1
|
das Neves SP, Delivanoglou N, Ren Y, Cucuzza CS, Makuch M, Almeida F, Sanchez G, Barber MJ, Rego S, Schrader R, Faroqi AH, Thomas JL, McLean PJ, Oliveira TG, Irani SR, Piehl F, Da Mesquita S. Meningeal lymphatic function promotes oligodendrocyte survival and brain myelination. Immunity 2024; 57:2328-2343.e8. [PMID: 39217987 PMCID: PMC11464205 DOI: 10.1016/j.immuni.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 04/17/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
The precise neurophysiological changes prompted by meningeal lymphatic dysfunction remain unclear. Here, we showed that inducing meningeal lymphatic vessel ablation in adult mice led to gene expression changes in glial cells, followed by reductions in mature oligodendrocyte numbers and specific lipid species in the brain. These phenomena were accompanied by altered meningeal adaptive immunity and brain myeloid cell activation. During brain remyelination, meningeal lymphatic dysfunction provoked a state of immunosuppression that contributed to delayed spontaneous oligodendrocyte replenishment and axonal loss. The deficiencies in mature oligodendrocytes and neuroinflammation due to impaired meningeal lymphatic function were solely recapitulated in immunocompetent mice. Patients diagnosed with multiple sclerosis presented reduced vascular endothelial growth factor C in the cerebrospinal fluid, particularly shortly after clinical relapses, possibly indicative of poor meningeal lymphatic function. These data demonstrate that meningeal lymphatics regulate oligodendrocyte function and brain myelination, which might have implications for human demyelinating diseases.
Collapse
Affiliation(s)
- Sofia P das Neves
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Yingxue Ren
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Chiara Starvaggi Cucuzza
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden; Centre for Neurology, Academic Specialist Center, Stockholm Health Services, Stockholm, Sweden
| | - Mateusz Makuch
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Francisco Almeida
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Guadalupe Sanchez
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Neuroscience Ph.D. Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Megan J Barber
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Shanon Rego
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Post-baccalaureate Research Education Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Racquelle Schrader
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Post-baccalaureate Research Education Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Ayman H Faroqi
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Neuroscience Ph.D. Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Jean-Leon Thomas
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA; Paris Brain Institute, Université Pierre et Marie Curie Paris 06 UMRS1127, Sorbonne Université, Paris Brain Institute, Paris, France
| | - Pamela J McLean
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Neuroscience Ph.D. Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Tiago Gil Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal; Department of Neuroradiology, Hospital de Braga, 4710-243 Braga, Portugal
| | - Sarosh R Irani
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Department of Clinical Neurology, John Radcliffe Hospital, Oxford, UK
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden; Centre for Neurology, Academic Specialist Center, Stockholm Health Services, Stockholm, Sweden
| | - Sandro Da Mesquita
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Neuroscience Ph.D. Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL 32224, USA.
| |
Collapse
|
2
|
Hochbaum DR, Hulshof L, Urke A, Wang W, Dubinsky AC, Farnsworth HC, Hakim R, Lin S, Kleinberg G, Robertson K, Park C, Solberg A, Yang Y, Baynard C, Nadaf NM, Beron CC, Girasole AE, Chantranupong L, Cortopassi MD, Prouty S, Geistlinger L, Banks AS, Scanlan TS, Datta SR, Greenberg ME, Boulting GL, Macosko EZ, Sabatini BL. Thyroid hormone remodels cortex to coordinate body-wide metabolism and exploration. Cell 2024; 187:5679-5697.e23. [PMID: 39178853 PMCID: PMC11455614 DOI: 10.1016/j.cell.2024.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 05/09/2024] [Accepted: 07/23/2024] [Indexed: 08/26/2024]
Abstract
Animals adapt to environmental conditions by modifying the function of their internal organs, including the brain. To be adaptive, alterations in behavior must be coordinated with the functional state of organs throughout the body. Here, we find that thyroid hormone-a regulator of metabolism in many peripheral organs-directly activates cell-type-specific transcriptional programs in the frontal cortex of adult male mice. These programs are enriched for axon-guidance genes in glutamatergic projection neurons, synaptic regulatory genes in both astrocytes and neurons, and pro-myelination factors in oligodendrocytes, suggesting widespread plasticity of cortical circuits. Indeed, whole-cell electrophysiology revealed that thyroid hormone alters excitatory and inhibitory synaptic transmission, an effect that requires thyroid hormone-induced gene regulatory programs in presynaptic neurons. Furthermore, thyroid hormone action in the frontal cortex regulates innate exploratory behaviors and causally promotes exploratory decision-making. Thus, thyroid hormone acts directly on the cerebral cortex in males to coordinate exploratory behaviors with whole-body metabolic state.
Collapse
Affiliation(s)
- Daniel R Hochbaum
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Society of Fellows, Harvard University, Cambridge, MA 02138, USA
| | - Lauren Hulshof
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Amanda Urke
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Wengang Wang
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Alexandra C Dubinsky
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Hannah C Farnsworth
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Richard Hakim
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Sherry Lin
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Giona Kleinberg
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Keiramarie Robertson
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Canaria Park
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Alyssa Solberg
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Yechan Yang
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Caroline Baynard
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Naeem M Nadaf
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Celia C Beron
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Allison E Girasole
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Lynne Chantranupong
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Marissa D Cortopassi
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Shannon Prouty
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Ludwig Geistlinger
- Center for Computational Biomedicine, Harvard Medical School, Boston, MA 02215, USA
| | - Alexander S Banks
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Thomas S Scanlan
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | | | | | - Gabriella L Boulting
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Evan Z Macosko
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Bernardo L Sabatini
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Hou X, Qu X, Chen W, Sang X, Ye Y, Wang C, Guo Y, Shi H, Yang C, Zhu K, Zhang Y, Xu H, Lv L, Zhang D, Hou L. CD36 deletion prevents white matter injury by modulating microglia polarization through the Traf5-MAPK signal pathway. J Neuroinflammation 2024; 21:148. [PMID: 38840180 PMCID: PMC11155181 DOI: 10.1186/s12974-024-03143-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/27/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND White matter injury (WMI) represents a significant etiological factor contributing to neurological impairment subsequent to Traumatic Brain Injury (TBI). CD36 receptors are recognized as pivotal participants in the pathogenesis of neurological disorders, including stroke and spinal cord injury. Furthermore, dynamic fluctuations in the phenotypic polarization of microglial cells have been intimately associated with the regenerative processes within the injured tissue following TBI. Nevertheless, there is a paucity of research addressing the impact of CD36 receptors on WMI and microglial polarization. This investigation aims to elucidate the functional role and mechanistic underpinnings of CD36 in modulating microglial polarization and WMI following TBI. METHODS TBI models were induced in murine subjects via controlled cortical impact (CCI). The spatiotemporal patterns of CD36 expression were examined through quantitative polymerase chain reaction (qPCR), Western blot analysis, and immunofluorescence staining. The extent of white matter injury was assessed via transmission electron microscopy, Luxol Fast Blue (LFB) staining, and immunofluorescence staining. Transcriptome sequencing was employed to dissect the molecular mechanisms underlying CD36 down-regulation and its influence on white matter damage. Microglial polarization status was ascertained using qPCR, Western blot analysis, and immunofluorescence staining. In vitro, a Transwell co-culture system was employed to investigate the impact of CD36-dependent microglial polarization on oligodendrocytes subjected to oxygen-glucose deprivation (OGD). RESULTS Western blot and qPCR analyses revealed that CD36 expression reached its zenith at 7 days post-TBI and remained sustained at this level thereafter. Immunofluorescence staining exhibited robust CD36 expression in astrocytes and microglia following TBI. Genetic deletion of CD36 ameliorated TBI-induced white matter injury, as evidenced by a reduced SMI-32/MBP ratio and G-ratio. Transcriptome sequencing unveiled differentially expressed genes enriched in processes linked to microglial activation, regulation of neuroinflammation, and the TNF signaling pathway. Additionally, bioinformatics analysis pinpointed the Traf5-p38 axis as a critical signaling pathway. In vivo and in vitro experiments indicated that inhibition of the CD36-Traf5-MAPK axis curtailed microglial polarization toward the pro-inflammatory phenotype. In a Transwell co-culture system, BV2 cells treated with LPS + IFN-γ exacerbated the damage of post-OGD oligodendrocytes, which could be rectified through CD36 knockdown in BV2 cells. CONCLUSIONS This study illuminates that the suppression of CD36 mitigates WMI by constraining microglial polarization towards the pro-inflammatory phenotype through the down-regulation of the Traf5-MAPK signaling pathway. Our findings present a potential therapeutic strategy for averting neuroinflammatory responses and ensuing WMI damage resulting from TBI.
Collapse
Affiliation(s)
- Xiaoxiang Hou
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Rd, Shanghai, China
| | - Xiaolin Qu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, China
| | - Wen Chen
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Rd, Shanghai, China
| | - Xianzheng Sang
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Rd, Shanghai, China
| | - Yichao Ye
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Rd, Shanghai, China
| | - Chengqing Wang
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Rd, Shanghai, China
| | - Yangu Guo
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Rd, Shanghai, China
| | - Hantong Shi
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Rd, Shanghai, China
| | - Chengzi Yang
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Rd, Shanghai, China
| | - Kaixin Zhu
- Department of Neurosurgery, The First Naval Hospital of Southern Theater Command, Zhanjiang, China
| | - Yelei Zhang
- Department of Neurosurgery, Xishan People's Hospital of Wuxi City, Wuxi, China
| | - Haoxiang Xu
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Rd, Shanghai, China
| | - Liquan Lv
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Rd, Shanghai, China
| | - Danfeng Zhang
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Rd, Shanghai, China.
| | - Lijun Hou
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Rd, Shanghai, China.
| |
Collapse
|
4
|
Nickerson KR, Tom I, Cortés E, Abolafia JR, Özkan E, Gonzalez LC, Jaworski A. WFIKKN2 is a bifunctional axon guidance cue that signals through divergent DCC family receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.544950. [PMID: 37398498 PMCID: PMC10312737 DOI: 10.1101/2023.06.15.544950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Axon pathfinding is controlled by attractive and repulsive molecular cues that activate receptors on the axonal growth cone, but the full repertoire of axon guidance molecules remains unknown. The vertebrate DCC receptor family contains the two closely related members DCC and Neogenin with prominent roles in axon guidance and three additional, divergent members - Punc, Nope, and Protogenin - for which functions in neural circuit formation have remained elusive. We identified a secreted Punc/Nope/Protogenin ligand, WFIKKN2, which guides mouse peripheral sensory axons through Nope-mediated repulsion. In contrast, WFIKKN2 attracts motor axons, but not via Nope. These findings identify WFIKKN2 as a bifunctional axon guidance cue that acts through divergent DCC family members, revealing a remarkable diversity of ligand interactions for this receptor family in nervous system wiring. One-Sentence Summary WFIKKN2 is a ligand for the DCC family receptors Punc, Nope, and Prtg that repels sensory axons and attracts motor axons.
Collapse
|
5
|
Zhao X, Jacob C. Mechanisms of Demyelination and Remyelination Strategies for Multiple Sclerosis. Int J Mol Sci 2023; 24:ijms24076373. [PMID: 37047344 PMCID: PMC10093908 DOI: 10.3390/ijms24076373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/19/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
All currently licensed medications for multiple sclerosis (MS) target the immune system. Albeit promising preclinical results demonstrated disease amelioration and remyelination enhancement via modulating oligodendrocyte lineage cells, most drug candidates showed only modest or no effects in human clinical trials. This might be due to the fact that remyelination is a sophistically orchestrated process that calls for the interplay between oligodendrocyte lineage cells, neurons, central nervous system (CNS) resident innate immune cells, and peripheral immune infiltrates and that this process may somewhat differ in humans and rodent models used in research. To ensure successful remyelination, the recruitment and activation/repression of each cell type should be regulated in a highly organized spatio–temporal manner. As a result, drug candidates targeting one single pathway or a single cell population have difficulty restoring the optimal microenvironment at lesion sites for remyelination. Therefore, when exploring new drug candidates for MS, it is instrumental to consider not only the effects on all CNS cell populations but also the optimal time of administration during disease progression. In this review, we describe the dysregulated mechanisms in each relevant cell type and the disruption of their coordination as causes of remyelination failure, providing an overview of the complex cell interplay in CNS lesion sites.
