1
|
Eintracht J, Owen N, Harding P, Moosajee M. Disruption of common ocular developmental pathways in patient-derived optic vesicle models of microphthalmia. Stem Cell Reports 2024; 19:839-858. [PMID: 38821055 PMCID: PMC11390689 DOI: 10.1016/j.stemcr.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 06/02/2024] Open
Abstract
Genetic perturbations influencing early eye development can result in microphthalmia, anophthalmia, and coloboma (MAC). Over 100 genes are associated with MAC, but little is known about common disease mechanisms. In this study, we generated induced pluripotent stem cell (iPSC)-derived optic vesicles (OVs) from two unrelated microphthalmia patients and healthy controls. At day 20, 35, and 50, microphthalmia patient OV diameters were significantly smaller, recapitulating the "small eye" phenotype. RNA sequencing (RNA-seq) analysis revealed upregulation of apoptosis-initiating and extracellular matrix (ECM) genes at day 20 and 35. Western blot and immunohistochemistry revealed increased expression of lumican, nidogen, and collagen type IV, suggesting ECM overproduction. Increased apoptosis was observed in microphthalmia OVs with reduced phospho-histone 3 (pH3+) cells confirming decreased cell proliferation at day 35. Pharmacological inhibition of caspase-8 activity with Z-IETD-FMK decreased apoptosis in one patient model, highlighting a potential therapeutic approach. These data reveal shared pathophysiological mechanisms contributing to a microphthalmia phenotype.
Collapse
Affiliation(s)
| | | | | | - Mariya Moosajee
- UCL Institute of Ophthalmology, London EC1V 9EL, UK; Moorfields Eye Hospital NHS Foundation Trust, London EC1V 9EL, UK; Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
2
|
Ogamino S, Yamamichi M, Sato K, Ishitani T. Dynamics of Wnt/β-catenin reporter activity throughout whole life in a naturally short-lived vertebrate. NPJ AGING 2024; 10:23. [PMID: 38684674 PMCID: PMC11059364 DOI: 10.1038/s41514-024-00149-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
Wnt/β-catenin signaling plays a major role in regulation of embryogenesis, organogenesis, and adult tissue homeostasis and regeneration. However, the roles played by Wnt/β-catenin and the spatiotemporal regulation of its activity throughout life, including during aging, are not fully understood. To address these issues, we introduced a Wnt/β-catenin signaling sensitive reporter into African turquoise killifish (Nothobranchius furzeri), a naturally ultra-short-lived fish that allows for the analysis of its whole life within a short period of time. Using this reporter killifish, we unraveled the previously unidentified dynamics of Wnt/β-catenin signaling during development and aging. Using the reporter strain, we detected Wnt/β-catenin activity in actively developing tissues as reported in previous reports, but also observed activation and attenuation of Wnt/β-catenin activity during embryonic reaggregation and diapause, respectively. During the aging process, the reporter was activated in the choroidal layer and liver, but its expression decreased in the kidneys. In addition, the reporter also revealed that aging disrupts the spatial regulation and intensity control of Wnt/β-catenin activity seen during fin regeneration, which interferes with precise regeneration. Thus, the employed reporter killifish is a highly useful model for investigating the dynamics of Wnt/β-catenin signaling during both the developmental and aging process.
Collapse
Affiliation(s)
- Shohei Ogamino
- Department of Homeostatic Regulation, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
- Institute for Molecular & Cellular Regulation, Gunma University, Gunma, 371-8512, Japan
| | - Moeko Yamamichi
- Department of Homeostatic Regulation, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Ken Sato
- Institute for Molecular & Cellular Regulation, Gunma University, Gunma, 371-8512, Japan
| | - Tohru Ishitani
- Department of Homeostatic Regulation, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan.
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
3
|
Farhadipour M, Arnauts K, Clarysse M, Thijs T, Liszt K, Van der Schueren B, Ceulemans LJ, Deleus E, Lannoo M, Ferrante M, Depoortere I. SCFAs switch stem cell fate through HDAC inhibition to improve barrier integrity in 3D intestinal organoids from patients with obesity. iScience 2023; 26:108517. [PMID: 38125020 PMCID: PMC10730380 DOI: 10.1016/j.isci.2023.108517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/25/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Stem cells are a keystone of intestinal homeostasis, but their function could be shifted during energy imbalance or by crosstalk with microbial metabolites in the stem cell niche. This study reports the effect of obesity and microbiota-derived short-chain fatty acids (SCFAs) on intestinal stem cell (ISC) fate in human crypt-derived intestinal organoids (enteroids). ISC fate decision was impaired in obesity, resulting in smaller enteroids with less outward protruding crypts. Our key finding is that SCFAs switch ISC commitment to the absorptive enterocytes, resulting in reduced intestinal permeability in obese enteroids. Mechanistically, SCFAs act as HDAC inhibitors in stem cells to enhance Notch signaling, resulting in transcriptional activation of the Notch target gene HES1 to promote enterocyte differentiation. In summary, targeted reprogramming of ISC fate, using HDAC inhibitors, may represent a potential, robust therapeutic strategy to improve gut integrity in obesity.
Collapse
Affiliation(s)
- Mona Farhadipour
- Gut Peptide Research Lab, Translational Research for Gastrointestinal Disorders (TARGID), KU Leuven, 3000 Leuven, Belgium
| | - Kaline Arnauts
- Inflammatory Bowel Disease, Translational Research for Gastrointestinal Disorders (TARGID), KU Leuven, 3000 Leuven, Belgium
| | - Mathias Clarysse
- Leuven Intestinal Failure and Transplantation (LIFT) Center, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Theo Thijs
- Gut Peptide Research Lab, Translational Research for Gastrointestinal Disorders (TARGID), KU Leuven, 3000 Leuven, Belgium
| | - Kathrin Liszt
- Gut Peptide Research Lab, Translational Research for Gastrointestinal Disorders (TARGID), KU Leuven, 3000 Leuven, Belgium
| | | | - Laurens J. Ceulemans
- Leuven Intestinal Failure and Transplantation (LIFT) Center, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Ellen Deleus
- Department of Abdominal Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Matthias Lannoo
- Department of Abdominal Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Marc Ferrante
- Inflammatory Bowel Disease, Translational Research for Gastrointestinal Disorders (TARGID), KU Leuven, 3000 Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Inge Depoortere
- Gut Peptide Research Lab, Translational Research for Gastrointestinal Disorders (TARGID), KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
4
|
Jones AA, Willoner Jr. T, Mishoe Hernandez L, DeLaurier A. Exposure to valproic acid (VPA) reproduces hdac1 loss of function phenotypes in zebrafish. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000908. [PMID: 37829572 PMCID: PMC10565572 DOI: 10.17912/micropub.biology.000908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 10/14/2023]
Abstract
Histone deacetylases are enzymes that remove acetyl groups from histone tails and are understood to act as repressors of transcriptional activity. Hdac1 has been previously shown to function in eye, pectoral fin, heart, liver, and pharyngeal skeletal development. We show that high doses of Valproic Acid (VPA) reproduce the hdac1 phenotype. We identify tbx5 genes as potential targets of Hdac1 in eye, pectoral fin, and heart development. Using timed exposures, we show that skeletal structures in the pharyngeal arches are impacted by VPA between 24-36 hours post-fertilization, indicating a role for Hdac1 during post-migration patterning, differentiation, or proliferation of cranial neural crest cells.
Collapse
Affiliation(s)
- Alec A. Jones
- Biology and Geology, University of South Carolina Aiken, Aiken, South Carolina, United States
| | - Terence Willoner Jr.
- Biology and Geology, University of South Carolina Aiken, Aiken, South Carolina, United States
| | - Lacie Mishoe Hernandez
- Biology and Geology, University of South Carolina Aiken, Aiken, South Carolina, United States
| | - April DeLaurier
- Biology and Geology, University of South Carolina Aiken, Aiken, South Carolina, United States
| |
Collapse
|
5
|
Si TE, Li Z, Zhang J, Su S, Liu Y, Chen S, Peng GH, Cao J, Zang W. Epigenetic mechanisms of Müller glial reprogramming mediating retinal regeneration. Front Cell Dev Biol 2023; 11:1157893. [PMID: 37397254 PMCID: PMC10309042 DOI: 10.3389/fcell.2023.1157893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/08/2023] [Indexed: 07/04/2023] Open
Abstract
Retinal degenerative diseases, characterized by retinal neuronal death and severe vision loss, affect millions of people worldwide. One of the most promising treatment methods for retinal degenerative diseases is to reprogram non-neuronal cells into stem or progenitor cells, which then have the potential to re-differentiate to replace the dead neurons, thereby promoting retinal regeneration. Müller glia are the major glial cell type and play an important regulatory role in retinal metabolism and retinal cell regeneration. Müller glia can serve as a source of neurogenic progenitor cells in organisms with the ability to regenerate the nervous system. Current evidence points toward the reprogramming process of Müller glia, involving changes in the expression of pluripotent factors and other key signaling molecules that may be regulated by epigenetic mechanisms. This review summarizes recent knowledge of epigenetic modifications involved in the reprogramming process of Müller glia and the subsequent changes to gene expression and the outcomes. In living organisms, epigenetic mechanisms mainly include DNA methylation, histone modification, and microRNA-mediated miRNA degradation, all of which play a crucial role in the reprogramming process of Müller glia. The information presented in this review will improve the understanding of the mechanisms underlying the Müller glial reprogramming process and provide a research basis for the development of Müller glial reprogramming therapy for retinal degenerative diseases.
Collapse
Affiliation(s)
- Tian-En Si
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Zhixiao Li
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Jingjing Zhang
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Songxue Su
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Yupeng Liu
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Shiyue Chen
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Guang-Hua Peng
- Department of Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou, China
- Laboratory of Visual Cell Differentiation and Regulation, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Jing Cao
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Weidong Zang
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Mitsuhashi T, Hattori S, Fujimura K, Shibata S, Miyakawa T, Takahashi T. In utero Exposure to Valproic Acid throughout Pregnancy Causes Phenotypes of Autism in Offspring Mice. Dev Neurosci 2023; 45:223-233. [PMID: 37044070 DOI: 10.1159/000530452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/24/2023] [Indexed: 04/14/2023] Open
Abstract
Valproic acid (VPA) is an antiepileptic drug that inhibits the epileptic activity of neurons mainly by inhibiting sodium channels and GABA transaminase. VPA is also known to inhibit histone deacetylases, which epigenetically modify the cell proliferation/differentiation characteristics of stem/progenitor cells within developing tissues. Recent clinical studies in humans have indicated that VPA exposure in utero increases the risk of autistic features and intellectual disabilities in offspring; we have previously reported that low-dose VPA exposure in utero throughout pregnancy increases the production of projection neurons from neuronal stem/progenitor cells that are distributed in the superficial neocortical layers of the fetal brain. In the present study, we found that in utero VPA-exposed mice exhibited abnormal social interaction, changes in cognitive function, hypersensitivity to pain/heat, and impaired locomotor activity, all of which are characteristic symptoms of autism spectrum disorder in humans. Taken together, our findings indicate that VPA exposure in utero throughout pregnancy alters higher brain function and predisposes individuals to phenotypes that resemble autism and intellectual disability. Furthermore, these symptoms are likely to be due to neocortical dysgenesis that was caused by an increased number of projection neurons in specific layers of the neocortex.
Collapse
Affiliation(s)
| | - Satoko Hattori
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Aichi, Japan
| | - Kimino Fujimura
- Departments of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Shinsuke Shibata
- Departments of Physiology, Keio University School of Medicine, Tokyo, Japan
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Aichi, Japan
| | - Takao Takahashi
- Departments of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Wang J, Feng S, Zhang Q, Qin H, Xu C, Fu X, Yan L, Zhao Y, Yao K. Roles of Histone Acetyltransferases and Deacetylases in the Retinal Development and Diseases. Mol Neurobiol 2023; 60:2330-2354. [PMID: 36637745 DOI: 10.1007/s12035-023-03213-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/04/2023] [Indexed: 01/14/2023]
Abstract
The critical role of epigenetic modification of histones in maintaining the normal function of the nervous system has attracted increasing attention. Among these modifications, the level of histone acetylation, modulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), is essential in regulating gene expression. In recent years, the research progress on the function of HDACs in retinal development and disease has advanced remarkably, while that regarding HATs remains to be investigated. Here, we overview the roles of HATs and HDACs in regulating the development of diverse retinal cells, including retinal progenitor cells, photoreceptor cells, bipolar cells, ganglion cells, and Müller glial cells. The effects of HATs and HDACs on the progression of various retinal diseases are also discussed with the highlight of the proof-of-concept research regarding the application of available HDAC inhibitors in treating retinal diseases.
