvement of Six homeoproteins. We first targeted into a Pax3 allele a sequence encoding a negative form of Six4 that binds DNA but cannot interact with essential Eya co-factors. The resulting embryos present hypoplasic skeletal muscles and impaired Myod activation in the trunk in the absence of Myf5/Mrf4. At the axial level, we further show that Myod is still expressed in compound Six1/Six4:Pax3 but not in Six1/Six4:Myf5 triple mutant embryos, demonstrating that Six1/4 participates in the Pax3-Myod genetic pathway. Myod expression and head myogenesis is preserved in Six1/Six4:Myf5 triple mutant embryos, illustrating that upstream regulators of Myod in different embryonic territories are distinct. We show that Myod regulatory regions are directly controlled by Six proteins and that, in the absence of Six1 and Six4, Six2 can compensate. The onset of skeletal muscle formation is controlled by complex gene regulatory networks. By manipulation of these genetic pathways in the mouse embryo, we have examined the interplay between genes encoding the transcriptional regulator Pax3; the major myogenic determination proteins Myf5, Mrf4, and Myod; as well as genes encoding homeodomain proteins Six1 and Six4. In the absence of Myf5 and Six1/4, Myod expression is compromised. We demonstrate that key regulatory elements of the Myod gene are directly targeted by Six factors, including Six2, which is unexpectedly upregulated in the absence of Six1 and Six4. This work therefore reveals new aspects of the gene regulatory networks that control myogenesis.
Collapse
|
17
|
Boukhatmi H, Frendo JL, Enriquez J, Crozatier M, Dubois L, Vincent A. Tup/Islet1 integrates time and position to specify muscle identity in Drosophila. Development 2012; 139:3572-82. [DOI: 10.1242/dev.083410] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The LIM-homeodomain transcription factor Tailup/Islet1 (Tup) is a key component of cardiogenesis in Drosophila and vertebrates. We report here an additional major role for Drosophila Tup in specifying dorsal muscles. Tup is expressed in the four dorsal muscle progenitors (PCs) and tup-null embryos display a severely disorganized dorsal musculature, including a transformation of the dorsal DA2 into dorsolateral DA3 muscle. This transformation is reciprocal to the DA3 to DA2 transformation observed in collier (col) mutants. The DA2 PC, which gives rise to the DA2 muscle and to an adult muscle precursor, is selected from a cluster of myoblasts transiently expressing both Tinman (Tin) and Col. The activation of tup by Tin in the DA2 PC is required to repress col transcription and establish DA2 identity. The transient, partial overlap between Tin and Col expression provides a window of opportunity to distinguish between DA2 and DA3 muscle identities. The function of Tup in the DA2 PC illustrates how single cell precision can be reached in cell specification when temporal dynamics are combined with positional information. The contributions of Tin, Tup and Col to patterning Drosophila dorsal muscles bring novel parallels with chordate pharyngeal muscle development.
Collapse
Affiliation(s)
- Hadi Boukhatmi
- Université de Toulouse 3, Centre de Biologie du Développement, UMR 5547 CNRS and FRBT, 118 route de Narbonne, F-31062 Toulouse cedex 09, France
| | - Jean Louis Frendo
- Université de Toulouse 3, Centre de Biologie du Développement, UMR 5547 CNRS and FRBT, 118 route de Narbonne, F-31062 Toulouse cedex 09, France
| | - Jonathan Enriquez
- Université de Toulouse 3, Centre de Biologie du Développement, UMR 5547 CNRS and FRBT, 118 route de Narbonne, F-31062 Toulouse cedex 09, France
| | - Michèle Crozatier
- Université de Toulouse 3, Centre de Biologie du Développement, UMR 5547 CNRS and FRBT, 118 route de Narbonne, F-31062 Toulouse cedex 09, France
| | - Laurence Dubois
- Université de Toulouse 3, Centre de Biologie du Développement, UMR 5547 CNRS and FRBT, 118 route de Narbonne, F-31062 Toulouse cedex 09, France
| | - Alain Vincent
- Université de Toulouse 3, Centre de Biologie du Développement, UMR 5547 CNRS and FRBT, 118 route de Narbonne, F-31062 Toulouse cedex 09, France
| |
Collapse
|
18
|
|
19
|
de Joussineau C, Bataillé L, Jagla T, Jagla K. Diversification of muscle types in Drosophila: upstream and downstream of identity genes. Curr Top Dev Biol 2012; 98:277-301. [PMID: 22305167 DOI: 10.1016/b978-0-12-386499-4.00011-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Understanding gene regulatory pathways underlying diversification of cell types during development is one of the major challenges in developmental biology. Progressive specification of mesodermal lineages that are at the origin of body wall muscles in Drosophila embryos has been extensively studied during past years, providing an attractive framework for dissecting cell type diversification processes. In particular, it has been found that muscle founder cells that are at the origin of individual muscles display specific expression of transcription factors that control diversification of muscle types. These factors, encoded by genes collectively called muscle identity genes, are activated in discrete subsets of muscle founders. As a result, each founder cell is thought to carry a unique combinatorial code of identity gene expression. Considering this, to define temporally and spatially restricted expression of identity genes, a set of coordinated upstream regulatory inputs is required. But also, to realize the identity program and to form specific muscle types with distinct properties, an efficient battery of downstream identity gene targets needs to be activated. Here we review how the specificity of expression and action of muscle identity genes is acquired.
