1
|
Palin MF, Caron A, Farmer C. Effects of sustained hyperprolactinemia in late gestation on the mammary parenchymal tissue transcriptome of gilts. BMC Genomics 2023; 24:40. [PMID: 36694114 PMCID: PMC9875420 DOI: 10.1186/s12864-023-09136-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Gilts experiencing sustained hyperprolactinemia from d 90 to 109 of gestation showed an early onset of lactogenesis coupled with premature mammary involution. To better understand the molecular mechanisms underlying the premature mammary involution observed in these gilts, a transcriptomic analysis was undertaken. Therefore, this study aimed to explore the effect of hyperprolactinemia on the global transcriptome in the mammary tissue of late gestating gilts and identify the molecular pathways involved in triggering premature mammary involution. METHODS On d 90 of gestation, gilts received daily injections of (1) canola oil until d 109 ± 1 of gestation (CTL, n = 18); (2) domperidone (to induce hyperprolactinemia) until d 96 ± 1 of gestation (T7, n = 17) or; (3) domperidone (until d 109 ± 1 of gestation (T20, n = 17). Mammary tissue was collected on d 110 of gestation and total RNA was isolated from six CTL and six T20 gilts for microarray analysis. The GeneChip® Porcine Gene 1.0 ST Array was used for hybridization. Functional enrichment analyses were performed to explore the biological significance of differentially expressed genes, using the DAVID bioinformatics resource. RESULTS The expression of 335 genes was up-regulated and that of 505 genes down-regulated in the mammary tissue of T20 vs CTL gilts. Biological process GO terms and KEGG pathways enriched in T20 vs CTL gilts reflected the concurrent premature lactogenesis and mammary involution. When looking at individual genes, it appears that mammary cells from T20 gilts can simultaneously upregulate the transcription of milk proteins such as WAP, CSN1S2 and LALBA, and genes triggering mammary involution such as STAT3, OSMR and IL6R. The down-regulation of PRLR expression and up-regulation of genes known to inactivate the JAK-STAT5 pathway (CISH, PTPN6) suggest the presence of a negative feedback loop trying to counteract the effects of hyperprolactinemia. CONCLUSIONS Genes and pathways identified in this study suggest that sustained hyperprolactinemia during late-pregnancy, in the absence of suckling piglets, sends conflicting pro-survival and cell death signals to mammary epithelial cells. Reception of these signals results in a mammary gland that can simultaneously synthesize milk proteins and initiate mammary involution.
Collapse
Affiliation(s)
- Marie-France Palin
- grid.55614.330000 0001 1302 4958Agriculture and Agri-Food Canada, Sherbrooke R & D Centre, Sherbrooke, QC Canada
| | - Anouk Caron
- grid.23856.3a0000 0004 1936 8390Université Laval, Québec, QC Canada
| | - Chantal Farmer
- grid.55614.330000 0001 1302 4958Agriculture and Agri-Food Canada, Sherbrooke R & D Centre, Sherbrooke, QC Canada
| |
Collapse
|
2
|
Ould-Brahim F, Sau A, Carr DA, Jiang T, Pratt MC. Induction of alternative NF-κB within TAg-induced basal mammary tumors in activation-resistant inhibitor of κ-B kinase (IKKα) mutant mice. Tumour Biol 2022; 44:187-203. [DOI: 10.3233/tub-220006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND: The alternative NF-κB pathway is activated by the NF-κB-inducing kinase (NIK) mediated phosphorylation of the inhibitor of κ-B kinase α (IKKα). IKKα then phosphorylates p100/NFKB2 to result in its processing to the active p52 subunit. Evidence suggests that basal breast cancers originate within a subpopulation of luminal progenitor cells which is expanded by signaling to IKKα. OBJECTIVE: To determine the role of IKKα in the development of basal tumors. METHODS: Kinase dead IkkαAA/AA mice were crossed with the C3(1)-TAg mouse model of basal mammary cancer. Tumor growth and tumor numbers in WT and IkkαAA/AA mice were assessed and immunopathology, p52 expression and stem/progenitor 3D colony forming assays were performed. Nik-/- mammary glands were isolated and mammary colonies were characterized. RESULTS: While tumor growth was slower than in WT mice, IkkαAA/AA tumor numbers and pathology were indistinguishable from WT tumors. Both WT and IkkαAA/AA tumors expressed p52 except those IkkαAA/AA tumors where NIK, IKKαAA/AA and ErbB2 were undetectable. Colonies formed by WT and IkkαAA/AA mammary cells were nearly all luminal/acinar however, colony numbers and sizes derived from IkkαAA/AA cells were reduced. In contrast to IkkαAA/AA mice, virgin Nik-/- mammary glands were poorly developed and colonies were primarily derived from undifferentiated bipotent progenitor cells. CONCLUSIONS: C3(1)-TAg induced mammary tumors express p100/p52 even without functional IKKα. Therefore the development of basal-like mammary cancer does not strictly rely on IKKα activation. Signal-induced stabilization of NIK may be sufficient to mediate processing of p100NFKB2 which can then support basal-like mammary tumor formation. Lastly, in contrast to the pregnancy specific role of IKKα in lobuloalveogenesis, NIK is obligatory for normal mammary gland development.
