1
|
Calarco JA, Taylor SR, Miller DM. Detecting gene expression in Caenorhabditis elegans. Genetics 2025; 229:1-108. [PMID: 39693264 DOI: 10.1093/genetics/iyae167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 09/30/2024] [Indexed: 12/20/2024] Open
Abstract
Reliable methods for detecting and analyzing gene expression are necessary tools for understanding development and investigating biological responses to genetic and environmental perturbation. With its fully sequenced genome, invariant cell lineage, transparent body, wiring diagram, detailed anatomy, and wide array of genetic tools, Caenorhabditis elegans is an exceptionally useful model organism for linking gene expression to cellular phenotypes. The development of new techniques in recent years has greatly expanded our ability to detect gene expression at high resolution. Here, we provide an overview of gene expression methods for C. elegans, including techniques for detecting transcripts and proteins in situ, bulk RNA sequencing of whole worms and specific tissues and cells, single-cell RNA sequencing, and high-throughput proteomics. We discuss important considerations for choosing among these techniques and provide an overview of publicly available online resources for gene expression data.
Collapse
Affiliation(s)
- John A Calarco
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada, M5S 3G5
| | - Seth R Taylor
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - David M Miller
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
- Neuroscience Program, Vanderbilt University, Nashville, TN 37240, USA
| |
Collapse
|
2
|
Sen T, McCormick C, Rogers A. Small RNA-mediated genetic switches coordinate ALG-3/4 small RNA pathway function. Nucleic Acids Res 2024; 52:9431-9449. [PMID: 38967024 PMCID: PMC11381353 DOI: 10.1093/nar/gkae586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024] Open
Abstract
Coordination of gene regulatory networks is necessary for proper execution of cellular programs throughout development. RNA interference (RNAi) is an essential regulatory mechanism in all metazoans. Proper RNAi-mediated gene regulation requires coordination of several RNAi branches to ensure homeostasis. For example, in Caenorhabditis elegans, the Argonautes, ALG-3 and ALG-4, are expressed specifically during spermatogenesis (L4 stage) and bind small interfering RNAs (siRNAs) complementary to sperm-enriched genes. We find that alg-3 and alg-4 are regulated by siRNAs. Our work shows that gene switches are operated via these siRNAs to regulate the Argonautes' expression in a temporal manner. This RNAi-to-RNAi regulatory cascade is essential for coordinating ALG-3/4 pathway function, particularly during heat stress, to provide thermotolerant sperm-based fertility. This work provides insight into one regulatory motif used to maintain RNAi homeostasis, across developmental stages, despite environmental stressors. As RNAi pathways are evolutionarily conserved, other species likely use similar regulatory architectures to maintain RNAi homeostasis.
Collapse
Affiliation(s)
- Trilotma Sen
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Cara McCormick
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Alicia K Rogers
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| |
Collapse
|
3
|
DuMez-Kornegay RN, Baker LS, Morris AJ, DeLoach WLM, Dowen RH. Kombucha Tea-associated microbes remodel host metabolic pathways to suppress lipid accumulation. PLoS Genet 2024; 20:e1011003. [PMID: 38547054 PMCID: PMC10977768 DOI: 10.1371/journal.pgen.1011003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/22/2024] [Indexed: 04/02/2024] Open
Abstract
The popularity of the ancient, probiotic-rich beverage Kombucha Tea (KT) has surged in part due to its purported health benefits, which include protection against metabolic diseases; however, these claims have not been rigorously tested and the mechanisms underlying host response to the probiotics in KT are unknown. Here, we establish a reproducible method to maintain C. elegans on a diet exclusively consisting of Kombucha Tea-associated microbes (KTM), which mirrors the microbial community found in the fermenting culture. KT microbes robustly colonize the gut of KTM-fed animals and confer normal development and fecundity. Intriguingly, animals consuming KTMs display a marked reduction in total lipid stores and lipid droplet size. We find that the reduced fat accumulation phenotype is not due to impaired nutrient absorption, but rather it is sustained by a programed metabolic response in the intestine of the host. KTM consumption triggers widespread transcriptional changes within core lipid metabolism pathways, including upregulation of a suite of lysosomal lipase genes that are induced during lipophagy. The elevated lysosomal lipase activity, coupled with a decrease in lipid droplet biogenesis, is partially required for the reduction in host lipid content. We propose that KTM consumption stimulates a fasting-like response in the C. elegans intestine by rewiring transcriptional programs to promote lipid utilization. Our results provide mechanistic insight into how the probiotics in Kombucha Tea reshape host metabolism and how this popular beverage may impact human metabolism.
Collapse
Affiliation(s)
- Rachel N. DuMez-Kornegay
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Lillian S. Baker
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Alexis J. Morris
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Whitney L. M. DeLoach
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Robert H. Dowen
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
4
|
Soni P, Edwards H, Anupom T, Rahman M, Lesanpezeshki L, Blawzdziewicz J, Cope H, Gharahdaghi N, Scott D, Toh LS, Williams PM, Etheridge T, Szewczyk N, Willis CRG, Vanapalli SA. Spaceflight Induces Strength Decline in Caenorhabditis elegans. Cells 2023; 12:2470. [PMID: 37887314 PMCID: PMC10605753 DOI: 10.3390/cells12202470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/28/2023] Open
Abstract
Background: Understanding and countering the well-established negative health consequences of spaceflight remains a primary challenge preventing safe deep space exploration. Targeted/personalized therapeutics are at the forefront of space medicine strategies, and cross-species molecular signatures now define the 'typical' spaceflight response. However, a lack of direct genotype-phenotype associations currently limits the robustness and, therefore, the therapeutic utility of putative mechanisms underpinning pathological changes in flight. Methods: We employed the worm Caenorhabditis elegans as a validated model of space biology, combined with 'NemaFlex-S' microfluidic devices for assessing animal strength production as one of the most reproducible physiological responses to spaceflight. Wild-type and dys-1 (BZ33) strains (a Duchenne muscular dystrophy (DMD) model for comparing predisposed muscle weak animals) were cultured on the International Space Station in chemically defined media before loading second-generation gravid adults into NemaFlex-S devices to assess individual animal strength. These same cultures were then frozen on orbit before returning to Earth for next-generation sequencing transcriptomic analysis. Results: Neuromuscular strength was lower in flight versus ground controls (16.6% decline, p < 0.05), with dys-1 significantly more (23% less strength, p < 0.01) affected than wild types. The transcriptional gene ontology signatures characterizing both strains of weaker animals in flight strongly corroborate previous results across species, enriched for upregulated stress response pathways and downregulated mitochondrial and cytoskeletal processes. Functional gene cluster analysis extended this to implicate decreased neuronal function, including abnormal calcium handling and acetylcholine signaling, in space-induced strength declines under the predicted control of UNC-89 and DAF-19 transcription factors. Finally, gene modules specifically altered in dys-1 animals in flight again cluster to neuronal/neuromuscular pathways, suggesting strength loss in DMD comprises a strong neuronal component that predisposes these animals to exacerbated strength loss in space. Conclusions: Highly reproducible gene signatures are strongly associated with space-induced neuromuscular strength loss across species and neuronal changes in calcium/acetylcholine signaling require further study. These results promote targeted medical efforts towards and provide an in vivo model for safely sending animals and people into deep space in the near future.
Collapse
Affiliation(s)
- Purushottam Soni
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (P.S.); (M.R.); (L.L.)
| | - Hunter Edwards
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA;
| | - Taslim Anupom
- Department of Electrical Engineering, Texas Tech University, Lubbock, TX 79409, USA;
| | - Mizanur Rahman
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (P.S.); (M.R.); (L.L.)
| | - Leila Lesanpezeshki
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (P.S.); (M.R.); (L.L.)
| | - Jerzy Blawzdziewicz
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA;
- Department of Physics and Astronomy, Texas Tech University, Lubbock, TX 79409, USA
| | - Henry Cope
- School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (H.C.); (N.G.)
| | - Nima Gharahdaghi
- School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (H.C.); (N.G.)
| | - Daniel Scott
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK;
| | - Li Shean Toh
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (L.S.T.); (P.M.W.)
| | - Philip M. Williams
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (L.S.T.); (P.M.W.)
| | - Timothy Etheridge
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX1 2LU, UK;
| | - Nathaniel Szewczyk
- School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (H.C.); (N.G.)
- Ohio Musculoskeletal and Neurological Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Craig R. G. Willis
- School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK;
| | - Siva A. Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (P.S.); (M.R.); (L.L.)
| |
Collapse
|
5
|
Shi Y, Qin L, Wu M, Zheng J, Xie T, Shao Z. Gut neuroendocrine signaling regulates synaptic assembly in C. elegans. EMBO Rep 2022; 23:e53267. [PMID: 35748387 DOI: 10.15252/embr.202153267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 11/09/2022] Open
Abstract
Synaptic connections are essential to build a functional brain. How synapses are formed during development is a fundamental question in neuroscience. Recent studies provided evidence that the gut plays an important role in neuronal development through processing signals derived from gut microbes or nutrients. Defects in gut-brain communication can lead to various neurological disorders. Although the roles of the gut in communicating signals from its internal environment to the brain are well known, it remains unclear whether the gut plays a genetically encoded role in neuronal development. Using C. elegans as a model, we uncover that a Wnt-endocrine signaling pathway in the gut regulates synaptic development in the brain. A canonical Wnt signaling pathway promotes synapse formation through regulating the expression of the neuropeptides encoding gene nlp-40 in the gut, which functions through the neuronally expressed GPCR/AEX-2 receptor during development. Wnt-NLP-40-AEX-2 signaling likely acts to modulate neuronal activity. Our study reveals a genetic role of the gut in synaptic development and identifies a novel contribution of the gut-brain axis.
Collapse
Affiliation(s)
- Yanjun Shi
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lu Qin
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mengting Wu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Junyu Zheng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tao Xie
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiyong Shao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
6
|
van Rijnberk LM, Barrull-Mascaró R, van der Palen RL, Schild ES, Korswagen HC, Galli M. Endomitosis controls tissue-specific gene expression during development. PLoS Biol 2022; 20:e3001597. [PMID: 35609035 PMCID: PMC9129049 DOI: 10.1371/journal.pbio.3001597] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/09/2022] [Indexed: 11/19/2022] Open
Abstract
Polyploid cells contain more than 2 copies of the genome and are found in many plant and animal tissues. Different types of polyploidy exist, in which the genome is confined to either 1 nucleus (mononucleation) or 2 or more nuclei (multinucleation). Despite the widespread occurrence of polyploidy, the functional significance of different types of polyploidy is largely unknown. Here, we assess the function of multinucleation in Caenorhabditis elegans intestinal cells through specific inhibition of binucleation without altering genome ploidy. Through single-worm RNA sequencing, we find that binucleation is important for tissue-specific gene expression, most prominently for genes that show a rapid up-regulation at the transition from larval development to adulthood. Regulated genes include vitellogenins, which encode yolk proteins that facilitate nutrient transport to the germline. We find that reduced expression of vitellogenins in mononucleated intestinal cells leads to progeny with developmental delays and reduced fitness. Together, our results show that binucleation facilitates rapid up-regulation of intestine-specific gene expression during development, independently of genome ploidy, underscoring the importance of spatial genome organization for polyploid cell function. Why do some cells contain more than one nucleus? By comparing mononucleated and multinucleated polyploid cells in C. elegans, this study shows that having multiple nuclei is important for optimal transcriptional upregulation of developmentally controlled genes.