Collapse
Affiliation(s)
- Jingjing Wang
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.,College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Shuyu Feng
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.,College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Qian Zhang
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.,College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Huan Qin
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.,College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Chunxiu Xu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.,College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Xuefei Fu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.,College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Lin Yan
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.,College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Yaqin Zhao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.,College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China. .,College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China. .,Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
8
|
Zeng CW. Macrophage–Neuroglia Interactions in Promoting Neuronal Regeneration in Zebrafish. Int J Mol Sci 2023; 24:ijms24076483. [PMID: 37047456 PMCID: PMC10094936 DOI: 10.3390/ijms24076483] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/01/2023] Open
Abstract
The human nervous system exhibits limited regenerative capabilities following damage to the central nervous system (CNS), leading to a scarcity of effective treatments for nerve function recovery. In contrast, zebrafish demonstrate remarkable regenerative abilities, making them an ideal model for studying the modulation of inflammatory processes after injury. Such research holds significant translational potential to enhance our understanding of recovery from damage and disease. Macrophages play a crucial role in tissue repair and regeneration, with their subpopulations indirectly promoting axonal regeneration through developmental signals. The AP-1 signaling pathway, mediated by TNF/Tnfrsf1a, can elevate HDAC1 expression and facilitate regeneration. Furthermore, following spinal cord injury (SCI), pMN progenitors have been observed to switch between oligodendrocyte and motor neuron fates, with macrophage-secreted TNF-α potentially regulating the differentiation of ependymal–radial glia progenitors and oligodendrocytes. Radial glial cells (RGs) are also essential for CNS regeneration in zebrafish, as they perform neurogenesis and gliogenesis, with specific RG subpopulations potentially existing for the generation of neurons and oligodendrocytes. This review article underscores the critical role of macrophages and their subpopulations in tissue repair and regeneration, focusing on their secretion of TNF-α, which promotes axonal regeneration in zebrafish. We also offer insights into the molecular mechanisms underlying TNF-α’s ability to facilitate axonal regeneration and explore the potential of pMN progenitor cells and RGs following SCI in zebrafish. The review concludes with a discussion of various unresolved questions in the field, and ideas are suggested for future research. Studying innate immune cell interactions with neuroglia following injury may lead to the development of novel strategies for treating the inflammatory processes associated with regenerative medicine, which are commonly observed in injury and disease.
Collapse
|
9
|
Dsilva P, Pai P, Shetty MG, Babitha KS. The role of histone deacetylases in embryonic development. Mol Reprod Dev 2023; 90:14-26. [PMID: 36534913 DOI: 10.1002/mrd.23659] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 09/16/2022] [Accepted: 11/26/2022] [Indexed: 12/23/2022]
Abstract
The basic units of chromatin are nucleosomes, that are made up of DNA wrapped around histone cores. Histone lysine residue is a common location for posttranslational modifications, with acetylation being the second most prevalent. Histone acetyltransferases (HATs/KATs) and histone deacetylases (HDACs/KDACs) regulate histone acetylation, which is important in gene expression control. HDACs/KDACs regulate gene expressions through the repression of the transcription machinery. HDAC/KDAC isoforms play a major role during various stages of embryo development and neurogenesis. In specific, class I and II HDACs/KDACs are involved in cardiac muscle differentiation and development. An insight into different pathways and genes associated with embryonic development, the effect of HDAC/KDAC activity during the embryonic stem cell differentiation, preimplantation, embryo development, gastrulation, and the role of different HDAC/KDAC inhibitors during the process of embryogenesis is summarized in the present review article.
Collapse
Affiliation(s)
- Priyanka Dsilva
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Padmini Pai
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Manasa Gangadhar Shetty
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kampa S Babitha
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
10
|
Sinniah E, Wu Z, Shen S, Naval-Sanchez M, Chen X, Lim J, Helfer A, Iyer A, Tng J, Lucke AJ, Reid RC, Redd MA, Nefzger CM, Fairlie DP, Palpant NJ. Temporal perturbation of histone deacetylase activity reveals a requirement for HDAC1-3 in mesendoderm cell differentiation. Cell Rep 2022; 39:110818. [PMID: 35584683 DOI: 10.1016/j.celrep.2022.110818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 03/22/2022] [Accepted: 04/20/2022] [Indexed: 11/03/2022] Open
Abstract
Histone deacetylases (HDACs) are a class of enzymes that control chromatin state and influence cell fate. We evaluated the chromatin accessibility and transcriptome dynamics of zinc-containing HDACs during cell differentiation in vitro coupled with chemical perturbation to identify the role of HDACs in mesendoderm cell fate specification. Single-cell RNA sequencing analyses of HDAC expression during human pluripotent stem cell (hPSC) differentiation in vitro and mouse gastrulation in vivo reveal a unique association of HDAC1 and -3 with mesendoderm gene programs during exit from pluripotency. Functional perturbation with small molecules reveals that inhibition of HDAC1 and -3, but not HDAC2, induces mesoderm while impeding endoderm and early cardiac progenitor specification. These data identify unique biological functions of the structurally homologous enzymes HDAC1-3 in influencing hPSC differentiation from pluripotency toward mesendodermal and cardiac progenitor populations.
Collapse
Affiliation(s)
- Enakshi Sinniah
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Zhixuan Wu
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Sophie Shen
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Marina Naval-Sanchez
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Xiaoli Chen
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Junxian Lim
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia; ARC Centre of Excellence for Advanced Molecular Imaging, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Abbigail Helfer
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Abishek Iyer
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia; ARC Centre of Excellence for Advanced Molecular Imaging, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Jiahui Tng
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia; ARC Centre of Excellence for Advanced Molecular Imaging, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Andrew J Lucke
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia; ARC Centre of Excellence for Advanced Molecular Imaging, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Robert C Reid
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia; ARC Centre of Excellence for Advanced Molecular Imaging, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Meredith A Redd
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Christian M Nefzger
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - David P Fairlie
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia; ARC Centre of Excellence for Advanced Molecular Imaging, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Nathan J Palpant
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
11
|
Sun J, Yoon J, Lee M, Lee HK, Hwang YS, Daar IO. Zic5 stabilizes Gli3 via a non-transcriptional mechanism during retinal development. Cell Rep 2022; 38:110312. [PMID: 35108539 DOI: 10.1016/j.celrep.2022.110312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 11/17/2021] [Accepted: 01/07/2022] [Indexed: 12/27/2022] Open
Abstract
The Zic family of zinc finger transcription factors plays a critical role in multiple developmental processes. Using loss-of-function studies, we find that Zic5 is important for the differentiation of retinal pigmented epithelium (RPE) and the rod photoreceptor layer through suppressing Hedgehog (Hh) signaling. Further, Zic5 interacts with the critical Hh signaling molecule, Gli3, through the zinc finger domains of both proteins. This Zic5-Gli3 interaction disrupts Gli3/Gli3 homodimerization, resulting in Gli3 protein stabilization via a reduction in Gli3 ubiquitination. During embryonic Hh signaling, the activator form of Gli is normally converted to a repressor form through proteosome-mediated processing of Gli3, and the ratio of Gli3 repressor to full-length (activator) form of Gli3 determines the Gli3 repressor output required for normal eye development. Our results suggest Zic5 is a critical player in regulating Gli3 stability for the proper differentiation of RPE and rod photoreceptor layer during Xenopus eye development.
Collapse
Affiliation(s)
- Jian Sun
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Jaeho Yoon
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Moonsup Lee
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Hyun-Kyung Lee
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Yoo-Seok Hwang
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Ira O Daar
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| |
Collapse
|
12
|
Ranawat N, Masai I. Mechanisms underlying microglial colonization of developing neural retina in zebrafish. eLife 2021; 10:70550. [PMID: 34872632 PMCID: PMC8651297 DOI: 10.7554/elife.70550] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022] Open
Abstract
Microglia are brain-resident macrophages that function as the first line of defense in brain. Embryonic microglial precursors originate in peripheral mesoderm and migrate into the brain during development. However, the mechanism by which they colonize the brain is incompletely understood. The retina is one of the first brain regions to accommodate microglia. In zebrafish, embryonic microglial precursors use intraocular hyaloid blood vessels as a pathway to migrate into the optic cup via the choroid fissure. Once retinal progenitor cells exit the cell cycle, microglial precursors associated with hyaloid blood vessels start to infiltrate the retina preferentially through neurogenic regions, suggesting that colonization of retinal tissue depends upon the neurogenic state. Along with blood vessels and retinal neurogenesis, IL34 also participates in microglial precursor colonization of the retina. Altogether, CSF receptor signaling, blood vessels, and neuronal differentiation function as cues to create an essential path for microglial migration into developing retina. The immune system is comprised of many different cells which protect our bodies from infection and other illnesses. The brain contains its own population of immune cells called microglia. Unlike neurons, these cells form outside the brain during development. They then travel to the brain and colonize specific regions like the retina, the light-sensing part of the eye in vertebrates. It is poorly understood how newly formed microglia migrate to the retina and whether their entry depends on the developmental state of nerve cells (also known as neurons) in this region. To help answer these questions, Ranawat and Masai attached fluorescent labels that can be seen under a microscope to microglia in the embryos of zebrafish. Developing zebrafish are transparent, making it easy to trace the fluorescent microglia as they travel to the retina and insert themselves among its neurons. Ranawat and Masai found that blood vessels around the retina act as a pathway that microglia move along. Once they reach the retina, the microglia remain attached and only enter the retina at sites where brain cells are starting to mature in to adult neurons. Further experiments showed that microglia fail to infiltrate and colonize the retina when blood vessels are damaged or neuron maturation is blocked. These findings reveal some of the key elements that guide microglia to the retina during development. However, further work is needed to establish the molecular and biochemical processes that allow microglia to attach to blood vessels and detect when cells in the retina are starting to mature.
Collapse
Affiliation(s)
- Nishtha Ranawat
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Ichiro Masai
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| |
Collapse
|
13
|
Cerveny KL, Bronstein H, Hagen O, Lamb DB, Martin G, Tower I, Van Duzer A, Welch E, Varga M. Mutations linked to loss of cell cycle control can render cells responsive to local differentiation cues. MICROPUBLICATION BIOLOGY 2021; 2021. [PMID: 34723143 PMCID: PMC8553407 DOI: 10.17912/micropub.biology.000481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 11/22/2022]
Abstract
Cell behaviors such as survival, proliferation, and death are governed by a multitude of cues, both intrinsic and extrinsic. To test whether a wild-type environment could encourage the survival and/or differentiation of neuronal progenitor cells with impaired cell cycle progression, we transplanted cells from cdk1, dtl, slbp, fbxo5, ahctf1, gins2, hdac1, mcm5, ssrp1a, and rbbp6 mutant zebrafish embryos into wild-type embryos, creating chimeric zebrafish with mutant cells in the developing eye. We found that when cells from cdk1, dtl, slbp, gins2, mcm5, or rbbp6 mutants were transplanted into wild-type hosts, survival and/or differentiation was almost always compromised in a manner consistent with cell-autonomous cell death. Interestingly, we observed that fbxo5, ahctf1, hdac1, or ssrp1a mutant cells survived and sometimes exhibited signs of differentiation when grafted into wild-type eyes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Máté Varga
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
14
|
Kim YJ, Tamadon A, Kim YY, Kang BC, Ku SY. Epigenetic Regulation of Cardiomyocyte Differentiation from Embryonic and Induced Pluripotent Stem Cells. Int J Mol Sci 2021; 22:8599. [PMID: 34445302 PMCID: PMC8395249 DOI: 10.3390/ijms22168599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/17/2022] Open
Abstract
With the intent to achieve the best modalities for myocardial cell therapy, different cell types are being evaluated as potent sources for differentiation into cardiomyocytes. Embryonic stem cells and induced pluripotent stem cells have great potential for future progress in the treatment of myocardial diseases. We reviewed aspects of epigenetic mechanisms that play a role in the differentiation of these cells into cardiomyocytes. Cardiomyocytes proliferate during fetal life, and after birth, they undergo permanent terminal differentiation. Upregulation of cardiac-specific genes in adults induces hypertrophy due to terminal differentiation. The repression or expression of these genes is controlled by chromatin structural and epigenetic changes. However, few studies have reviewed and analyzed the epigenetic aspects of the differentiation of embryonic stem cells and induced pluripotent stem cells into cardiac lineage cells. In this review, we focus on the current knowledge of epigenetic regulation of cardiomyocyte proliferation and differentiation from embryonic and induced pluripotent stem cells through histone modification and microRNAs, the maintenance of pluripotency, and its alteration during cardiac lineage differentiation.