Collapse
Affiliation(s)
- Fares Ould-Brahim
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Andrea Sau
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - David A. Carr
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Tianqi Jiang
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - M.A. Christine Pratt
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
3
|
Carr D, Zein A, Coulombe J, Jiang T, Cabrita MA, Ward G, Daneshmand M, Sau A, Pratt MAC. Multiple roles for Bcl-3 in mammary gland branching, stromal collagen invasion, involution and tumor pathology. Breast Cancer Res 2022; 24:40. [PMID: 35681213 PMCID: PMC9185916 DOI: 10.1186/s13058-022-01536-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 06/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Bcl-3 protein is an atypical member of the inhibitor of -κB family that has dual roles as a transcriptional repressor and a coactivator for dimers of NF-κB p50 and p52. Bcl-3 is expressed in mammary adenocarcinomas and can promote tumorigenesis and survival signaling and has a key role in tumor metastasis. In this study, we have investigated the role of Bcl-3 in the normal mammary gland and impact on tumor pathology. METHODS We utilized bcl-3-/- mice to study mammary gland structure in virgins and during gestation, lactation and early involution. Expression of involution-associated genes and proteins and putative Bcl-3 target genes was examined by qRT-PCR and immunoblot analysis. Cell autonomous branching morphogenesis and collagen I invasion properties of bcl-3-/- organoids were tested in 3D hydrogel cultures. The role of Bcl-3 in tumorigenesis and tumor pathology was also assessed using a stochastic carcinogen-induced mammary tumor model. RESULTS Bcl-3-/- mammary glands demonstrated reduced branching complexity in virgin and pregnant mice. This defect was recapitulated in vitro where significant defects in bud formation were observed in bcl-3-/- mammary organoid cultures. Bcl-3-/- organoids showed a striking defect in protrusive collective fibrillary collagen I invasion associated with reduced expression of Fzd1 and Twist2. Virgin and pregnant bcl-3-/- glands showed increased apoptosis and rapid increases in lysosomal cell death and apoptosis after forced weaning compared to WT mice. Bcl-2 and Id3 are strongly induced in WT but not bcl-3-/- glands in early involution. Tumors in WT mice were predominately adenocarcinomas with NF-κB activation, while bcl-3-/- lesions were largely squamous lacking NF-κB and with low Bcl-2 expression. CONCLUSIONS Collectively, our results demonstrate that Bcl-3 has a key function in mammary gland branching morphogenesis, in part by regulation of genes involved in extracellular matrix invasion. Markedly reduced levels of pro-survival proteins expression in bcl-3 null compared to WT glands 24 h post-weaning indicate that Bcl-3 has a role in moderating the rate of early phase involution. Lastly, a reduced incidence of bcl-3-/- mammary adenocarcinomas versus squamous lesions indicates that Bcl-3 supports the progression of epithelial but not metaplastic cancers.