Collapse
Affiliation(s)
- Lotte M. van Rijnberk
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ramon Barrull-Mascaró
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Reinier L. van der Palen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Erik S. Schild
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Hendrik C. Korswagen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Matilde Galli
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands
- * E-mail:
| |
Collapse
|
7
|
Wimberly K, Choe KP. An extracellular matrix damage sensor signals through membrane-associated kinase DRL-1 to mediate cytoprotective responses in Caenorhabditis elegans. Genetics 2022; 220:iyab217. [PMID: 34849856 PMCID: PMC9208646 DOI: 10.1093/genetics/iyab217] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
We and others previously identified circumferential bands of collagen named annular furrows as key components of a damage sensor in the cuticle of Caenorhabditis elegans that regulates cytoprotective genes. Mutation or loss of noncollagen secreted proteins OSM-7, OSM-8, and OSM-11 activate the same cytoprotective responses without obvious changes to the cuticle indicating that other extracellular proteins are involved. Here, we used RNAi screening to identify protein kinase DRL-1 as a key modulator of cytoprotective gene expression and stress resistance in furrow and extracellular OSM protein mutants. DRL-1 functions downstream from furrow disruption and is expressed in cells that induce cytoprotective genes. DRL-1 is not required for the expression of cytoprotective genes under basal or oxidative stress conditions consistent with specificity to extracellular signals. DRL-1 was previously shown to regulate longevity via a "Dietary Restriction-Like" state, but it functions downstream from furrow disruption by a distinct mechanism. The kinase domain of DRL-1 is related to mammalian MEKK3, and MEKK3 is recruited to a plasma membrane osmosensor complex by a scaffold protein. In C. elegans, DRL-1 contains an atypical hydrophobic C-terminus with predicted transmembrane domains and is constitutively expressed at or near the plasma membrane where it could function to receive extracellular damage signals for cells that mount cytoprotective responses.
Collapse
Affiliation(s)
- Keon Wimberly
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Keith P Choe
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
8
|
Sanchez AD, Feldman JL. A proximity labeling protocol to probe proximity interactions in C. elegans. STAR Protoc 2021; 2:100986. [PMID: 34927095 PMCID: PMC8649953 DOI: 10.1016/j.xpro.2021.100986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Enzyme-catalyzed proximity labeling (PL) has emerged as a critical approach for identifying protein-protein proximity interactions in cells; however, PL techniques were not historically practical in living multicellular organisms due to technical limitations. Here, we present a protocol for applying PL to living C. elegans using the biotin ligase mutant enzyme TurboID. We demonstrated PL in a tissue-specific and region-specific manner by focusing on non-centrosomal MTOCs (ncMTOCs) of intestinal cells. This protocol is useful for targeted in vivo protein network profiling. For complete details on the use and execution of this protocol, please refer to Sanchez et al. (2021).
Collapse
|
9
|
Zhao Z, Fan R, Xu W, Kou Y, Wang Y, Ma X, Du Z. Single-cell dynamics of chromatin activity during cell lineage differentiation in Caenorhabditis elegans embryos. Mol Syst Biol 2021; 17:e10075. [PMID: 33900055 PMCID: PMC8073016 DOI: 10.15252/msb.202010075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 11/09/2022] Open
Abstract
Elucidating the chromatin dynamics that orchestrate embryogenesis is a fundamental question in developmental biology. Here, we exploit position effects on expression as an indicator of chromatin activity and infer the chromatin activity landscape in every lineaged cell during Caenorhabditis elegans early embryogenesis. Systems-level analyses reveal that chromatin activity distinguishes cellular states and correlates with fate patterning in the early embryos. As cell lineage unfolds, chromatin activity diversifies in a lineage-dependent manner, with switch-like changes accompanying anterior-posterior fate asymmetry and characteristic landscapes being established in different cell lineages. Upon tissue differentiation, cellular chromatin from distinct lineages converges according to tissue types but retains stable memories of lineage history, contributing to intra-tissue cell heterogeneity. However, the chromatin landscapes of cells organized in a left-right symmetric pattern are predetermined to be analogous in early progenitors so as to pre-set equivalent states. Finally, genome-wide analysis identifies many regions exhibiting concordant chromatin activity changes that mediate the co-regulation of functionally related genes during differentiation. Collectively, our study reveals the developmental and genomic dynamics of chromatin activity at the single-cell level.
Collapse
Affiliation(s)
- Zhiguang Zhao
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Rong Fan
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Weina Xu
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yahui Kou
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yangyang Wang
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Xuehua Ma
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Zhuo Du
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
10
|
Ma F, Lau CY, Zheng C. Large genetic diversity and strong positive selection in F-box and GPCR genes among the wild isolates of Caenorhabditis elegans. Genome Biol Evol 2021; 13:6163285. [PMID: 33693740 PMCID: PMC8120010 DOI: 10.1093/gbe/evab048] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 02/17/2021] [Accepted: 03/03/2021] [Indexed: 01/05/2023] Open
Abstract
The F-box and chemosensory GPCR (csGPCR) gene families are greatly expanded in nematodes, including the model organism Caenorhabditis elegans, compared with insects and vertebrates. However, the intraspecific evolution of these two gene families in nematodes remain unexamined. In this study, we analyzed the genomic sequences of 330 recently sequenced wild isolates of C. elegans using a range of population genetics approaches. We found that F-box and csGPCR genes, especially the Srw family csGPCRs, showed much more diversity than other gene families. Population structure analysis and phylogenetic analysis divided the wild strains into eight non-Hawaiian and three Hawaiian subpopulations. Some Hawaiian strains appeared to be more ancestral than all other strains. F-box and csGPCR genes maintained a great amount of the ancestral variants in the Hawaiian subpopulation and their divergence among the non-Hawaiian subpopulations contributed significantly to population structure. F-box genes are mostly located at the chromosomal arms and high recombination rate correlates with their large polymorphism. Moreover, using both neutrality tests and extended haplotype homozygosity analysis, we identified signatures of strong positive selection in the F-box and csGPCR genes among the wild isolates, especially in the non-Hawaiian population. Accumulation of high-frequency-derived alleles in these genes was found in non-Hawaiian population, leading to divergence from the ancestral genotype. In summary, we found that F-box and csGPCR genes harbor a large pool of natural variants, which may be subjected to positive selection. These variants are mostly mapped to the substrate-recognition domains of F-box proteins and the extracellular and intracellular regions of csGPCRs, possibly resulting in advantages during adaptation by affecting protein degradation and the sensing of environmental cues, respectively.
Collapse
Affiliation(s)
- Fuqiang Ma
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Chun Yin Lau
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Chaogu Zheng
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
11
|
Tissue-Specific Transcription Footprinting Using RNA PoI DamID (RAPID) in Caenorhabditis elegans. Genetics 2020; 216:931-945. [PMID: 33037050 PMCID: PMC7768263 DOI: 10.1534/genetics.120.303774] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/09/2020] [Indexed: 11/23/2022] Open
Abstract
Differential gene expression across cell types underlies development and cell physiology in multicellular organisms. Caenorhabditis elegans is a powerful, extensively used model to address these biological questions. A remaining bottleneck relates to the difficulty to obtain comprehensive tissue-specific gene transcription data, since available methods are still challenging to execute and/or require large worm populations. Here, we introduce the RNA Polymerase DamID (RAPID) approach, in which the Dam methyltransferase is fused to a ubiquitous RNA polymerase subunit to create transcriptional footprints via methyl marks on the DNA of transcribed genes. To validate the method, we determined the polymerase footprints in whole animals, in sorted embryonic blastomeres and in different tissues from intact young adults by driving tissue-specific Dam fusion expression. We obtained meaningful transcriptional footprints in line with RNA-sequencing (RNA-seq) studies in whole animals or specific tissues. To challenge the sensitivity of RAPID and demonstrate its utility to determine novel tissue-specific transcriptional profiles, we determined the transcriptional footprints of the pair of XXX neuroendocrine cells, representing 0.2% of the somatic cell content of the animals. We identified 3901 candidate genes with putatively active transcription in XXX cells, including the few previously known markers for these cells. Using transcriptional reporters for a subset of new hits, we confirmed that the majority of them were expressed in XXX cells and identified novel XXX-specific markers. Taken together, our work establishes RAPID as a valid method for the determination of RNA polymerase footprints in specific tissues of C. elegans without the need for cell sorting or RNA tagging.
Collapse
|
12
|
Rogers AK, Phillips CM. RNAi pathways repress reprogramming of C. elegans germ cells during heat stress. Nucleic Acids Res 2020; 48:4256-4273. [PMID: 32187370 PMCID: PMC7192617 DOI: 10.1093/nar/gkaa174] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 03/02/2020] [Accepted: 03/10/2020] [Indexed: 01/08/2023] Open
Abstract
Repression of cellular reprogramming in germ cells is critical to maintaining cell fate and fertility. When germ cells mis-express somatic genes they can be directly converted into other cell types, resulting in loss of totipotency and reproductive potential. Identifying the molecular mechanisms that coordinate these cell fate decisions is an active area of investigation. Here we show that RNAi pathways play a key role in maintaining germline gene expression and totipotency after heat stress. By examining transcriptional changes that occur in mut-16 mutants, lacking a key protein in the RNAi pathway, at elevated temperature we found that genes normally expressed in the soma are mis-expressed in germ cells. Furthermore, these genes displayed increased chromatin accessibility in the germlines of mut-16 mutants at elevated temperature. These findings indicate that the RNAi pathway plays a key role in preventing aberrant expression of somatic genes in the germline during heat stress. This regulation occurs in part through the maintenance of germline chromatin, likely acting through the nuclear RNAi pathway. Identification of new pathways governing germ cell reprogramming is critical to understanding how cells maintain proper gene expression and may provide key insights into how cell identity is lost in some germ cell tumors.
Collapse
Affiliation(s)
- Alicia K Rogers
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Carolyn M Phillips
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
13
|
Lancaster BR, McGhee JD. How affinity of the ELT-2 GATA factor binding to cis-acting regulatory sites controls Caenorhabditis elegans intestinal gene transcription. Development 2020; 147:dev190330. [PMID: 32586978 PMCID: PMC7390640 DOI: 10.1242/dev.190330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 06/06/2020] [Indexed: 12/13/2022]
Abstract
We define a quantitative relationship between the affinity with which the intestine-specific GATA factor ELT-2 binds to cis-acting regulatory motifs and the resulting transcription of asp-1, a target gene representative of genes involved in Caenorhabditis elegans intestine differentiation. By establishing an experimental system that allows unknown parameters (e.g. the influence of chromatin) to effectively cancel out, we show that levels of asp-1 transcripts increase monotonically with increasing binding affinity of ELT-2 to variant promoter TGATAA sites. The shape of the response curve reveals that the product of the unbound ELT-2 concentration in vivo [i.e. (ELT-2free) or ELT-2 'activity'] and the largest ELT-XXTGATAAXX association constant (Kmax) lies between five and ten. We suggest that this (unitless) product [Kmax×(ELT-2free) or the equivalent product for any other transcription factor] provides an important quantitative descriptor of transcription-factor/regulatory-motif interaction in development, evolution and genetic disease. A more complicated model than simple binding affinity is necessary to explain the fact that ELT-2 appears to discriminate in vivo against equal-affinity binding sites that contain AGATAA instead of TGATAA.