Collapse
Affiliation(s)
- Yong-Jin Kim
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul 08308, Korea;
| | - Amin Tamadon
- Department of Marine Stem Cell and Tissue Engineering, Bushehr University of Medical Sciences, Bushehr 14174, Iran;
| | - Yoon-Young Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea;
- Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea;
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul 03080, Korea
| | - Byeong-Cheol Kang
- Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea;
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea;
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul 03080, Korea
| |
Collapse
|
15
|
Łysyganicz PK, Pooranachandran N, Liu X, Adamson KI, Zielonka K, Elworthy S, van Eeden FJ, Grierson AJ, Malicki JJ. Loss of Deacetylation Enzymes Hdac6 and Sirt2 Promotes Acetylation of Cytoplasmic Tubulin, but Suppresses Axonemal Acetylation in Zebrafish Cilia. Front Cell Dev Biol 2021; 9:676214. [PMID: 34268305 PMCID: PMC8276265 DOI: 10.3389/fcell.2021.676214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/13/2021] [Indexed: 01/26/2023] Open
Abstract
Cilia are evolutionarily highly conserved organelles with important functions in many organs. The extracellular component of the cilium protruding from the plasma membrane comprises an axoneme composed of microtubule doublets, arranged in a 9 + 0 conformation in primary cilia or 9 + 2 in motile cilia. These microtubules facilitate transport of intraflagellar cargoes along the axoneme. They also provide structural stability to the cilium, which may play an important role in sensory cilia, where signals are received from the movement of extracellular fluid. Post-translational modification of microtubules in cilia is a well-studied phenomenon, and acetylation on lysine 40 (K40) of alpha tubulin is prominent in cilia. It is believed that this modification contributes to the stabilization of cilia. Two classes of enzymes, histone acetyltransferases and histone deacetylases, mediate regulation of tubulin acetylation. Here we use a genetic approach, immunocytochemistry and behavioral tests to investigate the function of tubulin deacetylases in cilia in a zebrafish model. By mutating three histone deacetylase genes (Sirt2, Hdac6, and Hdac10), we identify an unforeseen role for Hdac6 and Sirt2 in cilia. As expected, mutation of these genes leads to increased acetylation of cytoplasmic tubulin, however, surprisingly it caused decreased tubulin acetylation in cilia in the developing eye, ear, brain and kidney. Cilia in the ear and eye showed elevated levels of mono-glycylated tubulin suggesting a compensatory mechanism. These changes did not affect the length or morphology of cilia, however, functional defects in balance was observed, suggesting that the level of tubulin acetylation may affect function of the cilium.
Collapse
Affiliation(s)
- Paweł K Łysyganicz
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom.,Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | | | - Xinming Liu
- The School of Clinical Dentistry, The University of Sheffield, Sheffield, United Kingdom
| | - Kathryn I Adamson
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom.,Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Katarzyna Zielonka
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom.,Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Stone Elworthy
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom.,Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Fredericus J van Eeden
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom.,Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Andrew J Grierson
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom.,Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Jarema J Malicki
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom.,Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
16
|
Kumar V, Kundu S, Singh A, Singh S. Understanding the role of histone deacetylase and their inhibitors in neurodegenerative disorders: Current targets and future perspective. Curr Neuropharmacol 2021; 20:158-178. [PMID: 34151764 PMCID: PMC9199543 DOI: 10.2174/1570159x19666210609160017] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/09/2021] [Accepted: 05/26/2021] [Indexed: 11/28/2022] Open
Abstract
Neurodegenerative diseases are a group of pathological conditions that cause motor inc-ordination (jerking movements), cognitive and memory impairments result from degeneration of neurons in a specific area of the brain. Oxidative stress, mitochondrial dysfunction, excitotoxicity, neuroinflammation, neurochemical imbalance and histone deacetylase enzymes (HDAC) are known to play a crucial role in neurodegeneration. HDAC is classified into four categories (class I, II, III and class IV) depending upon their location and functions. HDAC1 and 2 are involved in neurodegeneration, while HDAC3-11 and class III HDACs are beneficial as neuroprotective. HDACs are localized in different parts of the brain- HDAC1 (hippocampus and cortex), HDAC2 (nucleus), HDAC3, 4, 5, 7 and 9 (nucleus and cytoplasm), HDAC6 & HDAC7 (cytoplasm) and HDAC11 (Nucleus, cornus ammonis 1 and spinal cord). In pathological conditions, HDAC up-regulates glutamate, phosphorylation of tau, and glial fibrillary acidic proteins while down-regulating BDNF, Heat shock protein 70 and Gelsolin. Class III HDACs are divided into seven sub-classes (SIRT1-SIRT7). Sirtuins are localized in the different parts of the brain and neuron -Sirt1 (nucleus), Sirt2 (cortex, striatum, hippocampus and spinal cord), Sirt3 (mitochondria and cytoplasm), Sirt4, Sirt5 & Sirt6 (mitochondria), Sirt7 (nucleus) and Sirt8 (nucleolus). SIRTs (1, 3, 4, and 6) are involved in neuronal survival, proliferation and modulating stress response, and SIRT2 is associated with Parkinsonism, Huntington’s disease and Alzheimer’s disease, whereas SIRT6 is only associated with Alzheimer’s disease. In this critical review, we have discussed the mechanisms and therapeutic targets of HDACs that would be beneficial for the management of neurodegenerative disorders.
Collapse
Affiliation(s)
- Vishal Kumar
- Scholar, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Satyabrata Kundu
- Scholar, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Arti Singh
- Neuroscience Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Shamsher Singh
- Neuroscience Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
17
|
Cavone L, McCann T, Drake LK, Aguzzi EA, Oprişoreanu AM, Pedersen E, Sandi S, Selvarajah J, Tsarouchas TM, Wehner D, Keatinge M, Mysiak KS, Henderson BEP, Dobie R, Henderson NC, Becker T, Becker CG. A unique macrophage subpopulation signals directly to progenitor cells to promote regenerative neurogenesis in the zebrafish spinal cord. Dev Cell 2021; 56:1617-1630.e6. [PMID: 34033756 DOI: 10.1016/j.devcel.2021.04.031] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 03/15/2021] [Accepted: 04/28/2021] [Indexed: 12/14/2022]
Abstract
Central nervous system injury re-initiates neurogenesis in anamniotes (amphibians and fishes), but not in mammals. Activation of the innate immune system promotes regenerative neurogenesis, but it is fundamentally unknown whether this is indirect through the activation of known developmental signaling pathways or whether immune cells directly signal to progenitor cells using mechanisms that are unique to regeneration. Using single-cell RNA-seq of progenitor cells and macrophages, as well as cell-type-specific manipulations, we provide evidence for a direct signaling axis from specific lesion-activated macrophages to spinal progenitor cells to promote regenerative neurogenesis in zebrafish. Mechanistically, TNFa from pro-regenerative macrophages induces Tnfrsf1a-mediated AP-1 activity in progenitors to increase regeneration-promoting expression of hdac1 and neurogenesis. This establishes the principle that macrophages directly communicate to spinal progenitor cells via non-developmental signals after injury, providing potential targets for future interventions in the regeneration-deficient spinal cord of mammals.
Collapse
Affiliation(s)
- Leonardo Cavone
- Centre for Discovery Brain Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Tess McCann
- Centre for Discovery Brain Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Louisa K Drake
- Centre for Discovery Brain Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Erika A Aguzzi
- Centre for Discovery Brain Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Ana-Maria Oprişoreanu
- Centre for Discovery Brain Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Elisa Pedersen
- Centre for Discovery Brain Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Soe Sandi
- Centre for Discovery Brain Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Jathurshan Selvarajah
- Centre for Discovery Brain Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Themistoklis M Tsarouchas
- Centre for Discovery Brain Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Daniel Wehner
- Centre for Discovery Brain Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; Max Planck Institute for the Science of Light, Staudtstraße 2, Erlangen 91058, Germany; Max-Planck-Zentrum für Physik und Medizin, Staudtstraße 2, Erlangen 91058, Germany
| | - Marcus Keatinge
- Centre for Discovery Brain Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Karolina S Mysiak
- Centre for Discovery Brain Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Beth E P Henderson
- Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Ross Dobie
- Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Neil C Henderson
- Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK; MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Thomas Becker
- Centre for Discovery Brain Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK.
| | - Catherina G Becker
- Centre for Discovery Brain Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; Euan MacDonald Centre for Motor Neurone Disease Research University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
18
|
Marchione AD, Thompson Z, Kathrein KL. DNA methylation and histone modifications are essential for regulation of stem cell formation and differentiation in zebrafish development. Brief Funct Genomics 2021:elab022. [PMID: 33782688 DOI: 10.1093/bfgp/elab022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 01/21/2023] Open
Abstract
The complex processes necessary for embryogenesis require a gene regulatory network that is complex and systematic. Gene expression regulates development and organogenesis, but this process is altered and fine-tuned by epigenetic regulators that facilitate changes in the chromatin landscape. Epigenetic regulation of embryogenesis adjusts the chromatin structure by modifying both DNA through methylation and nucleosomes through posttranslational modifications of histone tails. The zebrafish is a well-characterized model organism that is a quintessential tool for studying developmental biology. With external fertilization, low cost and high fecundity, the zebrafish are an efficient tool for studying early developmental stages. Genetic manipulation can be performed in vivo resulting in quick identification of gene function. Large-scale genome analyses including RNA sequencing, chromatin immunoprecipitation and chromatin structure all are feasible in the zebrafish. In this review, we highlight the key events in zebrafish development where epigenetic regulation plays a critical role from the early stem cell stages through differentiation and organogenesis.
Collapse
|
19
|
Kiyooka M, Shimizu Y, Ohshima T. Histone deacetylase inhibition promotes regenerative neurogenesis after stab wound injury in the adult zebrafish optic tectum. Biochem Biophys Res Commun 2020; 529:366-371. [PMID: 32703437 DOI: 10.1016/j.bbrc.2020.06.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 06/05/2020] [Indexed: 12/27/2022]
Abstract
The central nervous system (CNS) of adult zebrafish is capable of recovering from injury, unlike the CNS of mammals such as humans or rodents. Previously, we established a stab wound injury model of the optic tectum (OT) in the adult zebrafish and showed that the radial glial cells (RG) proliferation and neuronal differentiation contributes to OT regeneration. In the present study, we analyzed the function of histone deacetylases (HDACs) as potential regulators of OT regeneration. The expression of both hdac1 and hdac3 was found to be significantly decreased in the injured OT. In order to analyze the roles of HDACs in RG proliferation and differentiation after injury, we performed pharmacological experiments using the HDAC inhibitor trichostatin A. We found that HDAC inhibition after stab wound injury suppressed RG proliferation but promoted neuronal differentiation. Moreover, HDAC inhibition suppressed the injury-induced decline in expression of Notch signaling target genes, her4.1 and her6 after OT injury. These results suggest that HDACs regulate regenerative neurogenesis through changes in Notch target gene expression by histone deacetylation. HDACs and histone acetylation are promising molecular targets for neuronal regeneration and further studies about the molecular mechanisms behind the regulation of regeneration by histone acetylation are necessary.