Collapse
|
6
|
Díaz MM, Tsenkina Y, Arizanovska D, Mehlen P, Liebl DJ. DCC/netrin-1 regulates cell death in oligodendrocytes after brain injury. Cell Death Differ 2023; 30:397-406. [PMID: 36456775 PMCID: PMC9950151 DOI: 10.1038/s41418-022-01091-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
Hallmark pathological features of brain trauma are axonal degeneration and demyelination because myelin-producing oligodendrocytes (OLs) are particularly vulnerable to injury-induced death signals. To reveal mechanisms responsible for this OL loss, we examined a novel class of "death receptors" called dependence receptors (DepRs). DepRs initiate pro-death signals in the absence of their respective ligand(s), yet little is known about their role after injury. Here, we investigated whether the deleted in colorectal cancer (DCC) DepR contributes to OL loss after brain injury. We found that administration of its netrin-1 ligand is sufficient to block OL cell death. We also show that upon acute injury, DCC is upregulated while netrin-1 is downregulated in perilesional tissues. Moreover, after genetically silencing pro-death activity using DCCD1290N mutant mice, we observed greater OL survival, greater myelin integrity, and improved motor function. Our findings uncover a novel role for the netrin-1/DCC pathway in regulating OL loss in the traumatically injured brain.
Collapse
Affiliation(s)
- Madelen M Díaz
- The Miami Project to Cure Paralysis, Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Yanina Tsenkina
- The Miami Project to Cure Paralysis, Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Dena Arizanovska
- The Miami Project to Cure Paralysis, Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Patrick Mehlen
- Apoptosis, Cancer and Development Laboratory - Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Université de Lyon, Université de Lyon1, Lyon, France.
| | - Daniel J Liebl
- The Miami Project to Cure Paralysis, Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
7
|
Rocha DN, Carvalho ED, Relvas JB, Oliveira MJ, Pêgo AP. Mechanotransduction: Exploring New Therapeutic Avenues in Central Nervous System Pathology. Front Neurosci 2022; 16:861613. [PMID: 35573316 PMCID: PMC9096357 DOI: 10.3389/fnins.2022.861613] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Cells are continuously exposed to physical forces and the central nervous system (CNS) is no exception. Cells dynamically adapt their behavior and remodel the surrounding environment in response to forces. The importance of mechanotransduction in the CNS is illustrated by exploring its role in CNS pathology development and progression. The crosstalk between the biochemical and biophysical components of the extracellular matrix (ECM) are here described, considering the recent explosion of literature demonstrating the powerful influence of biophysical stimuli like density, rigidity and geometry of the ECM on cell behavior. This review aims at integrating mechanical properties into our understanding of the molecular basis of CNS disease. The mechanisms that mediate mechanotransduction events, like integrin, Rho/ROCK and matrix metalloproteinases signaling pathways are revised. Analysis of CNS pathologies in this context has revealed that a wide range of neurological diseases share as hallmarks alterations of the tissue mechanical properties. Therefore, it is our belief that the understanding of CNS mechanotransduction pathways may lead to the development of improved medical devices and diagnostic methods as well as new therapeutic targets and strategies for CNS repair.
Collapse
Affiliation(s)
- Daniela Nogueira Rocha
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Eva Daniela Carvalho
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Faculdade de Engenharia (FEUP), Universidade do Porto, Porto, Portugal
| | - João Bettencourt Relvas
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Maria José Oliveira
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Ana Paula Pêgo
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| |
Collapse
|
8
|
Jiang L, Cheng L, Chen H, Dai H, An D, Ma Q, Zheng Y, Zhang X, Hu W, Chen Z. Histamine H2 receptor negatively regulates oligodendrocyte differentiation in neonatal hypoxic-ischemic white matter injury. J Exp Med 2021; 218:152128. [PMID: 32991666 PMCID: PMC7527977 DOI: 10.1084/jem.20191365] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 02/19/2020] [Accepted: 04/27/2020] [Indexed: 12/16/2022] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) with the pathological characteristic of white matter injury often leads to lifelong cognitive and neurobehavioral dysfunction, but relevant therapies to promote remyelination are still unavailable. We found that histamine H2 receptor (H2R) negatively regulated the oligodendrocyte differentiation rate without affecting the oligodendrocytes at the oligodendrocyte precursor cell stage or mature stage following oxygen-glucose deprivation in vitro. Notably, selective deletion of the H2R gene (Hrh2) in differentiating oligodendrocytes (Hrh2fl/fl;CNPase-Cre) improved their differentiation, remyelination, and functional recovery following neonatal hypoxia-ischemia in mice. The regulation of oligodendrocyte differentiation by H2R is mediated by binding with Axin2, which leads to up-regulation of the Wnt/β-catenin signaling pathway. Furthermore, H2R antagonists also promoted oligodendrocyte differentiation and remyelination and the recovery of cognition and motor functions following neonatal hypoxia-ischemia. Thus, histamine H2R in oligodendrocytes could serve as a novel and effective therapeutic target for the retard of oligodendrocyte differentiation and remyelination following neonatal hypoxia-ischemia. The H2R antagonists may have potential therapeutic value for neonatal HIE.
Collapse
Affiliation(s)
- Lei Jiang
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Department of Anatomy, School of Basic Medical Science, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Cheng
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Department of Anatomy, School of Basic Medical Science, Zhejiang University School of Medicine, Hangzhou, China
| | - Han Chen
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Department of Anatomy, School of Basic Medical Science, Zhejiang University School of Medicine, Hangzhou, China
| | - Haibin Dai
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Department of Anatomy, School of Basic Medical Science, Zhejiang University School of Medicine, Hangzhou, China
| | - Dadao An
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Department of Anatomy, School of Basic Medical Science, Zhejiang University School of Medicine, Hangzhou, China
| | - Qianyi Ma
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Department of Anatomy, School of Basic Medical Science, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanrong Zheng
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Department of Anatomy, School of Basic Medical Science, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiangnan Zhang
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Department of Anatomy, School of Basic Medical Science, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiwei Hu
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Department of Anatomy, School of Basic Medical Science, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhong Chen
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Department of Anatomy, School of Basic Medical Science, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
9
|
Vásquez X, Sánchez-Gómez P, Palma V. Netrin-1 in Glioblastoma Neovascularization: The New Partner in Crime? Int J Mol Sci 2021; 22:8248. [PMID: 34361013 PMCID: PMC8348949 DOI: 10.3390/ijms22158248] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive and common primary tumor of the central nervous system. It is characterized by having an infiltrating growth and by the presence of an excessive and aberrant vasculature. Some of the mechanisms that promote this neovascularization are angiogenesis and the transdifferentiation of tumor cells into endothelial cells or pericytes. In all these processes, the release of extracellular microvesicles by tumor cells plays an important role. Tumor cell-derived extracellular microvesicles contain pro-angiogenic molecules such as VEGF, which promote the formation of blood vessels and the recruitment of pericytes that reinforce these structures. The present study summarizes and discusses recent data from different investigations suggesting that Netrin-1, a highly versatile protein recently postulated as a non-canonical angiogenic ligand, could participate in the promotion of neovascularization processes in GBM. The relevance of determining the angiogenic signaling pathways associated with the interaction of Netrin-1 with its receptors is posed. Furthermore, we speculate that this molecule could form part of the microvesicles that favor abnormal tumor vasculature. Based on the studies presented, this review proposes Netrin-1 as a novel biomarker for GBM progression and vascularization.
Collapse
Affiliation(s)
- Ximena Vásquez
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, Universidad de Chile, Santiago 7800003, Chile;
| | - Pilar Sánchez-Gómez
- Neurooncology Unit, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
| | - Verónica Palma
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, Universidad de Chile, Santiago 7800003, Chile;
| |
Collapse
|
10
|
Binamé F, Pham-Van LD, Bagnard D. Manipulating oligodendrocyte intrinsic regeneration mechanism to promote remyelination. Cell Mol Life Sci 2021; 78:5257-5273. [PMID: 34019104 PMCID: PMC11073109 DOI: 10.1007/s00018-021-03852-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/14/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023]
Abstract
In demyelinated lesions, astrocytes, activated microglia and infiltrating macrophages secrete several factors regulating oligodendrocyte precursor cells' behaviour. What appears to be the initiation of an intrinsic mechanism of myelin repair is only leading to partial recovery and inefficient remyelination, a process worsening over the course of the disease. This failure is largely due to the concomitant accumulation of inhibitory cues in and around the lesion sites opposing to growth promoting factors. Here starts a complex game of interactions between the signalling pathways controlling oligodendrocytes migration or differentiation. Receptors of positive or negative cues are modulating Ras, PI3K or RhoGTPases pathways acting on oligodendrocyte cytoskeleton remodelling. From the description of this intricate signalling network, this review addresses the extent to which the modulation of the global response to inhibitory cues may pave the route towards novel therapeutic approaches for myelin repair.
Collapse
Affiliation(s)
- Fabien Binamé
- INSERM U1119, Biopathology of Myelin, Neuroprotection and Therapeutic Strategy (BMNST Lab), Labex Medalis, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Pôle API, Ecole Supérieure de Biotechnologie, 300 Boulevard Sébastien Brant, 67412, Illkirch, France
| | - Lucas D Pham-Van
- INSERM U1119, Biopathology of Myelin, Neuroprotection and Therapeutic Strategy (BMNST Lab), Labex Medalis, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Pôle API, Ecole Supérieure de Biotechnologie, 300 Boulevard Sébastien Brant, 67412, Illkirch, France
| | - Dominique Bagnard
- INSERM U1119, Biopathology of Myelin, Neuroprotection and Therapeutic Strategy (BMNST Lab), Labex Medalis, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Pôle API, Ecole Supérieure de Biotechnologie, 300 Boulevard Sébastien Brant, 67412, Illkirch, France.
| |
Collapse
|
11
|
Morcom L, Gobius I, Marsh APL, Suárez R, Lim JWC, Bridges C, Ye Y, Fenlon LR, Zagar Y, Douglass AM, Donahoo ALS, Fothergill T, Shaikh S, Kozulin P, Edwards TJ, Cooper HM, Sherr EH, Chédotal A, Leventer RJ, Lockhart PJ, Richards LJ. DCC regulates astroglial development essential for telencephalic morphogenesis and corpus callosum formation. eLife 2021; 10:e61769. [PMID: 33871356 PMCID: PMC8116049 DOI: 10.7554/elife.61769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 04/18/2021] [Indexed: 02/04/2023] Open
Abstract
The forebrain hemispheres are predominantly separated during embryogenesis by the interhemispheric fissure (IHF). Radial astroglia remodel the IHF to form a continuous substrate between the hemispheres for midline crossing of the corpus callosum (CC) and hippocampal commissure (HC). Deleted in colorectal carcinoma (DCC) and netrin 1 (NTN1) are molecules that have an evolutionarily conserved function in commissural axon guidance. The CC and HC are absent in Dcc and Ntn1 knockout mice, while other commissures are only partially affected, suggesting an additional aetiology in forebrain commissure formation. Here, we find that these molecules play a critical role in regulating astroglial development and IHF remodelling during CC and HC formation. Human subjects with DCC mutations display disrupted IHF remodelling associated with CC and HC malformations. Thus, axon guidance molecules such as DCC and NTN1 first regulate the formation of a midline substrate for dorsal commissures prior to their role in regulating axonal growth and guidance across it.