Collapse
Affiliation(s)
- David Carr
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Aiman Zein
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Josée Coulombe
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Tianqi Jiang
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Miguel A Cabrita
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Gwendoline Ward
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Manijeh Daneshmand
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Andrea Sau
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - M A Christine Pratt
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
4
|
Alveolar cells in the mammary gland: lineage commitment and cell death. Biochem J 2022; 479:995-1006. [PMID: 35551601 PMCID: PMC9162463 DOI: 10.1042/bcj20210734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 11/17/2022]
Abstract
The mammary gland provides a spectacular example of physiological cell death whereby the cells that produce milk during lactation are removed swiftly, efficiently, and without inducing inflammation upon the cessation of lactation. The milk-producing cells arise primarily during pregnancy and comprise the alveolar lineage that is specified by signalling pathways and factors that are activated in response to pregnancy hormones. There are at least two alveolar sub-lineages, one of which is marked by the presence of binucleate cells that are especially susceptible to programmed cell death during involution. This process of post-lactational regression, or involution, is carefully orchestrated and occurs in two phases, the first results in a rapid switch in cell fate with the secretory epithelial cells becoming phagocytes whereupon they destroy dead and dying cells from milk. This reversible phase is followed by the second phase that is marked by an influx of immune cells and a remodelling of the gland to replace the alveolar cells with re-differentiated adipocytes, resulting in a return to the pre-pregnant state in preparation for any subsequent pregnancies. The mouse mammary gland provides an excellent experimental tool with which to investigate lineage commitment and the mechanisms of programmed cell death that occur in a normal physiological process. Importantly, involution has highlighted a role for lysoptosis, a mechanism of cell death that is mediated by lysosomal cathepsins and their endogenous inhibitors, serpins. In this review, I discuss alveolar lineage commitment during pregnancy and the programmed cell death pathways that destroy these cells during involution.
Collapse
|
5
|
Jeong J, Kadegowda AKG, Meyer TJ, Jenkins LM, Dinan JC, Wysolmerski JJ, Weigert R, Mather IH. The butyrophilin 1a1 knockout mouse revisited: Ablation of Btn1a1 leads to concurrent cell death and renewal in the mammary epithelium during lactation. FASEB Bioadv 2021; 3:971-997. [PMID: 34938960 PMCID: PMC8664049 DOI: 10.1096/fba.2021-00059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 01/28/2023] Open
Abstract
Butyrophilin 1A1 (BTN1A1) is implicated in the secretion of lipid droplets from mammary epithelial cells as a membrane receptor, which forms a secretion complex with the redox enzyme, xanthine oxidoreductase (XDH). The first evidence that BTN1A1 functions in this process was the generation of Btn1a1 -/- mouse lines, in which lipid secretion was disrupted and large unstable droplets were released into alveolar spaces with fragmented surface membranes. We have revisited one of these mutant mouse lines using RNAseq and proteomic analysis to assess the consequences of ablating the Btn1a1 gene on the expression of other genes and proteins. Disruption of intact Btn1a1 protein expression led to a large build-up of Xdh in the cytoplasm, induction of acute phase response genes and Lif-activation of Stat3 phosphorylation. At peak lactation, approx. 10% of the cells were dying, as assessed by TUNEL-analysis of nuclear DNA. Possible cell death pathways included expression of caspase 8 and activated caspase 3, autophagy, Slc5a8-mediated inactivation of survivin (Birc5), and pStat3-mediated lysosomal lysis, the latter of which is the principal death route in involuting wild type cells. Milk secretion was prolonged by renewal of the secretory epithelium, as evidenced by the upregulation of Ki67 in approx. 10% of cell nuclei and expression of cyclins and Fos/Jun. These data highlight the plasticity of the mammary epithelium and the importance of functional BTN1A1 expression for maintenance of terminally differentiated secretory cells and optimal milk production throughout lactation.