Collapse
Affiliation(s)
- Mariko Kiyooka
- Department of Life Science and Medical Bio-Science, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Yuki Shimizu
- Functional Biomolecular Research Group and DAILAB, BMRI, AIST, 1-8-31, Midorigaoka, Ikeda, Osaka, 563-8577, Japan.
| | - Toshio Ohshima
- Department of Life Science and Medical Bio-Science, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| |
Collapse
|
20
|
Cavalieri V. Histones, Their Variants and Post-translational Modifications in Zebrafish Development. Front Cell Dev Biol 2020; 8:456. [PMID: 32582716 PMCID: PMC7289917 DOI: 10.3389/fcell.2020.00456] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/15/2020] [Indexed: 01/01/2023] Open
Abstract
Complex multi-cellular organisms are shaped starting from a single-celled zygote, owing to elaborate developmental programs. These programs involve several layers of regulation to orchestrate the establishment of progressively diverging cell type-specific gene expression patterns. In this scenario, epigenetic modifications of chromatin are central in influencing spatiotemporal patterns of gene transcription. In fact, it is generally recognized that epigenetic changes of chromatin states impact on the accessibility of genomic DNA to regulatory proteins. Several lines of evidence highlighted that zebrafish is an excellent vertebrate model for research purposes in the field of developmental epigenetics. In this review, I focus on the dynamic roles recently emerged for histone post-translational modifications (PTMs), histone modifying enzymes, histone variants and histone themselves in the coordination between the precise execution of transcriptional programs and developmental progression in zebrafish. In particular, I first outline a synopsis of the current state of knowledge in this field during early embryogenesis. Then, I present a survey of histone-based epigenetic mechanisms occurring throughout morphogenesis, with a stronger emphasis on cardiac formation. Undoubtedly, the issues addressed in this review take on particular importance in the emerging field of comparative biology of epigenetics, as well as in translational research.
Collapse
Affiliation(s)
- Vincenzo Cavalieri
- Laboratory of Molecular Biology and Functional Genomics, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy.,Zebrafish Laboratory, Advanced Technologies Network (ATeN) Center, University of Palermo, Palermo, Italy
| |
Collapse
|
21
|
Ye Z, Su Z, Xie S, Liu Y, Wang Y, Xu X, Zheng Y, Zhao M, Jiang L. Yap-lin28a axis targets let7-Wnt pathway to restore progenitors for initiating regeneration. eLife 2020; 9:55771. [PMID: 32352377 PMCID: PMC7250571 DOI: 10.7554/elife.55771] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
The sox2 expressing (sox2+) progenitors in adult mammalian inner ear lose the capacity to regenerate while progenitors in the zebrafish lateral line are able to proliferate and regenerate damaged HCs throughout lifetime. To mimic the HC damage in mammals, we have established a zebrafish severe injury model to eliminate both progenitors and HCs. The atoh1a expressing (atoh1a+) HC precursors were the main population that survived post severe injury, and gained sox2 expression to initiate progenitor regeneration. In response to severe injury, yap was activated to upregulate lin28a transcription. Severe-injury-induced progenitor regeneration was disabled in lin28a or yap mutants. In contrary, overexpression of lin28a initiated the recovery of sox2+ progenitors. Mechanistically, microRNA let7 acted downstream of lin28a to activate Wnt pathway for promoting regeneration. Our findings that lin28a is necessary and sufficient to regenerate the exhausted sox2+ progenitors shed light on restoration of progenitors to initiate HC regeneration in mammals.
Collapse
Affiliation(s)
- Zhian Ye
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhongwu Su
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Siyu Xie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Stem Cells and Tissue Engineering, Zhongshan School of Medicine, Sun Yat-Sen University, Ministry of Education, Guangzhou, China
| | - Yuye Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yongqiang Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xi Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Stem Cells and Tissue Engineering, Zhongshan School of Medicine, Sun Yat-Sen University, Ministry of Education, Guangzhou, China
| | - Yiqing Zheng
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Meng Zhao
- Key Laboratory of Stem Cells and Tissue Engineering, Zhongshan School of Medicine, Sun Yat-Sen University, Ministry of Education, Guangzhou, China
| | - Linjia Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
22
|
Shukla S, Tekwani BL. Histone Deacetylases Inhibitors in Neurodegenerative Diseases, Neuroprotection and Neuronal Differentiation. Front Pharmacol 2020; 11:537. [PMID: 32390854 PMCID: PMC7194116 DOI: 10.3389/fphar.2020.00537] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
Histone deacetylases (HADC) are the enzymes that remove acetyl group from lysine residue of histones and non-histone proteins and regulate the process of transcription by binding to transcription factors and regulating fundamental cellular process such as cellular proliferation, differentiation and development. In neurodegenerative diseases, the histone acetylation homeostasis is greatly impaired, shifting towards a state of hypoacetylation. The histone hyperacetylation produced by direct inhibition of HDACs leads to neuroprotective actions. This review attempts to elaborate on role of small molecule inhibitors of HDACs on neuronal differentiation and throws light on the potential of HDAC inhibitors as therapeutic agents for treatment of neurodegenerative diseases. The role of HDACs in neuronal cellular and disease models and their modulation with HDAC inhibitors are also discussed. Significance of these HDAC inhibitors has been reviewed on the process of neuronal differentiation, neurite outgrowth and neuroprotection regarding their potential therapeutic application for treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Surabhi Shukla
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL, United States
| | - Babu L Tekwani
- Division of Drug Discovery, Department of Infectious Diseases, Southern Research, Birmingham, AL, United States
| |
Collapse
|
23
|
Ran J, Liu M, Feng J, Li H, Ma H, Song T, Cao Y, Zhou P, Wu Y, Yang Y, Yang Y, Yu F, Guo H, Zhang L, Xie S, Li D, Gao J, Zhang X, Zhu X, Zhou J. ASK1-Mediated Phosphorylation Blocks HDAC6 Ubiquitination and Degradation to Drive the Disassembly of Photoreceptor Connecting Cilia. Dev Cell 2020; 53:287-299.e5. [PMID: 32275885 DOI: 10.1016/j.devcel.2020.03.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 01/20/2020] [Accepted: 03/12/2020] [Indexed: 01/08/2023]
Abstract
Retinopathy of prematurity (ROP) is a leading cause of childhood blindness. However, the pathogenesis and molecular mechanisms underlying ROP remain elusive. Herein, using the oxygen-induced retinopathy (OIR) mouse model of ROP, we demonstrate that disassembly of photoreceptor connecting cilia is an early event in response to oxygen changes. Histone deacetylase 6 (HDAC6) is upregulated in the retina of OIR mice and accumulates in the transition zone of connecting cilia. We also show that in response to oxygen changes, apoptosis signal-regulating kinase 1 (ASK1) is activated and phosphorylates HDAC6, blocking its ubiquitination by von Hippel-Lindau and subsequent degradation by the proteasome. Moreover, depletion of HDAC6 or inhibition of the ASK1/HDAC6 axis protects mice from oxygen-change-induced pathological changes of photoreceptors. These findings reveal a critical role for ASK1/HDAC6-mediated connecting cilium disassembly in the OIR mouse model of ROP and suggest a potential value of ASK1/HDAC6-targeted agents for prevention of this disease.
Collapse
Affiliation(s)
- Jie Ran
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Min Liu
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China.
| | - Jie Feng
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Haixia Li
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Huixian Ma
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Ting Song
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yu Cao
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Peng Zhou
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yuhan Wu
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yunfan Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yang Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Fan Yu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Heng Guo
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Liang Zhang
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Songbo Xie
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jinmin Gao
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Xiaomin Zhang
- Eye Institute, School of Optometry and Ophthalmology, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Xueliang Zhu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jun Zhou
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China; State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
24
|
Epigenetic Regulation of Notch Signaling During Drosophila Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1218:59-75. [PMID: 32060871 DOI: 10.1007/978-3-030-34436-8_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Notch signaling exerts multiple important functions in various developmental processes, including cell differentiation and cell proliferation, while mis-regulation of this pathway results in a variety of complex diseases, such as cancer and developmental defects. The simplicity of the Notch pathway in Drosophila melanogaster, in combination with the availability of powerful genetics, makes this an attractive model for studying the fundamental mechanisms of how Notch signaling is regulated and how it functions in various cellular contexts. Recently, increasing evidence for epigenetic control of Notch signaling reveals the intimate link between epigenetic regulators and Notch signaling pathway. In this chapter, we summarize the research advances of Notch and CAF-1 in Drosophila development and the epigenetic regulation mechanisms of Notch signaling activity by CAF-1 as well as other epigenetic modification machineries, which enables Notch to orchestrate different biological inputs and outputs in specific cellular contexts.
Collapse
|
25
|
Meng J, Banerjee S, Zhang L, Sindberg G, Moidunny S, Li B, Robbins DJ, Girotra M, Segura B, Ramakrishnan S, Roy S. Opioids Impair Intestinal Epithelial Repair in HIV-Infected Humanized Mice. Front Immunol 2020; 10:2999. [PMID: 32010125 PMCID: PMC6978907 DOI: 10.3389/fimmu.2019.02999] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/06/2019] [Indexed: 12/20/2022] Open
Abstract
Intestinal barrier dysfunction and subsequent microbial translocation play crucial roles in persistent immune activation leading to HIV disease progression. Opioid use is associated with worse outcome in HIV-infected patients. The exacerbated disease progression by opioids is mainly driven by excessive intestinal inflammation and increased gut permeability. The objective of this study is to investigate how opioids potentiate HIV disease progression by compromising intestinal barrier function and impairing intestinal epithelial self-repair mechanism. In the present study, abnormal intestinal morphology and reduced epithelial proliferation were observed in bone marrow-liver-thymus humanized mice and in HIV-infected patients who were exposed to opioids. In bone marrow-liver-thymus mice, HIV, and morphine independently, and additively induced gut dysbiosis, especially depletion of Lachnospiraceae, Ruminococcaceae, and Muribaculaceae. We also observed that the abundance of Lachnospiraceae, Ruminococcaceae, and Muribaculaceae negatively correlated with apoptosis of epithelial cells, and intestinal IL-6 levels. Previous studies have shown that these bacterial families play crucial roles in maintaining intestinal homeostasis because they include most short-chain fatty acid-producing members. Short-chain fatty acids have been shown to maintain stem cell populations and suppress inflammation in the gut by inhibiting histone deacetylases (HDAC). In addition, we demonstrate that morphine exposure inhibited growth of intestinal organoids derived from HIV transgenic mice by suppressing Notch signaling in an HDAC-dependent manner. These studies implicate an important role for HDAC in intestinal homeostasis and supports HDAC modulation as a therapeutic intervention in improving care of HIV patients, especially in opioid-abusing population.
Collapse
Affiliation(s)
- Jingjing Meng
- Department of Surgery, University of Miami, Miami, FL, United States
- Department of Surgery, University of Minnesota, Minneapolis, MN, United States
| | - Santanu Banerjee
- Department of Surgery, University of Miami, Miami, FL, United States
- Department of Surgery, University of Minnesota, Minneapolis, MN, United States
| | - Li Zhang
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
| | - Greg Sindberg
- Department of Veterinary Biosciences, University of Minnesota, Saint Paul, MN, United States
| | | | - Bin Li
- Department of Surgery, University of Miami, Miami, FL, United States
| | - David J. Robbins
- Department of Surgery, University of Miami, Miami, FL, United States
| | - Mohit Girotra
- Division of Gastroenterology, University of Miami, Miami, FL, United States
| | - Bradley Segura
- Department of Surgery, University of Minnesota, Minneapolis, MN, United States
| | | | - Sabita Roy
- Department of Surgery, University of Miami, Miami, FL, United States
- Department of Surgery, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
26
|
Celarain N, Tomas-Roig J. Aberrant DNA methylation profile exacerbates inflammation and neurodegeneration in multiple sclerosis patients. J Neuroinflammation 2020; 17:21. [PMID: 31937331 PMCID: PMC6961290 DOI: 10.1186/s12974-019-1667-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune and demyelinating disease of the central nervous system characterised by incoordination, sensory loss, weakness, changes in bladder capacity and bowel function, fatigue and cognitive impairment, creating a significant socioeconomic burden. The pathogenesis of MS involves both genetic susceptibility and exposure to distinct environmental risk factors. The gene x environment interaction is regulated by epigenetic mechanisms. Epigenetics refers to a complex system that modifies gene expression without altering the DNA sequence. The most studied epigenetic mechanism is DNA methylation. This epigenetic mark participates in distinct MS pathophysiological processes, including blood-brain barrier breakdown, inflammatory response, demyelination, remyelination failure and neurodegeneration. In this study, we also accurately summarised a list of environmental factors involved in the MS pathogenesis and its clinical course. A literature search was conducted using MEDLINE through PubMED and Scopus. In conclusion, an exhaustive study of DNA methylation might contribute towards new pharmacological interventions in MS by use of epigenetic drugs.
