1
|
Molecular Organization and Patterning of the Medulla Oblongata in Health and Disease. Int J Mol Sci 2022; 23:ijms23169260. [PMID: 36012524 PMCID: PMC9409237 DOI: 10.3390/ijms23169260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
The medulla oblongata, located in the hindbrain between the pons and the spinal cord, is an important relay center for critical sensory, proprioceptive, and motoric information. It is an evolutionarily highly conserved brain region, both structural and functional, and consists of a multitude of nuclei all involved in different aspects of basic but vital functions. Understanding the functional anatomy and developmental program of this structure can help elucidate potential role(s) of the medulla in neurological disorders. Here, we have described the early molecular patterning of the medulla during murine development, from the fundamental units that structure the very early medullary region into 5 rhombomeres (r7–r11) and 13 different longitudinal progenitor domains, to the neuronal clusters derived from these progenitors that ultimately make-up the different medullary nuclei. By doing so, we developed a schematic overview that can be used to predict the cell-fate of a progenitor group, or pinpoint the progenitor domain of origin of medullary nuclei. This schematic overview can further be used to help in the explanation of medulla-related symptoms of neurodevelopmental disorders, e.g., congenital central hypoventilation syndrome, Wold–Hirschhorn syndrome, Rett syndrome, and Pitt–Hopkins syndrome. Based on the genetic defects seen in these syndromes, we can use our model to predict which medullary nuclei might be affected, which can be used to quickly direct the research into these diseases to the likely affected nuclei.
Collapse
|
2
|
Joshi R, Sipani R, Bakshi A. Roles of Drosophila Hox Genes in the Assembly of Neuromuscular Networks and Behavior. Front Cell Dev Biol 2022; 9:786993. [PMID: 35071230 PMCID: PMC8777297 DOI: 10.3389/fcell.2021.786993] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
Hox genes have been known for specifying the anterior-posterior axis (AP) in bilaterian body plans. Studies in vertebrates have shown their importance in developing region-specific neural circuitry and diversifying motor neuron pools. In Drosophila, they are instrumental for segment-specific neurogenesis and myogenesis early in development. Their robust expression in differentiated neurons implied their role in assembling region-specific neuromuscular networks. In the last decade, studies in Drosophila have unequivocally established that Hox genes go beyond their conventional functions of generating cellular diversity along the AP axis of the developing central nervous system. These roles range from establishing and maintaining the neuromuscular networks to controlling their function by regulating the motor neuron morphology and neurophysiology, thereby directly impacting the behavior. Here we summarize the limited knowledge on the role of Drosophila Hox genes in the assembly of region-specific neuromuscular networks and their effect on associated behavior.
Collapse
Affiliation(s)
- Rohit Joshi
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| | - Rashmi Sipani
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| | - Asif Bakshi
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
3
|
Motahari Z, Maynard TM, Popratiloff A, Moody SA, LaMantia AS. Aberrant early growth of individual trigeminal sensory and motor axons in a series of mouse genetic models of 22q11.2 deletion syndrome. Hum Mol Genet 2021; 29:3081-3093. [PMID: 32901287 PMCID: PMC7645708 DOI: 10.1093/hmg/ddaa199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/29/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
We identified divergent modes of initial axon growth that prefigure disrupted differentiation of the trigeminal nerve (CN V), a cranial nerve essential for suckling, feeding and swallowing (S/F/S), a key innate behavior compromised in multiple genetic developmental disorders including DiGeorge/22q11.2 Deletion Syndrome (22q11.2 DS). We combined rapid in vivo labeling of single CN V axons in LgDel+/− mouse embryos, a genomically accurate 22q11.2DS model, and 3D imaging to identify and quantify phenotypes that could not be resolved using existing methods. We assessed these phenotypes in three 22q11.2-related genotypes to determine whether individual CN V motor and sensory axons wander, branch and sprout aberrantly in register with altered anterior–posterior hindbrain patterning and gross morphological disruption of CN V seen in LgDel+/−. In the additional 22q11.2-related genotypes: Tbx1+/−, Ranbp1−/−, Ranbp1+/− and LgDel+/−:Raldh2+/−; axon phenotypes are seen when hindbrain patterning and CN V gross morphology is altered, but not when it is normal or restored toward WT. This disordered growth of CN V sensory and motor axons, whose appropriate targeting is critical for optimal S/F/S, may be an early, critical determinant of imprecise innervation leading to inefficient oropharyngeal function associated with 22q11.2 deletion from birth onward.
Collapse
Affiliation(s)
- Zahra Motahari
- Institute for Neuroscience, Washington, DC 20037, USA.,Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Thomas M Maynard
- The Fralin Biomedical Research Institute at Virginia Tech-Carilion School of Medicine, Roanoke, VA 24016, USA
| | - Anastas Popratiloff
- Institute for Neuroscience, Washington, DC 20037, USA.,Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Sally A Moody
- Institute for Neuroscience, Washington, DC 20037, USA.,Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Anthony-S LaMantia
- The Fralin Biomedical Research Institute at Virginia Tech-Carilion School of Medicine, Roanoke, VA 24016, USA.,Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| |
Collapse
|
4
|
Lozzi B, Huang TW, Sardar D, Huang AYS, Deneen B. Regionally Distinct Astrocytes Display Unique Transcription Factor Profiles in the Adult Brain. Front Neurosci 2020; 14:61. [PMID: 32153350 PMCID: PMC7046629 DOI: 10.3389/fnins.2020.00061] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/15/2020] [Indexed: 12/19/2022] Open
Abstract
Astrocytes are the most abundant type of glial cell in the central nervous system and perform a myriad of vital functions, however, the nature of their diversity remains a longstanding question in neuroscience. Using transcription factor motif discovery analysis on region-specific gene signatures from astrocytes we uncovered universal and region-specific transcription factor expression profiles. This analysis revealed that motifs for Nuclear Factor-I (NFI) are present in genes enriched in astrocytes from all regions, with NFIB and NFIX exhibiting pan-astrocyte expression in the olfactory bulb, hippocampus, cortex, and brainstem. Further analysis into region-specific motif patterns, identified Nkx3-1, Stat4, Pgr, and Nkx6-1 as prospective region-specific transcription factors. Validation studies revealed that Nkx6-1 is exclusively expressed in astrocytes in the brainstem and associates with the promoters of several brainstem specific target genes. These studies illustrate the presence of multiple transcriptional layers in astrocytes across diverse brain regions and provide a new entry point for examining how astrocyte diversity is specified and maintained.