Collapse
Affiliation(s)
- Jaekwang Jeong
- Department of Animal and Avian SciencesUniversity of MarylandCollege ParkMarylandUSA
- Present address:
Section of Endocrinology and MetabolismDepartment of Internal MedicineYale University School of MedicineNew HavenConnecticut06520USA
| | - Anil K. G. Kadegowda
- Department of Animal and Avian SciencesUniversity of MarylandCollege ParkMarylandUSA
- Present address:
Department of Animal SciencesUniversity of Agricultural Sciences DharwadHubliKarnataka580005India
| | - Thomas J. Meyer
- CCR Collaborative Bioinformatics ResourceNational Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
- Advanced Biomedical Computational ScienceFrederick National Laboratory for Cancer ResearchFrederickMarylandUSA
| | - Lisa M. Jenkins
- Laboratory of Cell BiologyNational Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Jerry C. Dinan
- Laboratory of Cell BiologyNational Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - John J. Wysolmerski
- Department of Internal MedicineYale University School of MedicineNew HavenConnecticutUSA
| | - Roberto Weigert
- Laboratory of Cellular and Molecular BiologyCenter for Cancer ResearchNational Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Ian H. Mather
- Department of Animal and Avian SciencesUniversity of MarylandCollege ParkMarylandUSA
- Laboratory of Cellular and Molecular BiologyCenter for Cancer ResearchNational Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
6
|
Ylioja CM, Carpenter AJ, Mamedova LK, Daniels KM, Ross PJ, Laflin SL, Swartz TH, Bradford BJ. Effects of sodium salicylate and time postpartum on mammary tissue proliferation, gene transcript profile, and DNA methylation. J Dairy Sci 2021; 104:11259-11276. [PMID: 34304880 DOI: 10.3168/jds.2020-20109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/12/2021] [Indexed: 11/19/2022]
Abstract
Previous studies have demonstrated nonsteroidal antiinflammatory drug treatment in early lactation had a positive impact on whole-lactation milk production in older cows. The objective of this study was to evaluate proliferative, transcriptional, and epigenetic changes in the mammary gland that could explain increased production responses due to nonsteroidal antiinflammatory drug treatment. Sodium salicylate (SAL; 125 g/d) or water (CON) were administered via oral drench to multiparous Holstein cows (n = 8/treatment) once daily for 3 d beginning approximately 24 h after parturition, and mammary tissue was collected on d 1, 4, and 45 postpartum. Day 1 tissue was collected immediately preceding the initial drench, and d 4 tissue was collected 24 h following the final drench. Blood was collected twice weekly and analyzed for plasma glucose, insulin, β-hydroxybutyrate, free fatty acids, and prolactin. Cows were milked twice daily until d 7 of lactation, and thrice daily for the remainder of the study. Total RNA extracted from tissue was deep-sequenced and analyzed for differential gene expression using DESeq2. We detected no treatment effect on milk yield or plasma metabolites through 45 d of lactation; additionally, no change in mammary epithelial cell proliferation was detected when assessed by Ki67 labeling. Comparison of SAL versus CON revealed that only 16 of 18,286 genes were differentially expressed (false discovery rate <0.1) in mammary tissue collected on d 45, whereas no differentially expressed genes due to treatment were detected on d 1 or 4. Analysis of transcriptional differences over time showed downregulation of pathways related to immune cell recruitment and differentiation, and extensive overlap with pathways related to cholesterol synthesis and liver X receptor signaling. Global DNA methylation of mammary tissue was decreased for CON compared with SAL. Transcriptome analysis emphasized extensive involvement of immune-related signaling pathways in the switch from lactogenesis to galactopoiesis, and changes in methylation with SAL treatment merit future investigation into epigenetic effects on milk production.