Collapse
Affiliation(s)
- Naiara Celarain
- Girona Neuroimmunology and Multiple Sclerosis Unit (UNIEM), Dr. Josep Trueta University Hospital and Girona Biomedical Research Institute (IDIBGI), Girona, Spain.
| | - Jordi Tomas-Roig
- Girona Neuroimmunology and Multiple Sclerosis Unit (UNIEM), Dr. Josep Trueta University Hospital and Girona Biomedical Research Institute (IDIBGI), Girona, Spain.
| |
Collapse
|
27
|
Nguyen-Ba-Charvet KT, Rebsam A. Neurogenesis and Specification of Retinal Ganglion Cells. Int J Mol Sci 2020; 21:ijms21020451. [PMID: 31936811 PMCID: PMC7014133 DOI: 10.3390/ijms21020451] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/25/2022] Open
Abstract
Across all species, retinal ganglion cells (RGCs) are the first retinal neurons generated during development, followed by the other retinal cell types. How are retinal progenitor cells (RPCs) able to produce these cell types in a specific and timely order? Here, we will review the different models of retinal neurogenesis proposed over the last decades as well as the extrinsic and intrinsic factors controlling it. We will then focus on the molecular mechanisms, especially the cascade of transcription factors that regulate, more specifically, RGC fate. We will also comment on the recent discovery that the ciliary marginal zone is a new stem cell niche in mice contributing to retinal neurogenesis, especially to the generation of ipsilateral RGCs. Furthermore, RGCs are composed of many different subtypes that are anatomically, physiologically, functionally, and molecularly defined. We will summarize the different classifications of RGC subtypes and will recapitulate the specification of some of them and describe how a genetic disease such as albinism affects neurogenesis, resulting in profound visual deficits.
Collapse
|
28
|
Seritrakul P, Gross JM. Genetic and epigenetic control of retinal development in zebrafish. Curr Opin Neurobiol 2019; 59:120-127. [PMID: 31255843 PMCID: PMC6888853 DOI: 10.1016/j.conb.2019.05.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/23/2019] [Accepted: 05/28/2019] [Indexed: 12/24/2022]
Abstract
The vertebrate retina is a complex structure composed of seven cell types (six neuron and one glia), and all of which originate from a seemingly homogeneous population of proliferative multipotent retinal progenitor cells (RPCs) that exit the cell cycle and differentiate in a spatio-temporally regulated and stereotyped fashion. This neurogenesis process requires intricate genetic regulation involving a combination of cell intrinsic transcription factors and extrinsic signaling molecules, and many critical factors have been identified that influence the timing and composition of the developing retina. Adding complexity to the process, over the past decade, a variety of epigenetic regulatory mechanisms have been shown to influence neurogenesis, and these include changes in histone modifications and the chromatin landscape and changes in DNA methylation and hydroxymethylation patterns. This review summarizes recent findings in the genetic and epigenetic regulation of retinal development, with an emphasis on the zebrafish model system, and it outlines future areas of investigation that will continue to push the field forward into the epigenomics era.
Collapse
Affiliation(s)
- Pawat Seritrakul
- Faculty of Animal Sciences and Agricultural Technology, Silpakorn University, Phetchaburi, 76120, Thailand.
| | - Jeffrey M Gross
- Departments of Ophthalmology, and Developmental Biology, The Louis J. Fox Center for Vision Restoration, The McGowan Institute for Regenerative Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, United States.
| |
Collapse
|
29
|
Balasubramanian S, Raghunath A, Perumal E. Role of epigenetics in zebrafish development. Gene 2019; 718:144049. [DOI: 10.1016/j.gene.2019.144049] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023]
|
30
|
Cheng CW, Biton M, Haber AL, Gunduz N, Eng G, Gaynor LT, Tripathi S, Calibasi-Kocal G, Rickelt S, Butty VL, Moreno M, Iqbal AM, Bauer-Rowe KE, Imada S, Ulutas MS, Mylonas C, Whary MT, Levine SS, Basbinar Y, Hynes RO, Mino-Kenudson M, Deshpande V, Boyer LA, Fox JG, Terranova C, Rai K, Piwnica-Worms H, Mihaylova MM, Regev A, Yilmaz ÖH. Ketone Body Signaling Mediates Intestinal Stem Cell Homeostasis and Adaptation to Diet. Cell 2019; 178:1115-1131.e15. [PMID: 31442404 PMCID: PMC6732196 DOI: 10.1016/j.cell.2019.07.048] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 06/03/2019] [Accepted: 07/25/2019] [Indexed: 01/18/2023]
Abstract
Little is known about how metabolites couple tissue-specific stem cell function with physiology. Here we show that, in the mammalian small intestine, the expression of Hmgcs2 (3-hydroxy-3-methylglutaryl-CoA synthetase 2), the gene encoding the rate-limiting enzyme in the production of ketone bodies, including beta-hydroxybutyrate (βOHB), distinguishes self-renewing Lgr5+ stem cells (ISCs) from differentiated cell types. Hmgcs2 loss depletes βOHB levels in Lgr5+ ISCs and skews their differentiation toward secretory cell fates, which can be rescued by exogenous βOHB and class I histone deacetylase (HDAC) inhibitor treatment. Mechanistically, βOHB acts by inhibiting HDACs to reinforce Notch signaling, instructing ISC self-renewal and lineage decisions. Notably, although a high-fat ketogenic diet elevates ISC function and post-injury regeneration through βOHB-mediated Notch signaling, a glucose-supplemented diet has the opposite effects. These findings reveal how control of βOHB-activated signaling in ISCs by diet helps to fine-tune stem cell adaptation in homeostasis and injury.
Collapse
Affiliation(s)
- Chia-Wei Cheng
- Koch Institute for Integrative Cancer Research at MIT, Massachusetts 02139, USA
| | - Moshe Biton
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA,Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA,These authors contributed equally to this work
| | - Adam L. Haber
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA,These authors contributed equally to this work
| | - Nuray Gunduz
- Koch Institute for Integrative Cancer Research at MIT, Massachusetts 02139, USA,Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey 06800
| | - George Eng
- Koch Institute for Integrative Cancer Research at MIT, Massachusetts 02139, USA,Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Liam T. Gaynor
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston MA, 02215, USA
| | - Surya Tripathi
- Koch Institute for Integrative Cancer Research at MIT, Massachusetts 02139, USA
| | - Gizem Calibasi-Kocal
- Koch Institute for Integrative Cancer Research at MIT, Massachusetts 02139, USA,Dokuz Eylul University, Institute of Oncology, Department of Translational Oncology, Izmir, Turkey
| | - Steffen Rickelt
- Koch Institute for Integrative Cancer Research at MIT, Massachusetts 02139, USA
| | - Vincent L. Butty
- BioMicro Center, at MIT, Department of Biology, MIT, Cambridge, Massachusetts 02139, USA
| | - Marta Moreno
- Koch Institute for Integrative Cancer Research at MIT, Massachusetts 02139, USA
| | - Ameena M Iqbal
- Koch Institute for Integrative Cancer Research at MIT, Massachusetts 02139, USA
| | | | - Shinya Imada
- Koch Institute for Integrative Cancer Research at MIT, Massachusetts 02139, USA,Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University,1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Mehmet Sefa Ulutas
- Koch Institute for Integrative Cancer Research at MIT, Massachusetts 02139, USA,Department of Biology, Siirt University, Science and Arts Faculty, 56100 Siirt, Turkey
| | | | - Mark T. Whary
- Division of Comparative Medicine, Department of Biological Engineering, MIT, Cambridge, Massachusetts 02139, USA
| | - Stuart S. Levine
- BioMicro Center, at MIT, Department of Biology, MIT, Cambridge, Massachusetts 02139, USA
| | - Yasemin Basbinar
- Dokuz Eylul University, Institute of Oncology, Department of Translational Oncology, Izmir, Turkey
| | - Richard O. Hynes
- Koch Institute for Integrative Cancer Research at MIT, Massachusetts 02139, USA,Howard Hughes Medical Institute, Department of Biology, MIT, Cambridge, Massachusetts 02139, USA
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital Boston and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Vikram Deshpande
- Department of Pathology, Massachusetts General Hospital Boston and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Laurie A. Boyer
- Department of Biology, MIT, Cambridge, Massachusetts 02139, USA
| | - James G. Fox
- Division of Comparative Medicine, Department of Biological Engineering, MIT, Cambridge, Massachusetts 02139, USA
| | - Christopher Terranova
- Genomic Medicine Department, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kunal Rai
- Genomic Medicine Department, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Helen Piwnica-Worms
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maria M. Mihaylova
- The Ohio State Comprehensive Cancer Center, Department of Biological Chemistry and Pharmacology, Ohio State University, 308 Wiseman Hall, Columbus, OH 43210, USA
| | - Aviv Regev
- Koch Institute for Integrative Cancer Research at MIT, Massachusetts 02139, USA,Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA,Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - Ömer H. Yilmaz
- Koch Institute for Integrative Cancer Research at MIT, Massachusetts 02139, USA,Department of Biology, MIT, Cambridge, Massachusetts 02139, USA,Department of Pathology, Massachusetts General Hospital Boston and Harvard Medical School, Boston, Massachusetts 02114, USA,Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA,Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA,Lead Contact,Correspondence: Ömer H. Yilmaz () (Ö.H.Y)
| |
Collapse
|
31
|
Redox Signaling via Lipid Peroxidation Regulates Retinal Progenitor Cell Differentiation. Dev Cell 2019; 50:73-89.e6. [DOI: 10.1016/j.devcel.2019.05.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 02/07/2019] [Accepted: 05/03/2019] [Indexed: 12/31/2022]
|
32
|
Torroglosa A, Villalba-Benito L, Luzón-Toro B, Fernández RM, Antiñolo G, Borrego S. Epigenetic Mechanisms in Hirschsprung Disease. Int J Mol Sci 2019; 20:ijms20133123. [PMID: 31247956 PMCID: PMC6650840 DOI: 10.3390/ijms20133123] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 02/07/2023] Open
Abstract
Hirschsprung disease (HSCR, OMIM 142623) is due to a failure of enteric precursor cells derived from neural crest (EPCs) to proliferate, migrate, survive or differentiate during Enteric Nervous System (ENS) formation. This is a complex process which requires a strict regulation that results in an ENS specific gene expression pattern. Alterations at this level lead to the onset of neurocristopathies such as HSCR. Gene expression is regulated by different mechanisms, such as DNA modifications (at the epigenetic level), transcriptional mechanisms (transcription factors, silencers, enhancers and repressors), postranscriptional mechanisms (3′UTR and ncRNA) and regulation of translation. All these mechanisms are finally implicated in cell signaling to determine the migration, proliferation, differentiation and survival processes for correct ENS development. In this review, we have performed an overview on the role of epigenetic mechanisms at transcriptional and posttranscriptional levels on these cellular events in neural crest cells (NCCs), ENS development, as well as in HSCR.
Collapse
Affiliation(s)
- Ana Torroglosa
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain.
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain.
| | - Leticia Villalba-Benito
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain.
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain.
| | - Berta Luzón-Toro
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain.
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain.
| | - Raquel María Fernández
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain.
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain.
| | - Guillermo Antiñolo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain.
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain.
| | - Salud Borrego
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain.