Collapse
Affiliation(s)
- Laura Morcom
- The University of Queensland, Queensland Brain InstituteBrisbaneAustralia
| | - Ilan Gobius
- The University of Queensland, Queensland Brain InstituteBrisbaneAustralia
| | - Ashley PL Marsh
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children’s Research Institute, Royal Children’s HospitalParkvilleAustralia
- Department of Paediatrics, University of MelbourneParkvilleAustralia
| | - Rodrigo Suárez
- The University of Queensland, Queensland Brain InstituteBrisbaneAustralia
| | - Jonathan WC Lim
- The University of Queensland, Queensland Brain InstituteBrisbaneAustralia
| | - Caitlin Bridges
- The University of Queensland, Queensland Brain InstituteBrisbaneAustralia
| | - Yunan Ye
- The University of Queensland, Queensland Brain InstituteBrisbaneAustralia
| | - Laura R Fenlon
- The University of Queensland, Queensland Brain InstituteBrisbaneAustralia
| | - Yvrick Zagar
- Sorbonne Université, INSERM, CNRS, Institut de la VisionParisFrance
| | - Amelia M Douglass
- The University of Queensland, Queensland Brain InstituteBrisbaneAustralia
| | | | - Thomas Fothergill
- The University of Queensland, Queensland Brain InstituteBrisbaneAustralia
| | - Samreen Shaikh
- The University of Queensland, Queensland Brain InstituteBrisbaneAustralia
| | - Peter Kozulin
- The University of Queensland, Queensland Brain InstituteBrisbaneAustralia
| | - Timothy J Edwards
- The University of Queensland, Queensland Brain InstituteBrisbaneAustralia
- The University of Queensland, Faculty of MedicineBrisbaneAustralia
| | - Helen M Cooper
- The University of Queensland, Queensland Brain InstituteBrisbaneAustralia
| | - IRC5 Consortium
- Members and Affiliates of the International Research Consortium for the Corpus Callosum and Cerebral Connectivity (IRC5)Los AngelesUnited States
| | - Elliott H Sherr
- Departments of Neurology and Pediatrics, Institute of Human Genetics and Weill Institute of Neurosciences, University of California, San FranciscoSan FranciscoUnited States
| | - Alain Chédotal
- Sorbonne Université, INSERM, CNRS, Institut de la VisionParisFrance
| | - Richard J Leventer
- Department of Paediatrics, University of MelbourneParkvilleAustralia
- Neuroscience Research Group, Murdoch Children’s Research InstituteParkvilleAustralia
- Department of Neurology, University of Melbourne, Royal Children’s HospitalParkvilleAustralia
| | - Paul J Lockhart
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children’s Research Institute, Royal Children’s HospitalParkvilleAustralia
- Department of Paediatrics, University of MelbourneParkvilleAustralia
| | - Linda J Richards
- The University of Queensland, Queensland Brain InstituteBrisbaneAustralia
- The University of Queensland, School of Biomedical SciencesBrisbaneAustralia
| |
Collapse
|
12
|
c-Jun N-terminal kinase 1 (JNK1) modulates oligodendrocyte progenitor cell architecture, proliferation and myelination. Sci Rep 2021; 11:7264. [PMID: 33790350 PMCID: PMC8012703 DOI: 10.1038/s41598-021-86673-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 03/16/2021] [Indexed: 02/01/2023] Open
Abstract
During Central Nervous System ontogenesis, myelinating oligodendrocytes (OLs) arise from highly ramified and proliferative precursors called oligodendrocyte progenitor cells (OPCs). OPC architecture, proliferation and oligodendro-/myelino-genesis are finely regulated by the interplay of cell-intrinsic and extrinsic factors. A variety of extrinsic cues converge on the extracellular signal-regulated kinase/mitogen activated protein kinase (ERK/MAPK) pathway. Here we found that the germinal ablation of the MAPK c-Jun N-Terminal Kinase isoform 1 (JNK1) results in a significant reduction of myelin in the cerebral cortex and corpus callosum at both postnatal and adult stages. Myelin alterations are accompanied by higher OPC density and proliferation during the first weeks of life, consistent with a transient alteration of mechanisms regulating OPC self-renewal and differentiation. JNK1 KO OPCs also show smaller occupancy territories and a less complex branching architecture in vivo. Notably, these latter phenotypes are recapitulated in pure cultures of JNK1 KO OPCs and of WT OPCs treated with the JNK inhibitor D-JNKI-1. Moreover, JNK1 KO and WT D-JNKI-1 treated OLs, while not showing overt alterations of differentiation in vitro, display a reduced surface compared to controls. Our results unveil a novel player in the complex regulation of OPC biology, on the one hand showing that JNK1 ablation cell-autonomously determines alterations of OPC proliferation and branching architecture and, on the other hand, suggesting that JNK1 signaling in OLs participates in myelination in vivo.
Collapse
|
13
|
Nakamura DS, Kennedy TE. Netrin-1 marshals mitochondrial movement, morphology, and metabolism in myelin. Neural Regen Res 2021; 16:2399-2400. [PMID: 33907016 PMCID: PMC8374595 DOI: 10.4103/1673-5374.313028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Diane S Nakamura
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Timothy E Kennedy
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| |
Collapse
|
14
|
Nakamura DS, Lin YH, Khan D, Gothié JDM, de Faria O, Dixon JA, McBride HM, Antel JP, Kennedy TE. Mitochondrial dynamics and bioenergetics regulated by netrin-1 in oligodendrocytes. Glia 2020; 69:392-412. [PMID: 32910475 DOI: 10.1002/glia.23905] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 01/01/2023]
Abstract
Mitochondria are dynamic organelles that produce energy and molecular precursors that are essential for myelin synthesis. Unlike in neurons, mitochondria in oligodendrocytes increase intracellular movement in response to glutamatergic activation and are more susceptible to oxidative stress than in astrocytes or microglia. The signaling pathways that regulate these cell type-specific mitochondrial responses in oligodendrocytes are not understood. Here, we visualized mitochondria migrating through thin cytoplasmic channels crossing myelin basic protein-positive compacted membranes and localized within paranodal loop cytoplasm. We hypothesized that local extracellular enrichment of netrin-1 might regulate the recruitment and function of paranodal proteins and organelles, including mitochondria. We identified rapid recruitment of mitochondria and paranodal proteins, including neurofascin 155 (NF155) and the netrin receptor deleted in colorectal carcinoma (DCC), to sites of contact between oligodendrocytes and netrin-1-coated microbeads in vitro. We provide evidence that Src-family kinase activation and Rho-associated protein kinase (ROCK) inhibition downstream of netrin-1 induces mitochondrial elongation, hyperpolarization of the mitochondrial inner membrane, and increases glycolysis. Our findings identify a signaling mechanism in oligodendrocytes that is sufficient to locally recruit paranodal proteins and regulate the subcellular localization, morphology, and function of mitochondria.
Collapse
Affiliation(s)
- Diane S Nakamura
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Yun Hsuan Lin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Damla Khan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Jean-David M Gothié
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Omar de Faria
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - James A Dixon
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Heidi M McBride
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Jack P Antel
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Timothy E Kennedy
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
15
|
Sin WC, Tam N, Moniz D, Lee C, Church J. Na/H exchanger NHE1 acts upstream of rho GTPases to promote neurite outgrowth. J Cell Commun Signal 2020; 14:325-333. [PMID: 32144636 DOI: 10.1007/s12079-020-00556-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/28/2020] [Indexed: 02/05/2023] Open
Abstract
Na+/H+ exchanger NHE1, a major determinant of intracellular pH (pHi) in mammalian central neurons, promotes neurite outgrowth under both basal and netrin-1-stimulated conditions. The small GTP binding proteins and their effectors have a dominant role in netrin-1-stimulated neurite outgrowth. Since NHE1 has been shown previously to work downstream of the Rho GTPases-mediated polarized membrane protrusion in non-neuronal cells, we examined whether NHE1 has a similar relationship with Cdc42, Rac1 and RhoA in neuronal morphogenesis. Interestingly, our results suggest the possibility that NHE1 acting upstream of Rho GTPases to promote neurite outgrowth induced by netrin-1. First, we found that netrin-1-induced increases in the activities of Rho GTPases using FRET (Forster Resonance Energy Transfer) analyses in individual growth cones; furthermore, their increased activities were abolished by cariporide, a specific NHE1 inhibitor. Second, NHE1 inhibition had no effect on neurite retraction induced by L-α-Lysophosphatidic acid (LPA), a potent RhoA activator. The regulation of Rho GTPases by NHE1 was further evidenced by reduced Rac1, Cdc42 and RhoA activities in NHE1-null neurons. Taken together, our findings suggest that NHE1-dependent neuronal morphogenesis involves the activation of Rho-family of small GTPases.
Collapse
Affiliation(s)
- Wun Chey Sin
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada.
| | - Nicola Tam
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - David Moniz
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Connie Lee
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - John Church
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
16
|
Perlman K, Couturier CP, Yaqubi M, Tanti A, Cui QL, Pernin F, Stratton JA, Ragoussis J, Healy L, Petrecca K, Dudley R, Srour M, Hall JA, Kennedy TE, Mechawar N, Antel JP. Developmental trajectory of oligodendrocyte progenitor cells in the human brain revealed by single cell RNA sequencing. Glia 2020; 68:1291-1303. [PMID: 31958186 DOI: 10.1002/glia.23777] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 12/30/2022]
Abstract
Characterizing the developmental trajectory of oligodendrocyte progenitor cells (OPC) is of great interest given the importance of these cells in the remyelination process. However, studies of human OPC development remain limited by the availability of whole cell samples and material that encompasses a wide age range, including time of peak myelination. In this study, we apply single cell RNA sequencing to viable whole cells across the age span and link transcriptomic signatures of oligodendrocyte-lineage cells with stage-specific functional properties. Cells were isolated from surgical tissue samples of second-trimester fetal, 2-year-old pediatric, 13-year-old adolescent, and adult donors by mechanical and enzymatic digestion, followed by percoll gradient centrifugation. Gene expression was analyzed using droplet-based RNA sequencing (10X Chromium). Louvain clustering analysis identified three distinct cellular subpopulations based on 5,613 genes, comprised of an early OPC (e-OPC) group, a late OPC group (l-OPC), and a mature OL (MOL) group. Gene ontology terms enriched for e-OPCs included cell cycle and development, for l-OPCs included extracellular matrix and cell adhesion, and for MOLs included myelination and cytoskeleton. The e-OPCs were mostly confined to the premyelinating fetal group, and the l-OPCs were most highly represented in the pediatric age group, corresponding to the peak age of myelination. Cells expressing a signature characteristic of l-OPCs were identified in the adult brain in situ using RNAScope. These findings highlight the transcriptomic variability in OL-lineage cells before, during, and after peak myelination and contribute to identifying novel pathways required to achieve remyelination.