Collapse
Affiliation(s)
- Brittney Lozzi
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States
| | - Teng-Wei Huang
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States
| | - Debosmita Sardar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States
| | - Anna Yu-Szu Huang
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States.,Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States
| | - Benjamin Deneen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States.,Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States.,Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
5
|
Puelles L, Tvrdik P, Martínez-de-la-torre M. The Postmigratory Alar Topography of Visceral Cranial Nerve Efferents Challenges the Classical Model of Hindbrain Columns. Anat Rec (Hoboken) 2018; 302:485-504. [DOI: 10.1002/ar.23830] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Luis Puelles
- Department of Human Anatomy and Psychobiology and IMIB-Arrixaca Institute, School of Medicine; University of Murcia; Murcia 30071 Spain
| | - Petr Tvrdik
- Department of Neurosurgery-Physiology; University of Utah; Salt Lake City, Utah 84112
| | - Margaret Martínez-de-la-torre
- Department of Human Anatomy and Psychobiology and IMIB-Arrixaca Institute, School of Medicine; University of Murcia; Murcia 30071 Spain
| |
Collapse
|
6
|
Sun JJ, Huang TW, Neul JL, Ray RS. Embryonic hindbrain patterning genes delineate distinct cardio-respiratory and metabolic homeostatic populations in the adult. Sci Rep 2017; 7:9117. [PMID: 28831138 PMCID: PMC5567350 DOI: 10.1038/s41598-017-08810-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/10/2017] [Indexed: 12/21/2022] Open
Abstract
Previous studies based on mouse genetic mutations suggest that proper partitioning of the hindbrain into transient, genetically-defined segments called rhombomeres is required for normal respiratory development and function in neonates. Less clear is what role these genes and the neurons they define play in adult respiratory circuit organization. Several Cre drivers are used to access and study developmental rhombomeric domains (Eng1Cre, HoxA2-Cre, Egr2Cre, HoxB1Cre, and HoxA4-Cre) in the adult. However, these drivers show cumulative activity beyond the brainstem while being used in intersectional genetic experiments to map central respiratory circuitry. We crossed these drivers to conditional DREADD mouse lines to further characterize the functional contributions of Cre defined populations. In the adult, we show that acute DREADD inhibition of targeted populations results in a variety of not only respiratory phenotypes but also metabolic and temperature changes that likely play a significant role in the observed respiratory alterations. DREADD mediated excitation of targeted domains all resulted in death, with unique differences in the patterns of cardio-respiratory failure. These data add to a growing body of work aimed at understanding the role of early embryonic patterning genes in organizing adult respiratory homeostatic networks that may be perturbed in congenital pathophysiologies.
Collapse
Affiliation(s)
- Jenny J Sun
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Teng-Wei Huang
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Jeffrey L Neul
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA.,Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
| | - Russell S Ray
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA. .,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA. .,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA. .,Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA. .,McNair Medical Institute, TX-77030, Houston, USA.
| |
Collapse
|
7
|
Di Bonito M, Studer M. Cellular and Molecular Underpinnings of Neuronal Assembly in the Central Auditory System during Mouse Development. Front Neural Circuits 2017; 11:18. [PMID: 28469562 PMCID: PMC5395578 DOI: 10.3389/fncir.2017.00018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/01/2017] [Indexed: 11/13/2022] Open
Abstract
During development, the organization of the auditory system into distinct functional subcircuits depends on the spatially and temporally ordered sequence of neuronal specification, differentiation, migration and connectivity. Regional patterning along the antero-posterior axis and neuronal subtype specification along the dorso-ventral axis intersect to determine proper neuronal fate and assembly of rhombomere-specific auditory subcircuits. By taking advantage of the increasing number of transgenic mouse lines, recent studies have expanded the knowledge of developmental mechanisms involved in the formation and refinement of the auditory system. Here, we summarize several findings dealing with the molecular and cellular mechanisms that underlie the assembly of central auditory subcircuits during mouse development, focusing primarily on the rhombomeric and dorso-ventral origin of auditory nuclei and their associated molecular genetic pathways.
Collapse
|
8
|
Uncovering diversity in the development of central noradrenergic neurons and their efferents. Brain Res 2015; 1641:234-44. [PMID: 26612521 DOI: 10.1016/j.brainres.2015.11.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 11/08/2015] [Accepted: 11/12/2015] [Indexed: 01/07/2023]
Abstract
Uncovering the mechanisms that underlie central noradrenergic neuron heterogeneity is essential to understanding selective subtype vulnerability to disease and environmental insult. Using recombinase-based intersectional genetic fate mapping we have previously demonstrated that molecularly distinct progenitor populations give rise to mature noradrenergic neurons differing in their anatomical location, axon morphology and efferent projection pattern. Here we review the findings from our previous study and extend our analysis of the noradrenergic subpopulation defined by transient developmental expression of Hoxb1. Using a combination of intersectional genetic fate mapping and analysis of a targeted loss of function mutation in Hoxb1, we have now uncovered additional heterogeneity based on the requirement of some noradrenergic neurons for Hoxb1 expression. By comparing the distribution of noradrenergic neurons derived from the Hoxb1 expression domain in wild-type and mutant mice, we demonstrate that Hoxb1 expression is required by a subset of neurons in the pons. Additional fate mapping, using a Hoxb1 enhancer element that drives Cre recombinase expression exclusively in rhombomere 4 of the hindbrain, reveals the existence of a subpopulation of noradrenergic neurons in the pons with more restricted axonal targets than the full Hoxb1-derived subpopulation. The unique projection profile of this newly defined subpopulation suggests that it may be functionally distinct. These analyses shed new light on the molecular determinants of noradrenergic identity in the pons and the overall complexity of the central noradrenergic system. This article is part of a Special Issue entitled SI: Noradrenergic System.
Collapse
|
9
|
Development of oculomotor circuitry independent of hox3 genes. Nat Commun 2014; 5:4221. [PMID: 24964400 DOI: 10.1038/ncomms5221] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 05/27/2014] [Indexed: 01/05/2023] Open
Abstract
Hox genes have been shown to be essential in vertebrate neural circuit formation and their depletion has resulted in homeotic transformations with neuron loss and miswiring. Here we quantifiy four eye movements in the zebrafish mutant valentino and hox3 knockdowns, and find that contrary to the classical model, oculomotor circuits in hindbrain rhombomeres 5-6 develop and function independently of hox3 genes. All subgroups of oculomotor neurons are present, as well as their input and output connections. Ectopic connections are also established, targeting two specific subsets of horizontal neurons, and the resultant novel eye movements coexists with baseline behaviours. We conclude that the high expression of hox3 genes in rhombomeres 5-6 serves to prevent aberrant neuronal identity and behaviours, but does not appear to be necessary for a comprehensive assembly of functional oculomotor circuits.
Collapse
|
10
|
Philippidou P, Dasen JS. Hox genes: choreographers in neural development, architects of circuit organization. Neuron 2013; 80:12-34. [PMID: 24094100 DOI: 10.1016/j.neuron.2013.09.020] [Citation(s) in RCA: 287] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The neural circuits governing vital behaviors, such as respiration and locomotion, are comprised of discrete neuronal populations residing within the brainstem and spinal cord. Work over the past decade has provided a fairly comprehensive understanding of the developmental pathways that determine the identity of major neuronal classes within the neural tube. However, the steps through which neurons acquire the subtype diversities necessary for their incorporation into a particular circuit are still poorly defined. Studies on the specification of motor neurons indicate that the large family of Hox transcription factors has a key role in generating the subtypes required for selective muscle innervation. There is also emerging evidence that Hox genes function in multiple neuronal classes to shape synaptic specificity during development, suggesting a broader role in circuit assembly. This Review highlights the functions and mechanisms of Hox gene networks and their multifaceted roles during neuronal specification and connectivity.
Collapse
Affiliation(s)
- Polyxeni Philippidou
- Howard Hughes Medical Institute, NYU Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA.
| | | |
Collapse
|
11
|
Developmental origins of central norepinephrine neuron diversity. Nat Neurosci 2013; 16:1016-23. [PMID: 23852112 PMCID: PMC4319358 DOI: 10.1038/nn.3458] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 06/07/2013] [Indexed: 11/08/2022]
Abstract
Central norepinephrine-producing neurons comprise a diverse population of cells differing in anatomical location, connectivity, function and response to disease and environmental insult. The mechanisms that generate this diversity are unknown. Here we elucidate the lineal relationship between molecularly distinct progenitor populations in the developing mouse hindbrain and mature norepinephrine neuron subtype identity. We have identified four genetically separable subpopulations of mature norepinephrine neurons differing in their anatomical location, axon morphology and efferent projection pattern. One of the subpopulations showed an unexpected projection to the prefrontal cortex, challenging the long-held belief that the locus coeruleus is the sole source of norepinephrine projections to the cortex. These findings reveal the embryonic origins of central norepinephrine neurons and provide multiple molecular points of entry for future study of individual norepinephrine circuits in complex behavioral and physiological processes including arousal, attention, mood, memory, appetite and homeostasis.