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain.
| |
Collapse
|
33
|
Lawlor L, Yang XB. Harnessing the HDAC-histone deacetylase enzymes, inhibitors and how these can be utilised in tissue engineering. Int J Oral Sci 2019; 11:20. [PMID: 31201303 PMCID: PMC6572769 DOI: 10.1038/s41368-019-0053-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 05/02/2019] [Accepted: 05/05/2019] [Indexed: 02/07/2023] Open
Abstract
There are large knowledge gaps regarding how to control stem cells growth and differentiation. The limitations of currently available technologies, such as growth factors and/or gene therapies has led to the search of alternatives. We explore here how a cell's epigenome influences determination of cell type, and potential applications in tissue engineering. A prevalent epigenetic modification is the acetylation of DNA core histone proteins. Acetylation levels heavily influence gene transcription. Histone deacetylase (HDAC) enzymes can remove these acetyl groups, leading to the formation of a condensed and more transcriptionally silenced chromatin. Histone deacetylase inhibitors (HDACis) can inhibit these enzymes, resulting in the increased acetylation of histones, thereby affecting gene expression. There is strong evidence to suggest that HDACis can be utilised in stem cell therapies and tissue engineering, potentially providing novel tools to control stem cell fate. This review introduces the structure/function of HDAC enzymes and their links to different tissue types (specifically bone, cardiac, neural tissues), including the history, current status and future perspectives of using HDACis for stem cell research and tissue engineering, with particular attention paid to how different HDAC isoforms may be integral to this field.
Collapse
Affiliation(s)
- Liam Lawlor
- Department of Oral Biology, University of Leeds, Wellcome Trust Brenner Building, St. James's University Hospital, Leeds, LS9 7TF, UK
- Doctoral Training Centre in Tissue Engineering and Regenerative Medicine, Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, UK
| | - Xuebin B Yang
- Department of Oral Biology, University of Leeds, Wellcome Trust Brenner Building, St. James's University Hospital, Leeds, LS9 7TF, UK.
- Doctoral Training Centre in Tissue Engineering and Regenerative Medicine, Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, UK.
| |
Collapse
|
34
|
Song YC, Dohn TE, Rydeen AB, Nechiporuk AV, Waxman JS. HDAC1-mediated repression of the retinoic acid-responsive gene ripply3 promotes second heart field development. PLoS Genet 2019; 15:e1008165. [PMID: 31091225 PMCID: PMC6538190 DOI: 10.1371/journal.pgen.1008165] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/28/2019] [Accepted: 04/28/2019] [Indexed: 12/25/2022] Open
Abstract
Coordinated transcriptional and epigenetic mechanisms that direct development of the later differentiating second heart field (SHF) progenitors remain largely unknown. Here, we show that a novel zebrafish histone deacetylase 1 (hdac1) mutant allele cardiac really gone (crg) has a deficit of ventricular cardiomyocytes (VCs) and smooth muscle within the outflow tract (OFT) due to both cell and non-cell autonomous loss in SHF progenitor proliferation. Cyp26-deficient embryos, which have increased retinoic acid (RA) levels, have similar defects in SHF-derived OFT development. We found that nkx2.5+ progenitors from Hdac1 and Cyp26-deficient embryos have ectopic expression of ripply3, a transcriptional co-repressor of T-box transcription factors that is normally restricted to the posterior pharyngeal endoderm. Furthermore, the ripply3 expression domain is expanded anteriorly into the posterior nkx2.5+ progenitor domain in crg mutants. Importantly, excess ripply3 is sufficient to repress VC development, while genetic depletion of Ripply3 and Tbx1 in crg mutants can partially restore VC number. We find that the epigenetic signature at RA response elements (RAREs) that can associate with Hdac1 and RA receptors (RARs) becomes indicative of transcriptional activation in crg mutants. Our study highlights that transcriptional repression via the epigenetic regulator Hdac1 facilitates OFT development through directly preventing expression of the RA-responsive gene ripply3 within SHF progenitors. Congenital heart defects are the most common malformations found in newborns, with many of these defects disrupting development of the outflow tract, the structure where blood is expelled from the heart. Despite their frequency, we do not have a grasp of the molecular and genetic mechanisms that underlie most congenital heart defects. Here, we show that zebrafish embryos containing a mutation in a gene called histone deacetylase 1 (hdac1) have smaller hearts with a reduction in the size of the ventricle and outflow tract. Hdac1 proteins limit accessibility to DNA and repress gene expression. We find that loss of Hdac1 in zebrafish embryos leads to increased expression of genes that are also induced by excess retinoic acid, a teratogen that induces similar outflow tract defects. Genetic loss-of-function studies support that ectopic expression of ripply3, a common target of both Hdac1 and retinoic acid signaling that is normally restricted to a subset of posterior pharyngeal cells, contributes to the smaller hearts found in zebrafish hdac1 mutants. Our study establishes a mechanism whereby the coordinated repression of genes downstream of Hdac1 and retinoic acid signaling is necessary for normal vertebrate outflow tract development.
Collapse
Affiliation(s)
- Yuntao Charlie Song
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America.,Molecular and Developmental Biology Graduate Program, University of Cincinnati, Cincinnati, OH, United States of America
| | - Tracy E Dohn
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America.,Molecular and Developmental Biology Graduate Program, University of Cincinnati, Cincinnati, OH, United States of America
| | - Ariel B Rydeen
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America.,Molecular and Developmental Biology Graduate Program, University of Cincinnati, Cincinnati, OH, United States of America
| | - Alex V Nechiporuk
- Department of Cell and Developmental Biology, Oregon Health & Science University, Portland, OR, United States of America
| | - Joshua S Waxman
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| |
Collapse
|
35
|
Fellous A, Earley RL, Silvestre F. Identification and expression of mangrove rivulus (Kryptolebias marmoratus) histone deacetylase (HDAC) and lysine acetyltransferase (KAT) genes. Gene 2019; 691:56-69. [DOI: 10.1016/j.gene.2018.12.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/14/2018] [Accepted: 12/14/2018] [Indexed: 12/17/2022]
|
36
|
Naumann B, Schmidt J, Olsson L. FoxN3
is necessary for the development of the interatrial septum, the ventricular trabeculae and the muscles at the head/trunk interface in the African clawed frog,
Xenopus laevis
(Lissamphibia: Anura: Pipidae). Dev Dyn 2019; 248:323-336. [DOI: 10.1002/dvdy.25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/18/2019] [Accepted: 02/22/2019] [Indexed: 12/22/2022] Open
Affiliation(s)
- Benjamin Naumann
- Institut für Zoologie und EvolutionsforschungFriedrich‐Schiller‐Universität Jena Germany
| | - Jennifer Schmidt
- Institut für Zoologie und EvolutionsforschungFriedrich‐Schiller‐Universität Jena Germany
| | - Lennart Olsson
- Institut für Zoologie und EvolutionsforschungFriedrich‐Schiller‐Universität Jena Germany
| |
Collapse
|
37
|
Lu G, Zhang M, Wang J, Zhang K, Wu S, Zhao X. Epigenetic regulation of myelination in health and disease. Eur J Neurosci 2019; 49:1371-1387. [DOI: 10.1111/ejn.14337] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/22/2018] [Accepted: 01/02/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Guozhen Lu
- Department of Neurobiology and Collaborative Innovation Center for Brain ScienceSchool of Basic MedicineFourth Military Medical University Xi'an China
| | - Ming Zhang
- Department of Neurobiology and Collaborative Innovation Center for Brain ScienceSchool of Basic MedicineFourth Military Medical University Xi'an China
| | - Jian Wang
- Department of Neurobiology and Collaborative Innovation Center for Brain ScienceSchool of Basic MedicineFourth Military Medical University Xi'an China
| | - Kaixiang Zhang
- Department of Neurobiology and Collaborative Innovation Center for Brain ScienceSchool of Basic MedicineFourth Military Medical University Xi'an China
| | - Shengxi Wu
- Department of Neurobiology and Collaborative Innovation Center for Brain ScienceSchool of Basic MedicineFourth Military Medical University Xi'an China
| | - Xianghui Zhao
- Department of Neurobiology and Collaborative Innovation Center for Brain ScienceSchool of Basic MedicineFourth Military Medical University Xi'an China
| |
Collapse
|
38
|
Turner KJ, Hoyle J, Valdivia LE, Cerveny KL, Hart W, Mangoli M, Geisler R, Rees M, Houart C, Poole RJ, Wilson SW, Gestri G. Abrogation of Stem Loop Binding Protein (Slbp) function leads to a failure of cells to transition from proliferation to differentiation, retinal coloboma and midline axon guidance deficits. PLoS One 2019; 14:e0211073. [PMID: 30695021 PMCID: PMC6350959 DOI: 10.1371/journal.pone.0211073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/07/2019] [Indexed: 12/26/2022] Open
Abstract
Through forward genetic screening for mutations affecting visual system development, we identified prominent coloboma and cell-autonomous retinal neuron differentiation, lamination and retinal axon projection defects in eisspalte (ele) mutant zebrafish. Additional axonal deficits were present, most notably at midline axon commissures. Genetic mapping and cloning of the ele mutation showed that the affected gene is slbp, which encodes a conserved RNA stem-loop binding protein involved in replication dependent histone mRNA metabolism. Cells throughout the central nervous system remained in the cell cycle in ele mutant embryos at stages when, and locations where, post-mitotic cells have differentiated in wild-type siblings. Indeed, RNAseq analysis showed down-regulation of many genes associated with neuronal differentiation. This was coincident with changes in the levels and spatial localisation of expression of various genes implicated, for instance, in axon guidance, that likely underlie specific ele phenotypes. These results suggest that many of the cell and tissue specific phenotypes in ele mutant embryos are secondary to altered expression of modules of developmental regulatory genes that characterise, or promote transitions in, cell state and require the correct function of Slbp-dependent histone and chromatin regulatory genes.
Collapse
Affiliation(s)
- Katherine J. Turner
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Jacqueline Hoyle
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
- Department of Paediatrics and Child Health, University College London, London, United Kingdom
| | - Leonardo E. Valdivia
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Kara L. Cerveny
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Wendy Hart
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Maryam Mangoli
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Robert Geisler
- Karlsruhe Institute of Technology (KIT) Institute of Toxicology and Genetics, Eggenstein-Leopoldshafen, Germany
| | - Michele Rees
- Department of Paediatrics and Child Health, University College London, London, United Kingdom
| | - Corinne Houart
- Department of Developmental Neurobiology and MRC Centre for Developmental Disorders, Kings College London, London, United Kingdom
| | - Richard J. Poole
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Stephen W. Wilson
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
- * E-mail: (GG); (SWW)
| | - Gaia Gestri
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
- * E-mail: (GG); (SWW)
| |
Collapse
|
39
|
Youn A, Kim KI, Rabadan R, Tycko B, Shen Y, Wang S. A pan-cancer analysis of driver gene mutations, DNA methylation and gene expressions reveals that chromatin remodeling is a major mechanism inducing global changes in cancer epigenomes. BMC Med Genomics 2018; 11:98. [PMID: 30400878 PMCID: PMC6218985 DOI: 10.1186/s12920-018-0425-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 10/19/2018] [Indexed: 01/08/2023] Open
Abstract
Background Recent large-scale cancer sequencing studies have discovered many novel cancer driver genes (CDGs) in human cancers. Some studies also suggest that CDG mutations contribute to cancer-associated epigenomic and transcriptomic alterations across many cancer types. Here we aim to improve our understanding of the connections between CDG mutations and altered cancer cell epigenomes and transcriptomes on pan-cancer level and how these connections contribute to the known association between epigenome and transcriptome. Method Using multi-omics data including somatic mutation, DNA methylation, and gene expression data of 20 cancer types from The Cancer Genome Atlas (TCGA) project, we conducted a pan-cancer analysis to identify CDGs, when mutated, have strong associations with genome-wide methylation or expression changes across cancer types, which we refer as methylation driver genes (MDGs) or expression driver genes (EDGs), respectively. Results We identified 32 MDGs, among which, eight are known chromatin modification or remodeling genes. Many of the remaining 24 MDGs are connected to chromatin regulators through either regulating their transcription or physically interacting with them as potential co-factors. We identified 29 EDGs, 26 of which are also MDGs. Further investigation on target genes’ promoters methylation and expression alteration patterns of these 26 overlapping driver genes shows that hyper-methylation of target genes’ promoters are significantly associated with down-regulation of the same target genes and hypo-methylation of target genes’ promoters are significantly associated with up-regulation of the same target genes. Conclusion This finding suggests a pivotal role for genetically driven changes in chromatin remodeling in shaping DNA methylation and gene expression patterns during tumor development. Electronic supplementary material The online version of this article (10.1186/s12920-018-0425-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ahrim Youn
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York, USA.,The Jackson Laboratory For Genomic Medicine, Farmington, Connecticut, USA
| | - Kyung In Kim
- The Jackson Laboratory For Genomic Medicine, Farmington, Connecticut, USA
| | - Raul Rabadan
- Department of System Biology, Columbia University, New York, New York, USA.,Department of Biomedical Informatics, Columbia University, New York, New York, USA
| | - Benjamin Tycko
- Division of Genetics & Epigenetics, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Yufeng Shen
- Department of System Biology, Columbia University, New York, New York, USA.,Department of Biomedical Informatics, Columbia University, New York, New York, USA.,Columbia Genome Center, Columbia University, New York, New York, USA
| | - Shuang Wang
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York, USA.
