1
|
Koosha E, Brenna CTA, Ashique AM, Jain N, Ovens K, Koike T, Kitagawa H, Eames BF. Proteoglycan inhibition of canonical BMP-dependent cartilage maturation delays endochondral ossification. Development 2024; 151:dev201716. [PMID: 38117077 PMCID: PMC10820745 DOI: 10.1242/dev.201716] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023]
Abstract
During endochondral ossification, chondrocytes secrete a proteoglycan (PG)-rich extracellular matrix that can inhibit the process of cartilage maturation, including expression of Ihh and Col10a1. Because bone morphogenetic proteins (BMPs) can promote cartilage maturation, we hypothesized that cartilage PGs normally inhibit BMP signalling. Accordingly, BMP signalling was evaluated in chondrocytes of wild-type and PG mutant (fam20b-/-) zebrafish and inhibited with temporal control using the drug DMH1 or an inducible dominant-negative BMP receptor transgene (dnBMPR). Compared with wild type, phospho-Smad1/5/9, but not phospho-p38, was increased in fam20b-/- chondrocytes, but only after they secreted PGs. Phospho-Smad1/5/9 was decreased in DMH1-treated or dnBMPR-activated wild-type chondrocytes, and DMH1 also decreased phospho-p38 levels. ihha and col10a1a were decreased in DMH1-treated or dnBMPR-activated chondrocytes, and less perichondral bone formed. Finally, early ihha and col10a1a expression and early perichondral bone formation of fam20b mutants were rescued with DMH1 treatment or dnBMPR activation. Therefore, PG inhibition of canonical BMP-dependent cartilage maturation delays endochondral ossification, and these results offer hope for the development of growth factor therapies for skeletal defects of PG diseases.
Collapse
Affiliation(s)
- Elham Koosha
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Connor T. A. Brenna
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Amir M. Ashique
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Niteesh Jain
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Katie Ovens
- Department of Computer Science, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Toshiyasu Koike
- Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-0003, Japan
| | - Hiroshi Kitagawa
- Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-0003, Japan
| | - B. Frank Eames
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
2
|
Grall E, Feregrino C, Fischer S, De Courten A, Sacher F, Hiscock TW, Tschopp P. Self-organized BMP signaling dynamics underlie the development and evolution of digit segmentation patterns in birds and mammals. Proc Natl Acad Sci U S A 2024; 121:e2304470121. [PMID: 38175868 PMCID: PMC10786279 DOI: 10.1073/pnas.2304470121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 11/03/2023] [Indexed: 01/06/2024] Open
Abstract
Repeating patterns of synovial joints are a highly conserved feature of articulated digits, with variations in joint number and location resulting in diverse digit morphologies and limb functions across the tetrapod clade. During the development of the amniote limb, joints form iteratively within the growing digit ray, as a population of distal progenitors alternately specifies joint and phalanx cell fates to segment the digit into distinct elements. While numerous molecular pathways have been implicated in this fate choice, it remains unclear how they give rise to a repeating pattern. Here, using single-cell RNA sequencing and spatial gene expression profiling, we investigate the transcriptional dynamics of interphalangeal joint specification in vivo. Combined with mathematical modeling, we predict that interactions within the BMP signaling pathway-between the ligand GDF5, the inhibitor NOGGIN, and the intracellular effector pSMAD-result in a self-organizing Turing system that forms periodic joint patterns. Our model is able to recapitulate the spatiotemporal gene expression dynamics observed in vivo, as well as phenocopy digit malformations caused by BMP pathway perturbations. By contrasting in silico simulations with in vivo morphometrics of two morphologically distinct digits, we show how changes in signaling parameters and growth dynamics can result in variations in the size and number of phalanges. Together, our results reveal a self-organizing mechanism that underpins amniote digit segmentation and its evolvability and, more broadly, illustrate how Turing systems based on a single molecular pathway may generate complex repetitive patterns in a wide variety of organisms.
Collapse
Affiliation(s)
- Emmanuelle Grall
- Zoology, Department of Environmental Sciences, University of Basel, Basel4051, Switzerland
| | - Christian Feregrino
- Zoology, Department of Environmental Sciences, University of Basel, Basel4051, Switzerland
| | - Sabrina Fischer
- Zoology, Department of Environmental Sciences, University of Basel, Basel4051, Switzerland
| | - Aline De Courten
- Zoology, Department of Environmental Sciences, University of Basel, Basel4051, Switzerland
| | - Fabio Sacher
- Zoology, Department of Environmental Sciences, University of Basel, Basel4051, Switzerland
| | - Tom W. Hiscock
- Institute of Medical Sciences, University of Aberdeen, AberdeenAB25 2ZD, Scotland, United Kingdom
| | - Patrick Tschopp
- Zoology, Department of Environmental Sciences, University of Basel, Basel4051, Switzerland
| |
Collapse
|
3
|
Bajaj R, Rodriguez BL, Russell WK, Warner AN, Diao L, Wang J, Raso MG, Lu W, Khan K, Solis LS, Batra H, Tang X, Fradette JF, Kundu ST, Gibbons DL. Impad1 and Syt11 work in an epistatic pathway that regulates EMT-mediated vesicular trafficking to drive lung cancer invasion and metastasis. Cell Rep 2022; 40:111429. [PMID: 36170810 PMCID: PMC9665355 DOI: 10.1016/j.celrep.2022.111429] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/10/2022] [Accepted: 09/08/2022] [Indexed: 12/02/2022] Open
Abstract
Lung cancer is a highly aggressive and metastatic disease responsible for approximately 25% of all cancer-related deaths in the United States. Using high-throughput in vitro and in vivo screens, we have previously established Impad1 as a driver of lung cancer invasion and metastasis. Here we elucidate that Impad1 is a direct target of the epithelial microRNAs (miRNAs) miR-200 and miR∼96 and is de-repressed during epithelial-to-mesenchymal transition (EMT); thus, we establish a mode of regulation of the protein. Impad1 modulates Golgi apparatus morphology and vesicular trafficking through its interaction with a trafficking protein, Syt11. These changes in Golgi apparatus dynamics alter the extracellular matrix and the tumor microenvironment (TME) to promote invasion and metastasis. Inhibiting Impad1 or Syt11 disrupts the cancer cell secretome, regulates the TME, and reverses the invasive or metastatic phenotype. This work identifies Impad1 as a regulator of EMT and secretome-mediated changes during lung cancer progression.
Collapse
Affiliation(s)
- Rakhee Bajaj
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; UTHealth Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX 77030, USA
| | - B Leticia Rodriguez
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - William K Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Amanda N Warner
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; UTHealth Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX 77030, USA
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maria G Raso
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Wei Lu
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Khaja Khan
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Luisa S Solis
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Harsh Batra
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Ximing Tang
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Jared F Fradette
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; UTHealth Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX 77030, USA
| | - Samrat T Kundu
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
4
|
Schwartz NB, Domowicz MS. Roles of Chondroitin Sulfate Proteoglycans as Regulators of Skeletal Development. Front Cell Dev Biol 2022; 10:745372. [PMID: 35465334 PMCID: PMC9026158 DOI: 10.3389/fcell.2022.745372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 03/21/2022] [Indexed: 11/29/2022] Open
Abstract
The extracellular matrix (ECM) is critically important for most cellular processes including differentiation, morphogenesis, growth, survival and regeneration. The interplay between cells and the ECM often involves bidirectional signaling between ECM components and small molecules, i.e., growth factors, morphogens, hormones, etc., that regulate critical life processes. The ECM provides biochemical and contextual information by binding, storing, and releasing the bioactive signaling molecules, and/or mechanical information that signals from the cell membrane integrins through the cytoskeleton to the nucleus, thereby influencing cell phenotypes. Using these dynamic, reciprocal processes, cells can also remodel and reshape the ECM by degrading and re-assembling it, thereby sculpting their environments. In this review, we summarize the role of chondroitin sulfate proteoglycans as regulators of cell and tissue development using the skeletal growth plate model, with an emphasis on use of naturally occurring, or created mutants to decipher the role of proteoglycan components in signaling paradigms.
Collapse
Affiliation(s)
- Nancy B. Schwartz
- Department of Pediatrics, Biological Sciences Division, The University of Chicago, Chicago, IL, United States
- Department of Biochemistry and Molecular Biology, Biological Sciences Division, The University of Chicago, Chicago, IL, United States
- *Correspondence: Nancy B. Schwartz,
| | - Miriam S. Domowicz
- Department of Pediatrics, Biological Sciences Division, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
5
|
Venkatapuram VS, Aggarwal S, Kulkarni AD, Vineeth VS, Bhikaji Dalal A, Bhat V, Kiran L, Patil SJ. Fetal presentation of chondrodysplasia with joint dislocations, GPAPP type, caused by novel biallelic IMPAD1 variants. Am J Med Genet A 2022; 188:1287-1292. [PMID: 34989141 DOI: 10.1002/ajmg.a.62622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/29/2021] [Accepted: 12/11/2021] [Indexed: 11/08/2022]
Abstract
Biallelic IMPAD1 pathogenic variants leads to deficiency of GPAPP (Golgi 3-prime phosphoadenosine 5-prime phosphate 3-prime phosphatase) protein and clinically causes chondrodysplasia, which is characterized by short stature with short limbs, craniofacial malformations, cleft palate, hand and foot anomalies, and various radiographic skeletal manifestations. Here we describe prenatal presentation of GPAPP deficiency caused by novel biallelic pathogenic variants, 2 base pair duplication in exon 2 of IMAPD1 gene in a patient of Asian-Indian origin. Further we report on diagnostic clues of prenatal presentation of GPAPP deficiency through ultrasonography, fetal MRI, and postmortem findings. We also provide evidence of pathophysiology of underlying GPAPP deficiency in the form of disorganization and dysplastic chondrocytes and reduced sulfation of glycoproteins through histopathology of cartilage similar to that described in mice IMPAD1 homozygous mutant model.