Collapse
Affiliation(s)
- Brett R Lancaster
- Department of Biochemistry and Molecular Biology, University of Calgary, Cumming School of Medicine, Alberta Children's Hospital Research Institute, Calgary, Alberta T2N 4N1, Canada
| | - James D McGhee
- Department of Biochemistry and Molecular Biology, University of Calgary, Cumming School of Medicine, Alberta Children's Hospital Research Institute, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
14
|
A cullin-RING ubiquitin ligase promotes thermotolerance as part of the intracellular pathogen response in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2020; 117:7950-7960. [PMID: 32193347 DOI: 10.1073/pnas.1918417117] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Intracellular pathogen infection leads to proteotoxic stress in host organisms. Previously we described a physiological program in the nematode Caenorhabditis elegans called the intracellular pathogen response (IPR), which promotes resistance to proteotoxic stress and appears to be distinct from canonical proteostasis pathways. The IPR is controlled by PALS-22 and PALS-25, proteins of unknown biochemical function, which regulate expression of genes induced by natural intracellular pathogens. We previously showed that PALS-22 and PALS-25 regulate the mRNA expression of the predicted ubiquitin ligase component cullin cul-6, which promotes thermotolerance in pals-22 mutants. However, it was unclear whether CUL-6 acted alone, or together with other cullin-ring ubiquitin ligase components, which comprise a greatly expanded gene family in C. elegans Here we use coimmunoprecipitation studies paired with genetic analysis to define the cullin-RING ligase components that act together with CUL-6 to promote thermotolerance. First, we identify a previously uncharacterized RING domain protein in the TRIM family we named RCS-1, which acts as a core component with CUL-6 to promote thermotolerance. Next, we show that the Skp-related proteins SKR-3, SKR-4, and SKR-5 act redundantly to promote thermotolerance with CUL-6. Finally, we screened F-box proteins that coimmunoprecipitate with CUL-6 and find that FBXA-158 and FBXA-75 promote thermotolerance. In summary, we have defined the three core components and two F-box adaptors of a cullin-RING ligase complex that promotes thermotolerance as part of the IPR in C. elegans, which adds to our understanding of how organisms cope with proteotoxic stress.
Collapse
|
15
|
Shao H, Wang D. Long-term and low-dose exposure to nanopolystyrene induces a protective strategy to maintain functional state of intestine barrier in nematode Caenorhabditis elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113649. [PMID: 31767235 DOI: 10.1016/j.envpol.2019.113649] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/01/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
Functional state of intestinal barrier plays an important role for environmental animals in being against various toxicants. We investigated GATA transcriptional factor ELT-2-mediated intestinal response to nanopolystyrere in Caenorhabditis elegans. Prolonged exposure to nanopolystyrene (≥1 μg/L) induced an increase in expression of ELT-2, and intestinal RNA interference (RNAi) knockdown of elt-2 caused enhancement in intestinal permeability. Meanwhile, mutation of elt-2 resulted in susceptibility to nanopolystyrene toxicity, and ELT-2 functioned in intestine to regulate the nanopolystyrene toxicity. ERM-1, CLEC-63, and CLEC-85 were identified as targets of ELT-2 in regulating the nanopolystyrene toxicity. ERM-1 was required for maintaining functional state in intestinal barrier, and functioned synergistically with CLEC-63 or CLEC-85 to regulate nanopolystyrene toxicity. Therefore, activation of intestinal ELT-2 by nanopolystyrere could mediate a protective strategy to maintain the functional state of intestinal barrier. During this process, intestinal ELT-2 activated two different molecular signals (ERM-1 signal and CLEC-63/85 signal) for nematodes against the nanopolystyrene toxicity.
Collapse
Affiliation(s)
- Huimin Shao
- Medical School, Southeast University, Nanjing, 210009, China
| | - Dayong Wang
- Medical School, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
16
|
Wang S, Ochoa SD, Khaliullin RN, Gerson-Gurwitz A, Hendel JM, Zhao Z, Biggs R, Chisholm AD, Desai A, Oegema K, Green RA. A high-content imaging approach to profile C. elegans embryonic development. Development 2019; 146:dev174029. [PMID: 30890570 PMCID: PMC6467471 DOI: 10.1242/dev.174029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/11/2019] [Indexed: 11/20/2022]
Abstract
The Caenorhabditis elegans embryo is an important model for analyzing mechanisms of cell fate specification and tissue morphogenesis. Sophisticated lineage-tracing approaches for analyzing embryogenesis have been developed but are labor intensive and do not naturally integrate morphogenetic readouts. To enable the rapid classification of developmental phenotypes, we developed a high-content method that employs two custom strains: a Germ Layer strain that expresses nuclear markers in the ectoderm, mesoderm and endoderm/pharynx; and a Morphogenesis strain that expresses markers labeling epidermal cell junctions and the neuronal cell surface. We describe a procedure that allows simultaneous live imaging of development in 80-100 embryos and provide a custom program that generates cropped, oriented image stacks of individual embryos to facilitate analysis. We demonstrate the utility of our method by perturbing 40 previously characterized developmental genes in variants of the two strains containing RNAi-sensitizing mutations. The resulting datasets yielded distinct, reproducible signature phenotypes for a broad spectrum of genes that are involved in cell fate specification and morphogenesis. In addition, our analysis provides new in vivo evidence for MBK-2 function in mesoderm fate specification and LET-381 function in elongation.
Collapse
Affiliation(s)
- Shaohe Wang
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stacy D Ochoa
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Renat N Khaliullin
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Adina Gerson-Gurwitz
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jeffrey M Hendel
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Zhiling Zhao
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Ronald Biggs
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Andrew D Chisholm
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Arshad Desai
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Karen Oegema
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Rebecca A Green
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
17
|
CEH-60/PBX and UNC-62/MEIS Coordinate a Metabolic Switch that Supports Reproduction in C. elegans. Dev Cell 2019; 49:235-250.e7. [PMID: 30956009 DOI: 10.1016/j.devcel.2019.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 11/26/2018] [Accepted: 03/04/2019] [Indexed: 01/08/2023]
Abstract
The molecular basis of how animals integrate metabolic, developmental, and environmental information before committing resources to reproduction is an unresolved issue in developmental biology. In C. elegans, adult animals reallocate fat stores from intestinal cells to the germline via low-density lipoprotein (LDL)-like particles to promote embryogenesis. Here, I demonstrate that two conserved homeodomain transcription factors, CEH-60/PBX and UNC-62/MEIS, coordinate a transcriptional network that supports reproduction while suppressing longevity and stress-response pathways. The CEH-60:UNC-62 heterodimer serves an unanticipated dual function in intestinal nuclei by directly activating the expression of lipoprotein genes while directly repressing stress-responsive genes. Consequently, ceh-60 mutants display fat storage defects, a dramatic lifespan extension, and hyper-activation of innate immunity genes. Finally, CEH-60 associates with PQM-1 at the DAF-16-associated element within the promoters of stress-responsive genes to control gene expression. Thus, CEH-60 governs an elaborate transcriptional network that balances stress responses and longevity against reproduction during developmental transitions.
Collapse
|
18
|
Yu S, Zheng C, Zhou F, Baillie DL, Rose AM, Deng Z, Chu JSC. Genomic identification and functional analysis of essential genes in Caenorhabditis elegans. BMC Genomics 2018; 19:871. [PMID: 30514206 PMCID: PMC6278001 DOI: 10.1186/s12864-018-5251-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 11/14/2018] [Indexed: 11/27/2022] Open
Abstract
Background Essential genes are required for an organism’s viability and their functions can vary greatly, spreading across many pathways. Due to the importance of essential genes, large scale efforts have been undertaken to identify the complete set of essential genes and to understand their function. Studies of genome architecture and organization have found that genes are not randomly disturbed in the genome. Results Using combined genetic mapping, Illumina sequencing, and bioinformatics analyses, we successfully identified 44 essential genes with 130 lethal mutations in genomic regions of C. elegans of around 7.3 Mb from Chromosome I (left). Of the 44 essential genes, six of which were genes not characterized previously by mutant alleles, let-633/let-638 (B0261.1), let-128 (C53H9.2), let-511 (W09C3.4), let-162 (Y47G6A.18), let-510 (Y47G6A.19), and let-131 (Y71G12B.6). Examine essential genes with Hi-C data shows that essential genes tend to cluster within TAD units rather near TAD boundaries. We have also shown that essential genes in the left half of chromosome I in C. elegans function in enzyme and nucleic acid binding activities during fundamental processes, such as DNA replication, transcription, and translation. From protein-protein interaction networks, essential genes exhibit more protein connectivity than non-essential genes in the genome. Also, many of the essential genes show strong expression in embryos or early larvae stages, indicating that they are important to early development. Conclusions Our results confirmed that this work provided a more comprehensive picture of the essential gene and their functional characterization. These genetic resources will offer important tools for further heath and disease research. Electronic supplementary material The online version of this article (10.1186/s12864-018-5251-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shicheng Yu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China. .,Wuhan Frasergen Bioinformatics, Wuhan East Lake High-tech Zone, Wuhan, 430075, China.
| | - Chaoran Zheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Fan Zhou
- Wuhan Frasergen Bioinformatics, Wuhan East Lake High-tech Zone, Wuhan, 430075, China
| | - David L Baillie
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Ann M Rose
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| | | |
Collapse
|
19
|
Expression of Heterorhabditis bacteriophora C-type lectins, Hb-clec-1 and Hb-clec-78, in context of symbiosis with Photorhabdus bacteria. Symbiosis 2018. [DOI: 10.1007/s13199-018-0569-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
Hoinville ME, Wollenberg AC. Changes in Caenorhabditis elegans gene expression following exposure to Photorhabdus luminescens strain TT01. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 82:165-176. [PMID: 29203330 DOI: 10.1016/j.dci.2017.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/05/2017] [Accepted: 09/08/2017] [Indexed: 06/07/2023]
Abstract
Photorhabdus bacteria enter into a mutualistic symbiosis with Heterorhabditis nematodes to infect insect larvae. However, they rapidly kill the model nematode Caenorhabditis elegans. One hypothesis for these divergent outcomes is that the nematode defense responses differ. To begin testing this hypothesis, we have systematically analyzed available data on the transcriptional response of C. elegans to P. luminescens strain Hb. From a starting pool of over 7000 differentially expressed genes, we carefully chose 21 Heterorhabditis-conserved genes to develop as comparative markers. Using newly designed and validated qRT-PCR primers, we measured expression of these genes in C. elegans exposed to the sequenced TT01 strain of P. luminescens, on two different media types. Almost all (18/21) of the genes showed a significant response to P. luminescens strain TT01. One response is dependent on media type, and a subset of genes may respond differentially to distinct strains. Overall, we have established useful resources and generated new hypotheses regarding how C. elegans responds to P. luminescens infection.
Collapse
Affiliation(s)
- Megan E Hoinville
- Biology Department, Kalamazoo College, 1200 Academy St., Kalamazoo, MI 49006, USA
| | - Amanda C Wollenberg
- Biology Department, Kalamazoo College, 1200 Academy St., Kalamazoo, MI 49006, USA.
| |
Collapse
|
21
|
Dineen A, Osborne Nishimura E, Goszczynski B, Rothman JH, McGhee JD. Quantitating transcription factor redundancy: The relative roles of the ELT-2 and ELT-7 GATA factors in the C. elegans endoderm. Dev Biol 2018; 435:150-161. [PMID: 29360433 DOI: 10.1016/j.ydbio.2017.12.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/25/2017] [Accepted: 12/13/2017] [Indexed: 10/18/2022]
Abstract
The two GATA transcription factors ELT-2 and ELT-7 function in the differentiation of the C. elegans intestine. ELT-2 loss causes lethality. ELT-7 loss causes no obvious phenotype but enhances the elt-2(-) intestinal phenotype. Thus, ELT-2 and ELT-7 appear partially redundant, with ELT-2 being more influential. To investigate the different regulatory roles of ELT-2 and ELT-7, we compared the transcriptional profiles of pure populations of wild-type, elt-2(-), elt-7(-), and elt-7(-); elt-2(-) double mutant L1-stage larvae. Consistent with the mutant phenotypes, loss of ELT-2 had a>25 fold greater influence on the number of significantly altered transcripts compared to the loss of ELT-7; nonetheless, the levels of numerous transcripts changed upon loss of ELT-7 in the elt-2(-) background. The quantitative responses of individual genes revealed a more complicated behaviour than simple redundancy/partial redundancy. In particular, genes expressed only in the intestine showed three distinguishable classes of response in the different mutant backgrounds. One class of genes responded as if ELT-2 is the major transcriptional activator and ELT-7 provides variable compensatory input. For a second class, transcript levels increased upon loss of ELT-2 but decreased upon further loss of ELT-7, suggesting that ELT-7 actually overcompensates for the loss of ELT-2. For a third class, transcript levels also increased upon loss of ELT-2 but remained elevated upon further loss of ELT-7, suggesting overcompensation by some other intestinal transcription factor(s). In spite of its minor loss-of-function phenotype and its limited sequence similarity to ELT-2, ELT-7 expressed under control of the elt-2 promoter is able to rescue elt-2(-) lethality. Indeed, appropriately expressed ELT-7, like appropriately expressed ELT-2, is able to replace all other core GATA factors in the C. elegans endodermal pathway. Overall, this study focuses attention on the quantitative intricacies behind apparent redundancy or partial redundancy of two related transcription factors.