| |
Collapse
|
40
|
Mochizuki T, Kojima Y, Nishiwaki Y, Harakuni T, Masai I. Endocytic trafficking factor VPS45 is essential for spatial regulation of lens fiber differentiation in zebrafish. Development 2018; 145:145/20/dev170282. [PMID: 30322969 PMCID: PMC6215396 DOI: 10.1242/dev.170282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/10/2018] [Indexed: 01/20/2023]
Abstract
In vertebrate lens, lens epithelial cells cover the anterior half of the lens fiber core. Lens epithelial cells proliferate, move posteriorly and start to differentiate into lens fiber cells at the lens equator. Although FGF signaling promotes this equatorial commencement of lens fiber differentiation, the underlying mechanism is not fully understood. Here, we show that lens epithelial cells abnormally enter lens fiber differentiation without passing through the equator in zebrafish vps45 mutants. VPS45 belongs to the Sec1/Munc18-like protein family and promotes endosome trafficking, which differentially modulates signal transduction. Ectopic lens fiber differentiation in vps45 mutants does not depend on FGF, but is mediated through activation of TGFβ signaling and inhibition of canonical Wnt signaling. Thus, VPS45 normally suppresses lens fiber differentiation in the anterior region of lens epithelium by modulating TGFβ and canonical Wnt signaling pathways. These data indicate a novel role of endosome trafficking to ensure equator-dependent commencement of lens fiber differentiation. Summary: The endocytic regulator VPS45 suppresses FGF-independent lens fiber differentiation and ensures the spatial pattern of lens development.
Collapse
Affiliation(s)
- Toshiaki Mochizuki
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Tancha 1919-1, Onna, Okinawa 098-0945, Japan
| | - Yutaka Kojima
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Tancha 1919-1, Onna, Okinawa 098-0945, Japan
| | - Yuko Nishiwaki
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Tancha 1919-1, Onna, Okinawa 098-0945, Japan
| | - Tetsuya Harakuni
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Tancha 1919-1, Onna, Okinawa 098-0945, Japan
| | - Ichiro Masai
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Tancha 1919-1, Onna, Okinawa 098-0945, Japan
| |
Collapse
|
41
|
Saha A, Tiwari S, Dharmarajan S, Otteson DC, Belecky-Adams TL. Class I histone deacetylases in retinal progenitors and differentiating ganglion cells. Gene Expr Patterns 2018; 30:37-48. [PMID: 30179675 DOI: 10.1016/j.gep.2018.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/28/2018] [Accepted: 08/31/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND The acetylation state of histones has been used as an indicator of the developmental state of progenitor and differentiating cells. The goal of this study was to determine the nuclear localization patterns of Class I histone deacetylases (HDACs) in retinal progenitor cells (RPCs) and retinal ganglion cells (RGCs), as the first step in understanding their potential importance in cell fate determination within the murine retina. RESULTS The only HDAC to label RPC nuclei at E16 and P5 was HDAC1. In contrast, there was generally increased nuclear localization of all Class I HDACs in differentiating RGCs. Between P5 and P30, SOX2 expression becomes restricted to Müller glial, cholinergic amacrine cells, and retinal astrocytes. Cholinergic amacrine showed a combination of changes in nuclear localization of Class I HDACs. Strikingly, although Müller glia and retinal astrocytes express many of the same genes, P30 Müller glial cells showed nuclear localization only of HDAC1, while retinal astrocytes were positive for HDACs 1, 2, and 3. CONCLUSION These results indicate there may be a role for one or more of the Class I HDACs in retinal cell type-specific differentiation.
Collapse
Affiliation(s)
- Ankita Saha
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 W Michigan St, Indianapolis, IN, 46202, USA; Center for Developmental and Regenerative Biology, Indiana University- Purdue University Indianapolis, 723 W Michigan St, Indianapolis, IN, 46202, USA.
| | - Sarika Tiwari
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 W Michigan St, Indianapolis, IN, 46202, USA; Center for Developmental and Regenerative Biology, Indiana University- Purdue University Indianapolis, 723 W Michigan St, Indianapolis, IN, 46202, USA.
| | - Subramanian Dharmarajan
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 W Michigan St, Indianapolis, IN, 46202, USA; Center for Developmental and Regenerative Biology, Indiana University- Purdue University Indianapolis, 723 W Michigan St, Indianapolis, IN, 46202, USA.
| | - Deborah C Otteson
- University of Houston College of Optometry, 4901 Calhoun Rd. Rm 2195, Houston, TX, 77204-2020, USA.
| | - Teri L Belecky-Adams
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 W Michigan St, Indianapolis, IN, 46202, USA; Center for Developmental and Regenerative Biology, Indiana University- Purdue University Indianapolis, 723 W Michigan St, Indianapolis, IN, 46202, USA.
| |
Collapse
|
42
|
Zupkovitz G, Lagger S, Martin D, Steiner M, Hagelkruys A, Seiser C, Schöfer C, Pusch O. Histone deacetylase 1 expression is inversely correlated with age in the short-lived fish Nothobranchius furzeri. Histochem Cell Biol 2018; 150:255-269. [PMID: 29951776 PMCID: PMC6096771 DOI: 10.1007/s00418-018-1687-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2018] [Indexed: 12/19/2022]
Abstract
Aging is associated with profound changes in the epigenome, resulting in alterations of gene expression, epigenetic landscape, and genome architecture. Class I Histone deacetylases (HDACs), consisting of HDAC1, HDAC2, HDAC3, and HDAC8, play a major role in epigenetic regulation of chromatin structure and transcriptional control, and have been implicated as key players in the pathogenesis of age-dependent diseases and disorders affecting health and longevity. Here, we report the identification of class I Hdac orthologs and their detailed spatio-temporal expression profile in the short-lived fish Nothobranchius furzeri from the onset of embryogenesis until old age covering the entire lifespan of the organism. Database search of the recently annotated N. furzeri genomes retrieved four distinct genes: two copies of hdac1 and one copy of each hdac3 and hdac8. However, no hdac2 ortholog could be identified. Phylogenetic analysis grouped the individual killifish class I Hdacs within the well-defined terminal clades. We find that upon aging, Hdac1 is significantly down-regulated in muscle, liver, and brain, and this age-dependent down-regulation in brain clearly correlates with increased mRNA levels of the cyclin-dependent kinase inhibitor cdkn1a (p21). Furthermore, this apparent reduction of class I HDACs in transcript and protein levels is mirrored in the mouse brain, highlighting an evolutionarily conserved role of class I HDACs during normal development and in the aging process.
Collapse
Affiliation(s)
- Gordin Zupkovitz
- Center of Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090 Vienna, Austria
| | - Sabine Lagger
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - David Martin
- Center of Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090 Vienna, Austria
| | - Marianne Steiner
- Center of Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090 Vienna, Austria
| | - Astrid Hagelkruys
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), 1030 Vienna, Austria
| | - Christian Seiser
- Center of Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090 Vienna, Austria
| | - Christian Schöfer
- Center of Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090 Vienna, Austria
| | - Oliver Pusch
- Center of Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090 Vienna, Austria
| |
Collapse
|
43
|
Ueda Y, Shimizu Y, Shimizu N, Ishitani T, Ohshima T. Involvement of sonic hedgehog and notch signaling in regenerative neurogenesis in adult zebrafish optic tectum after stab injury. J Comp Neurol 2018; 526:2360-2372. [PMID: 30014463 DOI: 10.1002/cne.24489] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 05/07/2018] [Accepted: 06/05/2018] [Indexed: 01/11/2023]
Abstract
Unlike humans and other mammals, adult zebrafish have the superior capability to recover from central nervous system (CNS) injury. We previously found that proliferation of radial glia (RG) is induced in response to stab injury in optic tectum and that new neurons are generated from RG after stab injury. However, molecular mechanisms which regulate proliferation and differentiation of RG are not well known. In the present study, we investigated Shh and Notch signaling as potential mechanisms regulating regeneration in the optic tectum of adult zebrafish. We used Shh reporter fish and confirmed that canonical Shh signaling is activated specifically in RG after stab injury. Moreover, we have shown that Shh signaling promotes RG proliferation and suppresses their differentiation into neurons after stab injury. In contrast, Notch signaling was down-regulated after stab injury, indicated by the decrease in the expression level of her4 and her6, a target gene of Notch signaling. We also found that inhibition of Notch signaling after stab injury induced more proliferative RG, but that inhibition of Notch signaling inhibited generation of newborn neurons from RG after stab injury. These results suggest that high level of Notch signaling keeps RG quiescent and that appropriate level of Notch signaling is required for generation of newborn neurons from RG. Under physiological condition, activation of Shh signaling or inhibition of Notch signaling also induced RG proliferation. In adult optic tectum of zebrafish, canonical Shh signaling and Notch signaling play important roles in proliferation and differentiation of RG in physiological and regenerative conditions.
Collapse
Affiliation(s)
- Yuto Ueda
- Department of Life Science and Medical Bio-Science, Waseda University, Tokyo, Japan
| | - Yuki Shimizu
- Department of Life Science and Medical Bio-Science, Waseda University, Tokyo, Japan
| | - Nobuyuki Shimizu
- Division of Cell Regulation Systems, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Tohru Ishitani
- Division of Cell Regulation Systems, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.,Lab of Integrated Signaling Systems, Department of Molecular Medicine, Institute for Molecular & Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Toshio Ohshima
- Department of Life Science and Medical Bio-Science, Waseda University, Tokyo, Japan
| |
Collapse
|
44
|
Mitra S, Sharma P, Kaur S, Khursheed MA, Gupta S, Ahuja R, Kurup AJ, Chaudhary M, Ramachandran R. Histone Deacetylase-Mediated Müller Glia Reprogramming through Her4.1-Lin28a Axis Is Essential for Retina Regeneration in Zebrafish. iScience 2018; 7:68-84. [PMID: 30267687 PMCID: PMC6135741 DOI: 10.1016/j.isci.2018.08.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/18/2018] [Accepted: 08/10/2018] [Indexed: 12/22/2022] Open
Abstract
Histone deacetylases (Hdacs) play significant roles in cellular homeostasis and tissue differentiation. Hdacs are well characterized in various systems for their physiological and epigenetic relevance. However, their significance during retina regeneration remains unclear. Here we show that inhibition of Hdac1 causes a decline in regenerative ability, and injury-dependent regulation of hdacs is essential for regulating regeneration-associated genes like ascl1a, lin28a, and repressors like her4.1 at the injury site. We show selective seclusion of Hdac1 from the proliferating Müller glia-derived progenitor cells (MGPCs) and its upregulation in the neighboring cells. Hdacs negatively regulate her4.1, which also represses lin28a and essential cytokines to control MGPCs proliferation. Interestingly, Hdacs' inhibition reversibly blocks regeneration through the repression of critical cytokines and other regeneration-specific genes, which is also revealed by whole-retina RNA sequence analysis. Our study shows mechanistic understanding of the Hdac pathway during zebrafish retina regeneration. Hdac1, along with other Hdacs, is a key regulator of retina regeneration in zebrafish Hdacs regulate MGPCs' formation through Her4.1/Lin28a/let-7 miRNA axis Hdacs' inhibition reversibly blocks MGPCs' proliferation and retina regeneration Hdacs/Her4.1 interplay regulates essential cytokines during retina regeneration
Collapse
Affiliation(s)
- Soumitra Mitra
- Indian Institute of Science Education and Research, Mohali, Knowledge City, Room 3F10, Academic Block-1, Sector 81, SAS Nagar, Manauli PO, Mohali, Punjab 140306, India
| | - Poonam Sharma
- Indian Institute of Science Education and Research, Mohali, Knowledge City, Room 3F10, Academic Block-1, Sector 81, SAS Nagar, Manauli PO, Mohali, Punjab 140306, India
| | - Simran Kaur
- Indian Institute of Science Education and Research, Mohali, Knowledge City, Room 3F10, Academic Block-1, Sector 81, SAS Nagar, Manauli PO, Mohali, Punjab 140306, India
| | - Mohammad Anwar Khursheed
- Indian Institute of Science Education and Research, Mohali, Knowledge City, Room 3F10, Academic Block-1, Sector 81, SAS Nagar, Manauli PO, Mohali, Punjab 140306, India
| | - Shivangi Gupta
- Indian Institute of Science Education and Research, Mohali, Knowledge City, Room 3F10, Academic Block-1, Sector 81, SAS Nagar, Manauli PO, Mohali, Punjab 140306, India
| | - Riya Ahuja
- Indian Institute of Science Education and Research, Mohali, Knowledge City, Room 3F10, Academic Block-1, Sector 81, SAS Nagar, Manauli PO, Mohali, Punjab 140306, India
| | - Akshai J Kurup
- Indian Institute of Science Education and Research, Mohali, Knowledge City, Room 3F10, Academic Block-1, Sector 81, SAS Nagar, Manauli PO, Mohali, Punjab 140306, India
| | - Mansi Chaudhary
- Indian Institute of Science Education and Research, Mohali, Knowledge City, Room 3F10, Academic Block-1, Sector 81, SAS Nagar, Manauli PO, Mohali, Punjab 140306, India
| | - Rajesh Ramachandran
- Indian Institute of Science Education and Research, Mohali, Knowledge City, Room 3F10, Academic Block-1, Sector 81, SAS Nagar, Manauli PO, Mohali, Punjab 140306, India.