Collapse
|
12
|
Gray PA. Transcription factors define the neuroanatomical organization of the medullary reticular formation. Front Neuroanat 2013; 7:7. [PMID: 23717265 PMCID: PMC3653110 DOI: 10.3389/fnana.2013.00007] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 04/19/2013] [Indexed: 01/13/2023] Open
Abstract
The medullary reticular formation contains large populations of inadequately described, excitatory interneurons that have been implicated in multiple homeostatic behaviors including breathing, viserosensory processing, vascular tone, and pain. Many hindbrain nuclei show a highly stereotyped pattern of localization across vertebrates suggesting a strong underlying genetic organization. Whether this is true for neurons within the reticular regions of hindbrain is unknown. Hindbrain neurons are derived from distinct developmental progenitor domains each of which expresses distinct patterns of transcription factors (TFs). These neuronal populations have distinct characteristics such as transmitter identity, migration, and connectivity suggesting developmentally expressed TFs might identify unique subpopulations of neurons within the reticular formation. A fate-mapping strategy using perinatal expression of reporter genes within Atoh1, Dbx1, Lmx1b, and Ptf1a transgenic mice coupled with immunohistochemistry (IHC) and in situ hybridization (ISH) were used to address the developmental organization of a large subset of reticular formation glutamatergic neurons. All hindbrain lineages have relatively large populations that extend the entire length of the hindbrain. Importantly, the location of neurons within each lineage was highly constrained. Lmx1b- and Dbx1- derived populations were both present in partially overlapping stripes within the reticular formation extending from dorsal to ventral brain. Within each lineage, distinct patterns of gene expression and organization were localized to specific hindbrain regions. Rostro-caudally sub-populations differ sequentially corresponding to proposed pseudo-rhombomereic boundaries. Dorsal-ventrally, sub-populations correspond to specific migratory positions. Together these data suggests the reticular formation is organized by a highly stereotyped developmental logic.
Collapse
Affiliation(s)
- Paul A Gray
- Department of Anatomy and Neurobiology, Washington University School of Medicine St. Louis, MO, USA
| |
Collapse
|
13
|
Olynik BM, Rastegar M. The genetic and epigenetic journey of embryonic stem cells into mature neural cells. Front Genet 2012; 3:81. [PMID: 22629283 PMCID: PMC3355330 DOI: 10.3389/fgene.2012.00081] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 04/25/2012] [Indexed: 12/14/2022] Open
Abstract
Epigenetic changes occur throughout life from embryonic development into adulthood. This results in the timely expression of developmentally important genes, determining the morphology and identity of different cell types and tissues within the body. Epigenetics regulate gene expression and cellular morphology through multiple mechanisms without alteration in the underlying DNA sequences. Different epigenetic mechanisms include chromatin condensation, post-translational modification of histone proteins, DNA cytosine marks, and the activity of non-coding RNA molecules. Epigenetics play key roles in development, stem cell differentiation, and have high impact in human disease. In this review, we will discuss our current knowledge about these epigenetic mechanisms, with a focus on histone and DNA marks. We will then talk about the genetics and epigenetics of embryonic stem cell self-renewal and differentiation into neural stem cells, and further into specific neuronal cell types.
Collapse
Affiliation(s)
- Brendan M. Olynik
- Regenerative Medicine Program, Faculty of Medicine, University of ManitobaWinnipeg, MB, Canada
- Department of Biochemistry and Medical Genetics, University of ManitobaWinnipeg, MB, Canada
| | - Mojgan Rastegar
- Regenerative Medicine Program, Faculty of Medicine, University of ManitobaWinnipeg, MB, Canada
- Department of Biochemistry and Medical Genetics, University of ManitobaWinnipeg, MB, Canada
| |
Collapse
|
14
|
Chen Y, Takano-Maruyama M, Fritzsch B, Gaufo GO. Hoxb1 controls anteroposterior identity of vestibular projection neurons. PLoS One 2012; 7:e34762. [PMID: 22485187 PMCID: PMC3317634 DOI: 10.1371/journal.pone.0034762] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 03/09/2012] [Indexed: 11/18/2022] Open
Abstract
The vestibular nuclear complex (VNC) consists of a collection of sensory relay nuclei that integrates and relays information essential for coordination of eye movements, balance, and posture. Spanning the majority of the hindbrain alar plate, the rhombomere (r) origin and projection pattern of the VNC have been characterized in descriptive works using neuroanatomical tracing. However, neither the molecular identity nor developmental regulation of individual nucleus of the VNC has been determined. To begin to address this issue, we found that Hoxb1 is required for the anterior-posterior (AP) identity of precursors that contribute to the lateral vestibular nucleus (LVN). Using a gene-targeted Hoxb1-GFP reporter in the mouse, we show that the LVN precursors originate exclusively from r4 and project to the spinal cord in the stereotypic pattern of the lateral vestibulospinal tract that provides input into spinal motoneurons driving extensor muscles of the limb. The r4-derived LVN precursors express the transcription factors Phox2a and Lbx1, and the glutamatergic marker Vglut2, which together defines them as dB2 neurons. Loss of Hoxb1 function does not alter the glutamatergic phenotype of dB2 neurons, but alters their stereotyped spinal cord projection. Moreover, at the expense of Phox2a, the glutamatergic determinants Lmx1b and Tlx3 were ectopically expressed by dB2 neurons. Our study suggests that the Hox genes determine the AP identity and diversity of vestibular precursors, including their output target, by coordinating the expression of neurotransmitter determinant and target selection properties along the AP axis.
Collapse
Affiliation(s)
- Yiju Chen
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | | | | | | |
Collapse
|
15
|
Abstract
Recent advances in neuroimaging techniques turned possible for neuroradiologists to be frequently the first one to detect possible brain structural anomalies. However, with all the recent advances in genetics and embryology, understanding posterior fossa malformation's principles is being hardest to be achieved than previously. Studies in vertebrate models provide a developmental framework in which to categorize human hindbrain malformations and serve to inform our thinking regarding candidate genes involved in disrupted developmental processes. The main focus of this review was to survey the basic principles of the rhombomere division, anteroposterior and dorsoventral patterning, alar and basal zone concept, and axonal path finding to integrate the knowledge of human hindbrain malformations for better understanding the genetic basis of hindbrain development.