Collapse
Affiliation(s)
- Aidan Dineen
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Erin Osborne Nishimura
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Barbara Goszczynski
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Joel H Rothman
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, United States
| | - James D McGhee
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
22
|
Structural and developmental expression of Ss-riok-2, an RIO protein kinase encoding gene of Strongyloides stercoralis. Sci Rep 2017; 7:8693. [PMID: 28821723 PMCID: PMC5562798 DOI: 10.1038/s41598-017-07991-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/03/2017] [Indexed: 01/29/2023] Open
Abstract
RIO kinases are essential atypical protein kinases in diverse prokaryotic and eukaryotic organisms, playing significant roles in yeast and humans. However, little is known about their functions in parasitic nematodes. In the present study, we have isolated and characterized the full-length cDNA, gDNA and a putative promoter of a RIOK-2 protein kinase (Ss-RIOK-2) encoding gene (Ss-riok-2) from Strongyloides stercoralis, a medically important parasitic nematode (Order Rhabditida). A three-dimensional structure (3D) model of Ss-RIOK-2 was generated using the Chaetomium thermophilum RIOK-2 protein kinase (Ct-RIOK-2) crystal structure 4GYG as a template. A docking study revealed some critical sites for ATP binding and metal binding. The putative promoter of Ss-riok-2 contains a number of conserved elements. RNAseq analysis revealed the highest levels of the Ss-riok-2 transcript in free-living females and parasitic females. To identify anatomical patterns of Ss-riok-2 expression in S. stercoralis, we observed expression patterns of a transgene construct encoding green fluorescent protein under the Ss-riok-2 promoter in post free-living S. stercoralis. Expression driven by this promoter predominated in intestinal cells. This study demonstrates significant advancement in molecular and cellular biological study of S. stercoralis and of parasitic nematodes generally, and provides a foundation for further functional genomic studies.
Collapse
|
23
|
Zuckerman B, Abergel Z, Zelmanovich V, Romero L, Abergel R, Livshits L, Smith Y, Gross E. Characterization of gene expression associated with the adaptation of the nematode C. elegans to hypoxia and reoxygenation stress reveals an unexpected function of the neuroglobin GLB-5 in innate immunity. Free Radic Biol Med 2017; 108:858-873. [PMID: 28495447 DOI: 10.1016/j.freeradbiomed.2017.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 04/27/2017] [Accepted: 05/07/2017] [Indexed: 01/05/2023]
Abstract
Oxygen (O2) is a double-edged sword to cells, for while it is vital for energy production in all aerobic animals and insufficient O2 (hypoxia) can lead to cell death, the reoxygenation of hypoxic tissues may trigger the generation of reactive oxygen species (ROS) that can destroy any biological molecule. Indeed, both hypoxia and hypoxia-reoxygenation (H/R) stress are harmful, and may play a critical role in the pathophysiology of many human diseases, such as myocardial ischemia and stroke. Therefore, understanding how animals adapt to hypoxia and H/R stress is critical for developing better treatments for these diseases. Previous studies showed that the neuroglobin GLB-5(Haw) is essential for the fast recovery of the nematode Caenorhabditis elegans (C. elegans) from H/R stress. Here, we characterize the changes in neuronal gene expression during the adaptation of worms to hypoxia and recovery from H/R stress. Our analysis shows that innate immunity genes are differentially expressed during both adaptation to hypoxia and recovery from H/R stress. Moreover, we reveal that the prolyl hydroxylase EGL-9, a known regulator of both adaptation to hypoxia and the innate immune response, inhibits the fast recovery from H/R stress through its activity in the O2-sensing neurons AQR, PQR, and URX. Finally, we show that GLB-5(Haw) acts in AQR, PQR, and URX to increase the tolerance of worms to Pseudomonas aeruginosa pathogenesis. Together, our studies suggest that innate immunity and recovery from H/R stress are regulated by overlapping signaling pathways.
Collapse
Affiliation(s)
- Binyamin Zuckerman
- Dept. of Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, P.O. Box 12271, Jerusalem, 9112102 Israel
| | - Zohar Abergel
- Dept. of Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, P.O. Box 12271, Jerusalem, 9112102 Israel
| | - Veronica Zelmanovich
- Dept. of Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, P.O. Box 12271, Jerusalem, 9112102 Israel
| | - Leonor Romero
- Dept. of Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, P.O. Box 12271, Jerusalem, 9112102 Israel
| | - Rachel Abergel
- Dept. of Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, P.O. Box 12271, Jerusalem, 9112102 Israel
| | - Leonid Livshits
- Dept. of Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, P.O. Box 12271, Jerusalem, 9112102 Israel
| | - Yoav Smith
- Genomic Data Analysis Unit, The Hebrew University - Hadassah Medical School, The Hebrew University of Jerusalem, 91120 Jerusalem, Israel
| | - Einav Gross
- Dept. of Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, P.O. Box 12271, Jerusalem, 9112102 Israel.
| |
Collapse
|
24
|
Blazie SM, Geissel HC, Wilky H, Joshi R, Newbern J, Mangone M. Alternative Polyadenylation Directs Tissue-Specific miRNA Targeting in Caenorhabditis elegans Somatic Tissues. Genetics 2017; 206:757-774. [PMID: 28348061 PMCID: PMC5499184 DOI: 10.1534/genetics.116.196774] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/02/2017] [Indexed: 01/03/2023] Open
Abstract
mRNA expression dynamics promote and maintain the identity of somatic tissues in living organisms; however, their impact in post-transcriptional gene regulation in these processes is not fully understood. Here, we applied the PAT-Seq approach to systematically isolate, sequence, and map tissue-specific mRNA from five highly studied Caenorhabditis elegans somatic tissues: GABAergic and NMDA neurons, arcade and intestinal valve cells, seam cells, and hypodermal tissues, and studied their mRNA expression dynamics. The integration of these datasets with previously profiled transcriptomes of intestine, pharynx, and body muscle tissues, precisely assigns tissue-specific expression dynamics for 60% of all annotated C. elegans protein-coding genes, providing an important resource for the scientific community. The mapping of 15,956 unique high-quality tissue-specific polyA sites in all eight somatic tissues reveals extensive tissue-specific 3'untranslated region (3'UTR) isoform switching through alternative polyadenylation (APA) . Almost all ubiquitously transcribed genes use APA and harbor miRNA targets in their 3'UTRs, which are commonly lost in a tissue-specific manner, suggesting widespread usage of post-transcriptional gene regulation modulated through APA to fine tune tissue-specific protein expression. Within this pool, the human disease gene C. elegans orthologs rack-1 and tct-1 use APA to switch to shorter 3'UTR isoforms in order to evade miRNA regulation in the body muscle tissue, resulting in increased protein expression needed for proper body muscle function. Our results highlight a major positive regulatory role for APA, allowing genes to counteract miRNA regulation on a tissue-specific basis.
Collapse
Affiliation(s)
- Stephen M Blazie
- Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, Arizona 85281
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, Arizona 85281
| | - Heather C Geissel
- Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, Arizona 85281
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, Arizona 85281
| | - Henry Wilky
- Barrett Honors College, Arizona State University, Tempe, Arizona 85281
| | - Rajan Joshi
- College of Letters and Sciences, Interdisciplinary Studies, Biological Sciences and Informatics, Arizona State University, Tempe, Arizona 85281
| | - Jason Newbern
- Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, Arizona 85281
- Barrett Honors College, Arizona State University, Tempe, Arizona 85281
| | - Marco Mangone
- Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, Arizona 85281
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, Arizona 85281
- Barrett Honors College, Arizona State University, Tempe, Arizona 85281
| |
Collapse
|
25
|
Herndon LA, Wolkow CA, Driscoll M, Hall DH. Effects of Ageing on the Basic Biology and Anatomy of C. elegans. HEALTHY AGEING AND LONGEVITY 2017. [DOI: 10.1007/978-3-319-44703-2_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
26
|
Angeles-Albores D, N Lee RY, Chan J, Sternberg PW. Tissue enrichment analysis for C. elegans genomics. BMC Bioinformatics 2016; 17:366. [PMID: 27618863 PMCID: PMC5020436 DOI: 10.1186/s12859-016-1229-9] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 08/26/2016] [Indexed: 01/04/2023] Open
Abstract
Background Over the last ten years, there has been explosive development in methods for measuring gene expression. These methods can identify thousands of genes altered between conditions, but understanding these datasets and forming hypotheses based on them remains challenging. One way to analyze these datasets is to associate ontologies (hierarchical, descriptive vocabularies with controlled relations between terms) with genes and to look for enrichment of specific terms. Although Gene Ontology (GO) is available for Caenorhabditis elegans, it does not include anatomical information. Results We have developed a tool for identifying enrichment of C. elegans tissues among gene sets and generated a website GUI where users can access this tool. Since a common drawback to ontology enrichment analyses is its verbosity, we developed a very simple filtering algorithm to reduce the ontology size by an order of magnitude. We adjusted these filters and validated our tool using a set of 30 gold standards from Expression Cluster data in WormBase. We show our tool can even discriminate between embryonic and larval tissues and can even identify tissues down to the single-cell level. We used our tool to identify multiple neuronal tissues that are down-regulated due to pathogen infection in C. elegans. Conclusions Our Tissue Enrichment Analysis (TEA) can be found within WormBase, and can be downloaded using Python’s standard pip installer. It tests a slimmed-down C. elegans tissue ontology for enrichment of specific terms and provides users with a text and graphic representation of the results. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1229-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David Angeles-Albores
- HHMI and California Institute of Technology, Division of Biology and Biological Engineering, 1200 E California Blvd, Pasadena, 91125, USA
| | - Raymond Y N Lee
- HHMI and California Institute of Technology, Division of Biology and Biological Engineering, 1200 E California Blvd, Pasadena, 91125, USA
| | - Juancarlos Chan
- HHMI and California Institute of Technology, Division of Biology and Biological Engineering, 1200 E California Blvd, Pasadena, 91125, USA
| | - Paul W Sternberg
- HHMI and California Institute of Technology, Division of Biology and Biological Engineering, 1200 E California Blvd, Pasadena, 91125, USA.
| |
Collapse
|
27
|
Ma X, Zhan G, Sleumer MC, Chen S, Liu W, Zhang MQ, Liu X. Analysis of C. elegans muscle transcriptome using trans-splicing-based RNA tagging (SRT). Nucleic Acids Res 2016; 44:e156. [PMID: 27557708 PMCID: PMC5137427 DOI: 10.1093/nar/gkw734] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/03/2016] [Accepted: 08/11/2016] [Indexed: 01/02/2023] Open
Abstract
Current approaches to profiling tissue-specific gene expression in C. elegans require delicate manipulation and are difficult under certain conditions, e.g. from dauer or aging worms. We have developed an easy and robust method for tissue-specific RNA-seq by taking advantage of the endogenous trans-splicing process. In this method, transgenic worms are generated in which a spliced leader (SL) RNA gene is fused with a sequence tag and driven by a tissue-specific promoter. Only in the tissue of interest, the tagged SL RNA gene is transcribed and then trans-spliced onto mRNAs. The tag allows enrichment and sequencing of mRNAs from that tissue only. As a proof of principle, we profiled the muscle transcriptome, which showed high coverage and efficient enrichment of muscle specific genes, with low background noise. To demonstrate the robustness of our method, we profiled muscle gene expression in dauer larvae and aging worms, revealing gene expression changes consistent with the physiology of these stages. The resulting muscle transcriptome also revealed 461 novel RNA transcripts, likely muscle-expressed long non-coding RNAs. In summary, the splicing-based RNA tagging (SRT) method provides a convenient and robust tool to profile trans-spliced genes and identify novel transcripts in a tissue-specific manner, with a low false positive rate.