Collapse
Affiliation(s)
- Kelly Perlman
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada.,Department of Psychiatry, Douglas Mental Health University Institute, Montreal, Canada
| | - Charles P Couturier
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Moein Yaqubi
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Arnaud Tanti
- Department of Psychiatry, Douglas Mental Health University Institute, Montreal, Canada
| | - Qiao-Ling Cui
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Florian Pernin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Jo Anne Stratton
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Jiannis Ragoussis
- Department of Human Genetics and Bioengineering, McGill University and Genome Quebec Innovation Centre, Montreal, Canada
| | - Luke Healy
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Kevin Petrecca
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Roy Dudley
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada.,Department of Pediatric Neurosurgery, Montreal Children's Hospital, Montreal, Canada
| | - Myriam Srour
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada.,Department of Pediatric Neurosurgery, Montreal Children's Hospital, Montreal, Canada
| | - Jeffrey A Hall
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Timothy E Kennedy
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Naguib Mechawar
- Department of Psychiatry, Douglas Mental Health University Institute, Montreal, Canada
| | - Jack P Antel
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| |
Collapse
|
17
|
Thomason EJ, Escalante M, Osterhout DJ, Fuss B. The oligodendrocyte growth cone and its actin cytoskeleton: A fundamental element for progenitor cell migration and CNS myelination. Glia 2019; 68:1329-1346. [PMID: 31696982 DOI: 10.1002/glia.23735] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/26/2019] [Accepted: 10/01/2019] [Indexed: 01/06/2023]
Abstract
Cells of the oligodendrocyte (OLG) lineage engage in highly motile behaviors that are crucial for effective central nervous system (CNS) myelination. These behaviors include the guided migration of OLG progenitor cells (OPCs), the surveying of local environments by cellular processes extending from differentiating and pre-myelinating OLGs, and during the process of active myelin wrapping, the forward movement of the leading edge of the myelin sheath's inner tongue along the axon. Almost all of these motile behaviors are driven by actin cytoskeletal dynamics initiated within a lamellipodial structure that is located at the tip of cellular OLG/OPC processes and is structurally as well as functionally similar to the neuronal growth cone. Accordingly, coordinated stoichiometries of actin filament (F-actin) assembly and disassembly at these OLG/OPC growth cones have been implicated in directing process outgrowth and guidance, and the initiation of myelination. Nonetheless, the functional importance of the OLG/OPC growth cone still remains to be fully understood, and, as a unique aspect of actin cytoskeletal dynamics, F-actin depolymerization and disassembly start to predominate at the transition from myelination initiation to myelin wrapping. This review provides an overview of the current knowledge about OLG/OPC growth cones, and it proposes a model in which actin cytoskeletal dynamics in OLG/OPC growth cones are a main driver for morphological transformations and motile behaviors. Remarkably, these activities, at least at the later stages of OLG maturation, may be regulated independently from the transcriptional gene expression changes typically associated with CNS myelination.
Collapse
Affiliation(s)
- Elizabeth J Thomason
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Miguel Escalante
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia.,Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Donna J Osterhout
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York
| | - Babette Fuss
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| |
Collapse
|
18
|
Zhang JH, Zhao YF, He XX, Zhao Y, He ZX, Zhang L, Huang Y, Wang YB, Hu L, Liu L, Yu HL, Xu JH, Lai MM, Zhao DD, Cui L, Guo WX, Xiong WC, Ding YQ, Zhu XJ. DCC-Mediated Dab1 Phosphorylation Participates in the Multipolar-to-Bipolar Transition of Migrating Neurons. Cell Rep 2019; 22:3598-3611. [PMID: 29590626 DOI: 10.1016/j.celrep.2018.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 02/10/2018] [Accepted: 02/28/2018] [Indexed: 11/25/2022] Open
Abstract
Newborn neurons undergo inside-out migration to their final destinations during neocortical development. Reelin-induced tyrosine phosphorylation of disabled 1 (Dab1) is a critical mechanism controlling cortical neuron migration. However, the roles of Reelin-independent phosphorylation of Dab1 remain unclear. Here, we report that deleted in colorectal carcinoma (DCC) interacts with Dab1 via its P3 domain. Netrin 1, a DCC ligand, induces Dab1 phosphorylation at Y220 and Y232. Interestingly, knockdown of DCC or truncation of its P3 domain dramatically delays neuronal migration and impairs the multipolar-to-bipolar transition of migrating neurons. Notably, the migration delay and morphological transition defects are rescued by the expression of a phospho-mimetic Dab1 or a constitutively active form of Fyn proto-oncogene (Fyn), a member of the Src-family tyrosine kinases that effectively induces Dab1 phosphorylation. Collectively, these findings illustrate a DCC-Dab1 interaction that ensures proper neuronal migration during neocortical development.
Collapse
Affiliation(s)
- Jian-Hua Zhang
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130021, China
| | - Yi-Fei Zhao
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130021, China
| | - Xiao-Xiao He
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130021, China
| | - Yang Zhao
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130021, China
| | - Zi-Xuan He
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130021, China
| | - Lei Zhang
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, and Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai 200092, China
| | - Ying Huang
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, and Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai 200092, China
| | - Yu-Bing Wang
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, and Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai 200092, China
| | - Ling Hu
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, and Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai 200092, China
| | - Lin Liu
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130021, China
| | - Hua-Li Yu
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130021, China
| | - Jia-Hui Xu
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130021, China
| | - Ming-Ming Lai
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130021, China
| | - Dong-Dong Zhao
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130021, China
| | - Lei Cui
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130021, China
| | - Wei-Xiang Guo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wen-Cheng Xiong
- Department of Neurology, Georgia Regents University, Augusta, GA, USA; Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, OH 44120, USA
| | - Yu-Qiang Ding
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, and Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai 200092, China; Institute of Brain Sciences, Fudan University, Shanghai 200031, China.
| | - Xiao-Juan Zhu
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130021, China.
| |
Collapse
|
19
|
White Matter Stroke Induces a Unique Oligo-Astrocyte Niche That Inhibits Recovery. J Neurosci 2019; 39:9343-9359. [PMID: 31591156 DOI: 10.1523/jneurosci.0103-19.2019] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 08/21/2019] [Accepted: 09/08/2019] [Indexed: 12/15/2022] Open
Abstract
Subcortical white matter stroke is a common stroke subtype. White matter stroke stimulates adjacent oligodendrocyte progenitor cells (OPCs) to divide and migrate to the lesion, but stroke OPCs have only a limited differentiation into mature oligodendrocytes. To understand the molecular systems that are active in OPC responses in white matter stroke, OPCs were virally labeled and laser-captured in the region of partial damage adjacent to the infarct in male mice. RNAseq indicates two distinct OPC transcriptomes associated with the proliferative and limited-regeneration phases of OPCs after stroke. Molecular pathways related to nuclear receptor activation, ECM turnover, and lipid biosynthesis are activated during proliferative OPC phases after stroke; inflammatory and growth factor signaling is activated in the later stage of limited OPC differentiation. Within ECM proteins, Matrilin-2 is induced early after stroke and then rapidly downregulated. Prediction of upstream regulators of the OPC stroke transcriptome identifies several candidate molecules, including Inhibin A-a negative regulator of Matrilin-2. Inhibin A is induced in reactive astrocytes after stroke, including in humans. In functional assays, Matrilin-2 induces OPC differentiation, and Inhibin A inhibits OPC Matrilin-2 expression and inhibits OPC differentiation. In vivo, Matrilin-2 promotes motor recovery after white matter stroke, and promotes OPC differentiation and ultrastructural evidence of remyelination. These studies show that white matter stroke induces an initial proliferative and reparative response in OPCs, but this is blocked by a local cellular niche where reactive astrocytes secrete Inhibin A, downregulating Matrilin-2 and blocking myelin repair and recovery.SIGNIFICANCE STATEMENT Stroke in the cerebral white matter of the brain is common. The biology of damage and recovery in this stroke subtype are not well defined. These studies use cell-specific RNA sequencing and gain-of-function studies to show that white matter stroke induces a glial signaling niche, present in both humans and mice, between reactive astrocytes and oligodendrocyte progenitor cells. Astrocyte secretion of Inhibin A and downregulation of oligodendrocyte precursor production of Matrilin-2 limit OPC differentiation, tissue repair, and recovery in this disease.
Collapse
|
20
|
Crespo-Garcia S, Reichhart N, Wigdahl J, Skosyrski S, Kociok N, Strauß O, Joussen AM. Lack of netrin-4 alters vascular remodeling in the retina. Graefes Arch Clin Exp Ophthalmol 2019; 257:2179-2184. [PMID: 31451908 DOI: 10.1007/s00417-019-04447-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/15/2019] [Accepted: 08/19/2019] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Netrin-4 (NTN4) is a protein that plays an important role in the regulation of angiogenesis in the pathological retina. Some evidences show that it can also have a role in inflammation and vascular stability. We will explore these questions in vivo in the mature mouse retina. METHODS We created a NTN4 knockout that expresses EGFP in mononuclear phagocytes (CSFR1-positive cells) to track inflammation in vivo in the retina by scanning laser ophthalmoscopy (SLO). Fundus angiography permitted to study blood vessels. Retinal function was assessed with electroretinography (ERG). RESULTS Lack of NTN4 leads to an increased amount of amoeboid mononuclear phagocytes in the adult retina, and blood vessels displayed increased tortuosity when compared with the wildtype. Inner retina function also seemed affected in NTN4 null. Lack of NTN4 resulted in a higher persistence of hyaloid artery and spontaneous leakage in the adult retina. No differences were found regarding vessel bifurcation, vessel width, or vein/artery ratio. CONCLUSIONS These in vivo data show for the first time that lack of NTN4 induces changes in the retinal vascular phenotype in a non-pathological scenario. This evidence widens the role of NTN4 as a guidance cue in vascular remodeling.
Collapse
Affiliation(s)
- Sergio Crespo-Garcia
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Freie Universität, Humboldt-University, the Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany. .,Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, Montréal, Canada. .,Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, Montréal, Canada.
| | - Nadine Reichhart
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Freie Universität, Humboldt-University, the Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | | | - Sergej Skosyrski
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Freie Universität, Humboldt-University, the Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Norbert Kociok
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Freie Universität, Humboldt-University, the Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Olaf Strauß
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Freie Universität, Humboldt-University, the Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Antonia M Joussen
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Freie Universität, Humboldt-University, the Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| |
Collapse
|
21
|
Galloway DA, Gowing E, Setayeshgar S, Kothary R. Inhibitory milieu at the multiple sclerosis lesion site and the challenges for remyelination. Glia 2019; 68:859-877. [PMID: 31441132 DOI: 10.1002/glia.23711] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 06/26/2019] [Accepted: 07/26/2019] [Indexed: 12/14/2022]
Abstract
Regeneration of myelin, following injury, can occur within the central nervous system to reinstate proper axonal conductance and provide trophic support. Failure to do so renders the axons vulnerable, leading to eventual degeneration, and neuronal loss. Thus, it is essential to understand the mechanisms by which remyelination or failure to remyelinate occur, particularly in the context of demyelinating and neurodegenerative disorders. In multiple sclerosis, oligodendrocyte progenitor cells (OPCs) migrate to lesion sites to repair myelin. However, during disease progression, the ability of OPCs to participate in remyelination diminishes coincident with worsening of the symptoms. Remyelination is affected by a broad range of cues from intrinsic programming of OPCs and extrinsic local factors to the immune system and other systemic elements including diet and exercise. Here we review the literature on these diverse inhibitory factors and the challenges they pose to remyelination. Results spanning several disciplines from fundamental preclinical studies to knowledge gained in the clinic will be discussed.
Collapse
Affiliation(s)
- Dylan A Galloway
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Elizabeth Gowing
- Neurosciences Department, Faculty of Medicine, Centre de recherche du CHUM, Université de Montreal, Montreal, Quebec, Canada
| | - Solmaz Setayeshgar
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Medicine, Department of Biochemistry, Microbiology and Immunology, and Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
22
|
Yuan Z, Chen P, Zhang T, Shen B, Chen L. Agenesis and Hypomyelination of Corpus Callosum in Mice Lacking Nsun5, an RNA Methyltransferase. Cells 2019; 8:cells8060552. [PMID: 31174389 PMCID: PMC6627898 DOI: 10.3390/cells8060552] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 11/16/2022] Open
Abstract
Williams-Beuren syndrome (WBS) is caused by microdeletions of 28 genes and is characterized by cognitive disorder and hypotrophic corpus callosum (CC). Nsun5 gene, which encodes cytosine-5 RNA methyltransferase, is located in the deletion loci of WBS. We have reported that single-gene knockout of Nsun5 (Nsun5-KO) in mice impairs spatial cognition. Herein, we report that postnatal day (PND) 60 Nsun5-KO mice showed the volumetric reduction of CC with a decline in the number of myelinated axons and loose myelin sheath. Nsun5 was highly expressed in callosal oligodendrocyte precursor cells (OPCs) and oligodendrocytes (OLs) from PND7 to PND28. The numbers of OPCs and OLs in CC of PND7-28 Nsun5-KO mice were significantly reduced compared to wild-type littermates. Immunohistochemistry and Western blot analyses of myelin basic protein (MBP) showed the hypomyelination in the CC of PND28 Nsun5-KO mice. The Nsun5 deletion suppressed the proliferation of OPCs but did not affect transition of radial glial cells into OPCs or cell cycle exit of OPCs. The protein levels, rather than transcriptional levels, of CDK1, CDK2 and Cdc42 in the CC of PND7 and PND14 Nsun5-KO mice were reduced. These findings point to the involvement of Nsun5 deletion in agenesis of CC observed in WBS.
