1
|
Li F, Xie X, Xu X, Zou X. Water-soluble biopolymers calcium polymalate derived from fermentation broth of Aureobasidium pullulans markedly alleviates osteoporosis and fatigue. Int J Biol Macromol 2024; 268:132013. [PMID: 38697412 DOI: 10.1016/j.ijbiomac.2024.132013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/02/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Osteoporosis is a prevalent condition characterized by bone loss and decreased skeletal strength, resulting in an elevated risk of fractures. Calcium plays a crucial role in preventing and managing osteoporosis. However, traditional calcium supplements have limited bioavailability, poor solubility, and adverse effects. In this study, we isolated a natural soluble biopolymer, calcium polymalate (PMACa), from the fermentation broth of the fungus Aureobasidium pullulans, to investigate its potential as an anti-osteoporosis therapeutic agent. Characterization revealed that linear PMA-Ca chains juxtaposed to form a porous, rod-like state, in the presence of Ca2+. In vivo mouse models demonstrated that PMA-Ca significantly promoted the conversion of serum calcium into bone calcium, and stimulated bone growth and osteogenesis. Additionally, PMA-Ca alleviated exercise fatigue in mice by facilitating the removal of essential metabolites, such as serum lactate (BLA) and blood urea nitrogen (BUN), from their bloodstream. In vitro studies further showed that PMA-Ca strengthened osteoblast cell activity, proliferation, and mineralization. And PMA-Ca upregulated the expression of some genes involved in osteoblast differentiation, indicating a potential correlation between bone formation and PMACa. These findings indicate that soluble PMA-Ca has the potential to be a novel biopolymer-based calcium supplement with sustainable production sourced from the fermentation industry.
Collapse
Affiliation(s)
- Fulin Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xin Xie
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xingran Xu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| | - Xiang Zou
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; Dongguan Juwei Biotechnology Co., Dongguan 523808, China.
| |
Collapse
|
2
|
Tokita M, Sato H. Creating morphological diversity in reptilian temporal skull region: A review of potential developmental mechanisms. Evol Dev 2023; 25:15-31. [PMID: 36250751 DOI: 10.1111/ede.12419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 01/13/2023]
Abstract
Reptilian skull morphology is highly diverse and broadly categorized into three categories based on the number and position of the temporal fenestrations: anapsid, synapsid, and diapsid. According to recent phylogenetic analysis, temporal fenestrations evolved twice independently in amniotes, once in Synapsida and once in Diapsida. Although functional aspects underlying the evolution of tetrapod temporal fenestrations have been well investigated, few studies have investigated the developmental mechanisms responsible for differences in the pattern of temporal skull region. To determine what these mechanisms might be, we first examined how the five temporal bones develop by comparing embryonic cranial osteogenesis between representative extant reptilian species. The pattern of temporal skull region may depend on differences in temporal bone growth rate and growth direction during ontogeny. Next, we compared the histogenesis patterns and the expression of two key osteogenic genes, Runx2 and Msx2, in the temporal region of the representative reptilian embryos. Our comparative analyses suggest that the embryonic histological condition of the domain where temporal fenestrations would form predicts temporal skull morphology in adults and regulatory modifications of Runx2 and Msx2 expression in osteogenic mesenchymal precursor cells are likely involved in generating morphological diversity in the temporal skull region of reptiles.
Collapse
Affiliation(s)
- Masayoshi Tokita
- Department of Biology, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| | - Hiromu Sato
- Department of Biology, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| |
Collapse
|
3
|
Smith SS, Chu D, Qu T, Aggleton JA, Schneider RA. Species-specific sensitivity to TGFβ signaling and changes to the Mmp13 promoter underlie avian jaw development and evolution. eLife 2022; 11:e66005. [PMID: 35666955 PMCID: PMC9246370 DOI: 10.7554/elife.66005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 06/03/2022] [Indexed: 12/02/2022] Open
Abstract
Precise developmental control of jaw length is critical for survival, but underlying molecular mechanisms remain poorly understood. The jaw skeleton arises from neural crest mesenchyme (NCM), and we previously demonstrated that these progenitor cells express more bone-resorbing enzymes including Matrix metalloproteinase 13 (Mmp13) when they generate shorter jaws in quail embryos versus longer jaws in duck. Moreover, if we inhibit bone resorption or Mmp13, we can increase jaw length. In the current study, we uncover mechanisms establishing species-specific levels of Mmp13 and bone resorption. Quail show greater activation of and sensitivity to transforming growth factor beta (TGFβ) signaling than duck; where intracellular mediators like SMADs and targets like Runt-related transcription factor 2 (Runx2), which bind Mmp13, become elevated. Inhibiting TGFβ signaling decreases bone resorption, and overexpressing Mmp13 in NCM shortens the duck lower jaw. To elucidate the basis for this differential regulation, we examine the Mmp13 promoter. We discover a SMAD-binding element and single nucleotide polymorphisms (SNPs) near a RUNX2-binding element that distinguish quail from duck. Altering the SMAD site and switching the SNPs abolish TGFβ sensitivity in the quail Mmp13 promoter but make the duck promoter responsive. Thus, differential regulation of TGFβ signaling and Mmp13 promoter structure underlie avian jaw development and evolution.
Collapse
Affiliation(s)
- Spenser S Smith
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, United States
| | - Daniel Chu
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, United States
| | - Tiange Qu
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, United States
| | - Jessye A Aggleton
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, United States
| | - Richard A Schneider
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
4
|
Divya D, Bhattacharya TK. Bone morphogenetic proteins (BMPs) and their role in poultry. WORLD POULTRY SCI J 2021. [DOI: 10.1080/00439339.2021.1959274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- D. Divya
- Molecular Genetics and Breeding Division, ICAR-Directorate of Poultry Research, Hyderabad, India
| | - T. K. Bhattacharya
- Molecular Genetics and Breeding Division, ICAR-Directorate of Poultry Research, Hyderabad, India
| |
Collapse
|
5
|
Geiger M, Schoenebeck JJ, Schneider RA, Schmidt MJ, Fischer MS, Sánchez-Villagra MR. Exceptional Changes in Skeletal Anatomy under Domestication: The Case of Brachycephaly. Integr Org Biol 2021; 3:obab023. [PMID: 34409262 PMCID: PMC8366567 DOI: 10.1093/iob/obab023] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/06/2021] [Accepted: 07/08/2021] [Indexed: 01/17/2023] Open
Abstract
"Brachycephaly" is generally considered a phenotype in which the facial part of the head is pronouncedly shortened. While brachycephaly is characteristic for some domestic varieties and breeds (e.g., Bulldog, Persian cat, Niata cattle, Anglo-Nubian goat, Middle White pig), this phenotype can also be considered pathological. Despite the superficially similar appearance of "brachycephaly" in such varieties and breeds, closer examination reveals that "brachycephaly" includes a variety of different cranial modifications with likely different genetic and developmental underpinnings and related with specific breed histories. We review the various definitions and characteristics associated with brachycephaly in different domesticated species. We discern different types of brachycephaly ("bulldog-type," "katantognathic," and "allometric" brachycephaly) and discuss morphological conditions related to brachycephaly, including diseases (e.g., brachycephalic airway obstructive syndrome). Further, we examine the complex underlying genetic and developmental processes and the culturally and developmentally related reasons why brachycephalic varieties may or may not be prevalent in certain domesticated species. Knowledge on patterns and mechanisms associated with brachycephaly is relevant for domestication research, veterinary and human medicine, as well as evolutionary biology, and highlights the profound influence of artificial selection by humans on animal morphology, evolution, and welfare.
Collapse
Affiliation(s)
- M Geiger
- Paleontological Institute and Museum, University of Zurich,
Karl-Schmid-Str. 4, 8006 Zurich, Switzerland
| | - J J Schoenebeck
- Roslin Institute and Royal (Dick) School of Veterinary Studies, University
of Edinburgh, Easter Bush Campus, Midlothian EH25
9RG, UK
| | - R A Schneider
- Department of Orthopaedic Surgery, University of California at San
Francisco, 513 Parnassus Avenue, S-1164, San Francisco, CA
94143-0514, USA
| | - M J Schmidt
- Clinic for Small Animals—Neurosurgery, Neuroradiology and Clinical
Neurology, Justus Liebig University Giessen, Frankfurter Str.
114, 35392 Giessen, Germany
| | - M S Fischer
- Institute of Zoology and Evolutionary Research, Friedrich-Schiller
University Jena, Erbertstr. 1, 07743 Jena,
Germany
| | - M R Sánchez-Villagra
- Paleontological Institute and Museum, University of Zurich,
Karl-Schmid-Str. 4, 8006 Zurich, Switzerland
| |
Collapse
|
6
|
Bonatto Paese CL, Brooks EC, Aarnio-Peterson M, Brugmann SA. Ciliopathic micrognathia is caused by aberrant skeletal differentiation and remodeling. Development 2021; 148:148/4/dev194175. [PMID: 33589509 DOI: 10.1242/dev.194175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/13/2021] [Indexed: 12/16/2022]
Abstract
Ciliopathies represent a growing class of diseases caused by defects in microtubule-based organelles called primary cilia. Approximately 30% of ciliopathies are characterized by craniofacial phenotypes such as craniosynostosis, cleft lip/palate and micrognathia. Patients with ciliopathic micrognathia experience a particular set of difficulties, including impaired feeding and breathing, and have extremely limited treatment options. To understand the cellular and molecular basis for ciliopathic micrognathia, we used the talpid2 (ta2 ), a bona fide avian model for the human ciliopathy oral-facial-digital syndrome subtype 14. Histological analyses revealed that the onset of ciliopathic micrognathia in ta2 embryos occurred at the earliest stages of mandibular development. Neural crest-derived skeletal progenitor cells were particularly sensitive to a ciliopathic insult, undergoing unchecked passage through the cell cycle and subsequent increased proliferation. Furthermore, whereas neural crest-derived skeletal differentiation was initiated, osteoblast maturation failed to progress to completion. Additional molecular analyses revealed that an imbalance in the ratio of bone deposition and resorption also contributed to ciliopathic micrognathia in ta2 embryos. Thus, our results suggest that ciliopathic micrognathia is a consequence of multiple aberrant cellular processes necessary for skeletal development, and provide potential avenues for future therapeutic treatments.