Collapse
Affiliation(s)
- C M Ylioja
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506
| | - A J Carpenter
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506
| | - L K Mamedova
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506; Department of Animal Science, Michigan State University, East Lansing 48824
| | - K M Daniels
- Department of Dairy Science, Virginia Tech, Blacksburg 24061
| | - P J Ross
- Department of Animal Science, University of California, Davis 95616
| | - S L Laflin
- Department of Clinical Sciences, Kansas State University, Manhattan 66506
| | - T H Swartz
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506; Department of Animal Science, Michigan State University, East Lansing 48824
| | - B J Bradford
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506; Department of Animal Science, Michigan State University, East Lansing 48824.
| |
Collapse
|
7
|
Shangraw EM, Rodrigues RO, Choudhary RK, Zhao FQ, McFadden TB. Hypogalactia in mammary quarters adjacent to lipopolysaccharide-infused quarters is associated with transcriptional changes in immune genes. J Dairy Sci 2021; 104:9276-9286. [PMID: 34053759 DOI: 10.3168/jds.2020-20048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/13/2021] [Indexed: 12/14/2022]
Abstract
Infusion of lipopolysaccharides (LPS) into a mammary gland can provoke inflammatory responses and impair lactation in both the infused gland and neighboring glands. To gain insight into the mechanisms controlling the spatiotemporal response to localized mastitis in lactating dairy cows, we performed RNA sequencing on mammary tissue from quarters infused with LPS, neighboring quarters in the same animals, and control quarters from untreated animals at 3 and 12 h postinfusion. Differences in gene expression were annotated to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Comparing mammary transcriptomes from all 3 treatments revealed 3,088 and 1,644 differentially expressed (DE) genes at 3 and 12 h, respectively. Of these genes, >95% were DE only in LPS-infused quarters and represented classical responses to LPS: inflammation, apoptosis, tissue remodeling, and altered cell signaling and metabolism. Although relatively few genes were DE in neighboring quarters (56 at 3 h; 74 at 12 h), these represented several common pathways. At 3 h, tumor necrosis factor (TNF), nuclear factor-κB, and nucleotide-binding and oligomerization domain (NOD)-like receptor signaling pathways were identified by the upregulation of anti-inflammatory (NFKBIA, TNFAIP3) and cell adhesion molecule (VCAM1, ICAM1) genes in neighboring glands. Additionally, at 12 h, several genes linked to 1-carbon and serine metabolism were upregulated. Some responses were also regulated over time. The proinflammatory response in LPS-infused glands diminished between 3 and 12 h, indicating tight control over transcription to re-establish homeostasis. In contrast, 2 glucocorticoid-responsive genes, FKBP5 and ZBTB16, were among the top DE genes upregulated in neighboring quarters at both time points, indicating potential regulation by glucocorticoids. We conclude that a transient, systemic immune response was sufficient to disrupt lactation in neighboring glands. This response may be mediated directly by proinflammatory factors from the LPS-infused gland or indirectly by secondary factors released in response to systemic inflammatory signals.
Collapse
Affiliation(s)
- E M Shangraw
- Division of Animal Sciences, University of Missouri, Columbia 65211
| | - R O Rodrigues
- Division of Animal Sciences, University of Missouri, Columbia 65211
| | - R K Choudhary
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington 05405
| | - F-Q Zhao
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington 05405
| | - T B McFadden
- Division of Animal Sciences, University of Missouri, Columbia 65211.
| |
Collapse
|
8
|
Poveda J, Vázquez-Sánchez S, Sanz AB, Ortiz A, Ruilope LM, Ruiz-Hurtado G. TWEAK-Fn14 as a common pathway in the heart and the kidneys in cardiorenal syndrome. J Pathol 2021; 254:5-19. [PMID: 33512736 DOI: 10.1002/path.5631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/23/2020] [Accepted: 01/12/2021] [Indexed: 12/19/2022]
Abstract