Collapse
|
16
|
Wang M, Doucette JR, Nazarali AJ. Conditional Tet-regulated over-expression of Hoxa2 in CG4 cells increases their proliferation and delays their differentiation into oligodendrocyte-like cells expressing myelin basic protein. Cell Mol Neurobiol 2011; 31:875-86. [PMID: 21479584 DOI: 10.1007/s10571-011-9685-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Accepted: 03/16/2011] [Indexed: 12/11/2022]
Abstract
Hoxa2 gene was reported to be expressed by oligodendrocytes (OLs) and down-regulated at the terminal differentiation stage during oligodendrogenesis in mice (Nicolay et al. 2004b). To further investigate the role of Hoxa2 in oligodendroglial development, a tetracycline regulated controllable expression system was utilized to establish a stable cell line (CG4-SHoxa2 [sense Hoxa2]), where the expression level of Hoxa2 gene could be up-regulated. The impact of Hoxa2 over-expression on the proliferation and differentiation of CG4-SHoxa2 cells was investigated. Up-regulation of Hoxa2 increased the proliferation of CG4-SHoxa2 cells. The mRNA levels of PDGFαR (platelet-derived growth factor [PDGF] alpha receptor), which is expressed by OL progenitor cells, were not different in CG4-SHoxa2 cells compared to wild-type CG4 cells. Semi-quantitative RT-PCR revealed that the mRNA levels of myelin basic protein (MBP) was lower in CG4-SHoxa2 cells than in wild-type CG4 cells indicating the differentiation of CG4-SHoxa2 cells was delayed when the Hoxa2 gene was up-regulated.
Collapse
Affiliation(s)
- Monica Wang
- Laboratory of Molecular Cell Biology, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada
| | | | | |
Collapse
|
17
|
Liu Y, Xiao A. Epigenetic regulation in neural crest development. BIRTH DEFECTS RESEARCH. PART A, CLINICAL AND MOLECULAR TERATOLOGY 2011; 91:788-96. [PMID: 21618405 DOI: 10.1002/bdra.20797] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 12/16/2010] [Accepted: 02/02/2011] [Indexed: 12/31/2022]
Abstract
The neural crest (NC) is a multipotent, migratory cell population that arises from the developing dorsal neural fold of vertebrate embryos. Once their fates are specified, neural crest cells (NCCs) migrate along defined routes and differentiate into a variety of tissues, including bone and cartilage of the craniofacial skeleton, peripheral neurons, glia, pigment cells, endocrine cells, and mesenchymal precursor cells (Santagati and Rijli,2003; Dupin et al.,2006; Hall,2009). Abnormal development of NCCs causes a number of human diseases, including ear abnormalities (including deafness), heart anomalies, neuroblastomas, and mandibulofacial dysostosis (Hall,2009). For more than a century, NCCs have attracted the attention of geneticists and developmental biologists for their stem cell-like properties, including self-renewal and multipotent differentiation potential. However, we have only begun to understand the underlying mechanisms responsible for their formation and behavior. Recent studies have demonstrated that epigenetic regulation plays important roles in NC development. In this review, we focused on some of the most recent findings on chromatin-mediated mechanisms for vertebrate NCC development.
Collapse
Affiliation(s)
- Yifei Liu
- Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
18
|
Chen Y, Takano-Maruyama M, Gaufo GO. Plasticity of neural crest-placode interaction in the developing visceral nervous system. Dev Dyn 2011; 240:1880-8. [PMID: 21674689 DOI: 10.1002/dvdy.22679] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2011] [Indexed: 12/13/2022] Open
Abstract
The reciprocal relationship between rhombomere (r)-derived cranial neural crest (NC) and epibranchial placodal cells derived from the adjacent branchial arch is critical for visceral motor and sensory gangliogenesis, respectively. However, it is unknown whether the positional match between these neurogenic precursors is hard-wired along the anterior-posterior (A/P) axis. Here, we use the interaction between r4-derived NC and epibranchial placode-derived geniculate ganglion as a model to address this issue. In Hoxa1(-/-) b1(-/-) embryos, r2 NC compensates for the loss of r4 NC. Specifically, a population of r2 NC cells is redirected toward the geniculate ganglion, where they differentiate into postganglionic (motor) neurons. Reciprocally, the inward migration of the geniculate ganglion is associated with r2 NC. The ability of NC and placodal cells to, respectively, differentiate and migrate despite a positional mismatch along the A/P axis reflects the plasticity in the relationship between the two neurogenic precursors of the vertebrate head.
Collapse
Affiliation(s)
- Yiju Chen
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | | | | |
Collapse
|
19
|
Osório J, Mueller T, Rétaux S, Vernier P, Wullimann MF. Phylotypic expression of the bHLH genes Neurogenin2, Neurod, and Mash1 in the mouse embryonic forebrain. J Comp Neurol 2010; 518:851-71. [PMID: 20058311 DOI: 10.1002/cne.22247] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the anamniote model animals, zebrafish and Xenopus laevis, highly comparable early forebrain expression patterns of proneural basic helix-loop-helix (bHLH) genes relevant for neurogenesis (atonal homologs, i.e., neurogenins/NeuroD and achaete-scute homologs, i.e., Ascl/ash) were previously revealed during a particular period of development (zebrafish: 3 days; frog: stage 48). Neurogenins/NeuroD on the one hand and Ascl1/ash1 on the other hand exhibit essentially mutually exclusive spatial patterns, probably reflecting different positional information received within the neural tube, and appear to underlie glutamatergic versus GABAergic neuronal differentiation, respectively. Significant data suggest that similar complementary localizations of these proneural genes and corresponding differentiation pathways also exist in the mouse, the prominent mammalian model. The present article reports on detailed mouse brain bHLH gene expression patterns to fill existing gaps in the identification of expression domains, especially outside the telencephalon. Clearly, there are strong similarities in the complementarity of territories expressing Ascl1/Mash 1 versus neurogenins/NeuroD in the entire mouse forebrain, except for the pretectal alar plate and basal plate of prosomeres 1-3. The analysis substantiates localization of neurogenins/NeuroD in the pallium, eminentia thalami, and dorsal thalamus, and expression of Ascl1/Mash 1 in the striatal and septal subpallium, preoptic region, ventral thalamus, and hypothalamus, which is highly similar to the situation described in Xenopus and zebrafish. Thus, all three vertebrate model species display a "phylotypic stage or period" corresponding to a temporally and spatially defined control of neurogenesis during forebrain development, ultimately resulting in the differentiation of distinct populations of glutamatergic versus GABAergic neurons.
Collapse
Affiliation(s)
- Joana Osório
- CNRS, Institute of Neurobiology A. Fessard, Development, Evolution, Plasticity of the Nervous System, Research Unit 2197, 91198 Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
20
|
Abstract
The facial somatosensory map in the cortex is derived from facial representations that are first established at the brainstem level and then serially 'copied' at each stage of the somatosensory pathway. Recent studies have provided insights into the molecular mechanisms involved in the development of somatotopic maps of the face and whiskers in the trigeminal nuclei of the mouse brainstem. This work has revealed that early molecular regionalization and positional patterning of trigeminal ganglion and brainstem target neurons are established by homeodomain transcription factors, the expression of which is induced and maintained by signals from the brain and face. Such position-dependent information is fundamental in transforming the early spatial layout of sensory receptors into a topographic connectivity map that is conferred to higher brain levels.