Collapse
Affiliation(s)
- Christian Louis Bonatto Paese
- Division of Developmental Biology, Department of Pediatrics Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Evan C Brooks
- Division of Developmental Biology, Department of Pediatrics Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Megan Aarnio-Peterson
- Division of Developmental Biology, Department of Pediatrics Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Samantha A Brugmann
- Division of Developmental Biology, Department of Pediatrics Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA .,Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Shriners Children's Hospital, Cincinnati, OH 45229, USA
| |
Collapse
|
7
|
Galea GL, Zein MR, Allen S, Francis-West P. Making and shaping endochondral and intramembranous bones. Dev Dyn 2020; 250:414-449. [PMID: 33314394 PMCID: PMC7986209 DOI: 10.1002/dvdy.278] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Skeletal elements have a diverse range of shapes and sizes specialized to their various roles including protecting internal organs, locomotion, feeding, hearing, and vocalization. The precise positioning, size, and shape of skeletal elements is therefore critical for their function. During embryonic development, bone forms by endochondral or intramembranous ossification and can arise from the paraxial and lateral plate mesoderm or neural crest. This review describes inductive mechanisms to position and pattern bones within the developing embryo, compares and contrasts the intrinsic vs extrinsic mechanisms of endochondral and intramembranous skeletal development, and details known cellular processes that precisely determine skeletal shape and size. Key cellular mechanisms are employed at distinct stages of ossification, many of which occur in response to mechanical cues (eg, joint formation) or preempting future load‐bearing requirements. Rapid shape changes occur during cellular condensation and template establishment. Specialized cellular behaviors, such as chondrocyte hypertrophy in endochondral bone and secondary cartilage on intramembranous bones, also dramatically change template shape. Once ossification is complete, bone shape undergoes functional adaptation through (re)modeling. We also highlight how alterations in these cellular processes contribute to evolutionary change and how differences in the embryonic origin of bones can influence postnatal bone repair. Compares and contrasts Endochondral and intramembranous bone development Reviews embryonic origins of different bones Describes the cellular and molecular mechanisms of positioning skeletal elements. Describes mechanisms of skeletal growth with a focus on the generation of skeletal shape
Collapse
Affiliation(s)
- Gabriel L Galea
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK.,Comparative Bioveterinary Sciences, Royal Veterinary College, London, UK
| | - Mohamed R Zein
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Steven Allen
- Comparative Bioveterinary Sciences, Royal Veterinary College, London, UK
| | - Philippa Francis-West
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|
8
|
Chu D, Nguyen A, Smith SS, Vavrušová Z, Schneider RA. Stable integration of an optimized inducible promoter system enables spatiotemporal control of gene expression throughout avian development. Biol Open 2020; 9:bio055343. [PMID: 32917762 PMCID: PMC7561481 DOI: 10.1242/bio.055343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 08/27/2020] [Indexed: 01/18/2023] Open
Abstract
Precisely altering gene expression is critical for understanding molecular processes of embryogenesis. Although some tools exist for transgene misexpression in developing chick embryos, we have refined and advanced them by simplifying and optimizing constructs for spatiotemporal control. To maintain expression over the entire course of embryonic development we use an enhanced piggyBac transposon system that efficiently integrates sequences into the host genome. We also incorporate a DNA targeting sequence to direct plasmid translocation into the nucleus and a D4Z4 insulator sequence to prevent epigenetic silencing. We designed these constructs to minimize their size and maximize cellular uptake, and to simplify usage by placing all of the integrating sequences on a single plasmid. Following electroporation of stage HH8.5 embryos, our tetracycline-inducible promoter construct produces robust transgene expression in the presence of doxycycline at any point during embryonic development in ovo or in culture. Moreover, expression levels can be modulated by titrating doxycycline concentrations and spatial control can be achieved using beads or gels. Thus, we have generated a novel, sensitive, tunable, and stable inducible-promoter system for high-resolution gene manipulation in vivo.
Collapse
Affiliation(s)
- Daniel Chu
- Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Avenue, S-1164, San Francisco, CA 94143-0514, USA
| | - An Nguyen
- Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Avenue, S-1164, San Francisco, CA 94143-0514, USA
| | - Spenser S Smith
- Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Avenue, S-1164, San Francisco, CA 94143-0514, USA
| | - Zuzana Vavrušová
- Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Avenue, S-1164, San Francisco, CA 94143-0514, USA
| | - Richard A Schneider
- Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Avenue, S-1164, San Francisco, CA 94143-0514, USA
| |
Collapse
|
9
|
Yusuf L, Heatley MC, Palmer JPG, Barton HJ, Cooney CR, Gossmann TI. Noncoding regions underpin avian bill shape diversification at macroevolutionary scales. Genome Res 2020; 30:553-565. [PMID: 32269134 PMCID: PMC7197477 DOI: 10.1101/gr.255752.119] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 03/17/2020] [Indexed: 12/18/2022]
Abstract
Recent progress has been made in identifying genomic regions implicated in trait evolution on a microevolutionary scale in many species, but whether these are relevant over macroevolutionary time remains unclear. Here, we directly address this fundamental question using bird beak shape, a key evolutionary innovation linked to patterns of resource use, divergence, and speciation, as a model trait. We integrate class-wide geometric-morphometric analyses with evolutionary sequence analyses of 10,322 protein-coding genes as well as 229,001 genomic regions spanning 72 species. We identify 1434 protein-coding genes and 39,806 noncoding regions for which molecular rates were significantly related to rates of bill shape evolution. We show that homologs of the identified protein-coding genes as well as genes in close proximity to the identified noncoding regions are involved in craniofacial embryo development in mammals. They are associated with embryonic stem cell pathways, including BMP and Wnt signaling, both of which have repeatedly been implicated in the morphological development of avian beaks. This suggests that identifying genotype-phenotype association on a genome-wide scale over macroevolutionary time is feasible. Although the coding and noncoding gene sets are associated with similar pathways, the actual genes are highly distinct, with significantly reduced overlap between them and bill-related phenotype associations specific to noncoding loci. Evidence for signatures of recent diversifying selection on our identified noncoding loci in Darwin finch populations further suggests that regulatory rather than coding changes are major drivers of morphological diversification over macroevolutionary times.
Collapse
Affiliation(s)
- Leeban Yusuf
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom.,Centre for Biological Diversity, School of Biology, University of St. Andrews, Fife, KY16 9TF, United Kingdom
| | - Matthew C Heatley
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom.,Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom
| | - Joseph P G Palmer
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom.,School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, United Kingdom
| | - Henry J Barton
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom.,Organismal and Evolutionary Biology Research Programme, Viikinkaari 9 (PL 56), University of Helsinki, Helsinki, FI-00014, Finland
| | - Christopher R Cooney
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Toni I Gossmann
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom.,Department of Animal Behaviour, Bielefeld University, Bielefeld, DE-33501, Germany
| |
Collapse
|
10
|
Ishan M, Chen G, Sun C, Chen SY, Komatsu Y, Mishina Y, Liu HX. Increased activity of mesenchymal ALK2-BMP signaling causes posteriorly truncated microglossia and disorganization of lingual tissues. Genesis 2020; 58:e23337. [PMID: 31571391 PMCID: PMC6980365 DOI: 10.1002/dvg.23337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 12/15/2022]
Abstract
Proper development of taste organs including the tongue and taste papillae requires interactions with the underlying mesenchyme through multiple molecular signaling pathways. The effects of bone morphogenetic proteins (BMPs) and antagonists are profound, however, the tissue-specific roles of distinct receptors are largely unknown. Here, we report that constitutive activation (ca) of ALK2-BMP signaling in the tongue mesenchyme (marked by Wnt1-Cre) caused microglossia-a dramatically smaller and misshapen tongue with a progressively severe reduction in size along the anteroposterior axis and absence of a pharyngeal region. At E10.5, the tongue primordia (branchial arches 1-4) formed in Wnt1-Cre/caAlk2 mutants while each branchial arch responded to elevated BMP signaling distinctly in gene expression of BMP targets (Id1, Snai1, Snai2, and Runx2), proliferation (Cyclin-D1) and apoptosis (p53). Moreover, elevated ALK2-BMP signaling in the mesenchyme resulted in apparent defects of lingual epithelium, muscles, and nerves. In Wnt1-Cre/caAlk2 mutants, a circumvallate papilla was missing and further development of formed fungiform papillae was arrested in late embryos. Our data collectively demonstrate that ALK2-BMP signaling in the mesenchyme plays essential roles in orchestrating various tissues for proper development of the tongue and its appendages in a region-specific manner.
Collapse
Affiliation(s)
- Mohamed Ishan
- Department of Animal and Dairy Science, Regenerative Bioscience Center, College of Agricultural and Environmental Sciences, University of Georgia, Athens, Georgia
| | - Guiqian Chen
- Department of Animal and Dairy Science, Regenerative Bioscience Center, College of Agricultural and Environmental Sciences, University of Georgia, Athens, Georgia
| | - Chenming Sun
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Shi-You Chen
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Yoshihiro Komatsu
- Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan
| | - Hong-Xiang Liu
- Department of Animal and Dairy Science, Regenerative Bioscience Center, College of Agricultural and Environmental Sciences, University of Georgia, Athens, Georgia
| |
Collapse
|
11
|
Woronowicz KC, Schneider RA. Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw. EvoDevo 2019; 10:17. [PMID: 31417668 PMCID: PMC6691539 DOI: 10.1186/s13227-019-0131-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 07/22/2019] [Indexed: 01/16/2023] Open
Abstract
The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition.
Collapse
Affiliation(s)
- Katherine C Woronowicz
- 1Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Avenue, S-1161, Box 0514, San Francisco, CA 94143-0514 USA.,2Present Address: Department of Genetics, Harvard Medical School, Orthopaedic Research Laboratories, Children's Hospital Boston, Boston, MA 02115 USA
| | - Richard A Schneider
- 1Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Avenue, S-1161, Box 0514, San Francisco, CA 94143-0514 USA
| |
Collapse
|
12
|
Woronowicz KC, Gline SE, Herfat ST, Fields AJ, Schneider RA. FGF and TGFβ signaling link form and function during jaw development and evolution. Dev Biol 2018; 444 Suppl 1:S219-S236. [PMID: 29753626 PMCID: PMC6239991 DOI: 10.1016/j.ydbio.2018.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/20/2018] [Accepted: 05/06/2018] [Indexed: 12/14/2022]
Abstract
How does form arise during development and change during evolution? How does form relate to function, and what enables embryonic structures to presage their later use in adults? To address these questions, we leverage the distinct functional morphology of the jaw in duck, chick, and quail. In connection with their specialized mode of feeding, duck develop a secondary cartilage at the tendon insertion of their jaw adductor muscle on the mandible. An equivalent cartilage is absent in chick and quail. We hypothesize that species-specific jaw architecture and mechanical forces promote secondary cartilage in duck through the differential regulation of FGF and TGFβ signaling. First, we perform transplants between chick and duck embryos and demonstrate that the ability of neural crest mesenchyme (NCM) to direct the species-specific insertion of muscle and the formation of secondary cartilage depends upon the amount and spatial distribution of NCM-derived connective tissues. Second, we quantify motility and build finite element models of the jaw complex in duck and quail, which reveals a link between species-specific jaw architecture and the predicted mechanical force environment. Third, we investigate the extent to which mechanical load mediates FGF and TGFβ signaling in the duck jaw adductor insertion, and discover that both pathways are mechano-responsive and required for secondary cartilage formation. Additionally, we find that FGF and TGFβ signaling can also induce secondary cartilage in the absence of mechanical force or in the adductor insertion of quail embryos. Thus, our results provide novel insights on molecular, cellular, and biomechanical mechanisms that couple musculoskeletal form and function during development and evolution.