Collapse
Affiliation(s)
- Xiaopeng Ma
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.,PTN (Peking University-Tsinghua University-National Institute of Biological Sciences) Joint Graduate Program, Beijing 100084, China
| | - Ge Zhan
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Monica C Sleumer
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Siyu Chen
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Weihong Liu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Michael Q Zhang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Departmental of Biological Sciences, Center for Systems Biology, The University of Texas at Dallas, TX 75080, USA.,Division of Bioinformatics, TNLIST, School of Information Sciences, Tsinghua University, Beijing 100084, China
| | - Xiao Liu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
28
|
Karthik D, Stelzer G, Gershanov S, Baranes D, Salmon-Divon M. Elucidating tissue specific genes using the Benford distribution. BMC Genomics 2016; 17:595. [PMID: 27506195 PMCID: PMC4979126 DOI: 10.1186/s12864-016-2921-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/07/2016] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The RNA-seq technique is applied for the investigation of transcriptional behaviour. The reduction in sequencing costs has led to an unprecedented trove of gene expression data from diverse biological systems. Subsequently, principles from other disciplines such as the Benford law, which can be properly judged only in data-rich systems, can now be examined on this high-throughput transcriptomic information. The Benford law, states that in many count-rich datasets the distribution of the first significant digit is not uniform but rather logarithmic. RESULTS All tested digital gene expression datasets showed a Benford-like distribution when observing an entire gene set. This phenomenon was conserved in development and does not demonstrate tissue specificity. However, when obedience to the Benford law is calculated for individual expressed genes across thousands of cells, genes that best and least adhere to the Benford law are enriched with tissue specific or cell maintenance descriptors, respectively. Surprisingly, a positive correlation was found between the obedience a gene exhibits to the Benford law and its expression level, despite the former being calculated solely according to first digit frequency while totally ignoring the expression value itself. Nevertheless, genes with low expression that exhibit Benford behavior demonstrate tissue specific associations. These observations were extended to predict the likelihood of tissue specificity based on Benford behaviour in a supervised learning approach. CONCLUSIONS These results demonstrate the applicability and potential predictability of the Benford law for gleaning biological insight from simple count data.
Collapse
Affiliation(s)
- Deepak Karthik
- Department of Molecular Biology, Ariel University, Ariel, 40700, Israel
| | - Gil Stelzer
- Department of Molecular Biology, Ariel University, Ariel, 40700, Israel
| | - Sivan Gershanov
- Department of Molecular Biology, Ariel University, Ariel, 40700, Israel
| | - Danny Baranes
- Department of Molecular Biology, Ariel University, Ariel, 40700, Israel
| | - Mali Salmon-Divon
- Department of Molecular Biology, Ariel University, Ariel, 40700, Israel.
| |
Collapse
|
29
|
Wiesenfahrt T, Osborne Nishimura E, Berg JY, McGhee JD. Probing and rearranging the transcription factor network controlling the C. elegans endoderm. WORM 2016; 5:e1198869. [PMID: 27695655 DOI: 10.1080/21624054.2016.1198869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 06/02/2016] [Indexed: 10/21/2022]
Abstract
The ELT-2 GATA factor is the predominant transcription factor regulating gene expression in the C. elegans intestine, following endoderm specification. We comment on our previous study (Wiesenfahrt et al., 2016) that investigated how the elt-2 gene is controlled by END-1, END-3 and ELT-7, the 3 endoderm specific GATA factors that lie upstream in the regulatory hierarchy. We also discuss the unexpected result that ELT-2, if expressed sufficiently early and at sufficiently high levels, can specify the C. elegans endoderm, replacing the normal functions of END-1 and END-3.
Collapse
Affiliation(s)
- Tobias Wiesenfahrt
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary , Calgary, AB, Canada
| | - Erin Osborne Nishimura
- Department of Biochemistry and Molecular Biology, Colorado State University , Fort Collins, CO, USA
| | - Janette Y Berg
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary , Calgary, AB, Canada
| | - James D McGhee
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary , Calgary, AB, Canada
| |
Collapse
|
30
|
Mann FG, Van Nostrand EL, Friedland AE, Liu X, Kim SK. Deactivation of the GATA Transcription Factor ELT-2 Is a Major Driver of Normal Aging in C. elegans. PLoS Genet 2016; 12:e1005956. [PMID: 27070429 PMCID: PMC4829211 DOI: 10.1371/journal.pgen.1005956] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 03/04/2016] [Indexed: 02/07/2023] Open
Abstract
To understand the molecular processes underlying aging, we screened modENCODE ChIP-seq data to identify transcription factors that bind to age-regulated genes in C. elegans. The most significant hit was the GATA transcription factor encoded by elt-2, which is responsible for inducing expression of intestinal genes during embryogenesis. Expression of ELT-2 decreases during aging, beginning in middle age. We identified genes regulated by ELT-2 in the intestine during embryogenesis, and then showed that these developmental genes markedly decrease in expression as worms grow old. Overexpression of elt-2 extends lifespan and slows the rate of gene expression changes that occur during normal aging. Thus, our results identify the developmental regulator ELT-2 as a major driver of normal aging in C. elegans.
Collapse
Affiliation(s)
- Frederick G. Mann
- Departments of Genetics and Developmental Biology, Stanford University Medical Center, Stanford, California, United States of America
| | - Eric L. Van Nostrand
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - Ari E. Friedland
- Editas Medicine, Cambridge, Massachusetts, United States of America
| | - Xiao Liu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Stuart K. Kim
- Departments of Genetics and Developmental Biology, Stanford University Medical Center, Stanford, California, United States of America
| |
Collapse
|
31
|
Goszczynski B, Captan VV, Danielson AM, Lancaster BR, McGhee JD. A 44 bp intestine-specific hermaphrodite-specific enhancer from the C. elegans vit-2 vitellogenin gene is directly regulated by ELT-2, MAB-3, FKH-9 and DAF-16 and indirectly regulated by the germline, by daf-2/insulin signaling and by the TGF-β/Sma/Mab pathway. Dev Biol 2016; 413:112-27. [PMID: 26963674 DOI: 10.1016/j.ydbio.2016.02.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 01/29/2016] [Accepted: 02/10/2016] [Indexed: 11/29/2022]
Abstract
The Caenorhabditis elegans vitellogenin genes are transcribed in the intestine of adult hermaphrodites but not of males. A 44-bp region from the vit-2 gene promoter is able largely to reconstitute this tissue-, stage- and sex-specific-expression. This "enhancer" contains a binding site for the DM-domain factor MAB-3, the male-specific repressor of vitellogenesis, as well as an activator site that we show is the direct target of the intestinal GATA factor ELT-2. We further show that the enhancer is directly activated by the winged-helix/forkhead-factor FKH-9, (whose gene has been shown by others to be a direct target of DAF-16), by an unknown activator binding to the MAB-3 site, and by the full C. elegans TGF-β/Sma/Mab pathway acting within the intestine. The vit-2 gene has been shown by others to be repressed by the daf-2/daf-16 insulin signaling pathway, which so strongly influences aging and longevity in C. elegans. We show that the activity of the 44 bp vit-2 enhancer is abolished by loss of daf-2 but is restored by simultaneous loss of daf-16. DAF-2 acts from outside of the intestine but DAF-16 acts both from outside of the intestine and from within the intestine where it binds directly to the same non-canonical target site that interacts with FKH-9. Activity of the 44 bp vit-2 enhancer is also inhibited by loss of the germline, in a manner that is only weakly influenced by DAF-16 but that is strongly influenced by KRI-1, a key downstream effector in the pathway by which germline loss increases C. elegans lifespan. The complex behavior of this enhancer presumably allows vitellogenin gene transcription to adjust to demands of body size, germline proliferation and nutritional state but we suggest that the apparent involvement of this enhancer in aging and longevity "pathways" could be incidental.
Collapse
Affiliation(s)
- Barbara Goszczynski
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Vasile V Captan
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Alicia M Danielson
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Brett R Lancaster
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - James D McGhee
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
32
|
Lightfoot JW, Chauhan VM, Aylott JW, Rödelsperger C. Comparative transcriptomics of the nematode gut identifies global shifts in feeding mode and pathogen susceptibility. BMC Res Notes 2016; 9:142. [PMID: 26944260 PMCID: PMC4779222 DOI: 10.1186/s13104-016-1886-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/25/2016] [Indexed: 12/20/2022] Open
Abstract
Background The nematode Pristionchus pacificus has been established as a model for comparative studies using the well known Caenorhabditis elegans as a reference. Despite their relatedness, previous studies have revealed highly divergent development and a number of morphological differences including the lack of a pharyngal structure, the grinder, used to physically lyse the ingested bacteria in C. elegans. Results To complement current knowledge about developmental and ecological differences with a better understanding of their feeding modes, we have sequenced the intestinal transcriptomes of both nematodes. In total, we found 464 intestine-enriched genes in P. pacificus and 724 in C. elegans, of which the majority (66 %) has been identified by previous studies. Interestingly, only 15 genes could be identified with shared intestinal enrichment in both species, of which three genes are Hedgehog signaling molecules supporting a highly conserved role of this pathway for intestinal development across all metazoa. At the level of gene families, we find similar divergent trends with only five families displaying significant intestinal enrichment in both species. We compared our data with transcriptomic responses to various pathogens. Strikingly, C. elegans intestine-enriched genes showed highly significant overlaps with pathogen response genes whereas this was not the case for P. pacificus, indicating shifts in pathogen susceptibility that might be explained by altered feeding modes. Conclusions Our study reveals first insights into the evolution of feeding systems and the associated changes in intestinal gene expression that might have facilitated nematodes of the P. pacificus lineage to colonize new environments. These findings deepen our understanding about how morphological and genomic diversity is created during the course of evolution. Electronic supplementary material The online version of this article (doi:10.1186/s13104-016-1886-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- James W Lightfoot
- Department for Evolutionary Biology, Max-Planck Institute for Developmental Biology, Spemannstr. 35-39, Tübingen, Germany.
| | - Veeren M Chauhan
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, Boots Science Building, Nottingham, UK.
| | - Jonathan W Aylott
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, Boots Science Building, Nottingham, UK.
| | - Christian Rödelsperger
- Department for Evolutionary Biology, Max-Planck Institute for Developmental Biology, Spemannstr. 35-39, Tübingen, Germany.
| |
Collapse
|
33
|
Berber S, Wood M, Llamosas E, Thaivalappil P, Lee K, Liao BM, Chew YL, Rhodes A, Yucel D, Crossley M, Nicholas HR. Homeodomain-Interacting Protein Kinase (HPK-1) regulates stress responses and ageing in C. elegans. Sci Rep 2016; 6:19582. [PMID: 26791749 PMCID: PMC4726358 DOI: 10.1038/srep19582] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/15/2015] [Indexed: 11/22/2022] Open
Abstract
Proteins of the Homeodomain-Interacting Protein Kinase (HIPK) family regulate an array of processes in mammalian systems, such as the DNA damage response, cellular proliferation and apoptosis. The nematode Caenorhabditis elegans has a single HIPK homologue called HPK-1. Previous studies have implicated HPK-1 in longevity control and suggested that this protein may be regulated in a stress-dependent manner. Here we set out to expand these observations by investigating the role of HPK-1 in longevity and in the response to heat and oxidative stress. We find that levels of HPK-1 are regulated by heat stress, and that HPK-1 contributes to survival following heat or oxidative stress. Additionally, we show that HPK-1 is required for normal longevity, with loss of HPK-1 function leading to a faster decline of physiological processes that reflect premature ageing. Through microarray analysis, we have found that HPK-1-regulated genes include those encoding proteins that serve important functions in stress responses such as Phase I and Phase II detoxification enzymes. Consistent with a role in longevity assurance, HPK-1 also regulates the expression of age-regulated genes. Lastly, we show that HPK-1 functions in the same pathway as DAF-16 to regulate longevity and reveal a new role for HPK-1 in development.