Collapse
|
21
|
Cis-regulatory characterization of sequence conservation surrounding the Hox4 genes. Dev Biol 2010; 340:269-82. [PMID: 20144609 DOI: 10.1016/j.ydbio.2010.01.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 01/17/2010] [Accepted: 01/30/2010] [Indexed: 01/30/2023]
Abstract
Hox genes are key regulators of anterior-posterior axis patterning and have a major role in hindbrain development. The zebrafish Hox4 paralogs have strong overlapping activities in hindbrain rhombomeres 7 and 8, in the spinal cord and in the pharyngeal arches. With the aim to predict enhancers that act on the hoxa4a, hoxb4a, hoxc4a and hoxd4a genes, we used sequence conservation around the Hox4 genes to analyze all fish:human conserved non-coding sequences by reporter assays in stable zebrafish transgenesis. Thirty-four elements were functionally tested in GFP reporter gene constructs and more than 100 F1 lines were analyzed to establish a correlation between sequence conservation and cis-regulatory function, constituting a catalog of Hox4 CNEs. Sixteen tissue-specific enhancers could be identified. Multiple alignments of the CNEs revealed paralogous cis-regulatory sequences, however, the CNE sequence similarities were found not to correlate with tissue specificity. To identify ancestral enhancers that direct Hox4 gene activity, genome sequence alignments of mammals, teleosts, horn shark and the cephalochordate amphioxus, which is the most basal extant chordate possessing a single prototypical Hox cluster, were performed. Three elements were identified and two of them exhibited regulatory activity in transgenic zebrafish, however revealing no specificity. Our data show that the approach to identify cis-regulatory sequences by genome sequence alignments and subsequent testing in zebrafish transgenesis can be used to define enhancers within the Hox clusters and that these have significantly diverged in their function during evolution.
Collapse
|
22
|
Barkovich AJ, Millen KJ, Dobyns WB. A developmental and genetic classification for midbrain-hindbrain malformations. Brain 2009; 132:3199-230. [PMID: 19933510 PMCID: PMC2792369 DOI: 10.1093/brain/awp247] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 08/04/2009] [Accepted: 08/21/2009] [Indexed: 01/30/2023] Open
Abstract
Advances in neuroimaging, developmental biology and molecular genetics have increased the understanding of developmental disorders affecting the midbrain and hindbrain, both as isolated anomalies and as part of larger malformation syndromes. However, the understanding of these malformations and their relationships with other malformations, within the central nervous system and in the rest of the body, remains limited. A new classification system is proposed, based wherever possible, upon embryology and genetics. Proposed categories include: (i) malformations secondary to early anteroposterior and dorsoventral patterning defects, or to misspecification of mid-hindbrain germinal zones; (ii) malformations associated with later generalized developmental disorders that significantly affect the brainstem and cerebellum (and have a pathogenesis that is at least partly understood); (iii) localized brain malformations that significantly affect the brain stem and cerebellum (pathogenesis partly or largely understood, includes local proliferation, cell specification, migration and axonal guidance); and (iv) combined hypoplasia and atrophy of putative prenatal onset degenerative disorders. Pertinent embryology is discussed and the classification is justified. This classification will prove useful for both physicians who diagnose and treat patients with these disorders and for clinical scientists who wish to understand better the perturbations of developmental processes that produce them. Importantly, both the classification and its framework remain flexible enough to be easily modified when new embryologic processes are described or new malformations discovered.
Collapse
Affiliation(s)
- A James Barkovich
- Neuroradiology Room L371, University of California at San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143-0628, USA.
| | | | | |
Collapse
|
23
|
Ma LH, Punnamoottil B, Rinkwitz S, Baker R. Mosaic hoxb4a neuronal pleiotropism in zebrafish caudal hindbrain. PLoS One 2009; 4:e5944. [PMID: 19536294 PMCID: PMC2693931 DOI: 10.1371/journal.pone.0005944] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 05/12/2009] [Indexed: 12/26/2022] Open
Abstract
To better understand how individual genes and experience influence behavior, the role of a single homeotic unit, hoxb4a, was comprehensively analyzed in vivo by clonal and retrograde fluorescent labeling of caudal hindbrain neurons in a zebrafish enhancer-trap YFP line. A quantitative spatiotemporal neuronal atlas showed hoxb4a activity to be highly variable and mosaic in rhombomere 7–8 reticular, motoneuronal and precerebellar nuclei with expression decreasing differentially in all subgroups through juvenile stages. The extensive Hox mosaicism and widespread pleiotropism demonstrate that the same transcriptional protein plays a role in the development of circuits that drive behaviors from autonomic through motor function including cerebellar regulation. We propose that the continuous presence of hoxb4a positive neurons may provide a developmental plasticity for behavior-specific circuits to accommodate experience- and growth-related changes. Hence, the ubiquitous hoxb4a pleitropism and modularity likely offer an adaptable transcriptional element for circuit modification during both growth and evolution.
Collapse
Affiliation(s)
- Leung-Hang Ma
- Department of Physiology and Neuroscience, New York University Medical Center, New York, New York, United States of America
| | - Beena Punnamoottil
- Brain & Mind Research Institute, University of Sydney, Camperdown, New South Wales, Australia
| | - Silke Rinkwitz
- Brain & Mind Research Institute, University of Sydney, Camperdown, New South Wales, Australia
| | - Robert Baker
- Department of Physiology and Neuroscience, New York University Medical Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
24
|
Narita Y, Rijli FM. Hox genes in neural patterning and circuit formation in the mouse hindbrain. Curr Top Dev Biol 2009; 88:139-67. [PMID: 19651304 DOI: 10.1016/s0070-2153(09)88005-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mammalian hindbrain is the seat of regulation of several vital functions that involve many of the organ systems of the body. Such functions are controlled through the activity of intricate arrays of neuronal circuits and connections. The establishment of ordered patterns of neuronal specification, migration, and axonal topographic connectivity during development is crucial to build such a complex network of circuits and functional connectivity in the mature hindbrain. The early development of the vertebrate hindbrain proceeds according to a fundamental metameric partitioning along the anteroposterior axis into cellular compartments known as rhombomeres. Such an organization has been highly conserved in vertebrate evolution and has a fundamental impact on the hindbrain adult structure, nuclear organization, and connectivity. Here, we review the cellular and molecular mechanisms underlying hindbrain neuronal circuitry in the mouse, with a specific focus on the role of the homeodomain transcription factors of the Hox gene family. The Hox genes are crucial determinants of rhombomere segmental identity and anteroposterior patterning. However, recent findings suggest that, in addition to their well-known roles at early embryonic stages, the Hox genes may play important roles also in later aspect of neuronal circuit development, including stereotypic neuronal migration, axon pathfinding, and topographic mapping of connectivity.
Collapse
Affiliation(s)
- Yuichi Narita
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | |
Collapse
|
25
|
Abstract
Cdx and Hox gene families descend from the same ProtoHox cluster, already present in the common ancestors of bilaterians and cnidarians, and thought to act by providing anteroposterior (A-P) positional identity to axial tissues in all bilaterians. Mouse Cdx and Hox genes still exhibit common features in their early expression and function. The initiation and early shaping of Hox and Cdx transcriptional domains in mouse embryos are very similar, in keeping with their common involvement in conveying A-P information to the nascent tissues during embryonic axial elongation. Considerations of the impact on axial patterning of the early expression phase of these genes that correlates with the temporally collinear expression of 3'-5'Hox genes suggest that it is concerned with the acquisition of A-P information by the three germ layers as the axis extends. This early A-P information acquired by all cells emerging from the primitive streak or tailbud and their neighbors in the caudal neural plate gets further modulated by the second phase of gene expression occurring later as the tissues mature and differentiate along the growing axis. We discuss the possibility that regulatory phase 1, common to all Cdx and Hox genes, is inherent to the concerted mechanism sequentially turning on 3'-5'Hox genes at early stages, and keeping expression of the initiated genes subsequently in the new materials added posteriorly at the axis extends. The posterior Hox gene expression domain would be subsequently complemented by Hox regulatory phase 2, consisting in a variety of gene-specific, region-specific, and/or tissue-specific gene expression controls. We also touch on the unanswered question whether vertebrate Cdx gene expression delivers A-P positional information in its own right, as Caudal does in Drosophila, or whether it does so exclusively by upregulating Hox genes.