Collapse
Affiliation(s)
- Katherine C Woronowicz
- Department of Orthopaedic Surgery, University of California, San Francisco, 513 Parnassus Avenue, S-1161, San Francisco, CA 94143-0514, USA
| | - Stephanie E Gline
- Department of Orthopaedic Surgery, University of California, San Francisco, 513 Parnassus Avenue, S-1161, San Francisco, CA 94143-0514, USA
| | - Safa T Herfat
- Department of Orthopaedic Surgery, University of California, San Francisco, 513 Parnassus Avenue, S-1161, San Francisco, CA 94143-0514, USA
| | - Aaron J Fields
- Department of Orthopaedic Surgery, University of California, San Francisco, 513 Parnassus Avenue, S-1161, San Francisco, CA 94143-0514, USA
| | - Richard A Schneider
- Department of Orthopaedic Surgery, University of California, San Francisco, 513 Parnassus Avenue, S-1161, San Francisco, CA 94143-0514, USA.
| |
Collapse
|
13
|
Schneider RA. Neural crest and the origin of species-specific pattern. Genesis 2018; 56:e23219. [PMID: 30134069 PMCID: PMC6108449 DOI: 10.1002/dvg.23219] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/20/2022]
Abstract
For well over half of the 150 years since the discovery of the neural crest, the special ability of these cells to function as a source of species-specific pattern has been clearly recognized. Initially, this observation arose in association with chimeric transplant experiments among differentially pigmented amphibians, where the neural crest origin for melanocytes had been duly noted. Shortly thereafter, the role of cranial neural crest cells in transmitting species-specific information on size and shape to the pharyngeal arch skeleton as well as in regulating the timing of its differentiation became readily apparent. Since then, what has emerged is a deeper understanding of how the neural crest accomplishes such a presumably difficult mission, and this includes a more complete picture of the molecular and cellular programs whereby neural crest shapes the face of each species. This review covers studies on a broad range of vertebrates and describes neural-crest-mediated mechanisms that endow the craniofacial complex with species-specific pattern. A major focus is on experiments in quail and duck embryos that reveal a hierarchy of cell-autonomous and non-autonomous signaling interactions through which neural crest generates species-specific pattern in the craniofacial integument, skeleton, and musculature. By controlling size and shape throughout the development of these systems, the neural crest underlies the structural and functional integration of the craniofacial complex during evolution.
Collapse
Affiliation(s)
- Richard A. Schneider
- Department of Orthopedic SurgeryUniversity of California at San Francisco, 513 Parnassus AvenueS‐1161San Francisco, California
| |
Collapse
|
14
|
Pan H, Zhang H, Abraham P, Komatsu Y, Lyons K, Kaartinen V, Mishina Y. BmpR1A is a major type 1 BMP receptor for BMP-Smad signaling during skull development. Dev Biol 2017. [PMID: 28641928 DOI: 10.1016/j.ydbio.2017.06.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Craniosynostosis is caused by premature fusion of one or more sutures in an infant skull, resulting in abnormal facial features. The molecular and cellular mechanisms by which genetic mutations cause craniosynostosis are incompletely characterized, and many of the causative genes for diverse types of syndromic craniosynostosis have not yet been identified. We previously demonstrated that augmentation of BMP signaling mediated by a constitutively active BMP type IA receptor (ca-BmpR1A) in neural crest cells (ca1A hereafter) causes craniosynostosis and superimposition of heterozygous null mutation of Bmpr1a rescues premature suture fusion (ca1A;1aH hereafter). In this study, we superimposed heterozygous null mutations of the other two BMP type I receptors, Bmpr1b and Acvr1 (ca1A;1bH and ca1A;AcH respectively hereafter) to further dissect involvement of BMP-Smad signaling. Unlike caA1;1aH, ca1A;1bH and ca1A;AcH did not restore the craniosynostosis phenotypes. In our in vivo study, Smad-dependent BMP signaling was decreased to normal levels in mut;1aH mice. However, BMP receptor-regulated Smads (R-Smads; pSmad1/5/9 hereafter) levels were comparable between ca1A, ca1A;1bH and ca1A;AcH mice, and elevated compared to control mice. Bmpr1a, Bmpr1b and Acvr1 null cells were used to examine potential mechanisms underlying the differences in ability of heterozygosity for Bmpr1a vs. Bmpr1b or Acvr1 to rescue the mut phenotype. pSmad1/5/9 level was undetectable in Bmpr1a homozygous null cells while pSmad1/5/9 levels did not decrease in Bmpr1b or Acvr1 homozygous null cells. Taken together, our study indicates that different levels of expression and subsequent activation of Smad signaling differentially contribute each BMP type I receptor to BMP-Smad signaling and craniofacial development. These results also suggest differential involvement of each type 1 receptor in pathogenesis of syndromic craniosynostoses.
Collapse
Affiliation(s)
- Haichun Pan
- Department of Biologic & Materials Sciences, School of Dentistry, University of Michigan, 1011 N. University Ave., Ann Arbor, MI 48109, USA
| | - Honghao Zhang
- Department of Biologic & Materials Sciences, School of Dentistry, University of Michigan, 1011 N. University Ave., Ann Arbor, MI 48109, USA
| | - Ponnu Abraham
- Department of Biologic & Materials Sciences, School of Dentistry, University of Michigan, 1011 N. University Ave., Ann Arbor, MI 48109, USA
| | - Yoshihiro Komatsu
- Department of Biologic & Materials Sciences, School of Dentistry, University of Michigan, 1011 N. University Ave., Ann Arbor, MI 48109, USA; Department of Pediatrics, The University of Texas Medical School at Houston, Houston, TX, USA
| | - Karen Lyons
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Vesa Kaartinen
- Department of Biologic & Materials Sciences, School of Dentistry, University of Michigan, 1011 N. University Ave., Ann Arbor, MI 48109, USA
| | - Yuji Mishina
- Department of Biologic & Materials Sciences, School of Dentistry, University of Michigan, 1011 N. University Ave., Ann Arbor, MI 48109, USA.
| |
Collapse
|
15
|
ISLET1-Dependent β-Catenin/Hedgehog Signaling Is Required for Outgrowth of the Lower Jaw. Mol Cell Biol 2017; 37:MCB.00590-16. [PMID: 28069742 DOI: 10.1128/mcb.00590-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 01/04/2017] [Indexed: 12/30/2022] Open
Abstract
Mandibular patterning information initially resides in the epithelium during development. However, how transcriptional regulation of epithelium-derived signaling controls morphogenesis of the mandible remains elusive. Using ShhCre to target the mandibular epithelium, we ablated transcription factor Islet1, resulting in a distally truncated mandible via unbalanced cell apoptosis and decreased cell proliferation in the distal mesenchyme. Loss of Islet1 caused a lack of cartilage at the distal tip, leading the fusion of two growing mandibular elements surrounding the rostral process of Meckel's cartilage. Loss of Islet1 results in dysregulation of mesenchymal genes important for morphogenesis of the mandibular arch. We revealed that Islet1 is required for the activation of epithelial β-catenin signaling via repression of Wnt antagonists. Reactivation of β-catenin in the epithelium of the Islet1 mutant rescued mandibular morphogenesis through sonic hedgehog (SHH) signaling to the mesenchyme. Furthermore, overexpression of a transgenic hedgehog ligand in the epithelium also partially restored outgrowth of the mandible. These data reveal functional roles for an ISLET1-dependent network integrating β-catenin/SHH signals in mesenchymal cell survival and outgrowth of the mandible during development.
Collapse
|
16
|
Celá P, Buchtová M, Veselá I, Fu K, Bogardi JP, Song Y, Barlow A, Buxton P, Medalová J, Francis-West P, Richman JM. BMP signaling regulates the fate of chondro-osteoprogenitor cells in facial mesenchyme in a stage-specific manner. Dev Dyn 2016; 245:947-62. [PMID: 27264541 DOI: 10.1002/dvdy.24422] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/12/2016] [Accepted: 05/27/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Lineage tracing has shown that most of the facial skeleton is derived from cranial neural crest cells. However, the local signals that influence postmigratory, neural crest-derived mesenchyme also play a major role in patterning the skeleton. Here, we study the role of BMP signaling in regulating the fate of chondro-osteoprogenitor cells in the face. RESULTS A single Noggin-soaked bead inserted into stage 15 chicken embryos induced an ectopic cartilage resembling the interorbital septum within the palate and other midline structures. In contrast, the same treatment in stage 20 embryos caused a loss of bones. The molecular basis for the stage-specific response to Noggin lay in the simultaneous up-regulation of SOX9 and downregulation of RUNX2 in the maxillary mesenchyme, increased cell adhesiveness as shown by N-cadherin induction around the beads and increased RA pathway gene expression. None of these changes were observed in stage 20 embryos. CONCLUSIONS These experiments demonstrate how slight changes in expression of growth factors such as BMPs could lead to gain or loss of cartilage in the upper jaw during vertebrate evolution. In addition, BMPs have at least two roles: one in patterning the skull and another in regulating the skeletogenic fates of neural crest-derived mesenchyme. Developmental Dynamics 245:947-962, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Petra Celá
- Department of Experimental Biology, Masaryk University, Brno, Czech Republic.,Institute of Animal Physiology and Genetics, v.v.i., Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Marcela Buchtová
- Department of Experimental Biology, Masaryk University, Brno, Czech Republic.,Institute of Animal Physiology and Genetics, v.v.i., Academy of Sciences of the Czech Republic, Brno, Czech Republic.,Department of Oral Health Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Iva Veselá
- Institute of Animal Physiology and Genetics, v.v.i., Academy of Sciences of the Czech Republic, Brno, Czech Republic.,Department of Anatomy, Histology and Embryology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Kathy Fu
- Department of Oral Health Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Jean-Philippe Bogardi
- King's College London, Department of Craniofacial Development and Stem Cell Biology, London, United Kingdom
| | - Yiping Song
- Department of Oral Health Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Amanda Barlow
- King's College London, Department of Craniofacial Development and Stem Cell Biology, London, United Kingdom
| | - Paul Buxton
- King's College London, Department of Craniofacial Development and Stem Cell Biology, London, United Kingdom
| | - Jirina Medalová
- Institute of Animal Physiology and Genetics, v.v.i., Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Philippa Francis-West
- King's College London, Department of Craniofacial Development and Stem Cell Biology, London, United Kingdom
| | - Joy M Richman
- Department of Oral Health Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
17
|
Sánchez-Villagra MR, Geiger M, Schneider RA. The taming of the neural crest: a developmental perspective on the origins of morphological covariation in domesticated mammals. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160107. [PMID: 27429770 PMCID: PMC4929905 DOI: 10.1098/rsos.160107] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/03/2016] [Indexed: 05/02/2023]
Abstract
Studies on domestication are blooming, but the developmental bases for the generation of domestication traits and breed diversity remain largely unexplored. Some phenotypic patterns of human neurocristopathies are suggestive of those reported for domesticated mammals and disrupting neural crest developmental programmes have been argued to be the source of traits deemed the 'domestication syndrome'. These character changes span multiple organ systems and morphological structures. But an in-depth examination within the phylogenetic framework of mammals including domesticated forms reveals that the distribution of such traits is not universal, with canids being the only group showing a large set of predicted features. Modularity of traits tied to phylogeny characterizes domesticated mammals: through selective breeding, individual behavioural and morphological traits can be reordered, truncated, augmented or deleted. Similarly, mammalian evolution on islands has resulted in suites of phenotypic changes like those of some domesticated forms. Many domesticated mammals can serve as valuable models for conducting comparative studies on the evolutionary developmental biology of the neural crest, given that series of their embryos are readily available and that their phylogenetic histories and genomes are well characterized.