Collapse
Affiliation(s)
- Slavica Berber
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
| | - Mallory Wood
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
| | - Estelle Llamosas
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
| | | | - Karen Lee
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
| | - Bing Mana Liao
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
| | - Yee Lian Chew
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
| | - Aaron Rhodes
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
| | - Duygu Yucel
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
| | - Merlin Crossley
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, Australia
| | - Hannah R Nicholas
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
| |
Collapse
|
34
|
Wiesenfahrt T, Berg JY, Osborne Nishimura E, Robinson AG, Goszczynski B, Lieb JD, McGhee JD. The function and regulation of the GATA factor ELT-2 in the C. elegans endoderm. Development 2015; 143:483-91. [PMID: 26700680 DOI: 10.1242/dev.130914] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/12/2015] [Indexed: 11/20/2022]
Abstract
ELT-2 is the major regulator of genes involved in differentiation, maintenance and function of C. elegans intestine from the early embryo to mature adult. elt-2 responds to overexpression of the GATA transcription factors END-1 and END-3, which specify the intestine, as well as to overexpression of the two GATA factors that are normally involved in intestinal differentiation, ELT-7 and ELT-2 itself. Little is known about the molecular mechanisms underlying these interactions, how ELT-2 levels are maintained throughout development or how such systems respond to developmental perturbations. Here, we analyse elt-2 gene regulation through transgenic reporter assays, ELT-2 ChIP and characterisation of in vitro DNA-protein interactions. Our results indicate that elt-2 is controlled by three discrete regulatory regions conserved between C. elegans and C. briggsae that span >4 kb of 5' flanking sequence. These regions are superficially interchangeable but have quantitatively different enhancer properties, and their combined activities indicate inter-region synergies. Their regulatory activity is mediated by a small number of conserved TGATAA sites that are largely interchangeable and interact with different endodermal GATA factors with only modest differences in affinity. The redundant molecular mechanism that forms the elt-2 regulatory network is robust and flexible, as loss of end-3 halves ELT-2 levels in the early embryo but levels fully recover by the time of hatching. When ELT-2 is expressed under the control of end-1 regulatory elements, in addition to its own endogenous promoter, it can replace the complete set of endoderm-specific GATA factors: END-1, END-3, ELT-7 and (the probably non-functional) ELT-4. Thus, in addition to controlling gene expression during differentiation, ELT-2 is capable of specifying the entire C. elegans endoderm.
Collapse
Affiliation(s)
- Tobias Wiesenfahrt
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Janette Y Berg
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Erin Osborne Nishimura
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Adam G Robinson
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Barbara Goszczynski
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Jason D Lieb
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - James D McGhee
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| |
Collapse
|
35
|
You YS, Cha YJ, Choi SS. Effect of lactic acid bacteria on intestinal E. coli in Caenorhabditis elegans. Food Sci Biotechnol 2015. [DOI: 10.1007/s10068-015-0242-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
36
|
Maduro MF. Developmental robustness in the Caenorhabditis elegans embryo. Mol Reprod Dev 2015; 82:918-31. [PMID: 26382067 DOI: 10.1002/mrd.22582] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/03/2015] [Indexed: 12/25/2022]
Abstract
Developmental robustness is the ability of an embryo to develop normally despite many sources of variation, from differences in the environment to stochastic cell-to-cell differences in gene expression. The nematode Caenorhabditis elegans exhibits an additional level of robustness: Unlike most other animals, the embryonic pattern of cell divisions is nearly identical from animal to animal. The endoderm (gut) lineage is an ideal model for studying such robustness as the juvenile gut has a simple anatomy, consisting of 20 cells that are derived from a single cell, E, and the gene regulatory network that controls E specification shares features with developmental regulatory networks in many other systems, including genetic redundancy, parallel pathways, and feed-forward loops. Early studies were initially concerned with identifying the genes in the network, whereas recent work has focused on understanding how the endoderm produces a robust developmental output in the face of many sources of variation. Genetic control exists at three levels of endoderm development: Progenitor specification, cell divisions within the developing gut, and maintenance of gut differentiation. Recent findings show that specification genes regulate all three of these aspects of gut development, and that mutant embryos can experience a "partial" specification state in which some, but not all, E descendants adopt a gut fate. Ongoing studies using newer quantitative and genome-wide methods promise further insights into how developmental gene-regulatory networks buffer variation.
Collapse
Affiliation(s)
- Morris F Maduro
- Department of Biology, University of California, Riverside, California
| |
Collapse
|
37
|
MacNeil LT, Pons C, Arda HE, Giese GE, Myers CL, Walhout AJM. Transcription Factor Activity Mapping of a Tissue-Specific in vivo Gene Regulatory Network. Cell Syst 2015; 1:152-162. [PMID: 26430702 DOI: 10.1016/j.cels.2015.08.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A wealth of physical interaction data between transcription factors (TFs) and DNA has been generated, but these interactions often do not have apparent regulatory consequences. Thus, equating physical interaction data with gene regulatory networks (GRNs) is problematic. Here, we comprehensively assay TF activity, rather than binding, to construct a network of gene regulatory interactions in the C. elegans intestine. By manually observing the in vivo tissue-specific knockdown of 921 TFs on a panel of 19 fluorescent transcriptional reporters, we identified a GRN of 411 interactions between 19 promoters and 177 TFs. This GRN shows only modest overlap with physical interactions, indicating that many regulatory interactions are indirect. We applied nested effects modeling to uncover information flow between TFs in the intestine that converges on a small set of physical TF-promoter interactions. We found numerous cell nonautonomous regulatory interactions, illustrating tissue-to-tissue communication. Altogether, our study illuminates the complexity of gene regulation in the context of a living animal.
Collapse
Affiliation(s)
- Lesley T MacNeil
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA ; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Carles Pons
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | - H Efsun Arda
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA ; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Gabrielle E Giese
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Chad L Myers
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | - Albertha J M Walhout
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA ; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
38
|
Gorrepati L, Krause MW, Chen W, Brodigan TM, Correa-Mendez M, Eisenmann DM. Identification of Wnt Pathway Target Genes Regulating the Division and Differentiation of Larval Seam Cells and Vulval Precursor Cells in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2015; 5:1551-66. [PMID: 26048561 PMCID: PMC4528312 DOI: 10.1534/g3.115.017715] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/18/2015] [Indexed: 12/29/2022]
Abstract
The evolutionarily conserved Wnt/β-catenin signaling pathway plays a fundamental role during metazoan development, regulating numerous processes including cell fate specification, cell migration, and stem cell renewal. Wnt ligand binding leads to stabilization of the transcriptional effector β-catenin and upregulation of target gene expression to mediate a cellular response. During larval development of the nematode Caenorhabditis elegans, Wnt/β-catenin pathways act in fate specification of two hypodermal cell types, the ventral vulval precursor cells (VPCs) and the lateral seam cells. Because little is known about targets of the Wnt signaling pathways acting during larval VPC and seam cell differentiation, we sought to identify genes regulated by Wnt signaling in these two hypodermal cell types. We conditionally activated Wnt signaling in larval animals and performed cell type-specific "mRNA tagging" to enrich for VPC and seam cell-specific mRNAs, and then used microarray analysis to examine gene expression compared to control animals. Two hundred thirty-nine genes activated in response to Wnt signaling were identified, and we characterized 50 genes further. The majority of these genes are expressed in seam and/or vulval lineages during normal development, and reduction of function for nine genes caused defects in the proper division, fate specification, fate execution, or differentiation of seam cells and vulval cells. Therefore, the combination of these techniques was successful at identifying potential cell type-specific Wnt pathway target genes from a small number of cells and at increasing our knowledge of the specification and behavior of these C. elegans larval hypodermal cells.
Collapse
Affiliation(s)
- Lakshmi Gorrepati
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250
| | | | - Weiping Chen
- Intramural Research Program, NIDDK, Bethesda, Maryland 20814
| | | | - Margarita Correa-Mendez
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250
| | - David M Eisenmann
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250
| |
Collapse
|
39
|
Block DHS, Twumasi-Boateng K, Kang HS, Carlisle JA, Hanganu A, Lai TYJ, Shapira M. The Developmental Intestinal Regulator ELT-2 Controls p38-Dependent Immune Responses in Adult C. elegans. PLoS Genet 2015; 11:e1005265. [PMID: 26016853 PMCID: PMC4446034 DOI: 10.1371/journal.pgen.1005265] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 05/06/2015] [Indexed: 12/28/2022] Open
Abstract
GATA transcription factors play critical roles in cellular differentiation and development. However, their roles in mature tissues are less understood. In C. elegans larvae, the transcription factor ELT-2 regulates terminal differentiation of the intestine. It is also expressed in the adult intestine, where it was suggested to maintain intestinal structure and function, and where it was additionally shown to contribute to infection resistance. To study the function of elt-2 in adults we characterized elt-2-dependent gene expression following its knock-down specifically in adults. Microarray analysis identified two ELT-2-regulated gene subsets: one, enriched for hydrolytic enzymes, pointed at regulation of constitutive digestive functions as a dominant role of adult elt-2; the second was enriched for immune genes that are induced in response to Pseudomonas aeruginosa infection. Focusing on the latter, we used genetic analyses coupled to survival assays and quantitative RT-PCR to interrogate the mechanism(s) through which elt-2 contributes to immunity. We show that elt-2 controls p38-dependent gene induction, cooperating with two p38-activated transcription factors, ATF-7 and SKN-1. This demonstrates a mechanism through which the constitutively nuclear elt-2 can impact induced responses, and play a dominant role in C. elegans immunity.
Collapse
Affiliation(s)
- Dena H. S. Block
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Kwame Twumasi-Boateng
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California, United States of America
- Graduate Group in Microbiology, University of California Berkeley, Berkeley, California, United States of America
| | - Hae Sung Kang
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Jolie A. Carlisle
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Alexandru Hanganu
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Ty Yu-Jen Lai
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Michael Shapira
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California, United States of America
- Graduate Group in Microbiology, University of California Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
40
|
MED GATA factors promote robust development of the C. elegans endoderm. Dev Biol 2015; 404:66-79. [PMID: 25959238 DOI: 10.1016/j.ydbio.2015.04.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 12/25/2022]
Abstract
The MED-1,2 GATA factors contribute to specification of E, the progenitor of the Caenorhabditis elegans endoderm, through the genes end-1 and end-3, and in parallel with the maternal factors SKN-1, POP-1 and PAL-1. END-1,3 activate elt-2 and elt-7 to initiate a program of intestinal development, which is maintained by positive autoregulation. Here, we advance the understanding of MED-1,2 in E specification. We find that expression of end-1 and end-3 is greatly reduced in med-1,2(-) embryos. We generated strains in which MED sites have been mutated in end-1 and end-3. Without MED input, gut specification relies primarily on POP-1 and PAL-1. 25% of embryos fail to make intestine, while those that do display abnormal numbers of gut cells due to a delayed and stochastic acquisition of intestine fate. Surviving adults exhibit phenotypes consistent with a primary defect in the intestine. Our results establish that MED-1,2 provide robustness to endoderm specification through end-1 and end-3, and reveal that gut differentiation may be more directly linked to specification than previously appreciated. The results argue against an "all-or-none" description of cell specification, and suggest that activation of tissue-specific master regulators, even when expression of these is maintained by positive autoregulation, does not guarantee proper function of differentiated cells.