Collapse
Affiliation(s)
- Zihao Yuan
- State Key Laboratory of Reproductive Medicine, Department of Physiology, Nanjing Medical University, Nanjing 211166, China.
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China.
| | - Peipei Chen
- State Key Laboratory of Reproductive Medicine, Department of Physiology, Nanjing Medical University, Nanjing 211166, China.
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China.
| | - Tingting Zhang
- State Key Laboratory of Reproductive Medicine, Department of Physiology, Nanjing Medical University, Nanjing 211166, China.
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China.
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine, Department of Physiology, Nanjing Medical University, Nanjing 211166, China.
| | - Ling Chen
- State Key Laboratory of Reproductive Medicine, Department of Physiology, Nanjing Medical University, Nanjing 211166, China.
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
23
|
Kishida N, Maki T, Takagi Y, Yasuda K, Kinoshita H, Ayaki T, Noro T, Kinoshita Y, Ono Y, Kataoka H, Yoshida K, Lo EH, Arai K, Miyamoto S, Takahashi R. Role of Perivascular Oligodendrocyte Precursor Cells in Angiogenesis After Brain Ischemia. J Am Heart Assoc 2019; 8:e011824. [PMID: 31020902 PMCID: PMC6512138 DOI: 10.1161/jaha.118.011824] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 03/21/2019] [Indexed: 02/06/2023]
Abstract
Background Oligodendrocyte precursor cells ( OPC s) regulate neuronal, glial, and vascular systems in diverse ways and display phenotypic heterogeneity beyond their established role as a reservoir for mature oligodendrocytes. However, the detailed phenotypic changes of OPC s after cerebral ischemia remain largely unknown. Here, we aimed to investigate the roles of reactive OPC s in the ischemic brain. Methods and Results The behavior of OPC s was evaluated in a mouse model of ischemic stroke produced by transient middle cerebral artery occlusion in vivo. For in vitro experiments, the phenotypic change of OPC s after oxygen glucose derivation was examined using a primary rat OPC culture. Furthermore, the therapeutic potential of hypoxic OPC s was evaluated in a mouse model of middle cerebral artery occlusion in vivo. Perivascular OPC s in the cerebral cortex were increased alongside poststroke angiogenesis in a mouse model of middle cerebral artery occlusion. In vitro RNA -seq analysis revealed that primary cultured OPC s increased the gene expression of numerous pro-angiogenic factors after oxygen glucose derivation. Hypoxic OPC s secreted a greater amount of pro-angiogenic factors, such as vascular endothelial growth factor and angiopoietin-1, compared with normoxic OPC s. Hypoxic OPC -derived conditioned media increased the viability and tube formation of endothelial cells. In vivo studies also demonstrated that 5 consecutive daily treatments with hypoxic OPC -conditioned media, beginning 2 days after middle cerebral artery occlusion, facilitated poststroke angiogenesis, alleviated infarct volume, and improved functional disabilities. Conclusions Following cerebral ischemia, the phenotype of OPC s in the cerebral cortex shifts from the parenchymal subtype to the perivascular subtype, which can promote angiogenesis. The optimal use of hypoxic OPC s secretome would provide a novel therapeutic option for stroke.
Collapse
MESH Headings
- Angiogenic Proteins/genetics
- Angiogenic Proteins/metabolism
- Animals
- Behavior, Animal
- Brain/blood supply
- Cell Hypoxia
- Cells, Cultured
- Culture Media, Conditioned/metabolism
- Disease Models, Animal
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Infarction, Middle Cerebral Artery/metabolism
- Infarction, Middle Cerebral Artery/pathology
- Infarction, Middle Cerebral Artery/physiopathology
- Infarction, Middle Cerebral Artery/psychology
- Male
- Mice, Inbred C57BL
- Motor Activity
- Neovascularization, Physiologic
- Oligodendroglia/metabolism
- Oligodendroglia/pathology
- Paracrine Communication
- Phenotype
- Rats, Sprague-Dawley
- Recovery of Function
- Signal Transduction
- Stem Cells/metabolism
- Stem Cells/pathology
Collapse
Affiliation(s)
- Natsue Kishida
- Department of NeurologyGraduate School of MedicineKyoto UniversityKyotoJapan
- Department of NeurosurgeryGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Takakuni Maki
- Department of NeurologyGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Yasushi Takagi
- Department of NeurosurgeryGraduate School of MedicineKyoto UniversityKyotoJapan
- Department of NeurosurgeryGraduate School of MedicineTokushima UniversityTokushimaJapan
| | - Ken Yasuda
- Department of NeurologyGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Hisanori Kinoshita
- Department of NeurologyGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Takashi Ayaki
- Department of NeurologyGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Takayuki Noro
- Department of NeurologyGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Yusuke Kinoshita
- Department of Developmental NeurobiologyKAN Research Institute, Inc.KobeJapan
| | - Yuichi Ono
- Department of Developmental NeurobiologyKAN Research Institute, Inc.KobeJapan
| | - Hiroharu Kataoka
- Department of NeurosurgeryGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Kazumichi Yoshida
- Department of NeurosurgeryGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Eng H. Lo
- Departments of Radiology and NeurologyMassachusetts General Hospital and Harvard Medical SchoolCharlestownMassachusettsUSA
| | - Ken Arai
- Departments of Radiology and NeurologyMassachusetts General Hospital and Harvard Medical SchoolCharlestownMassachusettsUSA
| | - Susumu Miyamoto
- Department of NeurosurgeryGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Ryosuke Takahashi
- Department of NeurologyGraduate School of MedicineKyoto UniversityKyotoJapan
| |
Collapse
|
24
|
Downregulation of the Netrin-1 Receptor UNC5b Underlies Increased Placental Angiogenesis in Human Gestational Diabetes Mellitus. Int J Mol Sci 2019; 20:ijms20061408. [PMID: 30897795 PMCID: PMC6470495 DOI: 10.3390/ijms20061408] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/28/2019] [Accepted: 01/31/2019] [Indexed: 11/17/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is a common metabolic disorder, defined by high blood glucose levels during pregnancy, which affects foetal and post-natal development. However, the cellular and molecular mechanisms of this detrimental condition are still poorly understood. A dysregulation in circulating angiogenic trophic factors, due to a dysfunction of the feto-placental unit, has been proposed to underlie GDM. But even the detailed study of canonical pro-angiogenic factors like vascular endothelial growth factor (VEGF) or basic Fibroblast Growth Factor (bFGF) has not been able to fully explain this detrimental condition during pregnancy. Netrins are non-canonical angiogenic ligands produced by the stroma have shown to be important in placental angiogenesis. In order to address the potential role of Netrin signalling in GDM, we tested the effect of Netrin-1, the most investigated member of the family, produced by Wharton's Jelly Mesenchymal Stem Cells (WJ-MSC), on Human Umbilical Vein Endothelial Cells (HUVEC) angiogenesis. WJ-MSC and HUVEC primary cell cultures from either healthy or GDM pregnancies were exposed to physiological (5 mM) or high (25 mM) d-glucose. Our results reveal that Netrin-1 is secreted by WJ-MSC from healthy and GDM and both expression and secretion of the ligand do not change with distinct experimental glucose conditions. Noteworthy, the expression of its anti-angiogenic receptor UNC5b is reduced in GDM HUVEC compared with its expression in healthy HUVEC, accounting for an increased Netrin-1 signalling in these cells. Consistently, in healthy HUVEC, UNC5b overexpression induces cell retraction of the sprouting phenotype.
Collapse
|
25
|
Cytoskeletal Signal-Regulated Oligodendrocyte Myelination and Remyelination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1190:33-42. [DOI: 10.1007/978-981-32-9636-7_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
Kang DS, Yang YR, Lee C, Park B, Park KI, Seo JK, Seo YK, Cho H, Lucio C, Suh PG. Netrin-1/DCC-mediated PLCγ1 activation is required for axon guidance and brain structure development. EMBO Rep 2018; 19:embr.201846250. [PMID: 30224412 DOI: 10.15252/embr.201846250] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/11/2018] [Accepted: 08/23/2018] [Indexed: 11/09/2022] Open
Abstract
Coordinated expression of guidance molecules and their signal transduction are critical for correct brain wiring. Previous studies have shown that phospholipase C gamma1 (PLCγ1), a signal transducer of receptor tyrosine kinases, plays a specific role in the regulation of neuronal cell morphology and motility in vitro However, several questions remain regarding the extracellular stimulus that triggers PLCγ1 signaling and the exact role PLCγ1 plays in nervous system development. Here, we demonstrate that PLCγ1 mediates axonal guidance through a netrin-1/deleted in colorectal cancer (DCC) complex. Netrin-1/DCC activates PLCγ1 through Src kinase to induce actin cytoskeleton rearrangement. Neuronal progenitor-specific knockout of Plcg1 in mice causes axon guidance defects in the dorsal part of the mesencephalon during embryogenesis. Adult Plcg1-deficient mice exhibit structural alterations in the corpus callosum, substantia innominata, and olfactory tubercle. These results suggest that PLCγ1 plays an important role in the correct development of white matter structure by mediating netrin-1/DCC signaling.
Collapse
Affiliation(s)
- Du-Seock Kang
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea.,College of Life Science & Bioengineering, Korea Advanced Institute of Science & Technology (KAIST), Daejeon, Korea
| | - Yong Ryoul Yang
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Cheol Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - BumWoo Park
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Kwang Il Park
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Jeong Kon Seo
- UNIST Central Research Facility, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Young Kyo Seo
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - HyungJoon Cho
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Cocco Lucio
- Cellular Signaling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Pann-Ghill Suh
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| |
Collapse
|
27
|
Losada-Perez M. Glia: from 'just glue' to essential players in complex nervous systems: a comparative view from flies to mammals. J Neurogenet 2018; 32:78-91. [PMID: 29718753 DOI: 10.1080/01677063.2018.1464568] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the last years, glial cells have emerged as central players in the development and function of complex nervous systems. Therefore, the concept of glial cells has evolved from simple supporting cells to essential actors. The molecular mechanisms that govern glial functions are evolutionarily conserved from Drosophila to mammals, highlighting genetic similarities between these groups, as well as the great potential of Drosophila research for the understanding of human CNS. These similarities would imply a common phylogenetic origin of glia, even though there is a controversy at this point. This review addresses the existing literature on the evolutionary origin of glia and discusses whether or not insect and mammalian glia are homologous or analogous. Besides, this manuscript summarizes the main glial functions in the CNS and underscores the evolutionarily conserved molecular mechanisms between Drosophila and mammals. Finally, I also consider the current nomenclature and classification of glial cells to highlight the need for a consensus agreement and I propose an alternative nomenclature based on function that unifies Drosophila and mammalian glial types.
Collapse
|
28
|
Netrin-1 suppresses the MEK/ERK pathway and ITGB4 in pancreatic cancer. Oncotarget 2017; 7:24719-33. [PMID: 27034160 PMCID: PMC5029736 DOI: 10.18632/oncotarget.8348] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/05/2016] [Indexed: 12/21/2022] Open
Abstract
The axon guidance factor netrin-1 promotes tumorigenesis in multiple types of cancers, particularly at their advanced stages. Here, we investigate whether netrin-1 is involved in the in vivo growth of pancreatic adenocarcinoma. We show that netrin-1 is significantly under-expressed in stage-I/II pancreatic ductal adenocarcinoma (PDAC). Netrin-1 over-expression effectively arrests the growth of xenografted PDAC cells without decreasing cell proliferation or increasing apoptosis in two-dimensional cultures in vitro. Integrin-beta4 (ITGB4) expression is significantly reduced, and ITGB4-knockdown mimics the tumor-suppressive effect of netrin-1, implying that ITGB4 is a main target of netrin-1 in constraining PDAC. We further show that netrin-1 signals to UNC5B/FAK to stimulate nitric oxide production, which promotes PP2A-mediated inhibition of the MEK/ERK pathway and decreases phosphorylated-c-Jun recruitment to the ITGB4 promoter. Our findings suggest that netrin-1 can suppress the growth of PDAC and provide a mechanistic insight into this suppression.