Collapse
Affiliation(s)
- Teddy Young
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Uppsalalaan, Utrecht, The Netherlands
| | | |
Collapse
|
26
|
A protocol for constructing gene targeting vectors: generating knockout mice for the cadherin family and beyond. Nat Protoc 2008; 3:1056-76. [PMID: 18546598 DOI: 10.1038/nprot.2008.70] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We describe here a streamlined procedure for targeting vector construction, which often is a limiting factor for gene targeting (knockout) technology. This procedure combines various highly efficient recombination-based cloning methods in bacteria, consisting of three steps. First step is the use of Red-pathway-mediated recombination (recombineering) to capture a genomic fragment into a Gateway-compatible vector. Second, the vector is modified by recombineering to include a positive selection gene neo, from a variety of modular reagents. Finally, through a simple in vitro Gateway recombination, the modified genomic fragment is switched into a vector that contains negative selection cassettes, as well as unique sites for linearization. To demonstrate the usefulness of this protocol, we report targeted disruptions of members of the cadherin gene family, focusing on those that have not been previously studied at the molecular genetic level. This protocol needs 2 weeks to construct a targeting vector, and several vectors can be easily handled simultaneously using common laboratory setup.
Collapse
|
27
|
Hox gene colinear expression in the avian medulla oblongata is correlated with pseudorhombomeric domains. Dev Biol 2008; 323:230-47. [PMID: 18786526 DOI: 10.1016/j.ydbio.2008.08.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 07/29/2008] [Accepted: 08/15/2008] [Indexed: 11/21/2022]
Abstract
The medulla oblongata (or caudal hindbrain) is not overtly segmented, since it lacks observable interrhombomeric boundaries. However, quail-chick fate maps showed that it is formed by 5 pseudorhombomeres (r7-r11) which were empirically found to be delimited consistently at planes crossing through adjacent somites (Cambronero and Puelles, 2000). We aimed to reexamine the possible segmentation or rostrocaudal regionalisation of this brain region attending to molecular criteria. To this end, we studied the expression of Hox genes from groups 3 to 7 correlative to the differentiating nuclei of the medulla oblongata. Our results show that these genes are differentially expressed in the mature medulla oblongata, displaying instances of typical antero-posterior (3' to 5') Hox colinearity. The different sensory and motor columns, as well as the reticular formation, appear rostrocaudally regionalised according to spaced steps in their Hox expression pattern. The anterior limits of the respective expression domains largely fit boundaries defined between the experimental pseudorhombomeres. Therefore the medulla oblongata shows a Hox-related rostrocaudal molecular regionalisation comparable to that found among rhombomeres, and numerically consistent with the pseudorhombomere list. This suggests that medullary pseudorhombomeres share some AP patterning mechanisms with the rhombomeres present in the rostral, overtly-segmented hindbrain, irrespective of variant boundary properties.
Collapse
|
28
|
Punnamoottil B, Kikuta H, Pezeron G, Erceg J, Becker TS, Rinkwitz S. Enhancer detection in zebrafish permits the identification of neuronal subtypes that express Hox4 paralogs. Dev Dyn 2008; 237:2195-208. [DOI: 10.1002/dvdy.21618] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
29
|
Gouti M, Gavalas A. Hoxb1 controls cell fate specification and proliferative capacity of neural stem and progenitor cells. Stem Cells 2008; 26:1985-97. [PMID: 18499896 DOI: 10.1634/stemcells.2008-0182] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The directed differentiation of embryonic stem cells (ESCs) into neural stem cells (NSCs) of specific identities and the identification of endogenous pathways that may mediate expansion of NSCs are fundamental goals for the treatment of degenerative disorders and trauma of the nervous system. We report that timely induction of a Hoxb1 transgene in ESC-derived NSCs resulted in the specification of NSCs toward a hindbrain-specific identity through the activation of a rhombomere 4-specific genetic program and the repression of anterior neural identity. This change was accompanied by changes in signaling pathways that pattern the dorsoventral (DV) axis of the nervous system and concomitant changes in the expression of DV neural progenitor markers. Furthermore, Hoxb1 mediated the maintenance and expansion of posterior neural progenitor cells. Hoxb1(+) cells kept proliferating upon mitogen withdrawal and became transiently amplifying progenitors instead of terminally differentiating. This was partially attributed to Hoxb1-dependent activation of the Notch signaling pathway and Notch-dependent STAT3 phosphorylation at Ser 727, thus linking Hox gene function with maintenance of active Notch signaling and the JAK/STAT pathway. Thus, timely expression of specific Hox genes could be used to establish NSCs and neural progenitors of distinct posterior identities. ESC-derived NSCs have a mixed DV identity that is subject to regulation by Hox genes. Finally, these findings set the stage for the elucidation of molecular pathways involved in the expansion of posterior NSCs and neural progenitors. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Mina Gouti
- Developmental Biology Laboratory, Biomedical Research Foundation of the Academy of Athens, Soranou Ephessiou 4, Athens 11527, Greece
| | | |
Collapse
|
30
|
Loss of Hoxb8 alters spinal dorsal laminae and sensory responses in mice. Proc Natl Acad Sci U S A 2008; 105:6338-43. [PMID: 18430798 DOI: 10.1073/pnas.0802176105] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Although Hox gene expression has been linked to motoneuron identity, a role of these genes in development of the spinal sensory system remained undocumented. Hoxb genes are expressed at high levels in the dorsal horn of the spinal cord. Hoxb8 null mutants manifest a striking phenotype of excessive grooming and hairless lesions on the lower back. Applying local anesthesia underneath the hairless skin suppressed excessive grooming, indicating that this behavior depends on peripheral nerve activity. Functional ablation of mouse Hoxb8 also leads to attenuated response to nociceptive and thermal stimuli. Although spinal ganglia were normal, a lower postmitotic neural count was found in the dorsalmost laminae at lumbar levels around birth, leading to a smaller dorsal horn and a correspondingly narrowed projection field of nociceptive and thermoceptive afferents. The distribution of the dorsal neuronal cell types that we assayed, including neurons expressing the itch-specific gastrin-releasing peptide receptor, was disorganized in the lumbar region of the mutant. BrdU labeling experiments and gene-expression studies at stages around the birth of these neurons suggest that loss of Hoxb8 starts impairing development of the upper laminae of the lumbar spinal cord at approximately embryonic day (E)15.5. Because none of the neuronal markers used was unexpressed in the adult dorsal horn, absence of Hoxb8 does not impair neuronal differentiation. The data therefore suggest that a lower number of neurons in the upper spinal laminae and neuronal disorganization in the dorsal horn underlie the sensory defects including the excessive grooming of the Hoxb8 mutant.
Collapse
|
31
|
Rottkamp CA, Lobur KJ, Wladyka CL, Lucky AK, O'Gorman S. Pbx3 is required for normal locomotion and dorsal horn development. Dev Biol 2007; 314:23-39. [PMID: 18155191 DOI: 10.1016/j.ydbio.2007.10.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Revised: 09/27/2007] [Accepted: 10/25/2007] [Indexed: 01/06/2023]
Abstract
The transcription cofactor Pbx3 is critical for the function of hindbrain circuits controlling respiration in mammals, but the perinatal lethality caused by constitutively null mutations has hampered investigation of other roles it may play in neural development and function. Here we report that the conditional loss of Pbx3 function in most tissues caudal to the hindbrain resulted in progressive deficits of posture, locomotion, and sensation that became apparent during adolescence. In adult mutants, the size of the dorsal horn of the spinal cord and the numbers of calbindin-, PKC-gamma, and calretinin-expressing neurons in laminae I-III were markedly reduced, but the ventral cord and peripheral nervous system appeared normal. In the embryonic dorsal horn, Pbx3 expression was restricted to a subset of glutamatergic neurons, but its absence did not affect the initial balance of excitatory and inhibitory interneuron phenotypes. By embryonic day 15 a subset of Meis(+) glutamatergic neurons assumed abnormally superficial positions and the number of calbindin(+) neurons was increased three-fold in the mutants. Loss of Pbx3 function thus leads to the incorrect specification of some glutamatergic neurons in the dorsal horn and alters the integration of peripheral sensation into the spinal circuitry regulating locomotion.