Collapse
|
41
|
Handley A, Schauer T, Ladurner A, Margulies C. Designing Cell-Type-Specific Genome-wide Experiments. Mol Cell 2015; 58:621-31. [DOI: 10.1016/j.molcel.2015.04.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
42
|
Narasimhan K, Lambert SA, Yang AWH, Riddell J, Mnaimneh S, Zheng H, Albu M, Najafabadi HS, Reece-Hoyes JS, Fuxman Bass JI, Walhout AJM, Weirauch MT, Hughes TR. Mapping and analysis of Caenorhabditis elegans transcription factor sequence specificities. eLife 2015; 4. [PMID: 25905672 PMCID: PMC4434323 DOI: 10.7554/elife.06967] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/22/2015] [Indexed: 12/13/2022] Open
Abstract
Caenorhabditis elegans is a powerful model for studying gene regulation, as it has a compact genome and a wealth of genomic tools. However, identification of regulatory elements has been limited, as DNA-binding motifs are known for only 71 of the estimated 763 sequence-specific transcription factors (TFs). To address this problem, we performed protein binding microarray experiments on representatives of canonical TF families in C. elegans, obtaining motifs for 129 TFs. Additionally, we predict motifs for many TFs that have DNA-binding domains similar to those already characterized, increasing coverage of binding specificities to 292 C. elegans TFs (∼40%). These data highlight the diversification of binding motifs for the nuclear hormone receptor and C2H2 zinc finger families and reveal unexpected diversity of motifs for T-box and DM families. Motif enrichment in promoters of functionally related genes is consistent with known biology and also identifies putative regulatory roles for unstudied TFs. DOI:http://dx.doi.org/10.7554/eLife.06967.001 Many scientists use ‘model’ species—such as the fruit fly or a nematode worm called Caenorhabditis elegans—in their research because these organisms have useful features that make it easier to carry out many experiments. For example, C. elegans has a smaller genome compared to many other animals, which is useful for studying the roles of individual genes or stretches of DNA. Transcription factors are a type of protein that can bind to specific stretches of DNA and help to switch certain genes on or off. These ‘motifs’ may be close to the gene or further away in the genome, and therefore, must stand out amongst the rest of the DNA, like lights on a landing strip. However, the motifs for only 10% of the estimated 763 transcription factors in C. elegans have been identified so far. In this study, Narasimhan, Lambert, Yang et al. used a technique called a ‘protein binding microarray’ to identify the motifs for many more of the C. elegans transcription factors. These findings were then used to predict motifs for other transcription factors. Together, these methods increased the proportion of C. elegans transcription factors with known DNA-binding motifs from 10% to around 40%. Now that more DNA motifs have been identified, it is possible to look for similarities and differences between them. For example, Narasimhan, Lambert, Yang et al. found that transcription factors with similar sequences can bind to very varied motifs. On the other hand, some transcription factors that are very different are able to recognize very similar motifs. The experiments also indicate that motifs found very close to genes—in sequences known as ‘promoters’—may be able to interact with many proteins to influence the activity of genes. Narasimhan, Lambert, Yang et al.'s findings increase the number of C. elegans transcription factors with a motif, bringing the knowledge of these proteins more in line with the better-studied transcription factors of humans and fruit flies. The next challenge is to identify DNA motifs for the remaining 60% of transcription factors. DOI:http://dx.doi.org/10.7554/eLife.06967.002
Collapse
Affiliation(s)
- Kamesh Narasimhan
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - Samuel A Lambert
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Ally W H Yang
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - Jeremy Riddell
- Department of Molecular and Cellular Physiology, Systems Biology and Physiology Program, University of Cincinnati, Cincinnati, United States
| | - Sanie Mnaimneh
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - Hong Zheng
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - Mihai Albu
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - Hamed S Najafabadi
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - John S Reece-Hoyes
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, United States
| | - Juan I Fuxman Bass
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, United States
| | - Albertha J M Walhout
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, United States
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Timothy R Hughes
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| |
Collapse
|
43
|
Laing R, Bartley DJ, Morrison AA, Rezansoff A, Martinelli A, Laing ST, Gilleard JS. The cytochrome P450 family in the parasitic nematode Haemonchus contortus. Int J Parasitol 2015; 45:243-51. [PMID: 25558056 PMCID: PMC4365919 DOI: 10.1016/j.ijpara.2014.12.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/03/2014] [Accepted: 12/04/2014] [Indexed: 12/24/2022]
Abstract
Haemonchus contortus, a highly pathogenic and economically important parasitic nematode of sheep, is particularly adept at developing resistance to the anthelmintic drugs used in its treatment and control. The basis of anthelmintic resistance is poorly understood for many commonly used drugs with most research being focused on mechanisms involving drug targets or drug efflux. Altered or increased drug metabolism is a possible mechanism that has yet to receive much attention despite the clear role of xenobiotic metabolism in pesticide resistance in insects. The cytochrome P450s (CYPs) are a large family of drug-metabolising enzymes present in almost all living organisms, but for many years thought to be absent from parasitic nematodes. In this paper, we describe the CYP sequences encoded in the H. contortus genome and compare their expression in different parasite life-stages, sexes and tissues. We developed a novel real-time PCR approach based on partially assembled CYP sequences "tags" and confirmed findings in the subsequent draft genome with RNA-seq. Constitutive expression was highest in larval stages for the majority of CYPs, although higher expression was detected in the adult male or female for a small subset of genes. Many CYPs were expressed in the worm intestine. A number of H. contortus genes share high identity with Caenorhabditis elegans CYPs and the similarity in their expression profiles supports their classification as putative orthologues. Notably, H. contortus appears to lack the dramatic CYP subfamily expansions seen in C. elegans and other species, which are typical of CYPs with exogenous roles. However, a small group of H. contortus genes cluster with the C. elegans CYP34 and CYP35 subfamilies and may represent candidate xenobiotic metabolising genes in the parasite.
Collapse
|
44
|
Blazie SM, Babb C, Wilky H, Rawls A, Park JG, Mangone M. Comparative RNA-Seq analysis reveals pervasive tissue-specific alternative polyadenylation in Caenorhabditis elegans intestine and muscles. BMC Biol 2015; 13:4. [PMID: 25601023 PMCID: PMC4343181 DOI: 10.1186/s12915-015-0116-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 01/12/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Tissue-specific RNA plasticity broadly impacts the development, tissue identity and adaptability of all organisms, but changes in composition, expression levels and its impact on gene regulation in different somatic tissues are largely unknown. Here we developed a new method, polyA-tagging and sequencing (PAT-Seq) to isolate high-quality tissue-specific mRNA from Caenorhabditis elegans intestine, pharynx and body muscle tissues and study changes in their tissue-specific transcriptomes and 3'UTRomes. RESULTS We have identified thousands of novel genes and isoforms differentially expressed between these three tissues. The intestine transcriptome is expansive, expressing over 30% of C. elegans mRNAs, while muscle transcriptomes are smaller but contain characteristic unique gene signatures. Active promoter regions in all three tissues reveal both known and novel enriched tissue-specific elements, along with putative transcription factors, suggesting novel tissue-specific modes of transcription initiation. We have precisely mapped approximately 20,000 tissue-specific polyadenylation sites and discovered that about 30% of transcripts in somatic cells use alternative polyadenylation in a tissue-specific manner, with their 3'UTR isoforms significantly enriched with microRNA targets. CONCLUSIONS For the first time, PAT-Seq allowed us to directly study tissue specific gene expression changes in an in vivo setting and compare these changes between three somatic tissues from the same organism at single-base resolution within the same experiment. We pinpoint precise tissue-specific transcriptome rearrangements and for the first time link tissue-specific alternative polyadenylation to miRNA regulation, suggesting novel and unexplored tissue-specific post-transcriptional regulatory networks in somatic cells.
Collapse
Affiliation(s)
- Stephen M Blazie
- Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, AZ, USA.
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, 1001 S McAllister Ave, Tempe, AZ, USA.
| | - Cody Babb
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, 1001 S McAllister Ave, Tempe, AZ, USA.
| | - Henry Wilky
- Barrett Honors College, Arizona State University, 751 E Lemon Mall, 1282 Tempe, AZ, USA.
| | - Alan Rawls
- Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, AZ, USA.
- Barrett Honors College, Arizona State University, 751 E Lemon Mall, 1282 Tempe, AZ, USA.
| | - Jin G Park
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, 1001 S McAllister Ave, Tempe, AZ, USA.
| | - Marco Mangone
- Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, AZ, USA.
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, 1001 S McAllister Ave, Tempe, AZ, USA.
- Barrett Honors College, Arizona State University, 751 E Lemon Mall, 1282 Tempe, AZ, USA.
| |
Collapse
|
45
|
Yuan W, Liu Y, Lok JB, Stoltzfus JD, Gasser RB, Lei W, Fang R, Zhao J, Hu M. Exploring features and function of Ss-riok-3, an enigmatic kinase gene from Strongyloides stercoralis. Parasit Vectors 2014; 7:561. [PMID: 25477034 PMCID: PMC4265397 DOI: 10.1186/s13071-014-0561-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/23/2014] [Indexed: 02/01/2023] Open
Abstract
Background Right open reading frame protein kinase 3 (RIOK-3) belongs to the atypical kinase family. Unlike the other two members, RIOK-1 and RIOK-2, which are conserved from Archaea to humans, RIOK-3 occurs only in multicellular organisms. Studies on HeLa cells indicate that human RIOK-3 is a component of the 40S small ribosome subunit and supports cancer cell growth and survival. However, almost nothing is known about the function of RIOK-3. We explored the functional role of RIOK-3 encoding gene from Strongyloides stercoralis, a parasitic nematode of humans and dogs. Methods To analyze the gene and promoter structure of Ss-riok-3, RACE-PCR and Genome-walker PCR were performed to isolate the full length cDNA, gDNA and promoter region of Ss-riok-3. RNA-seq was conducted to assess the transcript abundance of Ss-riok-3 in different stages of S. stercoralis. Transgenesis was employed to determine the anatomic expression patterns of Ss-riok-3. Results The RIOK-3 protein-encoding gene (designated Ss-riok-3) of S. stercoralis was characterized. The full-length complementary and genomic DNAs of the RIOK-3 encoding gene (riok-3) were isolated from this nematode. The cDNA of Ss-riok-3 is 1,757 bp in length, including a 23 bp 5’-UTR, a 36 bp 3’-UTR and a 1,698 bp coding region encoding a protein of 565 amino acids (aa) containing a RIO kinase domain. RNA sequencing (RNA-seq) analysis revealed that Ss-riok-3 is transcribed in all developmental stages of S. stercoralis assessed, with transcripts being particularly abundant in parasitic females. Gene structure analysis revealed that Ss-riok-3 contains no intron. The putative promoter contains conserved promoter elements, including four TATA, two GATA, one inverse GATA and one inverse CAAT boxes. The promoter of Ss-riok-3 drives GFP expression in the head neuron, intestine and body wall muscle of transgenic S. stercoralis larvae, and the TATA boxes present in the 3’-UTR of the gene immediately upstream of Ss-riok-3 initiate transcription. Conclusions The characterization of the RIOK-3 encoding gene from S. stercoralis provides a sound foundation for investigating in detail its function in the development and reproduction of this important pathogen. Electronic supplementary material The online version of this article (doi:10.1186/s13071-014-0561-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wang Yuan
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, 430070, China.
| | - Yingying Liu
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, 430070, China.
| | - James B Lok
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA, 19104, USA.
| | - Jonathan D Stoltzfus
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA, 19104, USA. .,Department of Biology, Hollins University, Roanoke, VI, 24020, USA.