Collapse
Affiliation(s)
| | - Madeleine Geiger
- Palaeontological Institute and Museum, University of Zurich, Karl-Schmid-Street 4, 8006 Zurich, Switzerland
| | - Richard A. Schneider
- Department of Orthopaedic Surgery, University of Californiaat San Francisco, 513 Parnassus Avenue, S-1161, San Francisco, CA, USA
| |
Collapse
|
18
|
Duan X, Bradbury SR, Olsen BR, Berendsen AD. VEGF stimulates intramembranous bone formation during craniofacial skeletal development. Matrix Biol 2016; 52-54:127-140. [PMID: 26899202 DOI: 10.1016/j.matbio.2016.02.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/11/2016] [Accepted: 02/11/2016] [Indexed: 01/16/2023]
Abstract
Deficiency of vascular endothelial growth factor A (VEGF) has been associated with severe craniofacial anomalies in both humans and mice. Cranial neural crest cell (NCC)-derived VEGF regulates proliferation, vascularization and ossification of cartilage and membranous bone. However, the function of VEGF derived from specific subpopulations of NCCs in controlling unique aspects of craniofacial morphogenesis is not clear. In this study a conditional knockdown strategy was used to genetically delete Vegfa expression in Osterix (Osx) and collagen II (Col2)-expressing NCC descendants. No major defects in calvaria and mandibular morphogenesis were observed upon knockdown of VEGF in the Col2(+) cell population. In contrast, loss of VEGF in Osx(+) osteoblast progenitor cells led to reduced ossification of calvarial and mandibular bones without affecting the formation of cartilage templates in newborn mice. The early stages of ossification in the developing jaw revealed decreased initial mineralization levels and a reduced thickness of the collagen I (Col1)-positive bone template upon loss of VEGF in Osx(+) precursors. Increased numbers of proliferating cells were detected within the jaw mesenchyme of mutant embryos. Explant culture assays revealed that mandibular osteogenesis occurred independently of paracrine VEGF action and vascular development. Reduced VEGF expression in mandibles coincided with increased phospho-Smad1/5 (P-Smad1/5) levels and bone morphogenetic protein 2 (Bmp2) expression in the jaw mesenchyme. We conclude that VEGF derived from Osx(+) osteoblast progenitor cells is required for optimal ossification of developing mandibular bones and modulates mechanisms controlling BMP-dependent specification and expansion of the jaw mesenchyme.
Collapse
Affiliation(s)
- Xuchen Duan
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Seth R Bradbury
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Bjorn R Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Agnes D Berendsen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA.
| |
Collapse
|
19
|
Ealba EL, Jheon AH, Hall J, Curantz C, Butcher KD, Schneider RA. Neural crest-mediated bone resorption is a determinant of species-specific jaw length. Dev Biol 2015; 408:151-63. [PMID: 26449912 PMCID: PMC4698309 DOI: 10.1016/j.ydbio.2015.10.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/29/2015] [Accepted: 10/01/2015] [Indexed: 11/28/2022]
Abstract
Precise control of jaw length during development is crucial for proper form and function. Previously we have shown that in birds, neural crest mesenchyme (NCM) confers species-specific size and shape to the beak by regulating molecular and histological programs for the induction and deposition of cartilage and bone. Here we reveal that a hitherto unrecognized but similarly essential mechanism for establishing jaw length is the ability of NCM to mediate bone resorption. Osteoclasts are considered the predominant cells that resorb bone, although osteocytes have also been shown to participate in this process. In adults, bone resorption is tightly coupled to bone deposition as a means to maintain skeletal homeostasis. Yet, the role and regulation of bone resorption during growth of the embryonic skeleton have remained relatively unexplored. We compare jaw development in short-beaked quail versus long-billed duck and find that quail have substantially higher levels of enzymes expressed by bone-resorbing cells including tartrate-resistant acid phosphatase (TRAP), Matrix metalloproteinase 13 (Mmp13), and Mmp9. Then, we transplant NCM destined to form the jaw skeleton from quail to duck and generate chimeras in which osteocytes arise from quail donor NCM and osteoclasts come exclusively from the duck host. Chimeras develop quail-like jaw skeletons coincident with dramatically elevated expression of TRAP, Mmp13, and Mmp9. To test for a link between bone resorption and jaw length, we block resorption using a bisphosphonate, osteoprotegerin protein, or an MMP13 inhibitor, and this significantly lengthens the jaw. Conversely, activating resorption with RANKL protein shortens the jaw. Finally, we find that higher resorption in quail presages their relatively lower adult jaw bone mineral density (BMD) and that BMD is also NCM-mediated. Thus, our experiments suggest that NCM not only controls bone resorption by its own derivatives but also modulates the activity of mesoderm-derived osteoclasts, and in so doing enlists bone resorption as a key patterning mechanism underlying the functional morphology and evolution of the jaw.
Collapse
Affiliation(s)
- Erin L Ealba
- Department of Orofacial Sciences, University of California, San Francisco, USA; Department of Orthopaedic Surgery, University of California, San Francisco, USA
| | - Andrew H Jheon
- Department of Orofacial Sciences, University of California, San Francisco, USA; Department of Orthopaedic Surgery, University of California, San Francisco, USA
| | - Jane Hall
- Department of Orthopaedic Surgery, University of California, San Francisco, USA
| | - Camille Curantz
- Department of Orthopaedic Surgery, University of California, San Francisco, USA
| | - Kristin D Butcher
- Department of Orthopaedic Surgery, University of California, San Francisco, USA
| | - Richard A Schneider
- Department of Orofacial Sciences, University of California, San Francisco, USA; Department of Orthopaedic Surgery, University of California, San Francisco, USA.
| |
Collapse
|
20
|
Abstract
Molecular and cellular mechanisms that control jaw length are becoming better understood. This is significant since the jaws are not only critical for species-specific adaptation and survival, but they are often affected by a variety of size-related anomalies including mandibular hypoplasia, retrognathia, asymmetry, and clefting. This chapter overviews how jaw length is established during the allocation, proliferation, differentiation, and growth of jaw precursor cells, which originate from neural crest mesenchyme (NCM). The focus is mainly on results from experiments transplanting NCM between quail and duck embryos. Quail have short jaws whereas those of duck are relatively long. Quail-duck chimeras reveal that the determinants of jaw length are NCM mediated throughout development and include species-specific differences in jaw progenitor number, differential regulation of various signaling pathways, and the autonomous activation of programs for skeletal matrix deposition and resorption. Such insights help make the goal of devising new therapies for birth defects, diseases, and injuries to the jaw skeleton seem ever more likely.
Collapse
Affiliation(s)
- Richard A Schneider
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California, USA.
| |
Collapse
|
21
|
Smith FJ, Percival CJ, Young NM, Hu D, Schneider RA, Marcucio RS, Hallgrimsson B. Divergence of craniofacial developmental trajectories among avian embryos. Dev Dyn 2015; 244:1158-1167. [PMID: 25703037 PMCID: PMC4544654 DOI: 10.1002/dvdy.24262] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/21/2015] [Accepted: 02/16/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Morphological divergence among related species involves changes to developmental processes. When such variation arises in development has garnered considerable theoretical interest relating to the broader issue of how development may constrain evolutionary change. The hourglass model holds that while early developmental events may be highly evolvable, there is a phylotypic stage when key developmental events are conserved. Thus, evolutionary divergence among related species should tend to arise after such a stage of reduced evolvability and, consequently, reduced variation among species. We test this prediction by comparing developmental trajectories among three avian species of varying relatedness (chick, quail, and duck) to locate their putative point of divergence. Three-dimensional geometric morphometrics and trajectory analyses were used to measure the significance of the facial shape variation observed among these species. RESULTS Duck embryos, being more distantly related, differed from the more closely-related chick and quail embryos in the enlargement of their frontonasal prominences. Phenotypic trajectory analyses demonstrated divergence of the three species, most notably, duck. CONCLUSIONS The results demonstrate that the two more closely related species share similar facial morphologies for a longer time during development, while ducks diverge. This suggests a surprising lability of craniofacial development during early face formation. Developmental Dynamics 244:1158-1167, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Francis J. Smith
- Department of Cell Biology and Anatomy, The University of Calgary, Faculty of Medicine, Calgary, AB T2N 4N1, Canada
| | - Christopher J. Percival
- Department of Cell Biology and Anatomy, The University of Calgary, Faculty of Medicine, Calgary, AB T2N 4N1, Canada
| | - Nathan M. Young
- Department of Orthopaedic Surgery, San Francisco General Hospital, The University of California San Francisco, School of Medicine, San Francisco, CA 94110, USA
| | - Diane Hu
- Department of Orthopaedic Surgery, San Francisco General Hospital, The University of California San Francisco, School of Medicine, San Francisco, CA 94110, USA
| | - Richard A. Schneider
- Department of Orthopaedic Surgery, The University of California San Francisco, School of Medicine, San Francisco, CA 94143, USA
| | - Ralph S. Marcucio
- Department of Orthopaedic Surgery, San Francisco General Hospital, The University of California San Francisco, School of Medicine, San Francisco, CA 94110, USA
| | - Benedikt Hallgrimsson
- Department of Cell Biology and Anatomy, The University of Calgary, Faculty of Medicine, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
22
|
Hu D, Young NM, Xu Q, Jamniczky H, Green RM, Mio W, Marcucio RS, Hallgrimsson B. Signals from the brain induce variation in avian facial shape. Dev Dyn 2015; 244:1133-1143. [PMID: 25903813 DOI: 10.1002/dvdy.24284] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 04/09/2015] [Accepted: 04/11/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND How developmental mechanisms generate the phenotypic variation that is the raw material for evolution is largely unknown. Here, we explore whether variation in a conserved signaling axis between the brain and face contributes to differences in morphogenesis of the avian upper jaw. In amniotes, including both mice and avians, signals from the brain establish a signaling center in the ectoderm (the Frontonasal ectodermal zone or "FEZ") that directs outgrowth of the facial primordia. RESULTS Here we show that the spatial organization of this signaling center differs among avians, and these correspond to Sonic hedgehog (Shh) expression in the basal forebrain and embryonic facial shape. In ducks this basal forebrain domain is present almost the entire width, while in chickens it is restricted to the midline. When the duck forebrain is unilaterally transplanted into stage matched chicken embryos the face on the treated side resembles that of the donor. CONCLUSIONS Combined with previous findings, these results demonstrate that variation in a highly conserved developmental pathway has the potential to contribute to evolutionary differences in avian upper jaw morphology. Developmental Dynamics 244:1133-1143, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Diane Hu
- Department of Orthopaedic Surgery, San Francisco General Hospital, Orthopaedic Trauma Institute, The University of California at San Francisco, School of Medicine, San Francisco, California
| | - Nathan M Young
- Department of Orthopaedic Surgery, San Francisco General Hospital, Orthopaedic Trauma Institute, The University of California at San Francisco, School of Medicine, San Francisco, California
| | - Qiuping Xu
- Department of Mathematics, Florida State University, Tallahassee, Florida
| | - Heather Jamniczky
- Department of Cell Biology and Anatomy, Alberta Children's Research Institute for Child and Maternal Health and the McCaig Bone and Joint Institute, University of Calgary, Calgary, Canada
| | - Rebecca M Green
- Department of Cell Biology and Anatomy, Alberta Children's Research Institute for Child and Maternal Health and the McCaig Bone and Joint Institute, University of Calgary, Calgary, Canada
| | - Washington Mio
- Department of Mathematics, Florida State University, Tallahassee, Florida
| | - Ralph S Marcucio
- Department of Orthopaedic Surgery, San Francisco General Hospital, Orthopaedic Trauma Institute, The University of California at San Francisco, School of Medicine, San Francisco, California
| | - Benedikt Hallgrimsson
- Department of Cell Biology and Anatomy, Alberta Children's Research Institute for Child and Maternal Health and the McCaig Bone and Joint Institute, University of Calgary, Calgary, Canada
| |
Collapse
|
23
|
Ray P, Chapman SC. Cytoskeletal Reorganization Drives Mesenchymal Condensation and Regulates Downstream Molecular Signaling. PLoS One 2015; 10:e0134702. [PMID: 26237312 PMCID: PMC4523177 DOI: 10.1371/journal.pone.0134702] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 07/13/2015] [Indexed: 11/19/2022] Open
Abstract
Skeletal condensation occurs when specified mesenchyme cells self-organize over several days to form a distinctive cartilage template. Here, we determine how and when specified mesenchyme cells integrate mechanical and molecular information from their environment, forming cartilage condensations in the pharyngeal arches of chick embryos. By disrupting cytoskeletal reorganization, we demonstrate that dynamic cell shape changes drive condensation and modulate the response of the condensing cells to Fibroblast Growth Factor (FGF), Bone Morphogenetic Protein (BMP) and Transforming Growth Factor beta (TGF-β) signaling pathways. Rho Kinase (ROCK)-driven actomyosin contractions and Myosin II-generated differential cell cortex tension regulate these cell shape changes. Disruption of the condensation process inhibits the differentiation of the mesenchyme cells into chondrocytes, demonstrating that condensation regulates the fate of the mesenchyme cells. We also find that dorsal and ventral condensations undergo distinct cell shape changes. BMP signaling is instructive for dorsal condensation-specific cell shape changes. Moreover, condensations exhibit ventral characteristics in the absence of BMP signaling, suggesting that in the pharyngeal arches ventral morphology is the ground pattern. Overall, this study characterizes the interplay between cytoskeletal dynamics and molecular signaling in a self-organizing system during tissue morphogenesis.