Collapse
Affiliation(s)
- Vijaya Sree Venkatapuram
- Department of Medical Genetics, Nizam's Institute of Medical Sciences, Hyderabad, India.,Division of Diagnostics, Centre for DNA Fingerprinting & Diagnostics, Hyderabad, India
| | - Shagun Aggarwal
- Department of Medical Genetics, Nizam's Institute of Medical Sciences, Hyderabad, India.,Division of Diagnostics, Centre for DNA Fingerprinting & Diagnostics, Hyderabad, India
| | | | | | - Ashwin Bhikaji Dalal
- Division of Diagnostics, Centre for DNA Fingerprinting & Diagnostics, Hyderabad, India
| | - Venkatraman Bhat
- Department of Radiology, Mazumdar Shaw Medical Center, Narayana Hrudayalaya Hospitals, Bangalore, India
| | - Lavanya Kiran
- Department of Obstetrics and Gynecology, Mazumdar Shaw Medical Center, Narayana Hrudayalaya Hospitals, Bangalore, India
| | - Siddaramappa Jagdish Patil
- Division of Medical Genetics, Mazumdar Shaw Medical Center, Narayana Hrudayalaya Hospitals, Bangalore, India
| |
Collapse
|
6
|
Wells KM, Baumel M, McCusker CD. The Regulation of Growth in Developing, Homeostatic, and Regenerating Tetrapod Limbs: A Minireview. Front Cell Dev Biol 2022; 9:768505. [PMID: 35047496 PMCID: PMC8763381 DOI: 10.3389/fcell.2021.768505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/19/2021] [Indexed: 01/29/2023] Open
Abstract
The size and shape of the tetrapod limb play central roles in their functionality and the overall physiology of the organism. In this minireview we will discuss observations on mutant animal models and humans, which show that the growth and final size of the limb is most impacted by factors that regulate either limb bud patterning or the elongation of the long bones. We will also apply the lessons that have been learned from embryos to how growth could be regulated in regenerating limb structures and outline the challenges that are unique to regenerating animals.
Collapse
|
7
|
Eisele BS, Wu AJ, Luka Z, Hale AT, York JD. Bisphosphate nucleotidase 2 (BPNT2), a molecular target of lithium, regulates chondroitin sulfation patterns in the cerebral cortex and hippocampus. Adv Biol Regul 2022; 83:100858. [PMID: 34920982 PMCID: PMC8858884 DOI: 10.1016/j.jbior.2021.100858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 01/03/2023]
Abstract
Bisphosphate nucleotidase 2 (BPNT2) is a member of a family of phosphatases that are directly inhibited by lithium, the first-line medication for bipolar disorder. BPNT2 is localized to the Golgi, where it metabolizes the by-products of glycosaminoglycan sulfation reactions. BPNT2-knockout mice exhibit impairments in total-body chondroitin-4-sulfation which lead to abnormal skeletal development (chondrodysplasia). These mice die in the perinatal period, which has previously prevented the investigation of BPNT2 in the adult nervous system. Previous work has demonstrated the importance of chondroitin sulfation in the brain, as chondroitin-4-sulfate is a major component of perineuronal nets (PNNs), a specialized neuronal extracellular matrix which mediates synaptic plasticity and regulates certain behaviors. We hypothesized that the loss of BPNT2 in the nervous system would decrease chondroitin-4-sulfation and PNNs in the brain, which would coincide with behavioral abnormalities. We used Cre-lox breeding to knockout Bpnt2 specifically in the nervous system using Bpnt2 floxed (fl/fl) animals and a Nestin-driven Cre recombinase. These mice are viable into adulthood, and do not display gross physical abnormalities. We identified decreases in total glycosaminoglycan sulfation across selected brain regions, and specifically show decreases in chondroitin-4-sulfation which correspond with increases in chondroitin-6-sulfation. Interestingly, these changes were not correlated with gross alterations in PNNs. We also subjected these mice to a selection of neurobehavioral assessments and did not identify significant behavioral abnormalities. In summary, this work demonstrates that BPNT2, a known target of lithium, is important for glycosaminoglycan sulfation in the brain, suggesting that lithium-mediated inhibition of BPNT2 in the nervous system warrants further investigation.
Collapse
Affiliation(s)
- Brynna S Eisele
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| | - Alice J Wu
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| | - Zigmund Luka
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| | - Andrew T Hale
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| | - John D York
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
8
|
Wells KM, Kelley K, Baumel M, Vieira WA, McCusker CD. Neural control of growth and size in the axolotl limb regenerate. eLife 2021; 10:68584. [PMID: 34779399 PMCID: PMC8716110 DOI: 10.7554/elife.68584] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 11/13/2021] [Indexed: 11/29/2022] Open
Abstract
The mechanisms that regulate growth and size of the regenerating limb in tetrapods such as the Mexican axolotl are unknown. Upon the completion of the developmental stages of regeneration, when the regenerative organ known as the blastema completes patterning and differentiation, the limb regenerate is proportionally small in size. It then undergoes a phase of regeneration that we have called the ‘tiny-limb’ stage, which is defined by rapid growth until the regenerate reaches the proportionally appropriate size. In the current study we have characterized this growth and have found that signaling from the limb nerves is required for its maintenance. Using the regenerative assay known as the accessory limb model (ALM), we have found that growth and size of the limb positively correlates with nerve abundance. We have additionally developed a new regenerative assay called the neural modified-ALM (NM-ALM), which decouples the source of the nerves from the regenerating host environment. Using the NM-ALM we discovered that non-neural extrinsic factors from differently sized host animals do not play a prominent role in determining the size of the regenerating limb. We have also discovered that the regulation of limb size is not autonomously regulated by the limb nerves. Together, these observations show that the limb nerves provide essential cues to regulate ontogenetic allometric growth and the final size of the regenerating limb. Humans’ ability to regrow lost or damaged body parts is relatively limited, but some animals, such as the axolotl (a Mexican salamander), can regenerate complex body parts, like legs, many times over their lives. Studying regeneration in these animals could help researchers enhance humans’ abilities to heal. One way to do this is using the Accessory Limb Model (ALM), where scientists wound an axolotl’s leg, and study the additional leg that grows from the wound. The first stage of limb regeneration creates a new leg that has the right structure and shape. The new leg is very small so the next phase involves growing the leg until its size matches the rest of the animal. This phase must be controlled so that the limb stops growing when it reaches the right size, but how this regulation works is unclear. Previous research suggests that the number of nerves in the new leg could be important. Wells et al. used a ALM to study how the size of regenerating limbs is controlled. They found that changing the number of nerves connected to the new leg altered its size, with more nerves leading to a larger leg. Next, Wells et al. created a system that used transplanted nerve bundles of different sizes to grow new legs in different sized axolotls. This showed that the size of the resulting leg is controlled by the number of nerves connecting it to the CNS. Wells et al. also showed that nerves can only control regeneration if they remain connected to the central nervous system. These results explain how size is controlled during limb regeneration in axolotls, highlighting the fact that regrowth is directly controlled by the number of nerves connected to a regenerating leg. Much more work is needed to reveal the details of this process and the signals nerves use to control growth. It will also be important to determine whether this control system is exclusive to axolotls, or whether other animals also use it.