Collapse
Affiliation(s)
- Cyrille de Joussineau
- GReD INSERM UMR1103, CNRS UMR6293, University of Clermont-Ferrand, Clermont-Ferrand, France
| | | | | | | |
Collapse
|
20
|
Enriquez J, de Taffin M, Crozatier M, Vincent A, Dubois L. Combinatorial coding of Drosophila muscle shape by Collier and Nautilus. Dev Biol 2011; 363:27-39. [PMID: 22200594 DOI: 10.1016/j.ydbio.2011.12.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 12/09/2011] [Accepted: 12/10/2011] [Indexed: 11/28/2022]
Abstract
The diversity of Drosophila muscles correlates with the expression of combinations of identity transcription factors (iTFs) in muscle progenitors. Here, we address the question of when and how a combinatorial code is translated into muscle specific properties, by studying the roles of the Collier and Nautilus iTFs that are expressed in partly overlapping subsets of muscle progenitors. We show that the three dorso-lateral (DL) progenitors which express Nautilus and Collier are specified in a fixed temporal sequence and that each expresses additionally other, distinct iTFs. Removal of Collier leads to changes in expression of some of these iTFs and mis-orientation of several DL muscles, including the dorsal acute DA3 muscle which adopts a DA2 morphology. Detailed analysis of this transformation revealed the existence of two steps in the attachment of elongating muscles to specific tendon cells: transient attachment to alternate tendon cells, followed by a resolution step selecting the final sites. The multiple cases of triangular-shaped muscles observed in col mutant embryos indicate that transient binding of elongating muscle to exploratory sites could be a general feature of the developing musculature. In nau mutants, the DA3 muscle randomly adopts the attachment sites of the DA3 or DO5 muscles that derive from the same progenitor, resulting in a DA3, DO5-like or bifid DA3-DO5 orientation. In addition, nau mutant embryos display thinner muscle fibres. Together, our data show that the sequence of expression and combinatorial activities of Col and Nau control the pattern and morphology of DL muscles.
Collapse
Affiliation(s)
- Jonathan Enriquez
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
21
|
Carrasco-Rando M, Tutor AS, Prieto-Sánchez S, González-Pérez E, Barrios N, Letizia A, Martín P, Campuzano S, Ruiz-Gómez M. Drosophila araucan and caupolican integrate intrinsic and signalling inputs for the acquisition by muscle progenitors of the lateral transverse fate. PLoS Genet 2011; 7:e1002186. [PMID: 21811416 PMCID: PMC3141015 DOI: 10.1371/journal.pgen.1002186] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 05/28/2011] [Indexed: 01/23/2023] Open
Abstract
A central issue of myogenesis is the acquisition of identity by individual muscles. In Drosophila, at the time muscle progenitors are singled out, they already express unique combinations of muscle identity genes. This muscle code results from the integration of positional and temporal signalling inputs. Here we identify, by means of loss-of-function and ectopic expression approaches, the Iroquois Complex homeobox genes araucan and caupolican as novel muscle identity genes that confer lateral transverse muscle identity. The acquisition of this fate requires that Araucan/Caupolican repress other muscle identity genes such as slouch and vestigial. In addition, we show that Caupolican-dependent slouch expression depends on the activation state of the Ras/Mitogen Activated Protein Kinase cascade. This provides a comprehensive insight into the way Iroquois genes integrate in muscle progenitors, signalling inputs that modulate gene expression and protein activity. In Drosophila, as in vertebrates, the muscular system consists of different types of muscles that must act in coordination with the nervous system to control the adequate release of contraction power required for the proper functioning of the organism. Therefore, the acquisition of specific identities by individual muscles is a key step in the generation of the muscular system. In Drosophila, muscle progenitors (specific myoblasts that seed the formation of mature muscles) integrate positional and temporal signalling inputs, resulting in the expression of unique combinations of muscle identity genes, which confer on them specific fates. Up to now, very little was known of how this integration takes place at a molecular level and how a particular code is translated into a specific muscle fate. Here we show that the acquisition of the lateral transverse muscle fate requires the repression mediated by Araucan and Caupolican, two homeoproteins of the Iroquois Complex, of other muscle identity genes, like slouch and vestigial. The repressor or activator function of the Iroquois proteins depends on the activity of the Ras signalling pathway. Therefore, our work places Iroquois genes at a nodal point that integrates signalling inputs and regulates protein activity and cell fate determination.