Collapse
Affiliation(s)
- Poulomi Ray
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Susan C. Chapman
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| |
Collapse
|
24
|
Fish JL, Schneider RA. Assessing species-specific contributions to craniofacial development using quail-duck chimeras. J Vis Exp 2014. [PMID: 24962088 PMCID: PMC4182100 DOI: 10.3791/51534] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The generation of chimeric embryos is a widespread and powerful approach to study cell fates, tissue interactions, and species-specific contributions to the histological and morphological development of vertebrate embryos. In particular, the use of chimeric embryos has established the importance of neural crest in directing the species-specific morphology of the craniofacial complex. The method described herein utilizes two avian species, duck and quail, with remarkably different craniofacial morphology. This method greatly facilitates the investigation of molecular and cellular regulation of species-specific pattern in the craniofacial complex. Experiments in quail and duck chimeric embryos have already revealed neural crest-mediated tissue interactions and cell-autonomous behaviors that regulate species-specific pattern in the craniofacial skeleton, musculature, and integument. The great diversity of neural crest derivatives suggests significant potential for future applications of the quail-duck chimeric system to understanding vertebrate development, disease, and evolution.
Collapse
Affiliation(s)
- Jennifer L Fish
- Department of Orthopaedic Surgery, University of California at San Francisco
| | - Richard A Schneider
- Department of Orthopaedic Surgery, University of California at San Francisco;
| |
Collapse
|
25
|
Koyabu D, Werneburg I, Morimoto N, Zollikofer CPE, Forasiepi AM, Endo H, Kimura J, Ohdachi SD, Truong Son N, Sánchez-Villagra MR. Mammalian skull heterochrony reveals modular evolution and a link between cranial development and brain size. Nat Commun 2014; 5:3625. [PMID: 24704703 PMCID: PMC3988809 DOI: 10.1038/ncomms4625] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 03/11/2014] [Indexed: 12/23/2022] Open
Abstract
The multiple skeletal components of the skull originate asynchronously and their developmental schedule varies across amniotes. Here we present the embryonic ossification sequence of 134 species, covering all major groups of mammals and their close relatives. This comprehensive data set allows reconstruction of the heterochronic and modular evolution of the skull and the condition of the last common ancestor of mammals. We show that the mode of ossification (dermal or endochondral) unites bones into integrated evolutionary modules of heterochronic changes and imposes evolutionary constraints on cranial heterochrony. However, some skull-roof bones, such as the supraoccipital, exhibit evolutionary degrees of freedom in these constraints. Ossification timing of the neurocranium was considerably accelerated during the origin of mammals. Furthermore, association between developmental timing of the supraoccipital and brain size was identified among amniotes. We argue that cranial heterochrony in mammals has occurred in concert with encephalization but within a conserved modular organization.
Collapse
Affiliation(s)
- Daisuke Koyabu
- Palaeontological Institute and Museum, University of Zürich, Karl Schmid-Strasse 4, Zürich 8006, Switzerland
- The University Museum, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ingmar Werneburg
- Palaeontological Institute and Museum, University of Zürich, Karl Schmid-Strasse 4, Zürich 8006, Switzerland
| | - Naoki Morimoto
- Anthropological Institute and Museum, University of Zürich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Christoph P. E. Zollikofer
- Anthropological Institute and Museum, University of Zürich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Analia M. Forasiepi
- Palaeontological Institute and Museum, University of Zürich, Karl Schmid-Strasse 4, Zürich 8006, Switzerland
- Ianigla, CCT-Mendoza, CONICET, Avda. Ruiz Leal s/n, Mendoza 5500, Argentina
| | - Hideki Endo
- The University Museum, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Junpei Kimura
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Seoul National University, Seoul 151–742, Korea
| | - Satoshi D. Ohdachi
- Institute of Low Temperature Science, Hokkaido University, Kita-19 Nishi-8, Kita-ku, Sapporo 060-0819, Japan
| | - Nguyen Truong Son
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Hanoi 10000, Vietnam
| | - Marcelo R. Sánchez-Villagra
- Palaeontological Institute and Museum, University of Zürich, Karl Schmid-Strasse 4, Zürich 8006, Switzerland
| |
Collapse
|
26
|
Fish JL, Sklar RS, Woronowicz KC, Schneider RA. Multiple developmental mechanisms regulate species-specific jaw size. Development 2014; 141:674-84. [PMID: 24449843 DOI: 10.1242/dev.100107] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Variation in jaw size during evolution has been crucial for the adaptive radiation of vertebrates, yet variation in jaw size during development is often associated with disease. To test the hypothesis that early developmental events regulating neural crest (NC) progenitors contribute to species-specific differences in size, we investigated mechanisms through which two avian species, duck and quail, achieve their remarkably different jaw size. At early stages, duck exhibit an anterior shift in brain regionalization yielding a shorter, broader, midbrain. We find no significant difference in the total number of pre-migratory NC; however, duck concentrate their pre-migratory NC in the midbrain, which contributes to an increase in size of the post-migratory NC population allocated to the mandibular arch. Subsequent differences in proliferation lead to a progressive increase in size of the duck mandibular arch relative to that of quail. To test the role of pre-migratory NC progenitor number in regulating jaw size, we reduced and augmented NC progenitors. In contrast to previous reports of regeneration by NC precursors, we find that neural fold extirpation results in a loss of NC precursors. Despite this reduction in their numbers, post-migratory NC progenitors compensate, producing a symmetric and normal-sized jaw. Our results suggest that evolutionary modification of multiple aspects of NC cell biology, including NC allocation within the jaw primordia and NC-mediated proliferation, have been important to the evolution of jaw size. Furthermore, our finding of NC post-migratory compensatory mechanisms potentially extends the developmental time frame for treatments of disease or injury associated with NC progenitor loss.
Collapse
Affiliation(s)
- Jennifer L Fish
- University of California, 513 Parnassus Ave, S-1159 San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
27
|
Goodnough LH, DiNuoscio GJ, Ferguson JW, Williams T, Lang RA, Atit RP. Distinct requirements for cranial ectoderm and mesenchyme-derived wnts in specification and differentiation of osteoblast and dermal progenitors. PLoS Genet 2014; 10:e1004152. [PMID: 24586192 PMCID: PMC3930509 DOI: 10.1371/journal.pgen.1004152] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 12/16/2013] [Indexed: 11/29/2022] Open
Abstract
The cranial bones and dermis differentiate from mesenchyme beneath the surface ectoderm. Fate selection in cranial mesenchyme requires the canonical Wnt effector molecule β-catenin, but the relative contribution of Wnt ligand sources in this process remains unknown. Here we show Wnt ligands are expressed in cranial surface ectoderm and underlying supraorbital mesenchyme during dermal and osteoblast fate selection. Using conditional genetics, we eliminate secretion of all Wnt ligands from cranial surface ectoderm or undifferentiated mesenchyme, to uncover distinct roles for ectoderm- and mesenchyme-derived Wnts. Ectoderm Wnt ligands induce osteoblast and dermal fibroblast progenitor specification while initiating expression of a subset of mesenchymal Wnts. Mesenchyme Wnt ligands are subsequently essential during differentiation of dermal and osteoblast progenitors. Finally, ectoderm-derived Wnt ligands provide an inductive cue to the cranial mesenchyme for the fate selection of dermal fibroblast and osteoblast lineages. Thus two sources of Wnt ligands perform distinct functions during osteoblast and dermal fibroblast formation. Craniofacial abnormalities are relatively common congenital birth defects, and the Wnt signaling pathway and its effectors have key roles in craniofacial development. Wntless/Gpr177 is required for the efficient secretion of all Wnt ligands and maps to a region that contains SNPs strongly associated with reduced bone mass, and heterozygous deletion is associated with facial dysmorphology. Here we test the role of specific sources of secreted Wnt proteins during early stages of craniofacial development and obtained dramatic craniofacial anomalies. We found that the overlying cranial surface ectoderm Wnts generate an instructive cue of Wnt signaling for skull bone and skin cell fate selection and transcription of additional Wnts in the underlying mesenchyme. Once initiated, mesenchymal Wnts may maintain Wnt signal transduction and function in an autocrine manner during differentiation of skull bones and skin. These results highlight how Wnt ligands from two specific tissue sources are integrated for normal craniofacial patterning and can contribute to complex craniofacial abnormalities.
Collapse
Affiliation(s)
- L. Henry Goodnough
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Gregg J. DiNuoscio
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - James W. Ferguson
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Trevor Williams
- Department of Craniofacial Biology, University of Colorado School of Dental Medicine, Aurora, Colorado, United States of America
| | - Richard A. Lang
- Visual Systems Group, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Radhika P. Atit
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Genetics, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Dermatology Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
28
|
Hall J, Jheon AH, Ealba EL, Eames BF, Butcher KD, Mak SS, Ladher R, Alliston T, Schneider RA. Evolution of a developmental mechanism: Species-specific regulation of the cell cycle and the timing of events during craniofacial osteogenesis. Dev Biol 2014; 385:380-95. [PMID: 24262986 PMCID: PMC3953612 DOI: 10.1016/j.ydbio.2013.11.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 11/02/2013] [Accepted: 11/10/2013] [Indexed: 12/27/2022]
Abstract
Neural crest mesenchyme (NCM) controls species-specific pattern in the craniofacial skeleton but how this cell population accomplishes such a complex task remains unclear. To elucidate mechanisms through which NCM directs skeletal development and evolution, we made chimeras from quail and duck embryos, which differ markedly in their craniofacial morphology and maturation rates. We show that quail NCM, when transplanted into duck, maintains its faster timetable for development and autonomously executes molecular and cellular programs for the induction, differentiation, and mineralization of bone, including premature expression of osteogenic genes such as Runx2 and Col1a1. In contrast, the duck host systemic environment appears to be relatively permissive and supports osteogenesis independently by providing circulating minerals and a vascular network. Further experiments reveal that NCM establishes the timing of osteogenesis by regulating cell cycle progression in a stage- and species-specific manner. Altering the time-course of D-type cyclin expression mimics chimeras by accelerating expression of Runx2 and Col1a1. We also discover higher endogenous expression of Runx2 in quail coincident with their smaller craniofacial skeletons, and by prematurely over-expressing Runx2 in chick embryos we reduce the overall size of the craniofacial skeleton. Thus, our work indicates that NCM establishes species-specific size in the craniofacial skeleton by controlling cell cycle, Runx2 expression, and the timing of key events during osteogenesis.