Collapse
Affiliation(s)
- Kaylee M Wells
- Biology Department, University of Massachusetts Boston, Boston, United States
| | - Kristina Kelley
- Biology Department, University of Massachusetts Boston, Boston, United States
| | - Mary Baumel
- Biology Department, University of Massachusetts Boston, Boston, United States
| | - Warren A Vieira
- Biology Department, University of Massachusetts Boston, Boston, United States
| | | |
Collapse
|
9
|
Eisele BS, Luka Z, Wu AJ, Yang F, Hale AT, York JD. Sulfation of glycosaminoglycans depends on the catalytic activity of lithium-inhibited phosphatase BPNT2 in vitro. J Biol Chem 2021; 297:101293. [PMID: 34634304 PMCID: PMC8551643 DOI: 10.1016/j.jbc.2021.101293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/29/2021] [Accepted: 10/06/2021] [Indexed: 01/02/2023] Open
Abstract
Golgi-resident bisphosphate nucleotidase 2 (BPNT2) is a member of a family of magnesium-dependent, lithium-inhibited phosphatases that share a three-dimensional structural motif that directly coordinates metal binding to effect phosphate hydrolysis. BPNT2 catalyzes the breakdown of 3'-phosphoadenosine-5'-phosphate, a by-product of glycosaminoglycan (GAG) sulfation. KO of BPNT2 in mice leads to skeletal abnormalities because of impaired GAG sulfation, especially chondroitin-4-sulfation, which is critical for proper extracellular matrix development. Mutations in BPNT2 have also been found to underlie a chondrodysplastic disorder in humans. The precise mechanism by which the loss of BPNT2 impairs sulfation remains unclear. Here, we used mouse embryonic fibroblasts (MEFs) to test the hypothesis that the catalytic activity of BPNT2 is required for GAG sulfation in vitro. We show that a catalytic-dead Bpnt2 construct (D108A) does not rescue impairments in intracellular or secreted sulfated GAGs, including decreased chondroitin-4-sulfate, present in Bpnt2-KO MEFs. We also demonstrate that missense mutations in Bpnt2 adjacent to the catalytic site, which are known to cause chondrodysplasia in humans, recapitulate defects in overall GAG sulfation and chondroitin-4-sulfation in MEF cultures. We further show that treatment of MEFs with lithium (a common psychotropic medication) inhibits GAG sulfation and that this effect depends on the presence of BPNT2. Taken together, this work demonstrates that the catalytic activity of an enzyme potently inhibited by lithium can modulate GAG sulfation and therefore extracellular matrix composition, revealing new insights into lithium pharmacology.
Collapse
Affiliation(s)
- Brynna S Eisele
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Zigmund Luka
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Alice J Wu
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Fei Yang
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Andrew T Hale
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - John D York
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
10
|
Dubail J, Cormier-Daire V. Chondrodysplasias With Multiple Dislocations Caused by Defects in Glycosaminoglycan Synthesis. Front Genet 2021; 12:642097. [PMID: 34220933 PMCID: PMC8242584 DOI: 10.3389/fgene.2021.642097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
Chondrodysplasias with multiple dislocations form a group of severe disorders characterized by joint laxity and multiple dislocations, severe short stature of pre- and post-natal onset, hand anomalies, and/or vertebral anomalies. The majority of chondrodysplasias with multiple dislocations have been associated with mutations in genes encoding glycosyltransferases, sulfotransferases, and transporters implicated in the synthesis or sulfation of glycosaminoglycans, long and unbranched polysaccharides composed of repeated disaccharide bond to protein core of proteoglycan. Glycosaminoglycan biosynthesis is a tightly regulated process that occurs mainly in the Golgi and that requires the coordinated action of numerous enzymes and transporters as well as an adequate Golgi environment. Any disturbances of this chain of reactions will lead to the incapacity of a cell to construct correct glycanic chains. This review focuses on genetic and glycobiological studies of chondrodysplasias with multiple dislocations associated with glycosaminoglycan biosynthesis defects and related animal models. Strong comprehension of the molecular mechanisms leading to those disorders, mostly through extensive phenotypic analyses of in vitro and/or in vivo models, is essential for the development of novel biomarkers for clinical screenings and innovative therapeutics for these diseases.
Collapse
Affiliation(s)
- Johanne Dubail
- Université de Paris, INSERM UMR 1163, Institut Imagine, Paris, France
| | - Valérie Cormier-Daire
- Université de Paris, INSERM UMR 1163, Institut Imagine, Paris, France.,Service de Génétique Clinique, Centre de Référence Pour Les Maladies Osseuses Constitutionnelles, AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| |
Collapse
|
11
|
Bajaj R, Kundu ST, Grzeskowiak CL, Fradette JJ, Scott KL, Creighton CJ, Gibbons DL. IMPAD1 and KDELR2 drive invasion and metastasis by enhancing Golgi-mediated secretion. Oncogene 2020; 39:5979-5994. [PMID: 32753652 PMCID: PMC7539228 DOI: 10.1038/s41388-020-01410-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/14/2020] [Accepted: 07/23/2020] [Indexed: 01/12/2023]
Abstract
Non-small cell lung cancer (NSCLC) is the deadliest form of cancer worldwide, due in part to its proclivity to metastasize. Identifying novel drivers of invasion and metastasis holds therapeutic potential for the disease. We conducted a gain-of-function invasion screen, which identified two separate hits, IMPAD1 and KDELR2, as robust, independent drivers of lung cancer invasion and metastasis. Given that IMPAD1 and KDELR2 are known to be localized to the ER-Golgi pathway, we studied their common mechanism of driving in vitro invasion and in vivo metastasis and demonstrated that they enhance Golgi-mediated function and secretion. Therapeutically inhibiting matrix metalloproteases (MMPs) suppressed both IMPAD1- and KDELR2-mediated invasion. The hits from this unbiased screen and the mechanistic validation highlight Golgi function as one of the key cellular features altered during invasion and metastasis.
Collapse
Affiliation(s)
- Rakhee Bajaj
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Samrat T Kundu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| | - Caitlin L Grzeskowiak
- Department of Molecular and Human Genetics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Medicine, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jared J Fradette
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Kenneth L Scott
- Department of Medicine, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Chad J Creighton
- Department of Medicine, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| |
Collapse
|
12
|
Hale AT, Brown RE, Luka Z, Hudson BH, Matta P, Williams CS, York JD. Modulation of sulfur assimilation metabolic toxicity overcomes anemia and hemochromatosis in mice. Adv Biol Regul 2020; 76:100694. [PMID: 32019729 PMCID: PMC7230019 DOI: 10.1016/j.jbior.2020.100694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/09/2020] [Accepted: 01/16/2020] [Indexed: 02/07/2023]
Abstract
Sulfur assimilation is an essential metabolic pathway that regulates sulfation, amino acid metabolism, nucleotide hydrolysis, and organismal homeostasis. We recently reported that mice lacking bisphosphate 3'-nucleotidase (BPNT1), a key regulator of sulfur assimilation, develop iron-deficiency anemia (IDA) and anasarca. Here we demonstrate two approaches that successfully reduce metabolic toxicity caused by loss of BPNT1: 1) dietary methionine restriction and 2) overproduction of a key transcriptional regulator hypoxia inducible factor 2α (Hif-2a). Reduction of methionine in the diet reverses IDA in mice lacking BPNT1, through a mechanism of downregulation of sulfur assimilation metabolic toxicity. Gaining Hif-2a acts through a different mechanism by restoring iron homeostatic gene expression in BPNT1 deficient mouse intestinal organoids. Finally, as loss of BPNT1 impairs expression of known genetic modifiers of iron-overload, we demonstrate that intestinal-epithelium specific loss of BPNT1 attenuates hepatic iron accumulation in mice with homozygous C282Y mutations in homeostatic iron regulator (HFEC282Y), the most common cause of hemochromatosis in humans. Overall, our study uncovers genetic and dietary strategies to overcome anemia caused by defects in sulfur assimilation and identifies BPNT1 as a potential target for the treatment of hemochromatosis.
Collapse
Affiliation(s)
- Andrew T Hale
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Rachel E Brown
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Zigmund Luka
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Benjamin H Hudson
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Pranathi Matta
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Christopher S Williams
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - John D York
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| |
Collapse
|
13
|
Paganini C, Gramegna Tota C, Superti-Furga A, Rossi A. Skeletal Dysplasias Caused by Sulfation Defects. Int J Mol Sci 2020; 21:ijms21082710. [PMID: 32295296 PMCID: PMC7216085 DOI: 10.3390/ijms21082710] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/18/2022] Open
Abstract
Proteoglycans (PGs) are macromolecules present on the cell surface and in the extracellular matrix that confer specific mechanical, biochemical, and physical properties to tissues. Sulfate groups present on glycosaminoglycans, linear polysaccharide chains attached to PG core proteins, are fundamental for correct PG functions. Indeed, through the negative charge of sulfate groups, PGs interact with extracellular matrix molecules and bind growth factors regulating tissue structure and cell behavior. The maintenance of correct sulfate metabolism is important in tissue development and function, particularly in cartilage where PGs are fundamental and abundant components of the extracellular matrix. In chondrocytes, the main sulfate source is the extracellular space, then sulfate is taken up and activated in the cytosol to the universal sulfate donor to be used in sulfotransferase reactions. Alteration in each step of sulfate metabolism can affect macromolecular sulfation, leading to the onset of diseases that affect mainly cartilage and bone. This review presents a panoramic view of skeletal dysplasias caused by mutations in genes encoding for transporters or enzymes involved in macromolecular sulfation. Future research in this field will contribute to the understanding of the disease pathogenesis, allowing the development of targeted therapies aimed at alleviating, preventing, or modifying the disease progression.
Collapse
Affiliation(s)
- Chiara Paganini
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, 27100 Pavia, Italy; (C.P.); (C.G.T.)
| | - Chiara Gramegna Tota
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, 27100 Pavia, Italy; (C.P.); (C.G.T.)
| | - Andrea Superti-Furga
- Division of Genetic Medicine, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland;
| | - Antonio Rossi
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, 27100 Pavia, Italy; (C.P.); (C.G.T.)