Collapse
Affiliation(s)
- Marta Carrasco-Rando
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas–Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio S. Tutor
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas–Universidad Autónoma de Madrid, Madrid, Spain
| | - Silvia Prieto-Sánchez
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas–Universidad Autónoma de Madrid, Madrid, Spain
| | - Esther González-Pérez
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas–Universidad Autónoma de Madrid, Madrid, Spain
| | - Natalia Barrios
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas–Universidad Autónoma de Madrid, Madrid, Spain
| | - Annalisa Letizia
- Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| | - Paloma Martín
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas–Universidad Autónoma de Madrid, Madrid, Spain
| | - Sonsoles Campuzano
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas–Universidad Autónoma de Madrid, Madrid, Spain
| | - Mar Ruiz-Gómez
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas–Universidad Autónoma de Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
22
|
Cheng W, Song C, Anjum KM, Chen M, Li D, Zhou H, Wang W, Chen J. Coenzyme Q plays opposing roles on bacteria/fungi and viruses in Drosophila innate immunity. Int J Immunogenet 2011; 38:331-7. [PMID: 21518260 DOI: 10.1111/j.1744-313x.2011.01012.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Coenzyme Q (CoQ or ubiquinone) is a lipid-soluble component of virtually all types of cell membranes and has been shown to play multiple metabolic functions. Several clinical diseases including encephalomyopathy, cerebellar ataxia and isolated myopathy were shown to be associated with CoQ deficiency. However, the role of CoQ in immunity has not been defined. In the present study, we showed that flies defective in CoQ biosynthetic gene coq2 were more susceptible to bacterial and fungal infections, while were more resistant to viruses. We found that Drosophila contained both CoQ9 and CoQ10, and food supplement of CoQ10 could partially rescue the impaired immune functions of coq2 mutants. Surprisingly, wild-type flies fed CoQ10 became more susceptible to viral infection, which suggested that extra caution should be taken when using CoQ10 as a food supplement. We further showed that CoQ was essential for normal induction of anti-microbial peptides and amplification of viruses. Our work determined CoQ content in Drosophila and described its function in immunity for the first time.
Collapse
Affiliation(s)
- W Cheng
- The Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Regulation and functions of the lms homeobox gene during development of embryonic lateral transverse muscles and direct flight muscles in Drosophila. PLoS One 2010; 5:e14323. [PMID: 21179520 PMCID: PMC3002276 DOI: 10.1371/journal.pone.0014323] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 11/16/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Patterning and differentiation of developing musculatures require elaborate networks of transcriptional regulation. In Drosophila, significant progress has been made into identifying the regulators of muscle development and defining their interactive networks. One major family of transcription factors involved in these processes consists of homeodomain proteins. In flies, several members of this family serve as muscle identity genes to specify the fates of individual muscles, or groups thereof, during embryonic and/or adult muscle development. Herein, we report on the expression and function of a new Drosophila homeobox gene during both embryonic and adult muscle development. METHODOLOGY/PRINCIPAL FINDINGS The newly described homeobox gene, termed lateral muscles scarcer (lms), which has yet uncharacterized orthologs in other invertebrates and primitive chordates but not in vertebrates, is expressed exclusively in subsets of developing muscle tissues. In embryos, lms is expressed specifically in the four lateral transverse (LT) muscles and their founder cells in each hemisegment, whereas in larval wing imaginal discs, it is expressed in myoblasts that develop into direct flight muscles (DFMs), which are important for proper wing positioning. We have analyzed the regulatory inputs of various other muscle identity genes with overlapping or complementary expression patterns towards the cell type specific regulation of lms expression. Further we demonstrate that lms null mutants exhibit reduced numbers of embryonic LT muscles, and null mutant adults feature held-out-wing phenotypes. We provide a detailed description of the pattern and morphology of the direct flight muscles in the wild type and lms mutant flies by using the recently-developed ultramicroscopy and show that, in the mutants, all DFMs are present and present normal morphologies. CONCLUSIONS/SIGNIFICANCE We have identified the homeobox gene lms as a new muscle identity gene and show that it interacts with various previously-characterized muscle identity genes to regulate normal formation of embryonic lateral transverse muscles. In addition, the direct flight muscles in the adults require lms for reliably exerting their functions in controlling wing postures.