There is a complex relationship between cardiac and renal disease, often referred to as the cardiorenal syndrome. Heart failure adversely affects kidney function, and both acute and chronic kidney disease are associated with structural and functional changes to the myocardium. The pathological mechanisms and contributing interactions that surround this relationship remain poorly understood, limiting the opportunities for therapeutic intervention. The cytokine tumor necrosis factor-like weak inducer of apoptosis (TWEAK) and its receptor, fibroblast growth factor-inducible 14 (Fn14), are abundantly expressed in injured kidneys and heart. The TWEAK-Fn14 axis promotes responses that drive tissue injury such as inflammation, proliferation, fibrosis, and apoptosis, while restraining the expression of tissue protective factors such as the anti-aging factor Klotho and the master regulator of mitochondrial biogenesis peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). High levels of TWEAK induce cardiac remodeling, and promote inflammation, tubular and podocyte injury and death, fibroblast proliferation, and, ultimately, renal fibrosis. Accordingly, targeting the TWEAK-Fn14 axis is protective in experimental kidney and heart disease. TWEAK has also emerged as a biomarker of kidney damage and cardiovascular outcomes and has been successfully targeted in clinical trials. In this review, we update our current knowledge of the roles of the TWEAK-Fn14 axis in cardiovascular and kidney disease and its potential contribution to the cardiorenal syndrome. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jonay Poveda
- Cardiorenal Translational Laboratory, Institute of Research i+12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Sara Vázquez-Sánchez
- Cardiorenal Translational Laboratory, Institute of Research i+12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Ana B Sanz
- Research Institute - Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Alberto Ortiz
- Research Institute - Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Luis M Ruilope
- Cardiorenal Translational Laboratory, Institute of Research i+12, Hospital Universitario 12 de Octubre, Madrid, Spain.,School of Doctoral Studies and Research, European University of Madrid, Madrid, Spain.,CIBER-CV, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Gema Ruiz-Hurtado
- Cardiorenal Translational Laboratory, Institute of Research i+12, Hospital Universitario 12 de Octubre, Madrid, Spain.,CIBER-CV, Hospital Universitario 12 de Octubre, Madrid, Spain
| |
Collapse
|
9
|
Mercogliano MF, Bruni S, Elizalde PV, Schillaci R. Tumor Necrosis Factor α Blockade: An Opportunity to Tackle Breast Cancer. Front Oncol 2020; 10:584. [PMID: 32391269 PMCID: PMC7189060 DOI: 10.3389/fonc.2020.00584] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 03/30/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the most frequently diagnosed cancer and the principal cause of mortality by malignancy in women and represents a main problem for public health worldwide. Tumor necrosis factor α (TNFα) is a pro-inflammatory cytokine whose expression is increased in a variety of cancers. In particular, in breast cancer it correlates with augmented tumor cell proliferation, higher malignancy grade, increased occurrence of metastasis and general poor prognosis for the patient. These characteristics highlight TNFα as an attractive therapeutic target, and consequently, the study of soluble and transmembrane TNFα effects and its receptors in breast cancer is an area of active research. In this review we summarize the recent findings on TNFα participation in luminal, HER2-positive and triple negative breast cancer progression and metastasis. Also, we describe TNFα role in immune response against tumors and in chemotherapy, hormone therapy, HER2-targeted therapy and anti-immune checkpoint therapy resistance in breast cancer. Furthermore, we discuss the use of TNFα blocking strategies as potential therapies and their clinical relevance for breast cancer. These TNFα blocking agents have long been used in the clinical setting to treat inflammatory and autoimmune diseases. TNFα blockade can be achieved by monoclonal antibodies (such as infliximab, adalimumab, etc.), fusion proteins (etanercept) and dominant negative proteins (INB03). Here we address the different effects of each compound and also analyze the use of potential biomarkers in the selection of patients who would benefit from a combination of TNFα blocking agents with HER2-targeted treatments to prevent or overcome therapy resistance in breast cancer.