- Correspondence:
| |
Collapse
|
14
|
Scoones JC, Hiscock TW. A dot-stripe Turing model of joint patterning in the tetrapod limb. Development 2020; 147:dev183699. [PMID: 32127348 PMCID: PMC7174842 DOI: 10.1242/dev.183699] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 02/24/2020] [Indexed: 01/11/2023]
Abstract
Iterative joints are a hallmark of the tetrapod limb, and their positioning is a key step during limb development. Although the molecular regulation of joint formation is well studied, it remains unclear what controls the location, number and orientation (i.e. the pattern) of joints within each digit. Here, we propose the dot-stripe mechanism for joint patterning, comprising two coupled Turing systems inspired by published gene expression patterns. Our model can explain normal joint morphology in wild-type limbs, hyperphalangy in cetacean flippers, mutant phenotypes with misoriented joints and suggests a reinterpretation of the polydactylous Ichthyosaur fins as a polygonal joint lattice. By formulating a generic dot-stripe model, describing joint patterns rather than molecular joint markers, we demonstrate that the insights from the model should apply regardless of the biological specifics of the underlying mechanism, thus providing a unifying framework to interrogate joint patterning in the tetrapod limb.
Collapse
Affiliation(s)
| | - Tom W Hiscock
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| |
Collapse
|
15
|
Paganini C, Costantini R, Superti-Furga A, Rossi A. Bone and connective tissue disorders caused by defects in glycosaminoglycan biosynthesis: a panoramic view. FEBS J 2019; 286:3008-3032. [PMID: 31286677 DOI: 10.1111/febs.14984] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/22/2019] [Accepted: 07/04/2019] [Indexed: 02/06/2023]
Abstract
Glycosaminoglycans (GAGs) are a heterogeneous family of linear polysaccharides that constitute the carbohydrate moiety covalently attached to the protein core of proteoglycans, macromolecules present on the cell surface and in the extracellular matrix. Several genetic disorders of bone and connective tissue are caused by mutations in genes encoding for glycosyltransferases, sulfotransferases and transporters that are responsible for the synthesis of sulfated GAGs. Phenotypically, these disorders all reflect alterations in crucial biological functions of GAGs in the development, growth and homoeostasis of cartilage and bone. To date, up to 27 different skeletal phenotypes have been linked to mutations in 23 genes encoding for proteins involved in GAG biosynthesis. This review focuses on recent genetic, molecular and biochemical studies of bone and connective tissue disorders caused by GAG synthesis defects. These insights and future research in the field will provide a deeper understanding of the molecular pathogenesis of these disorders and will pave the way for developing common therapeutic strategies that might be targeted to a range of individual phenotypes.
Collapse
Affiliation(s)
- Chiara Paganini
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Italy
| | - Rossella Costantini
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Italy
| | - Andrea Superti-Furga
- Division of Genetic Medicine, Lausanne University Hospital, University of Lausanne, Switzerland
| | - Antonio Rossi
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Italy
| |
Collapse
|
16
|
Testing the Cre-mediated genetic switch for the generation of conditional knock-in mice. PLoS One 2019; 14:e0213660. [PMID: 30865697 PMCID: PMC6415906 DOI: 10.1371/journal.pone.0213660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 02/25/2019] [Indexed: 12/20/2022] Open
Abstract
The Cre-mediated genetic switch combines the ability of Cre recombinase to stably invert or excise a DNA fragment depending upon the orientation of flanking mutant loxP sites. In this work, we have tested this strategy in vivo with the aim to generate two conditional knock-in mice for missense mutations in the Impad1 and Clcn7 genes causing two different skeletal dysplasias. Targeting constructs were generated in which the Impad1 exon 2 and an inverted exon 2* and the Clcn7 exon 7 and an inverted exon 7* containing the point mutations were flanked by mutant loxP sites in a head-to-head orientation. When the Cre recombinase is present, the DNA flanked by the mutant loxP sites is expected to be stably inverted leading to the activation of the mutated exon. The targeting vectors were used to generate heterozygous floxed mice in which inversion of the wild-type with the mutant exon has not occurred yet. To generate knock-in mice, floxed animals were mated to a global Cre-deleter mouse strain for stable inversion and activation of the mutation. Unexpectedly the phenotype of homozygous Impad1 knock-in animals overlaps with the lethal phenotype described previously in Impad1 knock-out mice. Similarly, the phenotype of homozygous Clcn7 floxed mice overlaps with Clcn7 knock-out mice. Expression studies by qPCR and RT-PCR demonstrated that mutant mRNA underwent abnormal splicing leading to the synthesis of non-functional proteins. Thus, the skeletal phenotypes in both murine strains were not caused by the missense mutations, but by aberrant splicing. Our data demonstrate that the Cre mediated genetic switch strategy should be considered cautiously for the generation of conditional knock-in mice.
Collapse
|
17
|
Rafipay A, Berg ALR, Erskine L, Vargesson N. Expression analysis of limb element markers during mouse embryonic development. Dev Dyn 2018; 247:1217-1226. [PMID: 30225906 PMCID: PMC6282987 DOI: 10.1002/dvdy.24671] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/13/2018] [Accepted: 08/29/2018] [Indexed: 12/18/2022] Open
Abstract
Background: While data regarding expression of limb element and tissue markers during normal mouse limb development exist, few studies show expression patterns in upper and lower limbs throughout key limb development stages. A comparison to normal developmental events is essential when analyzing development of the limb in mutant mice models. Results: Expression patterns of the joint marker Gdf5, tendon and ligament marker Scleraxis, early muscle marker MyoD1, and blood vessel marker Cadherin5 (Cdh5) are presented during the most active phases of embryonic mouse limb patterning. Anti‐neurofilament staining of developing nerves in the fore‐ and hindlimbs and cartilage formation and progression also are described. Conclusions: This study demonstrates and describes a range of key morphological markers and methods that together can be used to assess normal and abnormal limb development. Developmental Dynamics 247:1217–1226, 2018. © 2018 The Authors. Developmental Dynamics published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists Expression patterns of molecular markers throughout both fore‐ and hindlimb development ‐ which can be used to assess normal and abnormal development. Detailled description of innervation during fore‐ and hindlimb development confirming innervation first seen after limb patterning events have begun. Description of cartilage development and progression indicates alizarin red staining not seen until E15.5 in both fore‐ and hindlimbs. Hindlimb lags behind forelimb molecularly and morphologically until E14.5. Detailled description of methods used to study fore‐ and hindlimb development.
Collapse
Affiliation(s)
- Alexandra Rafipay
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen
| | - Amanda L R Berg
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen
| | - Lynda Erskine
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen
| | - Neil Vargesson
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen
| |
Collapse
|
18
|
Hackett MJ, George GN, Pickering IJ, Eames BF. Chemical Biology in the Embryo: In Situ Imaging of Sulfur Biochemistry in Normal and Proteoglycan-Deficient Cartilage Matrix. Biochemistry 2016; 55:2441-51. [PMID: 26985789 DOI: 10.1021/acs.biochem.5b01136] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proteoglycans (PGs) are heavily glycosylated proteins that play major structural and biological roles in many tissues. Proteoglycans are abundant in cartilage extracellular matrix; their loss is a main feature of the joint disease osteoarthritis. Proteoglycan function is regulated by sulfation-sulfate ester formation with specific sugar residues. Visualization of sulfation within cartilage matrix would yield vital insights into its biological roles. We present synchrotron-based X-ray fluorescence imaging of developing zebrafish cartilage, providing the first in situ maps of sulfate ester distribution. Levels of both sulfur and sulfate esters decrease as cartilage develops through late phase differentiation (maturation or hypertrophy), suggesting a functional link between cartilage matrix sulfur content and chondrocyte differentiation. Genetic experiments confirm that sulfate ester levels were due to cartilage proteoglycans and support the hypothesis that sulfate ester levels regulate chondrocyte differentiation. Surprisingly, in the PG synthesis mutant, the total level of sulfur was not significantly reduced, suggesting sulfur is distributed in an alternative chemical form during lowered cartilage proteoglycan production. Fourier transform infrared imaging indicated increased levels of protein in the mutant fish, suggesting that this alternative sulfur form might be ascribed to an increased level of protein synthesis in the mutant fish, as part of a compensatory mechanism.