Collapse
|
24
|
Downstream of identity genes: muscle-type-specific regulation of the fusion process. Dev Cell 2010; 19:317-28. [PMID: 20708593 DOI: 10.1016/j.devcel.2010.07.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 04/10/2010] [Accepted: 05/18/2010] [Indexed: 11/20/2022]
Abstract
In all metazoan organisms, the diversification of cell types involves determination of cell fates and subsequent execution of specific differentiation programs. During Drosophila myogenesis, identity genes specify the fates of founder myoblasts, from which derive all individual larval muscles. Here, to understand how cell fate information residing within founders is translated during differentiation, we focus on three identity genes, eve, lb, and slou, and how they control the size of individual muscles by regulating the number of fusion events. They achieve this by setting expression levels of Mp20, Pax, and mspo, three genes that regulate actin dynamics and cell adhesion and, as we show here, modulate the fusion process in a muscle-specific manner. Thus, these data show how the identity information implemented by transcription factors is translated via target genes into cell-type-specific programs of differentiation.
Collapse
|
25
|
Tixier V, Bataillé L, Jagla K. Diversification of muscle types: recent insights from Drosophila. Exp Cell Res 2010; 316:3019-27. [PMID: 20673829 DOI: 10.1016/j.yexcr.2010.07.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 07/20/2010] [Accepted: 07/21/2010] [Indexed: 11/28/2022]
Abstract
Myogenesis is a highly conserved process ending up by the formation of contracting muscles. In Drosophila embryos, myogenesis gives rise to a segmentally repeated array of thirty distinct fibres, each of which represents an individual muscle. Since Drosophila offers a large range of genetic tools for easily testing gene functions, it has become one of the most studied and consequently best-described model organisms for muscle development. Over the last two decades, the Drosophila model system has enabled major advances in our understanding of how the initially equivalent mesodermal cells become competent for entering myogenic differentiation and how each distinct type of muscle is specified. Here we present an overview of Drosophila muscle development with a special focus on the diversification of muscle types and the genes that control acquisition of distinct muscle properties.
Collapse
Affiliation(s)
- Vanessa Tixier
- GReD, INSERM U931, CNRS UMR6247, Clermont University, Faculty of Medicine, 28 place Henri Dunant, Clermont-Ferrand, France
| | | | | |
Collapse
|
26
|
Figeac N, Jagla T, Aradhya R, Da Ponte JP, Jagla K. Drosophila adult muscle precursors form a network of interconnected cells and are specified by the rhomboid-triggered EGF pathway. Development 2010; 137:1965-73. [PMID: 20463031 DOI: 10.1242/dev.049080] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Drosophila, a population of muscle-committed stem-like cells called adult muscle precursors (AMPs) keeps an undifferentiated and quiescent state during embryonic life. The embryonic AMPs are at the origin of all adult fly muscles and, as we demonstrate here, they express repressors of myogenic differentiation and targets of the Notch pathway known to be involved in muscle cell stemness. By targeting GFP to the AMP cell membranes, we show that AMPs are tightly associated with the peripheral nervous system and with a subset of differentiated muscles. They send long cellular processes running along the peripheral nerves and, by the end of embryogenesis, form a network of interconnected cells. Based on evidence from laser ablation experiments, the main role of these cellular extensions is to maintain correct spatial positioning of AMPs. To gain insights into mechanisms that lead to AMP cell specification, we performed a gain-of-function screen with a special focus on lateral AMPs expressing the homeobox gene ladybird. Our data show that the rhomboid-triggered EGF signalling pathway controls both the specification and the subsequent maintenance of AMP cells. This finding is supported by the identification of EGF-secreting cells in the lateral domain and the EGF-dependent regulatory modules that drive expression of the ladybird gene in lateral AMPs. Taken together, our results reveal an unsuspected capacity of embryonic AMPs to form a cell network, and shed light on the mechanisms governing their specification and maintenance.