| |
Collapse
|
45
|
A non-cell-autonomous actin redistribution enables isotropic retinal growth. PLoS Biol 2018. [PMID: 30096143 DOI: 10.1371/journal.pbio.2006018.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Tissue shape is often established early in development and needs to be scaled isotropically during growth. However, the cellular contributors and ways by which cells interact tissue-wide to enable coordinated isotropic tissue scaling are not yet understood. Here, we follow cell and tissue shape changes in the zebrafish retinal neuroepithelium, which forms a cup with a smooth surface early in development and maintains this architecture as it grows. By combining 3D analysis and theory, we show how a global increase in cell height can maintain tissue shape during growth. Timely cell height increase occurs concurrently with a non-cell-autonomous actin redistribution. Blocking actin redistribution and cell height increase perturbs isotropic scaling and leads to disturbed, folded tissue shape. Taken together, our data show how global changes in cell shape enable isotropic growth of the developing retinal neuroepithelium, a concept that could also apply to other systems.
Collapse
|
46
|
Muralidharan P, Sarmah S, Marrs JA. Retinal Wnt signaling defect in a zebrafish fetal alcohol spectrum disorder model. PLoS One 2018; 13:e0201659. [PMID: 30067812 PMCID: PMC6070267 DOI: 10.1371/journal.pone.0201659] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 07/19/2018] [Indexed: 12/11/2022] Open
Abstract
Fetal alcohol spectrum disorder caused by prenatal alcohol exposure includes ocular abnormalities (microphthalmia, photoreceptor dysfunction, cataracts). Zebrafish embryos exposed to ethanol from gastrulation through somitogenesis show severe ocular defects, including microphthalmia and photoreceptor differentiation defects. Ethanol-treated zebrafish had an enlarged ciliary marginal zone (CMZ) relative to the retina size and reduced Müller glial cells (MGCs). Ethanol exposure produced immature photoreceptors with increased proliferation, indicating cell cycle exit failure. Signaling mechanisms in the CMZ were affected by embryonic ethanol exposure, including Wnt signaling in the CMZ, Notch signaling and neurod gene expression. Retinoic acid or folic acid co-supplementation with ethanol rescued Wnt signaling and retinal differentiation. Activating Wnt signaling using GSK3 inhibitor (LSN 2105786; Eli Lilly and Co.) restored retinal cell differentiation pathways. Ethanol exposed embryos were treated with Wnt agonist, which rescued Wnt-active cells in the CMZ, Notch-active cells in the retina, proliferation, and photoreceptor terminal differentiation. Our results illustrate the critical role of Wnt signaling in ethanol-induced retinal defects.
Collapse
Affiliation(s)
- Pooja Muralidharan
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Swapnalee Sarmah
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - James A Marrs
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| |
Collapse
|
47
|
Matejčić M, Salbreux G, Norden C. A non-cell-autonomous actin redistribution enables isotropic retinal growth. PLoS Biol 2018; 16:e2006018. [PMID: 30096143 PMCID: PMC6117063 DOI: 10.1371/journal.pbio.2006018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 08/30/2018] [Accepted: 07/31/2018] [Indexed: 11/26/2022] Open
Abstract
Tissue shape is often established early in development and needs to be scaled isotropically during growth. However, the cellular contributors and ways by which cells interact tissue-wide to enable coordinated isotropic tissue scaling are not yet understood. Here, we follow cell and tissue shape changes in the zebrafish retinal neuroepithelium, which forms a cup with a smooth surface early in development and maintains this architecture as it grows. By combining 3D analysis and theory, we show how a global increase in cell height can maintain tissue shape during growth. Timely cell height increase occurs concurrently with a non-cell-autonomous actin redistribution. Blocking actin redistribution and cell height increase perturbs isotropic scaling and leads to disturbed, folded tissue shape. Taken together, our data show how global changes in cell shape enable isotropic growth of the developing retinal neuroepithelium, a concept that could also apply to other systems.
Collapse
Affiliation(s)
- Marija Matejčić
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Caren Norden
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
48
|
Corso-Díaz X, Jaeger C, Chaitankar V, Swaroop A. Epigenetic control of gene regulation during development and disease: A view from the retina. Prog Retin Eye Res 2018; 65:1-27. [PMID: 29544768 PMCID: PMC6054546 DOI: 10.1016/j.preteyeres.2018.03.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 02/01/2018] [Accepted: 03/08/2018] [Indexed: 12/20/2022]
Abstract
Complex biological processes, such as organogenesis and homeostasis, are stringently regulated by genetic programs that are fine-tuned by epigenetic factors to establish cell fates and/or to respond to the microenvironment. Gene regulatory networks that guide cell differentiation and function are modulated and stabilized by modifications to DNA, RNA and proteins. In this review, we focus on two key epigenetic changes - DNA methylation and histone modifications - and discuss their contribution to retinal development, aging and disease, especially in the context of age-related macular degeneration (AMD) and diabetic retinopathy. We highlight less-studied roles of DNA methylation and provide the RNA expression profiles of epigenetic enzymes in human and mouse retina in comparison to other tissues. We also review computational tools and emergent technologies to profile, analyze and integrate epigenetic information. We suggest implementation of editing tools and single-cell technologies to trace and perturb the epigenome for delineating its role in transcriptional regulation. Finally, we present our thoughts on exciting avenues for exploring epigenome in retinal metabolism, disease modeling, and regeneration.
Collapse
Affiliation(s)
- Ximena Corso-Díaz
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Catherine Jaeger
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Vijender Chaitankar
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anand Swaroop
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
49
|
Schultz LE, Haltom JA, Almeida MP, Wierson WA, Solin SL, Weiss TJ, Helmer JA, Sandquist EJ, Shive HR, McGrail M. Epigenetic regulators Rbbp4 and Hdac1 are overexpressed in a zebrafish model of RB1 embryonal brain tumor, and are required for neural progenitor survival and proliferation. Dis Model Mech 2018; 11:11/6/dmm034124. [PMID: 29914980 PMCID: PMC6031359 DOI: 10.1242/dmm.034124] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/03/2018] [Indexed: 12/11/2022] Open
Abstract
In this study, we used comparative genomics and developmental genetics to identify epigenetic regulators driving oncogenesis in a zebrafish retinoblastoma 1 (rb1) somatic-targeting model of RB1 mutant embryonal brain tumors. Zebrafish rb1 brain tumors caused by TALEN or CRISPR targeting are histologically similar to human central nervous system primitive neuroectodermal tumors (CNS-PNETs). Like the human oligoneural OLIG2+/SOX10+ CNS-PNET subtype, zebrafish rb1 tumors show elevated expression of neural progenitor transcription factors olig2, sox10, sox8b and the receptor tyrosine kinase erbb3a oncogene. Comparison of rb1 tumor and rb1/rb1 germline mutant larval transcriptomes shows that the altered oligoneural precursor signature is specific to tumor tissue. More than 170 chromatin regulators were differentially expressed in rb1 tumors, including overexpression of chromatin remodeler components histone deacetylase 1 (hdac1) and retinoblastoma binding protein 4 (rbbp4). Germline mutant analysis confirms that zebrafish rb1, rbbp4 and hdac1 are required during brain development. rb1 is necessary for neural precursor cell cycle exit and terminal differentiation, rbbp4 is required for survival of postmitotic precursors, and hdac1 maintains proliferation of the neural stem cell/progenitor pool. We present an in vivo assay using somatic CRISPR targeting plus live imaging of histone-H2A.F/Z-GFP fusion protein in developing larval brain to rapidly test the role of chromatin remodelers in neural stem and progenitor cells. Our somatic assay recapitulates germline mutant phenotypes and reveals a dynamic view of their roles in neural cell populations. Our study provides new insight into the epigenetic processes that might drive pathogenesis in RB1 brain tumors, and identifies Rbbp4 and its associated chromatin remodeling complexes as potential target pathways to induce apoptosis in RB1 mutant brain cancer cells. This article has an associated First Person interview with the first author of the paper. Summary: This study shows that chromatin remodelers that are overexpressed in a zebrafish model of RB1 mutant brain cancer are required for neural progenitor proliferation and survival, providing insight into potential mechanisms that drive tumor growth.
Collapse
Affiliation(s)
- Laura E Schultz
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Jeffrey A Haltom
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Maira P Almeida
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Wesley A Wierson
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Staci L Solin
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Trevor J Weiss
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Jordan A Helmer
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Elizabeth J Sandquist
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Heather R Shive
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC 27607, USA
| | - Maura McGrail
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
50
|
Wang Z, Lyu J, Wang F, Miao C, Nan Z, Zhang J, Xi Y, Zhou Q, Yang X, Ge W. The histone deacetylase HDAC1 positively regulates Notch signaling during Drosophila wing development. Biol Open 2018; 7:bio.029637. [PMID: 29437043 PMCID: PMC5861358 DOI: 10.1242/bio.029637] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The Notch signaling pathway is highly conserved across different animal species and plays crucial roles in development and physiology. Regulation of Notch signaling occurs at multiple levels in different tissues and cell types. Here, we show that the histone deacetylase HDAC1 acts as a positive regulator of Notch signaling during Drosophila wing development. Depletion of HDAC1 causes wing notches on the margin of adult wing. Consistently, the expression of Notch target genes is reduced in the absence of HDAC1 during wing margin formation. We further provide evidence that HDAC1 acts upstream of Notch activation. Mechanistically, we show that HDAC1 regulates Notch protein levels by promoting Notch transcription. Consistent with this, the HDAC1-associated transcriptional co-repressor Atrophin (Atro) is also required for transcriptional activation of Notch in the wing disc. In summary, our results demonstrate that HDAC1 positively regulates Notch signaling and reveal a previously unidentified function of HDAC1 in Notch signaling.
Collapse
Affiliation(s)
- Zehua Wang
- Division of Human Reproduction and Developmental Genetics, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jialan Lyu
- Division of Human Reproduction and Developmental Genetics, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Fang Wang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chen Miao
- Division of Human Reproduction and Developmental Genetics, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Zi Nan
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiayu Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yongmei Xi
- Division of Human Reproduction and Developmental Genetics, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Qi Zhou
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiaohang Yang
- Division of Human Reproduction and Developmental Genetics, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Wanzhong Ge
- Division of Human Reproduction and Developmental Genetics, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China .,Institute of Genetics and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| |
Collapse
|