Collapse
|
29
|
Spurlin JW, Nelson CM. Building branched tissue structures: from single cell guidance to coordinated construction. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2015.0527. [PMID: 28348257 DOI: 10.1098/rstb.2015.0527] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2016] [Indexed: 12/15/2022] Open
Abstract
Branched networks are ubiquitous throughout nature, particularly found in tissues that require large surface area within a restricted volume. Many tissues with a branched architecture, such as the vasculature, kidney, mammary gland, lung and nervous system, function to exchange fluids, gases and information throughout the body of an organism. The generation of branched tissues requires regulation of branch site specification, initiation and elongation. Branching events often require the coordination of many cells to build a tissue network for material exchange. Recent evidence has emerged suggesting that cell cooperativity scales with the number of cells actively contributing to branching events. Here, we compare mechanisms that regulate branching, focusing on how cell cohorts behave in a coordinated manner to build branched tissues.This article is part of the themed issue 'Systems morphodynamics: understanding the development of tissue hardware'.
Collapse
Affiliation(s)
- James W Spurlin
- Departments of Chemical and Biological Engineering, Princeton University, 303 Hoyt Laboratory, William Street, Princeton, NJ 08544, USA
| | - Celeste M Nelson
- Departments of Chemical and Biological Engineering, Princeton University, 303 Hoyt Laboratory, William Street, Princeton, NJ 08544, USA .,Molecular Biology, Princeton University, 303 Hoyt Laboratory, William Street, Princeton, NJ 08544, USA
| |
Collapse
|
30
|
van der Knaap MS, Bugiani M. Leukodystrophies: a proposed classification system based on pathological changes and pathogenetic mechanisms. Acta Neuropathol 2017; 134:351-382. [PMID: 28638987 PMCID: PMC5563342 DOI: 10.1007/s00401-017-1739-1] [Citation(s) in RCA: 234] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/06/2017] [Accepted: 06/06/2017] [Indexed: 12/29/2022]
Abstract
Leukodystrophies are genetically determined disorders characterized by the selective involvement of the central nervous system white matter. Onset may be at any age, from prenatal life to senescence. Many leukodystrophies are degenerative in nature, but some only impair white matter function. The clinical course is mostly progressive, but may also be static or even improving with time. Progressive leukodystrophies are often fatal, and no curative treatment is known. The last decade has witnessed a tremendous increase in the number of defined leukodystrophies also owing to a diagnostic approach combining magnetic resonance imaging pattern recognition and next generation sequencing. Knowledge on white matter physiology and pathology has also dramatically built up. This led to the recognition that only few leukodystrophies are due to mutations in myelin- or oligodendrocyte-specific genes, and many are rather caused by defects in other white matter structural components, including astrocytes, microglia, axons and blood vessels. We here propose a novel classification of leukodystrophies that takes into account the primary involvement of any white matter component. Categories in this classification are the myelin disorders due to a primary defect in oligodendrocytes or myelin (hypomyelinating and demyelinating leukodystrophies, leukodystrophies with myelin vacuolization); astrocytopathies; leuko-axonopathies; microgliopathies; and leuko-vasculopathies. Following this classification, we illustrate the neuropathology and disease mechanisms of some leukodystrophies taken as example for each category. Some leukodystrophies fall into more than one category. Given the complex molecular and cellular interplay underlying white matter pathology, recognition of the cellular pathology behind a disease becomes crucial in addressing possible treatment strategies.
Collapse
Affiliation(s)
- Marjo S van der Knaap
- Department of Pediatrics/Child Neurology, VU University Medical Centre, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Functional Genomics, Centre for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, The Netherlands
| | - Marianna Bugiani
- Department of Pediatrics/Child Neurology, VU University Medical Centre, Amsterdam Neuroscience, Amsterdam, The Netherlands.
- Department of Pathology, VU University Medical Centre, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
31
|
Gopal AA, Ricoult SG, Harris SN, Juncker D, Kennedy TE, Wiseman PW. Spatially Selective Dissection of Signal Transduction in Neurons Grown on Netrin-1 Printed Nanoarrays via Segmented Fluorescence Fluctuation Analysis. ACS NANO 2017; 11:8131-8143. [PMID: 28679208 DOI: 10.1021/acsnano.7b03004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Axonal growth cones extend during neural development in response to precise distributions of extracellular cues. Deleted in colorectal cancer (DCC), a receptor for the chemotropic guidance cue netrin-1, directs F-actin reorganization, and is essential for mammalian neural development. To elucidate how the extracellular distribution of netrin-1 influences the distribution of DCC and F-actin within axonal growth cones, we patterned nanoarrays of substrate bound netrin-1 using lift-off nanocontact printing. The distribution of DCC and F-actin in embryonic rat cortical neuron growth cones was then imaged using total internal reflection fluorescence (TIRF) microscopy. Fluorescence fluctuation analysis via image cross-correlation spectroscopy (ICCS) was applied to extract the molecular density and aggregation state of DCC and F-actin, identifying the fraction of DCC and F-actin colocalizing with the patterned netrin-1 substrate. ICCS measurement of spatially segmented images based on the substrate nanodot patterns revealed distinct molecular distributions of F-actin and DCC in regions directly overlying the nanodots compared to over the reference surface surrounding the nanodots. Quantifiable variations between the populations of DCC and F-actin on and off the nanodots reveal specific responses to the printed protein substrate. We report that nanodots of substrate-bound netrin-1 locally recruit and aggregate DCC and direct F-actin organization. These effects were blocked by tetanus toxin, consistent with netrin-1 locally recruiting DCC to the plasma membrane via a VAMP2-dependent mechanism. Our findings demonstrate the utility of segmented ICCS image analysis, combined with precisely patterned immobilized ligands, to reveal local receptor distribution and signaling within specialized subcellular compartments.
Collapse
Affiliation(s)
- Angelica A Gopal
- Department of Chemistry, ‡Department of Neurology and Neurosurgery, Montreal Neurological Institute, §Department of Biomedical Engineering, Genome Quebec Innovation Centre, and ∥Department of Physics, McGill University , Montreal, Quebec H3A 0G4 Canada
| | - Sebastien G Ricoult
- Department of Chemistry, ‡Department of Neurology and Neurosurgery, Montreal Neurological Institute, §Department of Biomedical Engineering, Genome Quebec Innovation Centre, and ∥Department of Physics, McGill University , Montreal, Quebec H3A 0G4 Canada
| | - Stephanie N Harris
- Department of Chemistry, ‡Department of Neurology and Neurosurgery, Montreal Neurological Institute, §Department of Biomedical Engineering, Genome Quebec Innovation Centre, and ∥Department of Physics, McGill University , Montreal, Quebec H3A 0G4 Canada
| | - David Juncker
- Department of Chemistry, ‡Department of Neurology and Neurosurgery, Montreal Neurological Institute, §Department of Biomedical Engineering, Genome Quebec Innovation Centre, and ∥Department of Physics, McGill University , Montreal, Quebec H3A 0G4 Canada
| | - Timothy E Kennedy
- Department of Chemistry, ‡Department of Neurology and Neurosurgery, Montreal Neurological Institute, §Department of Biomedical Engineering, Genome Quebec Innovation Centre, and ∥Department of Physics, McGill University , Montreal, Quebec H3A 0G4 Canada
| | - Paul W Wiseman
- Department of Chemistry, ‡Department of Neurology and Neurosurgery, Montreal Neurological Institute, §Department of Biomedical Engineering, Genome Quebec Innovation Centre, and ∥Department of Physics, McGill University , Montreal, Quebec H3A 0G4 Canada
| |
Collapse
|
32
|
Potential effect of mechano growth factor E-domain peptide on axonal guidance growth in primary cultured cortical neurons of rats. J Tissue Eng Regen Med 2017; 12:70-79. [DOI: 10.1002/term.2364] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 10/10/2016] [Accepted: 11/09/2016] [Indexed: 12/16/2022]
|
33
|
Prieto CP, Ortiz MC, Villanueva A, Villarroel C, Edwards SS, Elliott M, Lattus J, Aedo S, Meza D, Lois P, Palma V. Netrin-1 acts as a non-canonical angiogenic factor produced by human Wharton's jelly mesenchymal stem cells (WJ-MSC). Stem Cell Res Ther 2017; 8:43. [PMID: 28241866 PMCID: PMC5330133 DOI: 10.1186/s13287-017-0494-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 01/16/2017] [Accepted: 02/08/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Angiogenesis, the process in which new blood vessels are formed from preexisting ones, is highly dependent on the presence of classical angiogenic factors. Recent evidence suggests that axonal guidance proteins and their receptors can also act as angiogenic regulators. Netrin, a family of laminin-like proteins, specifically Netrin-1 and 4, act via DCC/Neogenin-1 and UNC5 class of receptors to promote or inhibit angiogenesis, depending on the physiological context. METHODS Mesenchymal stem cells secrete a broad set of classical angiogenic factors. However, little is known about the expression of non-canonical angiogenic factors such as Netrin-1. The aim was to characterize the possible secretion of Netrin ligands by Wharton's jelly-derived mesenchymal stem cells (WJ-MSC). We evaluated if Netrin-1 presence in the conditioned media from these cells was capable of inducing angiogenesis both in vitro and in vivo, using human umbilical vein endothelial cells (HUVEC) and chicken chorioallantoic membrane (CAM), respectively. In addition, we investigated if the RhoA/ROCK pathway is responsible for the integration of Netrin signaling to control vessel formation. RESULTS The paracrine angiogenic effect of the WJ-MSC-conditioned media is mediated at least in part by Netrin-1 given that pharmacological blockage of Netrin-1 in WJ-MSC resulted in diminished angiogenesis on HUVEC. When HUVEC were stimulated with exogenous Netrin-1 assayed at physiological concentrations (10-200 ng/mL), endothelial vascular migration occurred in a concentration-dependent manner. In line with our determination of Netrin-1 present in WJ-MSC-conditioned media we were able to obtain endothelial tubule formation even in the pg/mL range. Through CAM assays we validated that WJ-MSC-secreted Netrin-1 promotes an increased angiogenesis in vivo. Netrin-1, secreted by WJ-MSC, might mediate its angiogenic effect through specific cell surface receptors on the endothelium, such as UNC5b and/or integrin α6β1, expressed in HUVEC. However, the angiogenic response of Netrin-1 seems not to be mediated through the RhoA/ROCK pathway. CONCLUSIONS Thus, here we show that stromal production of Netrin-1 is a critical component of the vascular regulatory machinery. This signaling event may have deep implications in the modulation of several processes related to a number of diseases where angiogenesis plays a key role in vascular homeostasis.