Collapse
Affiliation(s)
- Jane Hall
- University of California at San Francisco, Department of Orthopaedic Surgery, 513 Parnassus Avenue, S-1161, San Francisco, CA 94143-0514, USA
| | - Andrew H Jheon
- University of California at San Francisco, Department of Orthopaedic Surgery, 513 Parnassus Avenue, S-1161, San Francisco, CA 94143-0514, USA
| | - Erin L Ealba
- University of California at San Francisco, Department of Orthopaedic Surgery, 513 Parnassus Avenue, S-1161, San Francisco, CA 94143-0514, USA
| | - B Frank Eames
- University of California at San Francisco, Department of Orthopaedic Surgery, 513 Parnassus Avenue, S-1161, San Francisco, CA 94143-0514, USA
| | - Kristin D Butcher
- University of California at San Francisco, Department of Orthopaedic Surgery, 513 Parnassus Avenue, S-1161, San Francisco, CA 94143-0514, USA
| | - Siu-Shan Mak
- RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minami, Chuo-ku Kobe 650-0047, Japan
| | - Raj Ladher
- RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minami, Chuo-ku Kobe 650-0047, Japan
| | - Tamara Alliston
- University of California at San Francisco, Department of Orthopaedic Surgery, 513 Parnassus Avenue, S-1161, San Francisco, CA 94143-0514, USA
| | - Richard A Schneider
- University of California at San Francisco, Department of Orthopaedic Surgery, 513 Parnassus Avenue, S-1161, San Francisco, CA 94143-0514, USA.
| |
Collapse
|
29
|
Stewart K, Uetani N, Hendriks W, Tremblay ML, Bouchard M. Inactivation of LAR family phosphatase genes Ptprs and Ptprf causes craniofacial malformations resembling Pierre-Robin sequence. Development 2013; 140:3413-22. [DOI: 10.1242/dev.094532] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Leukocyte antigen related (LAR) family receptor protein tyrosine phosphatases (RPTPs) regulate the fine balance between tyrosine phosphorylation and dephosphorylation that is crucial for cell signaling during development and tissue homeostasis. Here we show that LAR RPTPs are required for normal development of the mandibular and maxillary regions. Approximately half of the mouse embryos lacking both Ptprs (RPTPσ) and Ptprf (LAR) exhibit micrognathia (small lower jaw), cleft palate and microglossia/glossoptosis (small and deep tongue), a phenotype closely resembling Pierre-Robin sequence in humans. We show that jaw bone and cartilage patterning occurs aberrantly in LAR family phosphatase-deficient embryos and that the mandibular arch harbors a marked decrease in cell proliferation. Analysis of signal transduction in embryonic tissues and mouse embryonic fibroblast cultures identifies an increase in Bmp-Smad signaling and an abrogation of canonical Wnt signaling associated with loss of the LAR family phosphatases. A reactivation of β-catenin signaling by chemical inhibition of GSK3β successfully resensitizes LAR family phosphatase-deficient cells to Wnt induction, indicating that RPTPs are necessary for normal Wnt/β-catenin pathway activation. Together these results identify LAR RPTPs as important regulators of craniofacial morphogenesis and provide insight into the etiology of Pierre-Robin sequence.
Collapse
Affiliation(s)
- Katherine Stewart
- Goodman Cancer Research Centre, Department of Biochemistry, McGill University, Montreal, 1160 Pine Avenue W. Montreal, QC H3A 1A3, Canada
| | - Noriko Uetani
- Goodman Cancer Research Centre, Department of Biochemistry, McGill University, Montreal, 1160 Pine Avenue W. Montreal, QC H3A 1A3, Canada
| | - Wiljan Hendriks
- Department of Cell Biology, Nijmegen, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Michel L. Tremblay
- Goodman Cancer Research Centre, Department of Biochemistry, McGill University, Montreal, 1160 Pine Avenue W. Montreal, QC H3A 1A3, Canada
| | - Maxime Bouchard
- Goodman Cancer Research Centre, Department of Biochemistry, McGill University, Montreal, 1160 Pine Avenue W. Montreal, QC H3A 1A3, Canada
| |
Collapse
|
30
|
Tokita M, Chaeychomsri W, Siruntawineti J. Skeletal gene expression in the temporal region of the reptilian embryos: implications for the evolution of reptilian skull morphology. SPRINGERPLUS 2013; 2:336. [PMID: 24711977 PMCID: PMC3970585 DOI: 10.1186/2193-1801-2-336] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 07/08/2013] [Indexed: 01/17/2023]
Abstract
Reptiles have achieved highly diverse morphological and physiological traits that allow them to exploit various ecological niches and resources. Morphology of the temporal region of the reptilian skull is highly diverse and historically it has been treated as an important character for classifying reptiles and has helped us understand the ecology and physiology of each species. However, the developmental mechanism that generates diversity of reptilian skull morphology is poorly understood. We reveal a potential developmental basis that generates morphological diversity in the temporal region of the reptilian skull by performing a comparative analysis of gene expression in the embryos of reptile species with different skull morphology. By investigating genes known to regulate early osteoblast development, we find dorsoventrally broadened unique expression of the early osteoblast marker, Runx2, in the temporal region of the head of turtle embryos that do not form temporal fenestrae. We also observe that Msx2 is also uniquely expressed in the mesenchymal cells distributed at the temporal region of the head of turtle embryos. Furthermore, through comparison of gene expression pattern in the embryos of turtle, crocodile, and snake species, we find a possible correlation between the spatial patterns of Runx2 and Msx2 expression in cranial mesenchymal cells and skull morphology of each reptilian lineage. Regulatory modifications of Runx2 and Msx2 expression in osteogenic mesenchymal precursor cells are likely involved in generating morphological diversity in the temporal region of the reptilian skull.
Collapse
Affiliation(s)
- Masayoshi Tokita
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tenno-dai 1-1-1, Tsukuba, Ibaraki, 305-8572 Japan ; Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138 USA
| | - Win Chaeychomsri
- Department of Zoology, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900 Thailand
| | - Jindawan Siruntawineti
- Department of Zoology, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900 Thailand
| |
Collapse
|
31
|
Ealba EL, Schneider RA. A simple PCR-based strategy for estimating species-specific contributions in chimeras and xenografts. Development 2013; 140:3062-8. [PMID: 23785056 PMCID: PMC3699287 DOI: 10.1242/dev.092676] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2013] [Indexed: 11/20/2022]
Abstract
Many tissue-engineering approaches for repair and regeneration involve transplants between species. Yet a challenge is distinguishing donor versus host effects on gene expression. This study provides a simple molecular strategy to quantify species-specific contributions in chimeras and xenografts. Species-specific primers for reverse transcription quantitative real-time PCR (RT-qPCR) were designed by identifying silent mutations in quail, duck, chicken, mouse and human ribosomal protein L19 (RPL19). cDNA from different pairs of species was mixed in a dilution series and species-specific RPL19 primers were used to generate standard curves. Then quail cells were transplanted into transgenic-GFP chick and resulting chimeras were analyzed with species-specific primers. Fluorescence-activated cell sorting (FACS) confirmed that donor- and host-specific levels of RPL19 expression represent actual proportions of cells. To apply the RPL19 strategy, we measured Runx2 expression in quail-duck chimeras. Elevated Runx2 levels correlated with higher percentages of donor cells. Finally, RPL19 primers also discriminated mouse from human and chick. Thus, this strategy enables chimeras and/or xenografts to be screened rapidly at the molecular level.
Collapse
Affiliation(s)
- Erin L. Ealba
- Department of Orofacial Sciences, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Richard A. Schneider
- Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| |
Collapse
|
32
|
Hu D, Marcucio RS. Neural crest cells pattern the surface cephalic ectoderm during FEZ formation. Dev Dyn 2013; 241:732-40. [PMID: 22411554 DOI: 10.1002/dvdy.23764] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Multiple fibroblast growth factor (Fgf) ligands are expressed in the forebrain and facial ectoderm, and vascular endothelial growth factor (VEGF) is expressed in the facial ectoderm. Both pathways activate the MAP kinase cascade and can be suppressed by SU5402. We placed a bead soaked in SU5402 into the brain after emigration of neural crest cells was complete. RESULTS Within 24 hr we observed reduced pMEK and pERK staining that persisted for at least 48 hr. This was accompanied by significant apoptosis in the face. By day 15, the upper beaks were truncated. Molecular changes in the FNP were also apparent. Normally, Shh is expressed in the frontonasal ectodermal zone and controls patterned growth of the upper jaw. In treated embryos, Shh expression was reduced. Both the structural and molecular deficits were mitigated after transplantation of FNP-derived mesenchymal cells. CONCLUSIONS Thus, mesenchymal cells actively participate in signaling interactions of the face, and the absence of neural crest cells in neurocristopathies may not be merely structural.
Collapse
Affiliation(s)
- Diane Hu
- Department of Orthopaedic Surgery, San Francisco General Hospital, The University of California San Francisco, School of Medicine, San Francisco, California 94110, USA
| | | |
Collapse
|
33
|
Wilson CG, Martín-Saavedra FM, Vilaboa N, Franceschi RT. Advanced BMP gene therapies for temporal and spatial control of bone regeneration. J Dent Res 2013; 92:409-17. [PMID: 23539558 DOI: 10.1177/0022034513483771] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Spatial and temporal patterns of bone morphogenetic protein (BMP) signaling are crucial to the assembly of appropriately positioned and shaped bones of the face and head. This review advances the hypothesis that reconstitution of such patterns with cutting-edge gene therapies will transform the clinical management of craniofacial bone defects attributed to trauma, disease, or surgical resection. Gradients in BMP signaling within developing limbs and orofacial primordia regulate proliferation and differentiation of mesenchymal progenitors. Similarly, vascular and mesenchymal cells express BMPs in various places and at various times during normal fracture healing. In non-healing fractures of long bones, BMP signaling is severely attenuated. Devices that release recombinant BMPs promote healing of bone in spinal fusions and, in some cases, of open fractures, but cannot control the timing and localization of BMP release. Gene therapies with regulated expression systems may provide substantial improvements in efficacy and safety compared with protein-based therapies. Synthetic gene switches, activated by pharmacologics or light or hyperthermic stimuli, provide several avenues for the non-invasive regulation of the expression of BMP transgenes in both time and space. Through new gene therapy platforms such as these, active control over BMP signaling can be achieved to accelerate bone regeneration.