Collapse
Affiliation(s)
- Mark J Hackett
- Molecular and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Graham N George
- Molecular and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5E2, Canada.,Department of Chemistry, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5C9, Canada.,Toxicology Centre, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Ingrid J Pickering
- Molecular and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5E2, Canada.,Department of Chemistry, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5C9, Canada.,Toxicology Centre, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5B3, Canada
| | - B Frank Eames
- Department of Anatomy and Cell Biology, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5E5, Canada
| |
Collapse
|
19
|
Brown DS, Eames BF. Emerging tools to study proteoglycan function during skeletal development. Methods Cell Biol 2016; 134:485-530. [PMID: 27312503 DOI: 10.1016/bs.mcb.2016.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the past 20years, appreciation for the varied roles of proteoglycans (PGs), which are specific types of sugar-coated proteins, has increased dramatically. PGs in the extracellular matrix were long known to impart structural functions to many tissues, especially articular cartilage, which cushions bones and allows mobility at skeletal joints. Indeed, osteoarthritis is a debilitating disease associated with loss of PGs in articular cartilage. Today, however, PGs have a demonstrated role in cell biological processes, such as growth factor signalling, prompting new perspectives on the etiology of PG-associated diseases. Here, we review diseases associated with defects in PG synthesis and sulfation, also highlighting current understanding of the underlying genetics, biochemistry, and cell biology. Since most research has analyzed a class of PGs called heparan sulfate PGs, more attention is paid here to studies of chondroitin sulfate PGs (CSPGs), which are abundant in cartilage. Interestingly, CSPG synthesis is tightly linked to the cell biological processes of secretion and lysosomal degradation, suggesting that these systems may be linked genetically. Animal models of loss of CSPG function have revealed CSPGs to impact skeletal development. Specifically, our work from a mutagenesis screen in zebrafish led to the hypothesis that cartilage PGs normally delay the timing of endochondral ossification. Finally, we outline emerging approaches in zebrafish that may revolutionize the study of cartilage PG function, including transgenic methods and novel imaging techniques. Our recent work with X-ray fluorescent imaging, for example, enables direct correlation of PG function with PG-dependent biological processes.
Collapse
Affiliation(s)
- D S Brown
- University of Saskatchewan, Saskatoon, SK, Canada
| | - B F Eames
- University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
20
|
Funato N, Nakamura M, Yanagisawa H. Molecular basis of cleft palates in mice. World J Biol Chem 2015; 6:121-138. [PMID: 26322171 PMCID: PMC4549757 DOI: 10.4331/wjbc.v6.i3.121] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 05/26/2015] [Accepted: 07/14/2015] [Indexed: 02/05/2023] Open
Abstract
Cleft palate, including complete or incomplete cleft palates, soft palate clefts, and submucosal cleft palates, is the most frequent congenital craniofacial anomaly in humans. Multifactorial conditions, including genetic and environmental factors, induce the formation of cleft palates. The process of palatogenesis is temporospatially regulated by transcription factors, growth factors, extracellular matrix proteins, and membranous molecules; a single ablation of these molecules can result in a cleft palate in vivo. Studies on knockout mice were reviewed in order to identify genetic errors that lead to cleft palates. In this review, we systematically describe these mutant mice and discuss the molecular mechanisms of palatogenesis.
Collapse
|
21
|
Longobardi L, Li T, Tagliafierro L, Temple JD, Willcockson HH, Ye P, Esposito A, Xu F, Spagnoli A. Synovial joints: from development to homeostasis. Curr Osteoporos Rep 2015; 13:41-51. [PMID: 25431159 PMCID: PMC4306636 DOI: 10.1007/s11914-014-0247-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Synovial joint morphogenesis occurs through the condensation of mesenchymal cells into a non-cartilaginous region known as the interzone and the specification of progenitor cells that commit to the articular fate. Although several signaling molecules are expressed by the interzone, the mechanism is poorly understood. For treatments of cartilage injuries, it is critical to discover the presence of joint progenitor cells in adult tissues and their expression gene pattern. Potential stem cell niches have been found in different joint regions, such as the surface zone of articular cartilage, synovium, and groove of Ranvier. Inherited joint malformations as well as joint-degenerating conditions are often associated with other skeletal defects and may be seen as the failure of morphogenic factors to establish the correct microenvironment in cartilage and bone. Therefore, exploring how joints form can help us understand how cartilage and bone are damaged and develop drugs to reactivate this developing mechanism.
Collapse
Affiliation(s)
- Lara Longobardi
- Department of Pediatrics, University of North Carolina at Chapel Hill, 109 Mason Farm Road, Chapel Hill, NC, 27599-7039, USA,
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Tanaka M, Yamazaki Y, Kanno Y, Igarashi K, Aisaki KI, Kanno J, Nakamura T. Ewing's sarcoma precursors are highly enriched in embryonic osteochondrogenic progenitors. J Clin Invest 2014; 124:3061-74. [PMID: 24911143 DOI: 10.1172/jci72399] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 04/10/2014] [Indexed: 12/18/2022] Open
Abstract
Ewing's sarcoma is a highly malignant bone tumor found in children and adolescents, and the origin of this malignancy is not well understood. Here, we introduced a Ewing's sarcoma-associated genetic fusion of the genes encoding the RNA-binding protein EWS and the transcription factor ETS (EWS-ETS) into a fraction of cells enriched for osteochondrogenic progenitors derived from the embryonic superficial zone (eSZ) of long bones collected from late gestational murine embryos. EWS-ETS fusions efficiently induced Ewing's sarcoma-like small round cell sarcoma formation by these cells. Analysis of the eSZ revealed a fraction of a precursor cells that express growth/differentiation factor 5 (Gdf5), the transcription factor Erg, and parathyroid hormone-like hormone (Pthlh), and selection of the Pthlh-positive fraction alone further enhanced EWS-ETS-dependent tumor induction. Genes downstream of the EWS-ETS fusion protein were quite transcriptionally active in eSZ cells, especially in regions in which the chromatin structure of the ETS-responsive locus was open. Inhibition of β-catenin, poly (ADP-ribose) polymerase 1 (PARP1), or enhancer of zeste homolog 2 (EZH2) suppressed cell growth in a murine model of Ewing's sarcoma, suggesting the utility of the current system as a preclinical model. These results indicate that eSZ cells are highly enriched in precursors to Ewing's sarcoma and provide clues to the histogenesis of Ewing's sarcoma in bone.
Collapse
|
23
|
Roles for nucleotide phosphatases in sulfate assimilation and skeletal disease. Adv Biol Regul 2013; 52:229-38. [PMID: 22100882 DOI: 10.1016/j.advenzreg.2011.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 11/04/2011] [Indexed: 12/26/2022]
|
24
|
Roy P, Kumar B, Shende A, Singh A, Meena A, Ghosal R, Ranganathan M, Bandyopadhyay A. A genome-wide screen indicates correlation between differentiation and expression of metabolism related genes. PLoS One 2013; 8:e63670. [PMID: 23717462 PMCID: PMC3661535 DOI: 10.1371/journal.pone.0063670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 04/04/2013] [Indexed: 01/07/2023] Open
Abstract
Differentiated tissues may be considered as materials with distinct properties. The differentiation program of a given tissue ensures that it acquires material properties commensurate with its function. It may be hypothesized that some of these properties are acquired through production of tissue-specific metabolites synthesized by metabolic enzymes. To establish correlation between metabolism and organogenesis we have carried out a genome-wide expression study of metabolism related genes by RNA in-situ hybridization. 23% of the metabolism related genes studied are expressed in a tissue-restricted but not tissue-exclusive manner. We have conducted the screen on whole mount chicken (Gallus gallus) embryos from four distinct developmental stages to correlate dynamic changes in expression patterns of metabolic enzymes with spatio-temporally unique developmental events. Our data strongly suggests that unique combinations of metabolism related genes, and not specific metabolic pathways, are upregulated during differentiation. Further, expression of metabolism related genes in well established signaling centers that regulate different aspects of morphogenesis indicates developmental roles of some of the metabolism related genes. The database of tissue-restricted expression patterns of metabolism related genes, generated in this study, should serve as a resource for systematic identification of these genes with tissue-specific functions during development. Finally, comprehensive understanding of differentiation is not possible unless the downstream genes of a differentiation cascade are identified. We propose, metabolic enzymes constitute a significant portion of these downstream target genes. Thus our study should help elucidate different aspects of tissue differentiation.
Collapse
Affiliation(s)
- Priti Roy
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, U.P., India
| | - Brijesh Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, U.P., India
| | - Akhilesh Shende
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, U.P., India
| | - Anupama Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, U.P., India
| | - Anil Meena
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, U.P., India
| | - Ritika Ghosal
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, U.P., India
| | - Madhav Ranganathan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, U.P., India
| | - Amitabha Bandyopadhyay
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, U.P., India
- * E-mail:
| |
Collapse
|
25
|
Lorda-Diez CI, Montero JA, Rodriguez-Leon J, Garcia-Porrero JA, Hurle JM. Expression and functional study of extracellular BMP antagonists during the morphogenesis of the digits and their associated connective tissues. PLoS One 2013; 8:e60423. [PMID: 23573253 PMCID: PMC3616094 DOI: 10.1371/journal.pone.0060423] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 02/26/2013] [Indexed: 12/18/2022] Open
Abstract
The purpose of this study is to gain insight into the role of BMP signaling in the diversification of the embryonic limb mesodermal progenitors destined to form cartilage, joints, and tendons. Given the importance of extracellular BMP modulators in in vivo systems, we performed a systematic search of those expressed in the developing autopod during the formation of the digits. Here, we monitored the expression of extracellular BMP modulators including: Noggin, Chordin, Chordin-like 1, Chordin-like 2, Twisted gastrulation, Dan, BMPER, Sost, Sostdc1, Follistatin, Follistatin-like 1, Follistatin-like 5 and Tolloid. These factors show differential expression domains in cartilage, joints and tendons. Furthermore, they are induced in specific temporal patterns during the formation of an ectopic extra digit, preceding the appearance of changes that are identifiable by conventional histology. The analysis of gene regulation, cell proliferation and cell death that are induced by these factors in high density cultures of digit progenitors provides evidence of functional specialization in the control of mesodermal differentiation but not in cell proliferation or apoptosis. We further show that the expression of these factors is differentially controlled by the distinct signaling pathways acting in the developing limb at the stages covered by this study. In addition, our results provide evidence suggesting that TWISTED GASTRULATION cooperates with CHORDINS, BMPER, and NOGGIN in the establishment of tendons or cartilage in a fashion that is dependent on the presence or absence of TOLLOID.