Collapse
Affiliation(s)
- Nicolas Figeac
- GReD, INSERM U931, CNRS UMR6247, Clermont University, Faculté de Médecine, 28 Place Henri Dunant, Clermont-Ferrand, 63000, France
| | | | | | | | | |
Collapse
|
27
|
Li L, Yang Y, Xue L. [Regulatory functions of Pax gene family in Drosophila development]. YI CHUAN = HEREDITAS 2010; 32:115-21. [PMID: 20176554 DOI: 10.3724/sp.j.1005.2010.00115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Pax gene family encodes a group of important transcription factors that have been evolutionary conserved from Drosophila to human. Pax genes play pivotal roles in regulating diverse signal transduction pathways and organogenesis during embryonic development through modulating cell proliferation and self-renewal, embryonic precursor cell migration, and the coordination of specific differentiation programs. Ten members of the Pax gene family, which perform crucial regulatory functions during embryonic and postembryonic development, have been identified in Drosophila. In this report, we described the protein structures, expression patterns, and main functions of Drosophila Pax genes.
Collapse
Affiliation(s)
- Li Li
- School of Life Science and Technology, Tongji University, Shanghai 200092, China.
| | | | | |
Collapse
|
28
|
Yi B, Bumbarger D, Sommer RJ. Genetic evidence for pax-3 function in myogenesis in the nematode Pristionchus pacificus. Evol Dev 2010; 11:669-79. [PMID: 19878288 DOI: 10.1111/j.1525-142x.2009.00374.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PAX3 is a member of the PAX3/7 subfamily of the paired box proteins. In vertebrates, Pax3 is essential for skeletal myogenesis by activating a cascade of transcriptional events that are necessary and sufficient for skeletal myogenesis. Four related basic helix-loop-helix transcription factors, MyoD, Myf5, Mrf4, and Myogenin, are targets of PAX3 and serve as myogenic regulatory factors. Although the role of Pax3 in myogenesis is well studied in vertebrates, little is known about invertebrate PAX-3 proteins and myogenesis. Here, we took advantage of viable alleles of pax-3 in the nematode satellite model organism Pristionchus pacificus to investigate the function of PAX-3 in myogenesis. Two strong reduction-of-function alleles of Ppa-pax-3 show severe muscle-derived abnormalities and phalloidin staining indicates a disruption of body wall muscle patterning. Furthermore, we identified a myogenic regulatory factor-related gene Ppa-hlh-1/MyoD and a serum response factor-related gene Ppa-unc-120. Expression of both genes in Ppa-pax-3 mutant animals is down regulated suggesting that Ppa-pax-3 acts upstream in the regulatory network. Together, our results provide the first genetic evidence for a conserved function of PAX-3 in myogenesis between vertebrates and nematodes.
Collapse
Affiliation(s)
- Buqing Yi
- Department for Evolutionary Biology, Max-Planck Institute for Developmental Biology, Spemannstrasse 37, D-72076 Tübingen, Germany
| | | | | |
Collapse
|
29
|
Keller RG, Desplan C, Rosenberg MI. Identification and characterization of Nasonia Pax genes. INSECT MOLECULAR BIOLOGY 2010; 19 Suppl 1:109-120. [PMID: 20167022 PMCID: PMC2852259 DOI: 10.1111/j.1365-2583.2009.00921.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Pax genes are a group of critical developmental transcriptional regulators in both invertebrates and vertebrates, characterized by the presence of a paired DNA-binding domain. Pax proteins also often contain an octapeptide motif and a C-terminal homeodomain. The genome of Nasonia vitripennis (Hymenoptera) has recently become available, and analysis of this genome alongside Apis mellifera allowed us to contribute to the phylogeny of this gene family in insects. Nasonia, a parasitic wasp, has independently evolved a similar mode of development to that of the well-studied Drosophila, making it an excellent model system for comparative studies of developmental gene networks. We report the characterization of the seven Nasonia Pax genes. We describe their genomic organization, and the embryonic expression of three of them, and uncover wider conservation of the octapeptide motif than previously described.