Collapse
Affiliation(s)
- C G Wilson
- Center for Craniofacial Regeneration, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | | | | | | |
Collapse
|
34
|
Tokita M, Nakayama T, Schneider RA, Agata K. Molecular and cellular changes associated with the evolution of novel jaw muscles in parrots. Proc Biol Sci 2012; 280:20122319. [PMID: 23235703 DOI: 10.1098/rspb.2012.2319] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Vertebrates have achieved great evolutionary success due in large part to the anatomical diversification of their jaw complex, which allows them to inhabit almost every ecological niche. While many studies have focused on mechanisms that pattern the jaw skeleton, much remains to be understood about the origins of novelty and diversity in the closely associated musculature. To address this issue, we focused on parrots, which have acquired two anatomically unique jaw muscles: the ethmomandibular and the pseudomasseter. In parrot embryos, we observe distinct and highly derived expression patterns for Scx, Bmp4, Tgfβ2 and Six2 in neural crest-derived mesenchyme destined to form jaw muscle connective tissues. Furthermore, immunohistochemical analysis reveals that cell proliferation is more active in the cells within the jaw muscle than in surrounding connective tissue cells. This biased and differentially regulated mode of cell proliferation in cranial musculoskeletal tissues may allow these unusual jaw muscles to extend towards their new attachment sites. We conclude that the alteration of neural crest-derived connective tissue distribution during development may underlie the spatial changes in jaw musculoskeletal architecture found only in parrots. Thus, parrots provide valuable insights into molecular and cellular mechanisms that may generate evolutionary novelties with functionally adaptive significance.
Collapse
Affiliation(s)
- Masayoshi Tokita
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tenno-dai 1-1-1, Ibaraki, Tsukuba 305-8572, Japan.
| | | | | | | |
Collapse
|
35
|
Giovanini AF, Grossi JRA, Gonzaga CC, Zielak JC, Göhringer I, Vieira JDS, Kuczera J, de Oliveira Filho MA, Deliberador TM. Leukocyte-Platelet-Rich Plasma (L-PRP) Induces an Abnormal Histophenotype in Craniofacial Bone Repair Associated with Changes in the Immunopositivity of the Hematopoietic Clusters of Differentiation, Osteoproteins, and TGF-β1. Clin Implant Dent Relat Res 2012; 16:259-72. [DOI: 10.1111/j.1708-8208.2012.00478.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | | | | | - João Cesar Zielak
- Masters Program in Clinical Dentistry; Positivo University; Curitiba Brazil
| | - Isabella Göhringer
- Masters Program in Clinical Dentistry; Positivo University; Curitiba Brazil
| | | | | | | | | |
Collapse
|
36
|
Eames BF, Amores A, Yan YL, Postlethwait JH. Evolution of the osteoblast: skeletogenesis in gar and zebrafish. BMC Evol Biol 2012; 12:27. [PMID: 22390748 PMCID: PMC3314580 DOI: 10.1186/1471-2148-12-27] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 03/05/2012] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Although the vertebrate skeleton arose in the sea 500 million years ago, our understanding of the molecular fingerprints of chondrocytes and osteoblasts may be biased because it is informed mainly by research on land animals. In fact, the molecular fingerprint of teleost osteoblasts differs in key ways from that of tetrapods, but we do not know the origin of these novel gene functions. They either arose as neofunctionalization events after the teleost genome duplication (TGD), or they represent preserved ancestral functions that pre-date the TGD. Here, we provide evolutionary perspective to the molecular fingerprints of skeletal cells and assess the role of genome duplication in generating novel gene functions. We compared the molecular fingerprints of skeletogenic cells in two ray-finned fish: zebrafish (Danio rerio)--a teleost--and the spotted gar (Lepisosteus oculatus)--a "living fossil" representative of a lineage that diverged from the teleost lineage prior to the TGD (i.e., the teleost sister group). We analyzed developing embryos for expression of the structural collagen genes col1a2, col2a1, col10a1, and col11a2 in well-formed cartilage and bone, and studied expression of skeletal regulators, including the transcription factor genes sox9 and runx2, during mesenchymal condensation. RESULTS Results provided no evidence for the evolution of novel functions among gene duplicates in zebrafish compared to the gar outgroup, but our findings shed light on the evolution of the osteoblast. Zebrafish and gar chondrocytes both expressed col10a1 as they matured, but both species' osteoblasts also expressed col10a1, which tetrapod osteoblasts do not express. This novel finding, along with sox9 and col2a1 expression in developing osteoblasts of both zebrafish and gar, demonstrates that osteoblasts of both a teleost and a basally diverging ray-fin fish express components of the supposed chondrocyte molecular fingerprint. CONCLUSIONS Our surprising finding that the "chondrogenic" transcription factor sox9 is expressed in developing osteoblasts of both zebrafish and gar can help explain the expression of chondrocyte genes in osteoblasts of ray-finned fish. More broadly, our data suggest that the molecular fingerprint of the osteoblast, which largely is constrained among land animals, was not fixed during early vertebrate evolution.
Collapse
Affiliation(s)
- B Frank Eames
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA.
| | | | | | | |
Collapse
|
37
|
Allon AA, Butcher K, Schneider RA, Lotz JC. Structured coculture of mesenchymal stem cells and disc cells enhances differentiation and proliferation. Cells Tissues Organs 2012; 196:99-106. [PMID: 22378296 DOI: 10.1159/000332985] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2011] [Indexed: 11/19/2022] Open
Abstract
PURPOSE During in vivo stem cell differentiation, mature cells often induce the differentiation of nearby stem cells. Accordingly, prior studies indicate that a randomly mixed coculture can help transform mesenchymal stem cells (MSC) into nucleus pulposus cells (NPC). However, because in vivo signaling typically occurs heterotopically between adjacent cell layers, we hypothesized that a structurally organized coculture between MSC and NPC will result in greater cell differentiation and proliferation over single cell-type controls and cocultures with random organization. METHODS We developed a novel bilaminar cell pellet (BCP) system where a sphere of MSC is enclosed in a shell of NPC by successive centrifugation. Controls were made using single cell-type pellets and coculture pellets with random organization. The pellets were evaluated for DNA content, gene expression, and histology. RESULTS A bilaminar 3D organization enhanced cell proliferation and differentiation. BCP showed significantly more cell proliferation than pellets with one cell type and those with random organization. Enhanced differentiation of MSC within the BCP pellet relative to single cell-type pellets was demonstrated by quantitative RT-PCR, histology, and in situ hybridization. CONCLUSIONS The BCP culture system increases MSC proliferation and differentiation as compared to single cell type or randomly mixed coculture controls.
Collapse
Affiliation(s)
- Aliza A Allon
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA 94143-0514, USA
| | | | | | | |
Collapse
|
38
|
Bonilla-Claudio M, Wang J, Bai Y, Klysik E, Selever J, Martin JF. Bmp signaling regulates a dose-dependent transcriptional program to control facial skeletal development. Development 2012; 139:709-19. [PMID: 22219353 DOI: 10.1242/dev.073197] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We performed an in depth analysis of Bmp4, a critical regulator of development, disease, and evolution, in cranial neural crest (CNC). Conditional Bmp4 overexpression, using a tetracycline-regulated Bmp4 gain-of-function allele, resulted in facial skeletal changes that were most dramatic after an E10.5 Bmp4 induction. Expression profiling uncovered a signature of Bmp4-induced genes (BIG) composed predominantly of transcriptional regulators that control self-renewal, osteoblast differentiation and negative Bmp autoregulation. The complimentary experiment, CNC inactivation of Bmp2, Bmp4 and Bmp7, resulted in complete or partial loss of multiple CNC-derived skeletal elements, revealing a crucial requirement for Bmp signaling in membranous bone and cartilage development. Importantly, the BIG signature was reduced in Bmp loss-of-function mutants, indicating Bmp-regulated target genes are modulated by Bmp dose. Chromatin immunoprecipitation (ChIP) revealed a subset of the BIG signature, including Satb2, Smad6, Hand1, Gadd45γ and Gata3, that was bound by Smad1/5 in the developing mandible, revealing direct Smad-mediated regulation. These data support the hypothesis that Bmp signaling regulates craniofacial skeletal development by balancing self-renewal and differentiation pathways in CNC progenitors.
Collapse
Affiliation(s)
- Margarita Bonilla-Claudio
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
39
|
Takechi M, Takeuchi M, Ota KG, Nishimura O, Mochii M, Itomi K, Adachi N, Takahashi M, Fujimoto S, Tarui H, Okabe M, Aizawa S, Kuratani S. Overview of the transcriptome profiles identified in hagfish, shark, and bichir: current issues arising from some nonmodel vertebrate taxa. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 316:526-46. [PMID: 21809437 DOI: 10.1002/jez.b.21427] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/28/2011] [Accepted: 06/14/2011] [Indexed: 02/02/2023]
Abstract
Because of their crucial phylogenetic positions, hagfishes, sharks, and bichirs are recognized as key taxa in our understanding of vertebrate evolution. The expression patterns of the regulatory genes involved in developmental patterning have been analyzed in the context of evolutionary developmental studies. However, in a survey of public sequence databases, we found that the large-scale sequence data for these taxa are still limited. To address this deficit, we used conventional Sanger DNA sequencing and a next-generation sequencing technology based on 454 GS FLX sequencing to obtain expressed sequence tags (ESTs) of the Japanese inshore hagfish (Eptatretus burgeri; 161,482 ESTs), cloudy catshark (Scyliorhinus torazame; 165,819 ESTs), and gray bichir (Polypterus senegalus; 34,336 ESTs). We deposited the ESTs in a newly constructed database, designated the "Vertebrate TimeCapsule." The ESTs include sequences from genes that can be effectively used in evolutionary developmental studies; for instance, several encode cartilaginous extracellular matrix proteins, which are central to an understanding of the ways in which evolutionary processes affected the skeletal elements, whereas others encode regulatory genes involved in craniofacial development and early embryogenesis. Here, we discuss how hagfishes, sharks, and bichirs contribute to our understanding of vertebrate evolution, we review the current status of the publicly available sequence data for these three taxa, and we introduce our EST projects and newly developed database.
Collapse
Affiliation(s)
- Masaki Takechi
- Laboratory for Evolutionary Morphology, Center for Developmental Biology, RIKEN, Kobe, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Solem RC, Eames BF, Tokita M, Schneider RA. Mesenchymal and mechanical mechanisms of secondary cartilage induction. Dev Biol 2011; 356:28-39. [PMID: 21600197 DOI: 10.1016/j.ydbio.2011.05.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 05/03/2011] [Accepted: 05/03/2011] [Indexed: 12/21/2022]
Abstract
Secondary cartilage occurs at articulations, sutures, and muscle attachments, and facilitates proper kinetic movement of the skeleton. Secondary cartilage requires mechanical stimulation for its induction and maintenance, and accordingly, its evolutionary presence or absence reflects species-specific variation in functional anatomy. Avians illustrate this point well. In conjunction with their distinct adult mode of feeding via levered straining, duck develop a pronounced secondary cartilage at the insertion (i.e., enthesis) of the mandibular adductor muscles on the lower jaw skeleton. An equivalent cartilage is absent in quail, which peck at their food. We hypothesized that species-specific pattern and a concomitant dissimilarity in the local mechanical environment promote secondary chondrogenesis in the mandibular adductor enthesis of duck versus quail. To test our hypothesis we employed two experimental approaches. First, we transplanted neural crest mesenchyme (NCM) from quail into duck, which produced chimeric "quck" with a jaw complex resembling that of quail, including an absence of enthesis secondary cartilage. Second, we modified the mechanical environment in embryonic duck by paralyzing skeletal muscles, and by blocking the ability of NCM to support mechanotransduction through stretch-activated ion channels. Paralysis inhibited secondary cartilage, as evidenced by changes in histology and expression of genes that affect chondrogenesis, including members of the FGF and BMP pathways. Ion channel inhibition did not alter enthesis secondary cartilage but caused bone to form in place of secondary cartilage at articulations. Thus, our study reveals that enthesis secondary cartilage forms through mechanisms that are distinct from those regulating other secondary cartilage. We conclude that by directing the musculoskeletal patterning and integration of the jaw complex, NCM modulates the mechanical forces and molecular signals necessary to control secondary cartilage formation during development and evolution.