Collapse
Affiliation(s)
- Carlos I. Lorda-Diez
- Departamento de Anatomía y Biología Celular and IFIMAV, Universidad de Cantabria, Santander, Spain
| | - Juan A. Montero
- Departamento de Anatomía y Biología Celular and IFIMAV, Universidad de Cantabria, Santander, Spain
| | | | - Juan A. Garcia-Porrero
- Departamento de Anatomía y Biología Celular and IFIMAV, Universidad de Cantabria, Santander, Spain
| | - Juan M. Hurle
- Departamento de Anatomía y Biología Celular and IFIMAV, Universidad de Cantabria, Santander, Spain
- * E-mail:
| |
Collapse
|
26
|
Role for cytoplasmic nucleotide hydrolysis in hepatic function and protein synthesis. Proc Natl Acad Sci U S A 2013; 110:5040-5. [PMID: 23479625 DOI: 10.1073/pnas.1205001110] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nucleotide hydrolysis is essential for many aspects of cellular function. In the case of 3',5'-bisphosphorylated nucleotides, mammals possess two related 3'-nucleotidases, Golgi-resident 3'-phosphoadenosine 5'-phosphate (PAP) phosphatase (gPAPP) and Bisphosphate 3'-nucleotidase 1 (Bpnt1). gPAPP and Bpnt1 localize to distinct subcellular compartments and are members of a conserved family of metal-dependent lithium-sensitive enzymes. Although recent studies have demonstrated the importance of gPAPP for proper skeletal development in mice and humans, the role of Bpnt1 in mammals remains largely unknown. Here we report that mice deficient for Bpnt1 do not exhibit skeletal defects but instead develop severe liver pathologies, including hypoproteinemia, hepatocellular damage, and in severe cases, frank whole-body edema and death. Accompanying these phenotypes, we observed tissue-specific elevations of the substrate PAP, up to 50-fold in liver, repressed translation, and aberrant nucleolar architecture. Remarkably, the phenotypes of the Bpnt1 knockout are rescued by generating a double mutant mouse deficient for both PAP synthesis and hydrolysis, consistent with a mechanism in which PAP accumulation is toxic to tissue function independent of sulfation. Overall, our study defines a role for Bpnt1 in mammalian physiology and provides mechanistic insights into the importance of sulfur assimilation and cytoplasmic PAP hydrolysis to normal liver function.
Collapse
|
27
|
Liu J, Li Q, Kuehn MR, Litingtung Y, Vokes SA, Chiang C. Sonic hedgehog signaling directly targets Hyaluronic Acid Synthase 2, an essential regulator of phalangeal joint patterning. Dev Biol 2013; 375:160-71. [PMID: 23313125 DOI: 10.1016/j.ydbio.2012.12.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 12/28/2012] [Accepted: 12/29/2012] [Indexed: 01/17/2023]
Abstract
Sonic hedgehog (Shh) signal, mediated by the Gli family of transcription factors, plays an essential role in the growth and patterning of the limb. Through analysis of the early limb bud transcriptome, we identified a posteriorly-enriched gene, Hyaluronic Acid Synthase 2 (Has2), which encodes a key enzyme for the synthesis of hyaluronan (HA), as a direct target of Gli transcriptional regulation during early mouse limb development. Has2 expression in the limb bud is lost in Shh null and expanded anteriorly in Gli3 mutants. We identified an ∼3kb Has2 promoter fragment that contains two strong Gli-binding consensus sequences, and mutation of either site abrogated the ability of Gli1 to activate Has2 promoter in a cell-based assay. Additionally, this promoter fragment is sufficient to direct expression of a reporter gene in the posterior limb mesenchyme. Chromatin immunoprecipitation of DNA-Gli3 protein complexes from limb buds indicated that Gli3 strongly binds to the Has2 promoter region, suggesting that Has2 is a direct transcriptional target of the Shh signaling pathway. We also showed that Has2 conditional mutant (Has2cko) hindlimbs display digit-specific patterning defects with longitudinally shifted phalangeal joints and impaired chondrogenesis. Has2cko limbs show less capacity for mesenchymal condensation with mislocalized distributions of chondroitin sulfate proteoglycans (CSPGs), aggrecan and link protein. Has2cko limb phenotype displays striking resemblance to mutants with defective chondroitin sulfation suggesting tight developmental control of HA on CSPG function. Together, our study identifies Has2 as a novel downstream target of Shh signaling required for joint patterning and chondrogenesis.
Collapse
Affiliation(s)
- Jiang Liu
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | | | |
Collapse
|
28
|
Mertz EL, Facchini M, Pham AT, Gualeni B, De Leonardis F, Rossi A, Forlino A. Matrix disruptions, growth, and degradation of cartilage with impaired sulfation. J Biol Chem 2012; 287:22030-42. [PMID: 22556422 DOI: 10.1074/jbc.m110.116467] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Diastrophic dysplasia (DTD) is an incurable recessive chondrodysplasia caused by mutations in the SLC26A2 transporter responsible for sulfate uptake by chondrocytes. The mutations cause undersulfation of glycosaminoglycans in cartilage. Studies of dtd mice with a knock-in Slc26a2 mutation showed an unusual progression of the disorder: net undersulfation is mild and normalizing with age, but the articular cartilage degrades with age and bones develop abnormally. To understand underlying mechanisms, we studied newborn dtd mice. We developed, verified and used high-definition infrared hyperspectral imaging of cartilage sections at physiological conditions, to quantify collagen and its orientation, noncollagenous proteins, and chondroitin chains, and their sulfation with 6-μm spatial resolution and without labeling. We found that chondroitin sulfation across the proximal femur cartilage varied dramatically in dtd, but not in the wild type. Corresponding undersulfation of dtd was mild in most regions, but strong in narrow articular and growth plate regions crucial for bone development. This undersulfation correlated with the chondroitin synthesis rate measured via radioactive sulfate incorporation, explaining the sulfation normalization with age. Collagen orientation was reduced, and the reduction correlated with chondroitin undersulfation. Such disorientation involved the layer of collagen covering the articular surface and protecting cartilage from degradation. Malformation of this layer may contribute to the degradation progression with age and to collagen and proteoglycan depletion from the articular region, which we observed in mice already at birth. The results provide clues to in vivo sulfation, DTD treatment, and cartilage growth.
Collapse
Affiliation(s)
- Edward L Mertz
- Section on Physical Biochemistry, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Wilson DG, Phamluong K, Lin WY, Barck K, Carano RAD, Diehl L, Peterson AS, Martin F, Solloway MJ. Chondroitin sulfate synthase 1 (Chsy1) is required for bone development and digit patterning. Dev Biol 2012; 363:413-25. [PMID: 22280990 DOI: 10.1016/j.ydbio.2012.01.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 12/12/2011] [Accepted: 01/09/2012] [Indexed: 10/14/2022]
Abstract
Joint and skeletal development is highly regulated by extracellular matrix (ECM) proteoglycans, of which chondroitin sulfate proteoglycans (CSPGs) are a major class. Despite the requirement of joint CSPGs for skeletal flexibility and structure, relatively little is understood regarding their role in establishing joint positioning or in modulating signaling and cell behavior during joint formation. Chondroitin sulfate synthase 1 (Chsy1) is one of a family of enzymes that catalyze the extension of chondroitin and dermatan sulfate glycosaminoglycans. Recently, human syndromic brachydactylies have been described to have loss-of-function mutations at the CHSY1 locus. In concordance with these observations, we demonstrate that mice lacking Chsy1, though viable, display chondrodysplasia and decreased bone density. Notably, Chsy1(-/-) mice show a profound limb patterning defect in which orthogonally shifted ectopic joints form in the distal digits. Associated with the digit-patterning defect is a shift in cell orientation and an imbalance in chondroitin sulfation. Our results place Chsy1 as an essential regulator of joint patterning and provide a mouse model of human brachydactylies caused by mutations in CHSY1.