Collapse
Affiliation(s)
- María Florencia Mercogliano
- Laboratorio de Biofisicoquímica de Proteínas, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Buenos Aires, Argentina
| | - Sofía Bruni
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Patricia V Elizalde
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Roxana Schillaci
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| |
Collapse
|
10
|
Oscillating flow promotes inflammation through the TLR2–TAK1–IKK2 signalling pathway in human umbilical vein endothelial cell (HUVECs). Life Sci 2019; 224:212-221. [DOI: 10.1016/j.lfs.2019.03.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/10/2019] [Accepted: 03/15/2019] [Indexed: 12/12/2022]
|
11
|
Dong H, Qin Y, Huang Y, Ji D, Wu F. Poloxamer 188 rescues MPTP-induced lysosomal membrane integrity impairment in cellular and mouse models of Parkinson's disease. Neurochem Int 2019; 126:178-186. [PMID: 30904670 DOI: 10.1016/j.neuint.2019.03.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/14/2019] [Accepted: 03/17/2019] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder characterized by the progressive loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). Rupture of lysosome is a major cellular stress condition leading to cell death in PD. We have previously shown that environmental oxidative toxins could impair autophagic flux and lysosomal functions in PD. Poloxamer 188 (P188) is an amphipathic polymer which has cytoprotective effect in traumatic brain injury and stroke. But whether Dyrk1A could rescue lysosome malfunction-mediated DA neuron death and α-synuclein aggregation in PD is still unknown. In the present study, MPTP mice models and MPP+-treated SH-SY5Y cells were used for study, and we found that P188 rescued MPP+-induced lysosomal dysfunction and impaired autophagy flux in mild MPP+-treated SH-SY5Y cells. P188 administration significantly restored lysosomal membrane integrity and prevented cathepsins leakage from the lysosomes into the cytoplasm, which triggered caspase-dependent apoptotic cell death in sub-acute MPTP mouse model and MPP+-treated SH-SY5Y cells. Furthermore, P188 ameliorated α-synuclein accumulation and behavioral impairment in chronic MPTP mouse model with MPTP and probenecid treatment. P188 could alleviate MPTP-induced DA neurons damage by restoring lysosome function.
Collapse
Affiliation(s)
- Hongli Dong
- Encephalopathy Department, Suzhou Hospital of Traditional Chinese Medicine (The Hospital in Suzhou Affiliated to Nanjing University of Chinese Medicine), 18 Yangsu Road, Suzhou, 215009, China
| | - Yuanyuan Qin
- Department of Pharmacy, Suzhou Hospital of Traditional Chinese Medicine (The Hospital in Suzhou Affiliated to Nanjing University of Chinese Medicine), 18 Yangsu Road, Suzhou, 215009, China
| | - Yuyu Huang
- Department of Pharmacy, Suzhou Hospital of Traditional Chinese Medicine (The Hospital in Suzhou Affiliated to Nanjing University of Chinese Medicine), 18 Yangsu Road, Suzhou, 215009, China
| | - Dongliang Ji
- Department of Pharmacology, School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Feng Wu
- Department of Pharmacology, School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
12
|
Jena MK, Jaswal S, Kumar S, Mohanty AK. Molecular mechanism of mammary gland involution: An update. Dev Biol 2019; 445:145-155. [DOI: 10.1016/j.ydbio.2018.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 10/01/2018] [Accepted: 11/06/2018] [Indexed: 12/11/2022]
|
13
|
Swartz T, Schramm H, Bewley J, Wood C, Leslie K, Petersson-Wolfe C. Meloxicam administration either prior to or after parturition: Effects on behavior, health, and production in dairy cows. J Dairy Sci 2018; 101:10151-10167. [DOI: 10.3168/jds.2018-14657] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/29/2018] [Indexed: 01/14/2023]
|
14
|
Carr D, Lau R, Hnatykiw AD, Ward GCD, Daneshmand M, Cabrita MA, Pratt MAC. cIAP2 Is an Independent Signaling and Survival Factor during Mammary Lactational Involution and Tumorigenesis. J Mammary Gland Biol Neoplasia 2018; 23:109-123. [PMID: 29876871 DOI: 10.1007/s10911-018-9398-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 05/20/2018] [Indexed: 12/31/2022] Open
Abstract
Cellular inhibitor of apoptosis proteins-1 and -2 (cIAP1/2) are integral to regulation of apoptosis and signaling by the tumor necrosis factor (TNF) and related family of receptors. The expression of cIAP2 in tissues is typically low and considered functionally redundant with cIAP1, however cIAP2 can be activated by a variety of cellular stresses. Members of the TNFR family and their ligands have essential roles in mammary gland biology. We have found that cIAP2-/- virgin mammary glands have reduced ductal branching and delayed lobuloalveogenesis in early pregnancy. Post-lactational involution involves two phases where the first phase is reversible and is mediated, in part, by TNFR family ligands. In cIAP2-/- mice mammary glands appeared engorged at mid-lactation accompanied by enhanced autophagic flux and decreased cIAP1 protein expression. Severely stretched myoepithelium was associated with BIM-EL expression and other indicators of anoikis. Within 24 h after forced or natural weaning, cIAP2-/- glands had nearly completed involution. The TNF-related weak inducer of apoptosis (Tweak) which results in degradation of cIAP1 through its receptor, Fn14, began to increase in late lactation and was significantly increased in cIAP2-/- relative to WT mice by 12 h post weaning accompanied by decreased cIAP1 protein expression. Carcinogen/progesterone-induced mammary tumorigenesis was significantly delayed in cIAP2-/- mice and tumors contained high numbers of apoptotic cells. We conclude that cIAP2 has a critical role in the mammary gland wherein it prevents rapid involution induced by milk stasis-induced stress associated with Tweak activation and contributes to the survival of mammary tumor cells.