Collapse
Affiliation(s)
- R Christian Solem
- Department of Orthopaedic Surgery, 513 Parnassus Avenue, University of California San Francisco, CA 94143-0514, USA
| | | | | | | |
Collapse
|
41
|
Gordon CT, Brinas IML, Rodda FA, Bendall AJ, Farlie PG. Role of Dlx genes in craniofacial morphogenesis: Dlx2 influences skeletal patterning by inducing ectomesenchymal aggregation in ovo. Evol Dev 2011; 12:459-73. [PMID: 20883215 DOI: 10.1111/j.1525-142x.2010.00432.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Dlx homeodomain transcription factors are expressed in neural crest-derived mesenchyme of the pharyngeal arches and are required for patterning of the craniofacial skeleton. However, the cellular and molecular mechanisms by which Dlx factors control skeletogenesis in the facial primordia are unclear. We have investigated the function of Dlx2 and Dlx5 by sustained misexpression in ovo. We find that RCAS-Dlx2- and RCAS-Dlx5-infected avian embryos exhibit very similar patterns of local, stereotypical changes in skeletal development in the upper jaw. The changes include ectopic dermal bone along the jugal arch, and ectopic cartilages that develop between the quadrate and the trabecula. The ectopic cartilage associated with the trabecula is reminiscent of a normally occurring element in this region in some bird taxa. Analysis of the distribution of RCAS-Dlx2-infected cells suggests that Dlx2 induces aggregation of undifferentiated mesenchyme, which subsequently develops into the ectopic skeletal elements. Comparison of infected embryos with restricted or widespread misexpression, and of embryos in which Dlx genes were delivered to migratory or postmigratory neural crest, indicate that there are limited regions of competence in which the ectopic elements can arise. The site-specific differentiation program that the aggregates undergo may be dependent on local environmental signals. Our results suggest that Dlx factors mediate localization of ectomesenchymal subpopulations within the pharyngeal arches and in doing so define where skeletogenic condensations will arise. Consequently, variation in Dlx expression or activity may have influenced the morphology of jaw elements during vertebrate evolution.
Collapse
Affiliation(s)
- Christopher T Gordon
- Craniofacial Development Laboratory, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville 3052, Australia
| | | | | | | | | |
Collapse
|
42
|
Minoux M, Rijli FM. Molecular mechanisms of cranial neural crest cell migration and patterning in craniofacial development. Development 2010; 137:2605-21. [DOI: 10.1242/dev.040048] [Citation(s) in RCA: 329] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During vertebrate craniofacial development, neural crest cells (NCCs) contribute much of the cartilage, bone and connective tissue that make up the developing head. Although the initial patterns of NCC segmentation and migration are conserved between species, the variety of vertebrate facial morphologies that exist indicates that a complex interplay occurs between intrinsic genetic NCC programs and extrinsic environmental signals during morphogenesis. Here, we review recent work that has begun to shed light on the molecular mechanisms that govern the spatiotemporal patterning of NCC-derived skeletal structures – advances that are central to understanding craniofacial development and its evolution.
Collapse
Affiliation(s)
- Maryline Minoux
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
- Faculté de Chirurgie Dentaire, 1, Place de l'Hôpital, 67000 Strasbourg, France
| | - Filippo M. Rijli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| |
Collapse
|
43
|
Current Opinion in Otolaryngology & Head and Neck Surgery. Current world literature. Curr Opin Otolaryngol Head Neck Surg 2009; 17:326-31. [PMID: 19602933 DOI: 10.1097/moo.0b013e32832fa68b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Tokita M, Schneider RA. Developmental origins of species-specific muscle pattern. Dev Biol 2009; 331:311-25. [PMID: 19450573 DOI: 10.1016/j.ydbio.2009.05.548] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 05/12/2009] [Accepted: 05/12/2009] [Indexed: 12/15/2022]
Abstract
Vertebrate jaw muscle anatomy is conspicuously diverse but developmental processes that generate such variation remain relatively obscure. To identify mechanisms that produce species-specific jaw muscle pattern we conducted transplant experiments using Japanese quail and White Pekin duck, which exhibit considerably different jaw morphologies in association with their particular modes of feeding. Previous work indicates that cranial muscle formation requires interactions with adjacent skeletal and muscular connective tissues, which arise from neural crest mesenchyme. We transplanted neural crest mesenchyme from quail to duck embryos, to test if quail donor-derived skeletal and muscular connective tissues could confer species-specific identity to duck host jaw muscles. Our results show that duck host jaw muscles acquire quail-like shape and attachment sites due to the presence of quail donor neural crest-derived skeletal and muscular connective tissues. Further, we find that these species-specific transformations are preceded by spatiotemporal changes in expression of genes within skeletal and muscular connective tissues including Sox9, Runx2, Scx, and Tcf4, but not by alterations to histogenic or molecular programs underlying muscle differentiation or specification. Thus, neural crest mesenchyme plays an essential role in generating species-specific jaw muscle pattern and in promoting structural and functional integration of the musculoskeletal system during evolution.
Collapse
|
45
|
Jheon AH, Schneider RA. The cells that fill the bill: neural crest and the evolution of craniofacial development. J Dent Res 2009; 88:12-21. [PMID: 19131312 DOI: 10.1177/0022034508327757] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Avian embryos, which have been studied scientifically since Aristotle, continue to persevere as invaluable research tools, especially for our understanding of the development and evolution of the craniofacial skeleton. Whether the topic is beak shape in Darwin's finches or signaling interactions that underlie bone and tooth formation, birds offer advantages for craniofacial biology that uniquely complement the strengths of other vertebrate model systems, such as fish, frogs, and mice. Several papers published during the past few years have helped pinpoint molecular and cellular mechanisms that pattern the face and jaws through experiments that could only have been done together with our feathered friends. Ultimately, such knowledge will be essential for devising novel clinical approaches to treat and/or prevent diseases, injuries, and birth defects that affect the human craniofacial skeleton. Here we review recent insights plucked from avians on key developmental processes that generate craniofacial diversity.
Collapse
Affiliation(s)
- A H Jheon
- Department of Orthopaedic Surgery, University of California at San Francisco, 533 Parnassus Avenue, U-453, San Francisco, CA 94143-0514, USA
| | | |
Collapse
|
46
|
Osyczka AM, Damek-Poprawa M, Wojtowicz A, Akintoye SO. Age and skeletal sites affect BMP-2 responsiveness of human bone marrow stromal cells. Connect Tissue Res 2009; 50:270-7. [PMID: 19637063 PMCID: PMC2905683 DOI: 10.1080/03008200902846262] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Bone marrow stromal cells (BMSCs) contain osteoprogenitors responsive to stimulation by osteogenic growth factors like bone morphogenetic proteins (BMPs). When used as grafts, BMSCs can be harvested from different skeletal sites such as axial, appendicular, and orofacial bones, but the lower therapeutic efficacy of BMPs on BMSCs-responsiveness in humans compared to animal models may be due partly to effects of skeletal site and age of donor. We previously reported superior differentiation capacity and osteogenic properties of orofacial BMSCs relative to iliac crest BMSCs in same individuals. This study tested the hypothesis that recombinant human BMP-2 (rhBMP-2) stimulates human BMSCs differently based on age and skeletal site of harvest. Adult maxilla, mandible, and iliac crest BMSCs from same individuals and pediatric iliac crest BMSCs were comparatively assessed for BMP-2 responsiveness under serum-containing and serum-free insulin-supplemented culture conditions. Adult orofacial BMSCs were more BMP-2-responsive than iliac crest BMSCs based on higher gene transcripts of alkaline phosphatase, osteopontin, and osteogenic transcription factors MSX-2 and Osterix in serum-free insulin-containing medium. Pediatric iliac crest BMSCs were more responsive to rhBMP-2 than adult iliac crest BMSCs based on higher expression of alkaline phosphatase and osteopontin in serum-containing medium. Unlike orofacial BMSCs, MSX-2 and Osterix transcripts were similarly expressed by adult and pediatric iliac crest BMSCs in response to rhBMP-2. These data demonstrate that age and skeletal site-specific differences exist in BMSC osteogenic responsiveness to BMP-2 stimulation and suggest that MSX-2 and Osterix may be potential regulatory transcription factors in BMP-mediated osteogenesis of adult orofacial cells.
Collapse
Affiliation(s)
- Anna M. Osyczka
- Faculty of Biology and Earth Sciences, Department of Cytology & Histology, Jagiellonian University, Krakow, Poland
| | - Monika Damek-Poprawa
- Department of Oral Medicine, School of Dental Medicine University of Pennsylvania, Philadelphia PA
| | - Aleksandra Wojtowicz
- Faculty of Biology and Earth Sciences, Department of Cytology & Histology, Jagiellonian University, Krakow, Poland
| | - Sunday O. Akintoye
- Department of Oral Medicine, School of Dental Medicine University of Pennsylvania, Philadelphia PA
| |
Collapse
|
47
|
Abstract
How do cartilaginous elements attain their characteristic size and shape? Two intimately coupled processes underlie the patterned growth of cartilage. The first is histogenesis, which entails the production of cartilage as a discrete tissue; the second is morphogenesis, which pertains to the origins of three-dimensional form. Histogenesis relies on cues that promote the chondrogenic differentiation of mesenchymal cells, whereas morphogenesis requires information that imbues cartilage with stage-specific (e.g. embryonic versus adult), region-specific (e.g. cranial versus appendicular) and species-specific size and shape. Previous experiments indicate that early programmatic events and subsequent signaling interactions enable chondrogenic mesenchyme to undergo histogenesis and morphogenesis, but precise molecular and cellular mechanisms that generate cartilage size and shape remain unclear. In the face and jaws, neural crest-derived mesenchyme clearly plays an important role, given that this embryonic population serves as the source of chondrocytes and of species-specific patterning information. To elucidate mechanisms through which neural crest-derived mesenchyme affects cartilage size and shape, we made chimeras using quail and duck embryos, which differ markedly in their craniofacial anatomy and rates of maturation. Transplanting neural crest cells from quail to duck demonstrates that mesenchyme imparts both stage-specific and species-specific size and shape to cartilage by controlling the timing of preceding and requisite molecular and histogenic events. In particular, we find that mesenchyme regulates FGF signaling and the expression of downstream effectors such as sox9 and col2a1. The capacity of neural crest-derived mesenchyme to orchestrate spatiotemporal programs for chondrogenesis autonomously, and to implement cartilage size and shape across embryonic stages and between species simultaneously, provides a novel mechanism linking ontogeny and phylogeny.
Collapse
Affiliation(s)
| | - Richard A. Schneider
- University of California at San Francisco, Department of Orthopaedic Surgery, 533 Parnassus Avenue, U-453, San Francisco, CA 94143-0514, USA
| |
Collapse
|
48
|
|