Collapse
|
30
|
Eames BF, Yan YL, Swartz ME, Levic DS, Knapik EW, Postlethwait JH, Kimmel CB. Mutations in fam20b and xylt1 reveal that cartilage matrix controls timing of endochondral ossification by inhibiting chondrocyte maturation. PLoS Genet 2011; 7:e1002246. [PMID: 21901110 PMCID: PMC3161922 DOI: 10.1371/journal.pgen.1002246] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2011] [Accepted: 07/01/2011] [Indexed: 11/18/2022] Open
Abstract
Differentiating cells interact with their extracellular environment over time. Chondrocytes embed themselves in a proteoglycan (PG)-rich matrix, then undergo a developmental transition, termed "maturation," when they express ihh to induce bone in the overlying tissue, the perichondrium. Here, we ask whether PGs regulate interactions between chondrocytes and perichondrium, using zebrafish mutants to reveal that cartilage PGs inhibit chondrocyte maturation, which ultimately dictates the timing of perichondral bone development. In a mutagenesis screen, we isolated a class of mutants with decreased cartilage matrix and increased perichondral bone. Positional cloning identified lesions in two genes, fam20b and xylosyltransferase1 (xylt1), both of which encode PG synthesis enzymes. Mutants failed to produce wild-type levels of chondroitin sulfate PGs, which are normally abundant in cartilage matrix, and initiated perichondral bone formation earlier than their wild-type siblings. Primary chondrocyte defects might induce the bone phenotype secondarily, because mutant chondrocytes precociously initiated maturation, showing increased and early expression of such markers as runx2b, collagen type 10a1, and ihh co-orthologs, and ihha mutation suppressed early perichondral bone in PG mutants. Ultrastructural analyses demonstrated aberrant matrix organization and also early cellular features of chondrocyte hypertrophy in mutants. Refining previous in vitro reports, which demonstrated that fam20b and xylt1 were involved in PG synthesis, our in vivo analyses reveal that these genes function in cartilage matrix production and ultimately regulate the timing of skeletal development.
Collapse
Affiliation(s)
- B Frank Eames
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America.
| | | | | | | | | | | | | |
Collapse
|
31
|
Vissers L, Lausch E, Unger S, Campos-Xavier A, Gilissen C, Rossi A, Del Rosario M, Venselaar H, Knoll U, Nampoothiri S, Nair M, Spranger J, Brunner H, Bonafé L, Veltman J, Zabel B, Superti-Furga A. Chondrodysplasia and abnormal joint development associated with mutations in IMPAD1, encoding the Golgi-resident nucleotide phosphatase, gPAPP. Am J Hum Genet 2011; 88:608-15. [PMID: 21549340 DOI: 10.1016/j.ajhg.2011.04.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 03/31/2011] [Accepted: 04/01/2011] [Indexed: 11/25/2022] Open
Abstract
We used whole-exome sequencing to study three individuals with a distinct condition characterized by short stature, chondrodysplasia with brachydactyly, congenital joint dislocations, cleft palate, and facial dysmorphism. Affected individuals carried homozygous missense mutations in IMPAD1, the gene coding for gPAPP, a Golgi-resident nucleotide phosphatase that hydrolyzes phosphoadenosine phosphate (PAP), the byproduct of sulfotransferase reactions, to AMP. The mutations affected residues in or adjacent to the phosphatase active site and are predicted to impair enzyme activity. A fourth unrelated patient was subsequently found to be homozygous for a premature termination codon in IMPAD1. Impad1 inactivation in mice has previously been shown to produce chondrodysplasia with abnormal joint formation and impaired proteoglycan sulfation. The human chondrodysplasia associated with gPAPP deficiency joins a growing number of skeletoarticular conditions associated with defective synthesis of sulfated proteoglycans, highlighting the importance of proteoglycans in the development of skeletal elements and joints.
Collapse
|
32
|
Mundy C, Yasuda T, Kinumatsu T, Yamaguchi Y, Iwamoto M, Enomoto-Iwamoto M, Koyama E, Pacifici M. Synovial joint formation requires local Ext1 expression and heparan sulfate production in developing mouse embryo limbs and spine. Dev Biol 2010; 351:70-81. [PMID: 21185280 DOI: 10.1016/j.ydbio.2010.12.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 12/13/2010] [Accepted: 12/15/2010] [Indexed: 10/18/2022]
Abstract
Heparan sulfate proteoglycans (HSPGs) regulate a number of major developmental processes, but their roles in synovial joint formation remain unknown. Here we created conditional mouse embryo mutants lacking Ext1 in developing joints by mating Ext1(f/f) and Gdf5-Cre mice. Ext1 encodes a subunit of the Ext1/Ext2 Golgi-associated protein complex responsible for heparan sulfate (HS) synthesis. The proximal limb joints did form in the Gdf5-Cre;Ext1(f/f) mutants, but contained an uneven articulating superficial zone that expressed very low lubricin levels. The underlying cartilaginous epiphysis was deranged as well and displayed random patterns of cell proliferation and matrillin-1 and collagen IIA expression, indicative of an aberrant phenotypic definition of the epiphysis itself. Digit joints were even more affected, lacked a distinct mesenchymal interzone and were often fused likely as a result of local abnormal BMP and hedgehog activity and signaling. Interestingly, overall growth and lengthening of long bones were also delayed in the mutants. To test whether Ext1 function is needed for joint formation at other sites, we examined the spine. Indeed, entire intervertebral discs, normally composed by nucleus pulposus surrounded by the annulus fibrosus, were often missing in Gdf5-Cre;Ext1(f/f) mice. When disc remnants were present, they displayed aberrant organization and defective joint marker expression. Similar intervertebral joint defects and fusions occurred in Col2-Cre;β-catenin(f/f) mutants. The study provides novel evidence that local Ext1 expression and HS production are needed to maintain the phenotype and function of joint-forming cells and coordinate local signaling by BMP, hedgehog and Wnt/β-catenin pathways. The data indicate also that defects in joint formation reverberate on, and delay, overall long bone growth.
Collapse
Affiliation(s)
- Christina Mundy
- Department of Orthopaedic Surgery, College of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Dejima K, Murata D, Mizuguchi S, Nomura KH, Izumikawa T, Kitagawa H, Gengyo-Ando K, Yoshina S, Ichimiya T, Nishihara S, Mitani S, Nomura K. Two Golgi-resident 3'-Phosphoadenosine 5'-phosphosulfate transporters play distinct roles in heparan sulfate modifications and embryonic and larval development in Caenorhabditis elegans. J Biol Chem 2010; 285:24717-28. [PMID: 20529843 PMCID: PMC2915708 DOI: 10.1074/jbc.m109.088229] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 04/23/2010] [Indexed: 11/06/2022] Open
Abstract
Synthesis of extracellular sulfated molecules requires active 3'-phosphoadenosine 5'-phosphosulfate (PAPS). For sulfation to occur, PAPS must pass through the Golgi membrane, which is facilitated by Golgi-resident PAPS transporters. Caenorhabditis elegans PAPS transporters are encoded by two genes, pst-1 and pst-2. Using the yeast heterologous expression system, we characterized PST-1 and PST-2 as PAPS transporters. We created deletion mutants to study the importance of PAPS transporter activity. The pst-1 deletion mutant exhibited defects in cuticle formation, post-embryonic seam cell development, vulval morphogenesis, cell migration, and embryogenesis. The pst-2 mutant exhibited a wild-type phenotype. The defects observed in the pst-1 mutant could be rescued by transgenic expression of pst-1 and hPAPST1 but not pst-2 or hPAPST2. Moreover, the phenotype of a pst-1;pst-2 double mutant were similar to those of the pst-1 single mutant, except that larval cuticle formation was more severely defected. Disaccharide analysis revealed that heparan sulfate from these mutants was undersulfated. Gene expression reporter analysis revealed that these PAPS transporters exhibited different tissue distributions and subcellular localizations. These data suggest that pst-1 and pst-2 play different physiological roles in heparan sulfate modification and development.
Collapse
Affiliation(s)
- Katsufumi Dejima
- From the Department of Biology, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan
- the Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| | - Daisuke Murata
- From the Department of Biology, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan
- the Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| | - Souhei Mizuguchi
- From the Department of Biology, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan
- the Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| | - Kazuko H. Nomura
- From the Department of Biology, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan
- the Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| | - Tomomi Izumikawa
- the Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
- the Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan
| | - Hiroshi Kitagawa
- the Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
- the Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan
| | - Keiko Gengyo-Ando
- the Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
- the Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo 162-8666, Japan, and
| | - Sawako Yoshina
- the Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
- the Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo 162-8666, Japan, and
| | - Tomomi Ichimiya
- the Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| | - Shoko Nishihara
- the Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| | - Shohei Mitani
- the Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
- the Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo 162-8666, Japan, and
| | - Kazuya Nomura
- From the Department of Biology, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan
- the Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
34
|
Sohaskey ML, Jiang Y, Zhao JJ, Mohr A, Roemer F, Harland RM. Osteopotentia regulates osteoblast maturation, bone formation, and skeletal integrity in mice. ACTA ACUST UNITED AC 2010; 189:511-25. [PMID: 20440000 PMCID: PMC2867309 DOI: 10.1083/jcb.201003006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During skeletal development and regeneration, bone-forming osteoblasts respond to high metabolic demand by active expansion of their rough endoplasmic reticulum (rER) and increased synthesis of type I collagen, the predominant bone matrix protein. However, the molecular mechanisms that orchestrate this response are not well understood. We show that insertional mutagenesis of the previously uncharacterized osteopotentia (Opt) gene disrupts osteoblast function and causes catastrophic defects in postnatal skeletal development. Opt encodes a widely expressed rER-localized integral membrane protein containing a conserved SUN (Sad1/Unc-84 homology) domain. Mice lacking Opt develop acute onset skeletal defects that include impaired bone formation and spontaneous fractures. These defects result in part from a cell-autonomous failure of osteoblast maturation and a posttranscriptional decline in type I collagen synthesis, which is concordant with minimal rER expansion. By identifying Opt as a crucial regulator of bone formation in the mouse, our results uncover a novel rER-mediated control point in osteoblast function and implicate human Opt as a candidate gene for brittle bone disorders.