Collapse
Affiliation(s)
- Catalina P. Prieto
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, University of Chile, Santiago de Chile, Chile
| | - María Carolina Ortiz
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, University of Chile, Santiago de Chile, Chile
| | - Andrea Villanueva
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, University of Chile, Santiago de Chile, Chile
| | - Cynthia Villarroel
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, University of Chile, Santiago de Chile, Chile
| | - Sandra S. Edwards
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, University of Chile, Santiago de Chile, Chile
| | - Matías Elliott
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, University of Chile, Santiago de Chile, Chile
| | - José Lattus
- Campus Oriente, Department of Obstetrics and Gynecology, Faculty of Medicine, University of Chile, Santiago de Chile, Chile
| | - Sócrates Aedo
- Campus Oriente, Department of Obstetrics and Gynecology, Faculty of Medicine, University of Chile, Santiago de Chile, Chile
| | - Daniel Meza
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, University of Chile, Santiago de Chile, Chile
| | - Pablo Lois
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, University of Chile, Santiago de Chile, Chile
| | - Verónica Palma
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, University of Chile, Santiago de Chile, Chile
| |
Collapse
|
34
|
Biallelic mutations in human DCC cause developmental split-brain syndrome. Nat Genet 2017; 49:606-612. [PMID: 28250456 PMCID: PMC5374027 DOI: 10.1038/ng.3804] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 02/03/2017] [Indexed: 12/14/2022]
Abstract
Motor, sensory, and integrative activities of the brain are coordinated by a series of midline-bridging neuronal commissures whose development is tightly regulated. Here we report a new human syndrome in which these commissures are widely disrupted, thus causing clinical manifestations of horizontal gaze palsy, scoliosis, and intellectual disability. Affected individuals were found to possess biallelic loss-of-function mutations in the gene encoding the axon-guidance receptor 'deleted in colorectal carcinoma' (DCC), which has been implicated in congenital mirror movements when it is mutated in the heterozygous state but whose biallelic loss-of-function human phenotype has not been reported. Structural MRI and diffusion tractography demonstrated broad disorganization of white-matter tracts throughout the human central nervous system (CNS), including loss of all commissural tracts at multiple levels of the neuraxis. Combined with data from animal models, these findings show that DCC is a master regulator of midline crossing and development of white-matter projections throughout the human CNS.
Collapse
|
35
|
Patthey C, Tong YG, Tait CM, Wilson SI. Evolution of the functionally conserved DCC gene in birds. Sci Rep 2017; 7:42029. [PMID: 28240293 PMCID: PMC5327406 DOI: 10.1038/srep42029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 01/03/2017] [Indexed: 11/09/2022] Open
Abstract
Understanding the loss of conserved genes is critical for determining how phenotypic diversity is generated. Here we focus on the evolution of DCC, a gene that encodes a highly conserved neural guidance receptor. Disruption of DCC in animal models and humans results in major neurodevelopmental defects including commissural axon defects. Here we examine DCC evolution in birds, which is of particular interest as a major model system in neurodevelopmental research. We found the DCC containing locus was disrupted several times during evolution, resulting in both gene losses and faster evolution rate of salvaged genes. These data suggest that DCC had been lost independently twice during bird evolution, including in chicken and zebra finch, whereas it was preserved in many other closely related bird species, including ducks. Strikingly, we observed that commissural axon trajectory appeared similar regardless of whether DCC could be detected or not. We conclude that the DCC locus is susceptible to genomic instability leading to independent disruptions in different branches of birds and a significant influence on evolution rate. Overall, the phenomenon of loss or molecular evolution of a highly conserved gene without apparent phenotype change is of conceptual importance for understanding molecular evolution of key biological processes.
Collapse
Affiliation(s)
- Cedric Patthey
- Umeå Center for Molecular Medicine, Umeå University, 901-87 Umeå, Sweden
| | - Yong Guang Tong
- Umeå Center for Molecular Medicine, Umeå University, 901-87 Umeå, Sweden
| | | | - Sara Ivy Wilson
- Umeå Center for Molecular Medicine, Umeå University, 901-87 Umeå, Sweden
| |
Collapse
|
36
|
Rosato-Siri MV, Marziali L, Guitart ME, Badaracco ME, Puntel M, Pitossi F, Correale J, Pasquini JM. Iron Availability Compromises Not Only Oligodendrocytes But Also Astrocytes and Microglial Cells. Mol Neurobiol 2017; 55:1068-1081. [DOI: 10.1007/s12035-016-0369-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/28/2016] [Indexed: 12/21/2022]
|
37
|
Wheeler NA, Fuss B. Extracellular cues influencing oligodendrocyte differentiation and (re)myelination. Exp Neurol 2016; 283:512-30. [PMID: 27016069 PMCID: PMC5010977 DOI: 10.1016/j.expneurol.2016.03.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/03/2016] [Accepted: 03/18/2016] [Indexed: 02/07/2023]
Abstract
There is an increasing number of neurologic disorders found to be associated with loss and/or dysfunction of the CNS myelin sheath, ranging from the classic demyelinating disease, multiple sclerosis, through CNS injury, to neuropsychiatric diseases. The disabling burden of these diseases has sparked a growing interest in gaining a better understanding of the molecular mechanisms regulating the differentiation of the myelinating cells of the CNS, oligodendrocytes (OLGs), and the process of (re)myelination. In this context, the importance of the extracellular milieu is becoming increasingly recognized. Under pathological conditions, changes in inhibitory as well as permissive/promotional cues are thought to lead to an overall extracellular environment that is obstructive for the regeneration of the myelin sheath. Given the general view that remyelination is, even though limited in human, a natural response to demyelination, targeting pathologically 'dysregulated' extracellular cues and their downstream pathways is regarded as a promising approach toward the enhancement of remyelination by endogenous (or if necessary transplanted) OLG progenitor cells. In this review, we will introduce the extracellular cues that have been implicated in the modulation of (re)myelination. These cues can be soluble, part of the extracellular matrix (ECM) or mediators of cell-cell interactions. Their inhibitory and permissive/promotional roles with regard to remyelination as well as their potential for therapeutic intervention will be discussed.
Collapse
Affiliation(s)
- Natalie A Wheeler
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, United States
| | - Babette Fuss
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, United States.
| |
Collapse
|
38
|
Dcc Mediates Functional Assembly of Peripheral Auditory Circuits. Sci Rep 2016; 6:23799. [PMID: 27040640 PMCID: PMC4819185 DOI: 10.1038/srep23799] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/11/2016] [Indexed: 01/12/2023] Open
Abstract
Proper structural organization of spiral ganglion (SG) innervation is crucial for normal hearing function. However, molecular mechanisms underlying the developmental formation of this precise organization remain not well understood. Here, we report in the developing mouse cochlea that deleted in colorectal cancer (Dcc) contributes to the proper organization of spiral ganglion neurons (SGNs) within the Rosenthal's canal and of SGN projections toward both the peripheral and central auditory targets. In Dcc mutant embryos, mispositioning of SGNs occurred along the peripheral auditory pathway with misrouted afferent fibers and reduced synaptic contacts with hair cells. The central auditory pathway simultaneously exhibited similar defective phenotypes as in the periphery with abnormal exit of SGNs from the Rosenthal's canal towards central nuclei. Furthermore, the axons of SGNs ascending into the cochlear nucleus had disrupted bifurcation patterns. Thus, Dcc is necessary for establishing the proper spatial organization of SGNs and their fibers in both peripheral and central auditory pathways, through controlling axon targeting and cell migration. Our results suggest that Dcc plays an important role in the developmental formation of peripheral and central auditory circuits, and its mutation may contribute to sensorineural hearing loss.
Collapse
|
39
|
Miyata S, Taniguchi M, Koyama Y, Shimizu S, Tanaka T, Yasuno F, Yamamoto A, Iida H, Kudo T, Katayama T, Tohyama M. Association between chronic stress-induced structural abnormalities in Ranvier nodes and reduced oligodendrocyte activity in major depression. Sci Rep 2016; 6:23084. [PMID: 26976207 PMCID: PMC4791682 DOI: 10.1038/srep23084] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 02/25/2016] [Indexed: 11/09/2022] Open
Abstract
Repeated stressful events are associated with the onset of major depressive disorder (MDD). We previously showed oligodendrocyte (OL)-specific activation of the serum/glucocorticoid-regulated kinase (SGK)1 cascade, increased expression of axon-myelin adhesion molecules, and elaboration of the oligodendrocytic arbor in the corpus callosum of chronically stressed mice. In the current study, we demonstrate that the nodes and paranodes of Ranvier in the corpus callosum were narrower in these mice. Chronic stress also led to diffuse redistribution of Caspr and Kv 1.1 and decreased the activity in white matter, suggesting a link between morphological changes in OLs and inhibition of axonal activity. OL primary cultures subjected to chronic stress resulted in SGK1 activation and translocation to the nucleus, where it inhibited the transcription of metabotropic glutamate receptors (mGluRs). Furthermore, the cAMP level and membrane potential of OLs were reduced by chronic stress exposure. We showed by diffusion tensor imaging that the corpus callosum of patients with MDD exhibited reduced fractional anisotropy, reflecting compromised white matter integrity possibly caused by axonal damage. Our findings suggest that chronic stress disrupts the organization of the nodes of Ranvier by suppressing mGluR activation in OLs, and that specific white matter abnormalities are closely associated with MDD onset.
Collapse
Affiliation(s)
- Shingo Miyata
- Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kinki University, Osaka-sayama, Osaka 589-8511, Japan
| | - Manabu Taniguchi
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yoshihisa Koyama
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shoko Shimizu
- Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kinki University, Osaka-sayama, Osaka 589-8511, Japan
| | - Takashi Tanaka
- Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kinki University, Osaka-sayama, Osaka 589-8511, Japan
| | - Fumihiko Yasuno
- Department of Psychiatry, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Akihide Yamamoto
- Department of Investigative Radiology, National Cerebral and Cardiovascular Center, Suita, Osaka 565-8565, Japan
| | - Hidehiro Iida
- Department of Investigative Radiology, National Cerebral and Cardiovascular Center, Suita, Osaka 565-8565, Japan
| | - Takashi Kudo
- Department of Psychiatry, Osaka University Health Care Center, Toyonaka, Osaka 560-0043, Japan.,Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Taiichi Katayama
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Kanazawa University and Hamamatsu University School of Medicine, Suita, Osaka 565-0871, Japan
| | - Masaya Tohyama
- Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kinki University, Osaka-sayama, Osaka 589-8511, Japan.,Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Kanazawa University and Hamamatsu University School of Medicine, Suita, Osaka 565-0871, Japan.,Osaka Prefectural Hospital Organization, Osaka 558-8558, Japan
| |
Collapse
|
40
|
Wang LC, Almazan G. Cdon, a cell surface protein, mediates oligodendrocyte differentiation and myelination. Glia 2016; 64:1021-33. [PMID: 26988125 DOI: 10.1002/glia.22980] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/11/2016] [Indexed: 12/13/2022]
Abstract
During central nervous system development, oligodendrocyte progenitors (OLPs) establish multiple branched processes and axonal contacts to initiate myelination. A complete understanding of the molecular signals implicated in cell surface interaction to initiate myelination/remyelination is currently lacking. The objective of our study was to assess whether Cdon, a cell surface protein that was shown to participate in muscle and neuron cell development, is involved in oligodendrocyte (OLG) differentiation and myelination. Here, we demonstrate that endogenous Cdon protein is expressed in OLPs, increasing in the early differentiation stages and decreasing in mature OLGs. Immunocytochemistry of endogenous Cdon showed localization on both OLG cell membranes and cellular processes exhibiting puncta- or varicosity-like structures. Cdon knockdown with siRNA decreased protein levels by 62% as well as two myelin-specific proteins, MBP and MAG. Conversely, overexpression of full-length rat Cdon increased myelin proteins in OLGs. The complexity of OLGs branching and contact point numbers with axons were also increased in Cdon overexpressing cells growing alone or in coculture with dorsal root ganglion neurons (DRGNs). Furthermore, myelination of DRGNs was decreased when OLPs were transfected with Cdon siRNA. Altogether, our results suggest that Cdon participates in OLG differentiation and myelination, most likely in the initial stages of development.