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Corner of Flemington Road and Park Drive, Parkville, VI, 3010, Australia.
| | - Weiqiang Lei
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, 430070, China.
| | - Rui Fang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, 430070, China.
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, 430070, China.
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, 430070, China.
| |
Collapse
|
46
|
Chu JSC, Chua SY, Wong K, Davison AM, Johnsen R, Baillie DL, Rose AM. High-throughput capturing and characterization of mutations in essential genes of Caenorhabditis elegans. BMC Genomics 2014; 15:361. [PMID: 24884423 PMCID: PMC4039747 DOI: 10.1186/1471-2164-15-361] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 05/06/2014] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Essential genes are critical for the development of all organisms and are associated with many human diseases. These genes have been a difficult category to study prior to the availability of balanced lethal strains. Despite the power of targeted mutagenesis, there are limitations in identifying mutations in essential genes. In this paper, we describe the identification of coding regions for essential genes mutated using forward genetic screens in Caenorhabditis elegans. The lethal mutations described here were isolated and maintained by a wild-type allele on a rescuing duplication. RESULTS We applied whole genome sequencing to identify the causative molecular lesion resulting in lethality in existing C. elegans mutant strains. These strains are balanced and can be easily maintained for subsequent characterization. Our method can be effectively used to analyze mutations in a large number of essential genes. We describe here the identification of 64 essential genes in a region of chromosome I covered by the duplication sDp2. Of these, 42 are nonsense mutations, six are splice signal mutations, one deletion, and 15 are non-synonymous mutations. Many of the essential genes in this region function in cell cycle, transcriptional regulation, and RNA processing. CONCLUSIONS The essential genes identified here are represented by mutant strains, many of which have more than one mutant allele. The genetic resource can be utilized to further our understanding of essential gene function and will be applicable to the study of C. elegans development, conserved cellular function, and ultimately lead to improved human health.
Collapse
Affiliation(s)
| | - Shu-Yi Chua
- />Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Kathy Wong
- />Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Ann Marie Davison
- />Department of Biology, Kwantlen Polytechnic University, Surrey, Canada
| | - Robert Johnsen
- />Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - David L Baillie
- />Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Ann M Rose
- />Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
47
|
Alternative Splicing Regulation of Cancer-Related Pathways in Caenorhabditis elegans: An In Vivo Model System with a Powerful Reverse Genetics Toolbox. Int J Cell Biol 2013; 2013:636050. [PMID: 24069034 PMCID: PMC3771449 DOI: 10.1155/2013/636050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 07/29/2013] [Indexed: 11/18/2022] Open
Abstract
Alternative splicing allows for the generation of protein diversity and fine-tunes gene expression. Several model systems have been used for the in vivo study of alternative splicing. Here we review the use of the nematode Caenorhabditis elegans to study splicing regulation in vivo. Recent studies have shown that close to 25% of genes in the worm genome undergo alternative splicing. A big proportion of these events are functional, conserved, and under strict regulation either across development or other conditions. Several techniques like genome-wide RNAi screens and bichromatic reporters are available for the study of alternative splicing in worms. In this review, we focus, first, on the main studies that have been performed to dissect alternative splicing in this system and later on examples from genes that have human homologs that are implicated in cancer. The significant advancement towards understanding the regulation of alternative splicing and cancer that the C. elegans system has offered is discussed.
Collapse
|
48
|
Than MT, Kudlow BA, Han M. Functional analysis of neuronal microRNAs in Caenorhabditis elegans dauer formation by combinational genetics and Neuronal miRISC immunoprecipitation. PLoS Genet 2013; 9:e1003592. [PMID: 23818874 PMCID: PMC3688502 DOI: 10.1371/journal.pgen.1003592] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 05/09/2013] [Indexed: 01/15/2023] Open
Abstract
Identifying the physiological functions of microRNAs (miRNAs) is often challenging because miRNAs commonly impact gene expression under specific physiological conditions through complex miRNA::mRNA interaction networks and in coordination with other means of gene regulation, such as transcriptional regulation and protein degradation. Such complexity creates difficulties in dissecting miRNA functions through traditional genetic methods using individual miRNA mutations. To investigate the physiological functions of miRNAs in neurons, we combined a genetic “enhancer” approach complemented by biochemical analysis of neuronal miRNA-induced silencing complexes (miRISCs) in C. elegans. Total miRNA function can be compromised by mutating one of the two GW182 proteins (AIN-1), an important component of miRISC. We found that combining an ain-1 mutation with a mutation in unc-3, a neuronal transcription factor, resulted in an inappropriate entrance into the stress-induced, alternative larval stage known as dauer, indicating a role of miRNAs in preventing aberrant dauer formation. Analysis of this genetic interaction suggests that neuronal miRNAs perform such a role partly by regulating endogenous cyclic guanosine monophosphate (cGMP) signaling, potentially influencing two other dauer-regulating pathways. Through tissue-specific immunoprecipitations of miRISC, we identified miRNAs and their likely target mRNAs within neuronal tissue. We verified the biological relevance of several of these miRNAs and found that many miRNAs likely regulate dauer formation through multiple dauer-related targets. Further analysis of target mRNAs suggests potential miRNA involvement in various neuronal processes, but the importance of these miRNA::mRNA interactions remains unclear. Finally, we found that neuronal genes may be more highly regulated by miRNAs than intestinal genes. Overall, our study identifies miRNAs and their targets, and a physiological function of these miRNAs in neurons. It also suggests that compromising other aspects of gene expression, along with miRISC, can be an effective approach to reveal miRNA functions in specific tissues under specific physiological conditions. MicroRNAs (miRNAs) are important in the regulation of gene expression and are present in many organisms. To identify specific biological processes that are regulated by miRNAs, we disturbed total miRNA function under a certain genetic background and searched for defects. Interestingly, we found a prominent developmental defect that was dependent on a mutation in another gene involved in regulating transcription in neurons. Thus, by compromising two different aspects of gene regulation, we were able to identify a specific biological function of miRNAs. By investigating this defect, we determined that neuronal miRNAs likely function to help modulate cyclic guanosine monophosphate signaling. We then took a systematic approach and identified many miRNAs and genes that are likely to be regulated by neuronal miRNAs, and in doing so, we found genes involved in the initial defect. Additionally, we found many other genes, and show that genes expressed in neurons seem to be more regulated by miRNAs than genes in the intestine. Through our study, we identify a biological function of neuronal miRNAs and provide data that will help in identifying other important, novel, and exciting roles of this important class of small RNAs.
Collapse
Affiliation(s)
- Minh T Than
- Howard Hughes Medical Institute and Department of Molecular, Cellular, and Developmental Biology of University of Colorado, Boulder, Colorado, United States of America
| | | | | |
Collapse
|
49
|
Van Nostrand EL, Kim SK. Integrative analysis of C. elegans modENCODE ChIP-seq data sets to infer gene regulatory interactions. Genome Res 2013; 23:941-53. [PMID: 23531767 PMCID: PMC3668362 DOI: 10.1101/gr.152876.112] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The C. elegans modENCODE Consortium has defined in vivo binding sites for a large array of transcription factors by ChIP-seq. In this article, we present examples that illustrate how this compendium of ChIP-seq data can drive biological insights not possible with analysis of individual factors. First, we analyze the number of independent factors bound to the same locus, termed transcription factor complexity, and find that low-complexity sites are more likely to respond to altered expression of a single bound transcription factor. Next, we show that comparison of binding sites for the same factor across developmental stages can reveal insight into the regulatory network of that factor, as we find that the transcription factor UNC-62 has distinct binding profiles at different stages due to distinct cofactor co-association as well as tissue-specific alternative splicing. Finally, we describe an approach to infer potential regulators of gene expression changes found in profiling experiments (such as DNA microarrays) by screening these altered genes to identify significant enrichment for targets of a transcription factor identified in ChIP-seq data sets. After confirming that this approach can correctly identify the upstream regulator on expression data sets for which the regulator was previously known, we applied this approach to identify novel candidate regulators of transcriptional changes with age. The analysis revealed nine candidate aging regulators, of which three were previously known to have a role in longevity. We experimentally showed that two of the new candidate aging regulators can extend lifespan when overexpressed, indicating that this approach can identify novel functional regulators of complex processes.
Collapse
Affiliation(s)
- Eric L Van Nostrand
- Department of Genetics and Department of Developmental Biology, Stanford University Medical Center, Stanford, California 94305, USA
| | | |
Collapse
|
50
|
Van Nostrand EL, Sánchez-Blanco A, Wu B, Nguyen A, Kim SK. Roles of the developmental regulator unc-62/Homothorax in limiting longevity in Caenorhabditis elegans. PLoS Genet 2013; 9:e1003325. [PMID: 23468654 PMCID: PMC3585033 DOI: 10.1371/journal.pgen.1003325] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Accepted: 01/03/2013] [Indexed: 12/24/2022] Open
Abstract
The normal aging process is associated with stereotyped changes in gene expression, but the regulators responsible for these age-dependent changes are poorly understood. Using a novel genomics approach, we identified HOX co-factor unc-62 (Homothorax) as a developmental regulator that binds proximal to age-regulated genes and modulates lifespan. Although unc-62 is expressed in diverse tissues, its functions in the intestine play a particularly important role in modulating lifespan, as intestine-specific knockdown of unc-62 by RNAi increases lifespan. An alternatively-spliced, tissue-specific isoform of unc-62 is expressed exclusively in the intestine and declines with age. Through analysis of the downstream consequences of unc-62 knockdown, we identify multiple effects linked to aging. First, unc-62 RNAi decreases the expression of yolk proteins (vitellogenins) that aggregate in the body cavity in old age. Second, unc-62 RNAi results in a broad increase in expression of intestinal genes that typically decrease expression with age, suggesting that unc-62 activity balances intestinal resource allocation between yolk protein expression and fertility on the one hand and somatic functions on the other. Finally, in old age, the intestine shows increased expression of several aberrant genes; these UNC-62 targets are expressed predominantly in neuronal cells in developing animals, but surprisingly show increased expression in the intestine of old animals. Intestinal expression of some of these genes during aging is detrimental for longevity; notably, increased expression of insulin ins-7 limits lifespan by repressing activity of insulin pathway response factor DAF-16/FOXO in aged animals. These results illustrate how unc-62 regulation of intestinal gene expression is responsible for limiting lifespan during the normal aging process.
Collapse
Affiliation(s)
- Eric L. Van Nostrand
- Department of Genetics, Stanford University Medical Center, Stanford, California, United States of America
- Department of Developmental Biology, Stanford University Medical Center, Stanford, California, United States of America
| | - Adolfo Sánchez-Blanco
- Department of Developmental Biology, Stanford University Medical Center, Stanford, California, United States of America
| | - Beijing Wu
- Department of Genetics, Stanford University Medical Center, Stanford, California, United States of America
- Department of Developmental Biology, Stanford University Medical Center, Stanford, California, United States of America
| | - Andy Nguyen
- Department of Developmental Biology, Stanford University Medical Center, Stanford, California, United States of America
| | - Stuart K. Kim
- Department of Genetics, Stanford University Medical Center, Stanford, California, United States of America
- Department of Developmental Biology, Stanford University Medical Center, Stanford, California, United States of America
| |
Collapse
|