Collapse
Affiliation(s)
- R G Keller
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY 10003, USA
| | | | | |
Collapse
|
30
|
Ciglar L, Furlong EEM. Conservation and divergence in developmental networks: a view from Drosophila myogenesis. Curr Opin Cell Biol 2009; 21:754-60. [PMID: 19896355 DOI: 10.1016/j.ceb.2009.10.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 09/20/2009] [Accepted: 10/06/2009] [Indexed: 01/07/2023]
Abstract
Understanding developmental networks has recently been enhanced through the identification of a large number of conserved essential regulators. Interspecies comparisons of the transcriptional networks regulated by these factors are still at a rather early stage, with limited global data available. Here we use the accumulating phenotypic information from multiple species to provide initial insights into the wiring and rewiring of developmental networks, with particular emphasis on myogenesis, a highly conserved developmental process. This review highlights the most recent findings on the transcriptional program driving Drosophila myogenesis and compares this with vertebrates, revealing emerging themes that may be applicable to other developmental contexts.
Collapse
Affiliation(s)
- Lucia Ciglar
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | | |
Collapse
|
31
|
Liu YH, Jakobsen JS, Valentin G, Amarantos I, Gilmour DT, Furlong EEM. A systematic analysis of Tinman function reveals Eya and JAK-STAT signaling as essential regulators of muscle development. Dev Cell 2009; 16:280-91. [PMID: 19217429 DOI: 10.1016/j.devcel.2009.01.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 12/10/2008] [Accepted: 01/21/2009] [Indexed: 01/10/2023]
Abstract
Nk-2 proteins are essential developmental regulators from flies to humans. In Drosophila, the family member tinman is the major regulator of cell fate within the dorsal mesoderm, including heart, visceral, and dorsal somatic muscle. To decipher Tinman's direct regulatory role, we performed a time course of ChIP-on-chip experiments, revealing a more prominent role in somatic muscle specification than previously anticipated. Through the combination of transgenic enhancer-reporter assays, colocalization studies, and phenotypic analyses, we uncovered two additional factors within this myogenic network: by activating eyes absent, Tinman's regulatory network extends beyond developmental stages and tissues where it is expressed; by regulating stat92E expression, Tinman modulates the transcriptional readout of JAK/STAT signaling. We show that this pathway is essential for somatic muscle development in Drosophila and for myotome morphogenesis in zebrafish. Taken together, these data uncover a conserved requirement for JAK/STAT signaling and an important component of the transcriptional network driving myogenesis.
Collapse
Affiliation(s)
- Ya-Hsin Liu
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Wong MC, Castanon I, Baylies MK. Daughterless dictates Twist activity in a context-dependent manner during somatic myogenesis. Dev Biol 2008; 317:417-29. [PMID: 18407256 DOI: 10.1016/j.ydbio.2008.02.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 01/22/2008] [Accepted: 02/05/2008] [Indexed: 11/25/2022]
Abstract
Somatic myogenesis in Drosophila relies on the reiterative activity of the basic helix-loop-helix transcriptional regulator, Twist (Twi). How Twi directs multiple cell fate decisions over the course of mesoderm and muscle development is unclear. Previous work has shown that Twi is regulated by its dimerization partner: Twi homodimers activate genes necessary for somatic myogenesis, whereas Twi/Daughterless (Da) heterodimers lead to the repression of these genes. Here, we examine the nature of Twi/Da heterodimer repressive activity. Analysis of the Da protein structure revealed a Da repression (REP) domain, which is required for Twi/Da-mediated repression of myogenic genes, such as Dmef2, both in tissue culture and in vivo. This domain is crucial for the allocation of mesodermal cells to distinct fates, such as heart, gut and body wall muscle. By contrast, the REP domain is not required in vivo during later stages of myogenesis, even though Twi activity is required for muscles to achieve their final pattern and morphology. Taken together, we present evidence that the repressive activity of the Twi/Da dimer is dependent on the Da REP domain and that the activity of the REP domain is sensitive to tissue context and developmental timing.
Collapse
Affiliation(s)
- Ming-Ching Wong
- Weill Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| | | | | |
Collapse
|