Collapse
Affiliation(s)
- Li-Chun Wang
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada, H3G 1Y6
| | - Guillermina Almazan
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada, H3G 1Y6
| |
Collapse
|
41
|
Tamoxifen promotes differentiation of oligodendrocyte progenitors in vitro. Neuroscience 2016; 319:146-54. [PMID: 26820594 DOI: 10.1016/j.neuroscience.2016.01.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/22/2015] [Accepted: 01/13/2016] [Indexed: 12/12/2022]
Abstract
The most promising therapeutic approach to finding the cure for devastating demyelinating conditions is the identification of clinically safe pharmacological agents that can promote differentiation of endogenous oligodendrocyte precursor cells (OPCs). Here we show that the breast cancer medication tamoxifen (TMX), with well-documented clinical safety and confirmed beneficial effects in various models of demyelinating conditions, stimulates differentiation of rat glial progenitors to mature oligodendrocytes in vitro. Clinically applicable doses of TMX significantly increased both the number of CNPase-positive oligodendrocytes and protein levels of myelin basic protein, measured with Western blots. Furthermore, we also found that OPC differentiation was stimulated, not only by the pro-drug TMX-citrate (TMXC), but also by two main TMX metabolites, 4-hydroxy-TMX and endoxifen. Differentiating effects of TMXC and its metabolites were completely abolished in the presence of estrogen receptor (ER) antagonist, ICI182780. In contrast to TMXC and 4-hydroxy-TMX, endoxifen also induced astrogliogenesis, but independent of the ER activation. In sum, we showed that the TMX prodrug and its two main metabolites (4-hydroxy-TMX and endoxifen) promote ER-dependent oligodendrogenesis in vitro, not reported before. Given that differentiating effects of TMX were achieved with clinically safe doses, TMX is likely one of the most promising FDA-approved drugs for the possible treatment of demyelinating diseases.
Collapse
|
42
|
Michalski JP, Cummings SE, O'Meara RW, Kothary R. Integrin-linked kinase regulates oligodendrocyte cytoskeleton, growth cone, and adhesion dynamics. J Neurochem 2016; 136:536-49. [DOI: 10.1111/jnc.13446] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/15/2015] [Accepted: 11/20/2015] [Indexed: 01/28/2023]
Affiliation(s)
- John-Paul Michalski
- Ottawa Hospital Research Institute; Ottawa Ontario Canada
- Department of Cellular and Molecular Medicine; University of Ottawa; Ottawa Ontario Canada
| | - Sarah E. Cummings
- Ottawa Hospital Research Institute; Ottawa Ontario Canada
- Department of Cellular and Molecular Medicine; University of Ottawa; Ottawa Ontario Canada
| | - Ryan W. O'Meara
- Ottawa Hospital Research Institute; Ottawa Ontario Canada
- Department of Cellular and Molecular Medicine; University of Ottawa; Ottawa Ontario Canada
| | - Rashmi Kothary
- Ottawa Hospital Research Institute; Ottawa Ontario Canada
- Department of Cellular and Molecular Medicine; University of Ottawa; Ottawa Ontario Canada
- Department of Medicine; University of Ottawa; Ottawa Ontario Canada
- University of Ottawa Centre for Neuromuscular Disease; Ottawa Ontario Canada
| |
Collapse
|
43
|
Rosenzweig S, Carmichael ST. The axon-glia unit in white matter stroke: mechanisms of damage and recovery. Brain Res 2015; 1623:123-34. [PMID: 25704204 PMCID: PMC4545468 DOI: 10.1016/j.brainres.2015.02.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 02/10/2015] [Indexed: 01/07/2023]
Abstract
Approximately one quarter of all strokes in humans occur in white matter, and the progressive nature of white matter lesions often results in severe physical and mental disability. Unlike cortical grey matter stroke, the pathology of white matter stroke revolves around disrupted connectivity and injured axons and glial cells, rather than neuronal cell bodies. Consequently, the mechanisms behind ischemic damage to white matter elements, the regenerative responses of glial cells and their signaling pathways, all differ significantly from those in grey matter. Development of effective therapies for white matter stroke would require an enhanced understanding of the complex cellular and molecular interactions within the white matter, leading to the identification of new therapeutic targets. This review will address the unique properties of the axon-glia unit during white matter stroke, describe the challenging process of promoting effective white matter repair, and discuss recently-identified signaling pathways which may hold potential targets for repair in this disease. This article is part of a Special Issue entitled SI: Cell Interactions In Stroke.
Collapse
Affiliation(s)
- Shira Rosenzweig
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | - S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
44
|
Michalski JP, Kothary R. Oligodendrocytes in a Nutshell. Front Cell Neurosci 2015; 9:340. [PMID: 26388730 PMCID: PMC4556025 DOI: 10.3389/fncel.2015.00340] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/17/2015] [Indexed: 01/06/2023] Open
Abstract
Oligodendrocytes are the myelinating cells of the central nervous system (CNS). While the phrase is oft repeated and holds true, the last few years have borne witness to radical change in our understanding of this unique cell type. Once considered static glue, oligodendrocytes are now seen as plastic and adaptive, capable of reacting to a changing CNS. This review is intended as a primer and guide, exploring how the past 5 years have fundamentally altered our appreciation of oligodendrocyte development and CNS myelination.
Collapse
Affiliation(s)
- John-Paul Michalski
- Ottawa Hospital Research Institute , Ottawa, ON , Canada ; Department of Cellular and Molecular Medicine, University of Ottawa , Ottawa, ON , Canada
| | - Rashmi Kothary
- Ottawa Hospital Research Institute , Ottawa, ON , Canada ; Department of Cellular and Molecular Medicine, University of Ottawa , Ottawa, ON , Canada ; Department of Medicine, University of Ottawa , Ottawa, ON , Canada ; Centre for Neuromuscular Disease, University of Ottawa , Ottawa, ON , Canada
| |
Collapse
|
45
|
Falcón-Urrutia P, Carrasco CM, Lois P, Palma V, Roth AD. Shh Signaling through the Primary Cilium Modulates Rat Oligodendrocyte Differentiation. PLoS One 2015. [PMID: 26218245 PMCID: PMC4517900 DOI: 10.1371/journal.pone.0133567] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Primary Cilia (PC) are a very likely place for signal integration where multiple signaling pathways converge. Two major signaling pathways clearly shown to signal through the PC, Sonic Hedgehog (Shh) and PDGF-Rα, are particularly important for the proliferation and differentiation of oligodendrocytes, suggesting that their interaction occurs in or around this organelle. We identified PC in rat oligodendrocyte precursor cells (OPCs) and found that, while easily detectable in early OPCs, PC are lost as these cells progress to terminal differentiation. We confirmed the interaction between these pathways, as cyclopamine inhibition of Hedgehog function impairs both PDGF-mediated OPC proliferation and Shh-dependent cell branching. However, we failed to detect PDGF-Rα localization into the PC. Remarkably, ciliobrevin-mediated disruption of PC and reduction of OPC process extension was counteracted by recombinant Shh treatment, while PDGF had no effect. Therefore, while PDGF-Rα-dependent OPC proliferation and survival most probably does not initiate at the PC, still the integrity of this organelle and cilium-centered pathway is necessary for OPC survival and differentiation.
Collapse
Affiliation(s)
- Paulina Falcón-Urrutia
- Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile
- FONDAP Center for Genome Regulation, Santiago, Chile
| | - Carlos M. Carrasco
- Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile
| | - Pablo Lois
- Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile
- FONDAP Center for Genome Regulation, Santiago, Chile
| | - Veronica Palma
- Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile
- FONDAP Center for Genome Regulation, Santiago, Chile
- * E-mail: (AR); (VP)
| | - Alejandro D. Roth
- Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile
- * E-mail: (AR); (VP)
| |
Collapse
|
46
|
Xu W, He J, Gao L, Zhang J, Yu C. Immunoassay for netrin 1 via a glassy carbon electrode modified with multi-walled carbon nanotubes, thionine and gold nanoparticles. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1551-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
47
|
Liu M, Zhou G, Hou Y, Kuang G, Jia Z, Li P, Fan Y. Effect of nano-hydroxyapatite-coated magnetic nanoparticles on axonal guidance growth of rat dorsal root ganglion neurons. J Biomed Mater Res A 2015; 103:3066-71. [DOI: 10.1002/jbm.a.35426] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 02/09/2015] [Indexed: 12/28/2022]
Affiliation(s)
- Meili Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University; Beijing 100191 China
| | - Gang Zhou
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University; Beijing 100191 China
| | - Yongzhao Hou
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University; Beijing 100191 China
| | - Gang Kuang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University; Beijing 100191 China
| | - Zhengtai Jia
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University; Beijing 100191 China
| | - Ping Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University; Beijing 100191 China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University; Beijing 100191 China
| |
Collapse
|
48
|
Giera S, Deng Y, Luo R, Ackerman SD, Mogha A, Monk KR, Ying Y, Jeong SJ, Makinodan M, Bialas AR, Chang BS, Stevens B, Corfas G, Piao X. The adhesion G protein-coupled receptor GPR56 is a cell-autonomous regulator of oligodendrocyte development. Nat Commun 2015; 6:6121. [PMID: 25607655 PMCID: PMC4302951 DOI: 10.1038/ncomms7121] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 12/14/2014] [Indexed: 01/17/2023] Open
Abstract
Mutations in GPR56, a member of the adhesion G protein-coupled receptor family, cause a human brain malformation called bilateral frontoparietal polymicrogyria (BFPP). Magnetic resonance imaging (MRI) of BFPP brains reveals myelination defects in addition to brain malformation. However, the cellular role of GPR56 in oligodendrocyte development remains unknown. Here, we demonstrate that loss of Gpr56 leads to hypomyelination of the central nervous system in mice. GPR56 levels are abundant throughout early stages of oligodendrocyte development, but are downregulated in myelinating oligodendrocytes. Gpr56-knockout mice manifest with decreased oligodendrocyte precursor cell (OPC) proliferation and diminished levels of active RhoA, leading to fewer mature oligodendrocytes and a reduced number of myelinated axons in the corpus callosum and optic nerves. Conditional ablation of Gpr56 in OPCs leads to a reduced number of mature oligodendrocytes as seen in constitutive knockout of Gpr56. Together, our data define GPR56 as a cell-autonomous regulator of oligodendrocyte development.
Collapse
Affiliation(s)
- Stefanie Giera
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Yiyu Deng
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Rong Luo
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Sarah D Ackerman
- Department of Developmental Biology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Amit Mogha
- Department of Developmental Biology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Kelly R Monk
- 1] Department of Developmental Biology, Washington University School of Medicine, St Louis, Missouri 63110, USA [2] Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Yanqin Ying
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Sung-Jin Jeong
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Manabu Makinodan
- 1] F.M. Kirby Neurobiology Center, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Department of Neurology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Allison R Bialas
- 1] F.M. Kirby Neurobiology Center, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Department of Neurology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Bernard S Chang
- Comprehensive Epilepsy Center, Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Beth Stevens
- 1] F.M. Kirby Neurobiology Center, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Department of Neurology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Gabriel Corfas
- 1] F.M. Kirby Neurobiology Center, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Department of Neurology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Xianhua Piao
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
49
|
Progressive disorganization of paranodal junctions and compact myelin due to loss of DCC expression by oligodendrocytes. J Neurosci 2014; 34:9768-78. [PMID: 25031414 DOI: 10.1523/jneurosci.0448-14.2014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Paranodal axoglial junctions are critical for maintaining the segregation of axonal domains along myelinated axons; however, the proteins required to organize and maintain this structure are not fully understood. Netrin-1 and its receptor Deleted in Colorectal Cancer (DCC) are proteins enriched at paranodes that are expressed by neurons and oligodendrocytes. To identify the specific function of DCC expressed by oligodendrocytes in vivo, we selectively eliminated DCC from mature myelinating oligodendrocytes using an inducible cre regulated by the proteolipid protein promoter. We demonstrate that DCC deletion results in progressive disruption of the organization of axonal domains, myelin ultrastructure, and myelin protein composition. Conditional DCC knock-out mice develop balance and coordination deficits and exhibit decreased conduction velocity. We conclude that DCC expression by oligodendrocytes is required for the maintenance and stability of myelin in vivo, which is essential for proper signal conduction in the CNS.
Collapse
|
50
|
Mitew S, Hay C, Peckham H, Xiao J, Koenning M, Emery B. Mechanisms regulating the development of oligodendrocytes and central nervous system myelin. Neuroscience 2014; 276:29-47. [DOI: 10.1016/j.neuroscience.2013.11.029] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/13/2013] [Accepted: 11/14/2013] [Indexed: 12/29/2022]
|