Collapse
Affiliation(s)
- Catherine A Rottkamp
- Department of Neurosciences, Rm E640, Case School of Medicine, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
32
|
Sieber MA, Storm R, Martinez-de-la-Torre M, Müller T, Wende H, Reuter K, Vasyutina E, Birchmeier C. Lbx1 acts as a selector gene in the fate determination of somatosensory and viscerosensory relay neurons in the hindbrain. J Neurosci 2007; 27:4902-9. [PMID: 17475798 PMCID: PMC6672097 DOI: 10.1523/jneurosci.0717-07.2007] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Distinct types of relay neurons in the hindbrain process somatosensory or viscerosensory information. How neurons choose between these two fates is unclear. We show here that the homeobox gene Lbx1 is essential for imposing a somatosensory fate on relay neurons in the hindbrain. In Lbx1 mutant mice, viscerosensory relay neurons are specified at the expense of somatosensory relay neurons. Thus Lbx1 expression distinguishes between the somatosensory or viscerosensory fate of relay neurons.
Collapse
Affiliation(s)
- Martin A. Sieber
- Department of Neuroscience, Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany, and
| | - Robert Storm
- Department of Neuroscience, Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany, and
| | | | - Thomas Müller
- Department of Neuroscience, Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany, and
| | - Hagen Wende
- Department of Neuroscience, Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany, and
| | - Katja Reuter
- Department of Neuroscience, Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany, and
| | - Elena Vasyutina
- Department of Neuroscience, Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany, and
| | - Carmen Birchmeier
- Department of Neuroscience, Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany, and
| |
Collapse
|
33
|
Bandyopadhyay S, Ashraf MZ, Daher P, Howe PH, DiCorleto PE. HOXA9 participates in the transcriptional activation of E-selectin in endothelial cells. Mol Cell Biol 2007; 27:4207-16. [PMID: 17452460 PMCID: PMC1900059 DOI: 10.1128/mcb.00052-07] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The homeobox gene HOXA9 has recently been shown to be an important regulator of endothelial cell (EC) differentiation and activation in addition to its role in embryonic development and hematopoiesis. In this report, we have determined that the EC-leukocyte adhesion molecule E-selectin is a key target for HOXA9. The depletion of HOXA9 protein in ECs resulted in a significant and specific decrease in tumor necrosis factor alpha (TNF-alpha)-induced E-selectin gene expression. In addition, HOXA9 specifically activated the E-selectin gene promoter in ECs. Progressive deletional analyses together with site-specific mutagenesis of the E-selectin promoter indicated that the Abd-B-like HOX DNA-binding motif, CAATTTTATTAA, located in the proximal region spanning bp -210 to -221 upstream of the transcription start site was crucial for the promoter induction by HOXA9. Both HOXA9 in EC nuclear extract and recombinant HOXA9 protein bound to this sequence in vitro. Moreover, we showed that HOXA9 binds temporally, in a TNF-alpha-dependent manner, to the region containing this Abd-B-like element in vivo. We have thus identified a novel and functionally critical cis-regulatory element for TNF-alpha-mediated transient expression of the E-selectin gene. Further, we provide evidence that HOXA9 acts as an obligate proinflammatory factor by mediating cytokine induction of E-selectin.
Collapse
Affiliation(s)
- Smarajit Bandyopadhyay
- Department of Cell Biology, Lerner Research Institute and Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | |
Collapse
|
34
|
Tümpel S, Cambronero F, Ferretti E, Blasi F, Wiedemann LM, Krumlauf R. Expression of Hoxa2 in rhombomere 4 is regulated by a conserved cross-regulatory mechanism dependent upon Hoxb1. Dev Biol 2006; 302:646-60. [PMID: 17113575 DOI: 10.1016/j.ydbio.2006.10.029] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 10/17/2006] [Accepted: 10/19/2006] [Indexed: 01/08/2023]
Abstract
The Hoxa2 gene is an important component of regulatory events during hindbrain segmentation and head development in vertebrates. In this study we have used sequenced comparisons of the Hoxa2 locus from 12 vertebrate species in combination with detailed regulatory analyses in mouse and chicken embryos to characterize the mechanistic basis for the regulation of Hoxa2 in rhombomere (r) 4. A highly conserved region in the Hoxa2 intron functions as an r4 enhancer. In vitro binding studies demonstrate that within the conserved region three bipartite Hox/Pbx binding sites (PH1-PH3) in combination with a single binding site for Pbx-Prep/Meis (PM) heterodimers co-operate to regulate enhancer activity in r4. Mutational analysis reveals that these sites are required for activity of the enhancer, suggesting that the r4 enhancer from Hoxa2 functions in vivo as a Hox-response module in combination with the Hox cofactors, Pbx and Prep/Meis. Furthermore, this r4 enhancer is capable of mediating a response to ectopic HOXB1 expression in the hindbrain. These findings reveal that Hoxa2 is a target gene of Hoxb1 and permit us to develop a gene regulatory network for r4, whereby Hoxa2, along with Hoxb1, Hoxb2 and Hoxa1, is integrated into a series of auto- and cross-regulatory loops between Hox genes. These data highlight the important role played by direct cross-talk between Hox genes in regulating hindbrain patterning.
Collapse
Affiliation(s)
- Stefan Tümpel
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | | | | | | | | | | |
Collapse
|
35
|
Nolte C, Rastegar M, Amores A, Bouchard M, Grote D, Maas R, Kovacs EN, Postlethwait J, Rambaldi I, Rowan S, Yan YL, Zhang F, Featherstone M. Stereospecificity and PAX6 function direct Hoxd4 neural enhancer activity along the antero-posterior axis. Dev Biol 2006; 299:582-93. [PMID: 17010333 DOI: 10.1016/j.ydbio.2006.08.061] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2006] [Revised: 08/16/2006] [Accepted: 08/25/2006] [Indexed: 12/14/2022]
Abstract
The antero-posterior (AP) and dorso-ventral (DV) patterning of the neural tube is controlled in part by HOX and PAX transcription factors, respectively. We have reported on a neural enhancer of Hoxd4 that directs expression in the CNS with the correct anterior border in the hindbrain. Comparison to the orthologous enhancer of zebrafish revealed seven conserved footprints including an obligatory retinoic acid response element (RARE), and adjacent sites D, E and F. Whereas enhancer function in the embryonic CNS is destroyed by separation of the RARE from sites D-E-F by a half turn of DNA, it is rescued by one full turn, suggesting stereospecific constraints between DNA-bound retinoid receptors and the factor(s) recognizing sites D-E-F. Alterations in the DV trajectory of the Hoxd4 anterior expression border following mutation of site D or E implicated transcriptional regulators active across the DV axis. We show that PAX6 specifically binds sites D and E in vitro, and use chromatin immunoprecipitation to demonstrate recruitment of PAX6 to the Hoxd4 neural enhancer in mouse embryos. Hoxd4 expression throughout the CNS is reduced in Pax6 mutant Sey(Neu) animals on embryonic day 8. Additionally, stage-matched zebrafish embryos having decreased pax6a and/or pax6b activity display malformed rhombomere boundaries and an anteriorized hoxd4a expression border. These results reveal an evolutionarily conserved role for Pax6 in AP-restricted expression of vertebrate Hoxd4 orthologs.