Collapse
Affiliation(s)
- Michael L Sohaskey
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Gualeni B, Facchini M, De Leonardis F, Tenni R, Cetta G, Viola M, Passi A, Superti-Furga A, Forlino A, Rossi A. Defective proteoglycan sulfation of the growth plate zones causes reduced chondrocyte proliferation via an altered Indian hedgehog signalling. Matrix Biol 2010; 29:453-60. [PMID: 20470884 DOI: 10.1016/j.matbio.2010.05.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 04/18/2010] [Accepted: 05/03/2010] [Indexed: 01/17/2023]
Abstract
Mutations in the sulfate transporter gene, SCL26A2, lead to cartilage proteoglycan undersulfation resulting in chondrodysplasia in humans; the phenotype is mirrored in the diastrophic dysplasia (dtd) mouse. It remains unclear whether bone shortening and deformities are caused solely by changes in the cartilage matrix, or whether chondroitin sulfate proteoglycan undersulfation affects also signalling pathways involved in cell proliferation and differentiation. Therefore we studied macromolecular sulfation in the different zones of the dtd mouse growth plate and these data were related to growth plate histomorphometry and proliferation analysis. A 2-fold increase of non-sulfated disaccharide in dtd animals compared to wild-type littermates in the resting, proliferative and hypertrophic zones was detected indicating proteoglycan undersulfation; among the three zones the highest level of undersulfation was in the resting zone. The relative height of the hypertrophic zone and the average number of cells per column in the proliferative and hypertrophic zones were significantly reduced compared to wild-types; however the total height of the growth plate was within normal values. The chondrocyte proliferation rate, measured by bromodeoxyuridine labelling, was also significantly reduced in mutant mice. Immunohistochemistry combined with expression data of the dtd growth plate demonstrated that the sulfation defect alters the distribution pattern, but not expression, of Indian hedgehog, a long range morphogen required for chondrocyte proliferation and differentiation. These data suggest that in dtd mice proteoglycan undersulfation causes reduced chondrocyte proliferation in the proliferative zone via the Indian hedgehog pathway, therefore contributing to reduced long bone growth.
Collapse
Affiliation(s)
- Benedetta Gualeni
- Department of Biochemistry Alessandro Castellani, University of Pavia, Pavia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Eames BF, Singer A, Smith GA, Wood ZA, Yan YL, He X, Polizzi SJ, Catchen JM, Rodriguez-Mari A, Linbo T, Raible DW, Postlethwait JH. UDP xylose synthase 1 is required for morphogenesis and histogenesis of the craniofacial skeleton. Dev Biol 2010; 341:400-15. [PMID: 20226781 DOI: 10.1016/j.ydbio.2010.02.035] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2009] [Revised: 02/13/2010] [Accepted: 02/24/2010] [Indexed: 11/20/2022]
Abstract
UDP-xylose synthase (Uxs1) is strongly conserved from bacteria to humans, but because no mutation has been studied in any animal, we do not understand its roles in development. Furthermore, no crystal structure has been published. Uxs1 synthesizes UDP-xylose, which initiates glycosaminoglycan attachment to a protein core during proteoglycan formation. Crystal structure and biochemical analyses revealed that an R233H substitution mutation in zebrafish uxs1 alters an arginine buried in the dimer interface, thereby destabilizing and, as enzyme assays show, inactivating the enzyme. Homozygous uxs1 mutants lack Alcian blue-positive, proteoglycan-rich extracellular matrix in cartilages of the neurocranium, pharyngeal arches, and pectoral girdle. Transcripts for uxs1 localize to skeletal domains at hatching. GFP-labeled neural crest cells revealed defective organization and morphogenesis of chondrocytes, perichondrium, and bone in uxs1 mutants. Proteoglycans were dramatically reduced and defectively localized in uxs1 mutants. Although col2a1a transcripts over-accumulated in uxs1 mutants, diminished quantities of Col2a1 protein suggested a role for proteoglycans in collagen secretion or localization. Expression of col10a1, indian hedgehog, and patched was disrupted in mutants, reflecting improper chondrocyte/perichondrium signaling. Up-regulation of sox9a, sox9b, and runx2b in mutants suggested a molecular mechanism consistent with a role for proteoglycans in regulating skeletal cell fate. Together, our data reveal time-dependent changes to gene expression in uxs1 mutants that support a signaling role for proteoglycans during at least two distinct phases of skeletal development. These investigations are the first to examine the effect of mutation on the structure and function of Uxs1 protein in any vertebrate embryos, and reveal that Uxs1 activity is essential for the production and organization of skeletal extracellular matrix, with consequent effects on cartilage, perichondral, and bone morphogenesis.
Collapse
Affiliation(s)
- B Frank Eames
- Institute of Neuroscience, 1254 University of Oregon, Eugene OR 97403-1254, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Cortes M, Baria AT, Schwartz NB. Sulfation of chondroitin sulfate proteoglycans is necessary for proper Indian hedgehog signaling in the developing growth plate. Development 2009; 136:1697-706. [PMID: 19369399 DOI: 10.1242/dev.030742] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In contrast to the functional role of heparan sulfate proteoglycans (HSPGs), the importance of chondroitin sulfate proteoglycans (CSPGs) in modulating signaling pathways involving hedgehog proteins, wingless-related proteins and fibroblast growth factors remains unclear. To elucidate the importance of sulfated CSPGs in signaling paradigms required for endochondral bone formation, the brachymorphic (bm) mouse was used as a model for undersulfated CSPGs. The bm mouse exhibits a postnatal chondrodysplasia caused by a mutation in the phosphoadenosine phosphosulfate (PAPS) synthetase (Papss2) gene, leading to reduced levels of PAPS and undersulfated proteoglycans. Biochemical analysis of the glycosaminoglycan (GAG) content in bm cartilage via sulfate labeling and fluorophore-assisted carbohydrate electrophoresis revealed preferential undersulfation of chondroitin chains (CS) and normal sulfation of heparan sulfate chains. In situ hybridization and immunohistochemical analysis of bm limb growth plates showed diminished Indian hedgehog (Ihh) signaling and abnormal Ihh protein distribution in the extracellular matrix. Consistent with the decrease in hedgehog signaling, BrdU incorporation exhibited a significant reduction in chondrocyte proliferation. Direct measurements of Ihh binding to defined GAG chains demonstrated that Ihh interacts with CS, particularly chondroitin-4-sulfate. Furthermore, co-immunoprecipitation experiments showed that Ihh binds to the major cartilage CSPG aggrecan via its CS chains. Overall, this study demonstrates an important function for CSPGs in modulating Ihh signaling in the developing growth plate, and highlights the importance of carbohydrate sulfation in regulating growth factor signaling.
Collapse
Affiliation(s)
- Mauricio Cortes
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
38
|
A role for a lithium-inhibited Golgi nucleotidase in skeletal development and sulfation. Proc Natl Acad Sci U S A 2008; 105:11605-12. [PMID: 18695242 DOI: 10.1073/pnas.0801182105] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Sulfation is an important biological process that modulates the function of numerous molecules. It is directly mediated by cytosolic and Golgi sulfotransferases, which use 3'-phosphoadenosine 5'-phosphosulfate to produce sulfated acceptors and 3'-phosphoadenosine 5'-phosphate (PAP). Here, we identify a Golgi-resident PAP 3'-phosphatase (gPAPP) and demonstrate that its activity is potently inhibited by lithium in vitro. The inactivation of gPAPP in mice led to neonatal lethality, lung abnormalities resembling atelectasis, and dwarfism characterized by aberrant cartilage morphology. The phenotypic similarities of gPAPP mutant mice to chondrodysplastic models harboring mutations within components of the sulfation pathway lead to the discovery of undersulfated chondroitin in the absence of functional enzyme. Additionally, we observed loss of gPAPP leads to perturbations in the levels of heparan sulfate species in lung tissue and whole embryos. Our data are consistent with a model that clearance of the nucleotide product of sulfotransferases within the Golgi plays an important role in glycosaminoglycan sulfation, provide a unique genetic basis for chondrodysplasia, and define a function for gPAPP in the formation of skeletal elements derived through endochondral ossification.
Collapse
|