Collapse
Affiliation(s)
- Christof Nolte
- McGill Cancer Centre, McGill University, 3655 Promenade Sir-William-Osler, Montreal, QC, Canada H3G 1Y6
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Arata Y, Kouike H, Zhang Y, Herman MA, Okano H, Sawa H. Wnt signaling and a Hox protein cooperatively regulate psa-3/Meis to determine daughter cell fate after asymmetric cell division in C. elegans. Dev Cell 2006; 11:105-15. [PMID: 16824957 DOI: 10.1016/j.devcel.2006.04.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Revised: 03/14/2006] [Accepted: 04/11/2006] [Indexed: 12/20/2022]
Abstract
Asymmetric cell division is a mechanism for achieving cellular diversity. In C. elegans, many asymmetric cell divisions are controlled by the Wnt-MAPK pathway through POP-1/TCF. It is poorly understood, however, how POP-1 determines the specific fates of daughter cells. We found that nob-1/Hox, ceh-20/Pbx, and a Meis-related gene, psa-3, are required for asymmetric division of the T hypodermal cell. psa-3 expression was asymmetric between the T cell daughters, and it was regulated by POP-1 through a POP-1 binding site in the psa-3 gene. psa-3 expression was also regulated by NOB-1 and CEH-20 through a NOB-1 binding sequence in a psa-3 intron. PSA-3 can bind CEH-20 and function after the T cell division to promote the proper fate of the daughter cell. These results indicate that cooperation between Wnt signaling and a Hox protein functions to determine the specific fate of a daughter cell.
Collapse
Affiliation(s)
- Yukinobu Arata
- Laboratory for Cell Fate Decision, RIKEN, Center for Developmental Biology, Kobe 650-0047, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Oury F, Murakami Y, Renaud JS, Pasqualetti M, Charnay P, Ren SY, Rijli FM. Hoxa2- and rhombomere-dependent development of the mouse facial somatosensory map. Science 2006; 313:1408-13. [PMID: 16902088 DOI: 10.1126/science.1130042] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In the mouse trigeminal pathway, sensory inputs from distinct facial structures, such as whiskers or lower jaw and lip, are topographically mapped onto the somatosensory cortex through relay stations in the thalamus and hindbrain. In the developing hindbrain, the mechanisms generating such maps remain elusive. We found that in the principal sensory nucleus, the whisker-related map is contributed by rhombomere 3-derived neurons, whereas the rhombomere 2-derived progeny supply the lower jaw and lip representation. Moreover, early Hoxa2 expression in neuroepithelium prevents the trigeminal nerve from ectopically projecting to the cerebellum, whereas late expression in the principal sensory nucleus promotes selective arborization of whisker-related afferents and topographic connectivity to the thalamus. Hoxa2 inactivation further results in the absence of whisker-related maps in the postnatal brain. Thus, Hoxa2- and rhombomere 3-dependent cues determine the whisker area map and are required for the assembly of the whisker-to-barrel somatosensory circuit.
Collapse
Affiliation(s)
- Franck Oury
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université Louis Pasteur, UMR 7104, BP 10142, Communauté Urbaine de Strasbourg, 67404 Illkirch Cedex, France
| | | | | | | | | | | | | |
Collapse
|
38
|
Hadrys T, Punnamoottil B, Pieper M, Kikuta H, Pezeron G, Becker TS, Prince V, Baker R, Rinkwitz S. Conserved co-regulation and promoter sharing of hoxb3a and hoxb4a in zebrafish. Dev Biol 2006; 297:26-43. [PMID: 16860306 DOI: 10.1016/j.ydbio.2006.04.446] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Revised: 03/16/2006] [Accepted: 04/12/2006] [Indexed: 10/24/2022]
Abstract
The expression of zebrafish hoxb3a and hoxb4a has been found to be mediated through five transcripts, hoxb3a transcripts I-III and hoxb4a transcripts I-II, driven by four promoters. A "master" promoter, located about 2 kb downstream of hoxb5a, controls transcription of a pre-mRNA comprising exon sequences of both genes. This unique gene structure is proposed to provide a novel mechanism to ensure overlapping, tissue-specific expression of both genes in the posterior hindbrain and spinal cord. Transgenic approaches were used to analyze the functions of zebrafish hoxb3a/hoxb4a promoters and enhancer sequences containing regions of homology that were previously identified by comparative genomics. Two neural enhancers were shown to establish specific anterior expression borders within the hindbrain and mediate expression in defined neuronal populations derived from hindbrain rhombomeres (r) 5 to 8, suggesting a late role of the genes in neuronal cell lineage specification. Species comparison showed that the zebrafish hoxb3a r5 and r6 enhancer corresponded to a sequence within the mouse HoxA cluster controlling activity of Hoxa3 in r5 and r6, whereas a homologous region within the HoxB cluster activated Hoxb3 expression but limited to r5. We conclude that the similarity of hoxb3a/Hoxa3 regulatory mechanisms reflect the shared descent of both genes from a single ancestral paralog group 3 gene.
Collapse
Affiliation(s)
- Thorsten Hadrys
- Department of Physiology and Neuroscience, NYU Medical School, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Straka H, Baker R, Gilland E. Preservation of segmental hindbrain organization in adult frogs. J Comp Neurol 2006; 494:228-45. [PMID: 16320236 DOI: 10.1002/cne.20801] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To test for possible retention of early segmental patterning throughout development, the cranial nerve efferent nuclei in adult ranid frogs were quantitatively mapped and compared with the segmental organization of these nuclei in larvae. Cranial nerve roots IV-X were labeled in larvae with fluorescent dextran amines. Each cranial nerve efferent nucleus resided in a characteristic segmental position within the clearly visible larval hindbrain rhombomeres (r). Trochlear motoneurons were located in r0, trigeminal motoneurons in r2-r3, facial branchiomotor and vestibuloacoustic efferent neurons in r4, abducens and facial parasympathetic neurons in r5, glossopharyngeal motoneurons in r6, and vagal efferent neurons in r7-r8 and rostral spinal cord. In adult frogs, biocytin labeling of cranial nerve roots IV-XII and spinal ventral root 2 in various combinations on both sides of the brain revealed precisely the same rostrocaudal sequence of efferent nuclei relative to each other as observed in larvae. This indicates that no longitudinal migratory rearrangement of hindbrain efferent neurons occurs. Although rhombomeres are not visible in adults, a segmental map of adult cranial nerve efferent nuclei can be inferred from the strict retention of the larval hindbrain pattern. Precise measurements of the borders of adjacent efferent nuclei within a coordinate system based on external landmarks were used to create a quantitative adult segmental map that mirrors the organization of the larval rhombomeric framework. Plotting morphologically and physiologically identified hindbrain neurons onto this map allows the physiological properties of adult hindbrain neurons to be linked with the underlying genetically specified segmental framework.
Collapse
Affiliation(s)
- Hans Straka
- Laboratoire de Neurobiologie des Réseaux Sensorimoteurs, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7060, Université Paris 5, Cédex 06, France.
| | | | | |
Collapse
|