Collapse
Affiliation(s)
- David Carr
- Breast Cancer Research Lab, Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Rosanna Lau
- Breast Cancer Research Lab, Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Department of Pathology, The UT M.D. Anderson Cancer Center, Houston, TX, USA
| | - Alexandra D Hnatykiw
- Breast Cancer Research Lab, Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Gwendoline C D Ward
- Breast Cancer Research Lab, Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Manijeh Daneshmand
- Ottawa Hospital Regional Cancer Centre, Centre for Cancer Therapeutics, 3rd floor, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
| | - Miguel A Cabrita
- Breast Cancer Research Lab, Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - M A Christine Pratt
- Breast Cancer Research Lab, Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
15
|
Das NA, Carpenter AJ, Yoshida T, Kumar SA, Gautam S, Mostany R, Izadpanah R, Kumar A, Mummidi S, Siebenlist U, Chandrasekar B. TRAF3IP2 mediates TWEAK/TWEAKR-induced pro-fibrotic responses in cultured cardiac fibroblasts and the heart. J Mol Cell Cardiol 2018; 121:107-123. [PMID: 29981796 DOI: 10.1016/j.yjmcc.2018.07.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/20/2018] [Accepted: 07/03/2018] [Indexed: 12/19/2022]
Abstract
Persistent inflammation promotes development and progression of heart failure (HF). TWEAK (TNF-Related WEAK Inducer Of Apoptosis), a NF-κB- and/or AP-1-responsive proinflammatory cytokine that signals via TWEAK receptor (TWEAKR), is expressed at high levels in human and preclinical models of HF. Since the adapter molecule TRAF3IP2 (TRAF3 Interacting Protein 2) is an upstream regulator of various proinflammatory pathways, including those activated by NF-κB and AP-1, we hypothesized that targeting TRAF3IP2 inhibits TWEAK-induced proinflammatory and pro-fibrotic responses in vitro and in vivo. Consistent with the hypothesis, forced expression of TRAF3IP2 upregulated TWEAK and its receptor expression in cultured adult mouse cardiac fibroblasts (CF). Further, exogenous TWEAK upregulated TRAF3IP2 expression in a time- and dose-dependent manner, suggesting a positive-feedback regulation of TRAF3IP2 and TWEAK. TWEAK also promoted TRAF3IP2 nuclear translocation. Confirming its critical role in TWEAK signaling, silencing TRAF3IP2 inhibited TWEAK autoregulation, TWEAKR upregulation, p38 MAPK, NF-κB and AP-1 activation, inflammatory cytokine expression, MMP and TIMP1 activation, collagen expression and secretion, and importantly, proliferation and migration. Recapitulating these in vitro results, continuous infusion of TWEAK for 7 days increased systolic blood pressure (SBP), upregulated TRAF3IP2 expression, activated p38 MAPK, NF-κB and AP-1, induced the expression of multiple proinflammatory and pro-fibrotic mediators, and interstitial fibrosis in hearts of wild type mice. These proinflammatory and pro-fibrotic changes occurred in conjunction with myocardial hypertrophy and contractile dysfunction. Importantly, genetic ablation of TRAF3IP2 inhibited these TWEAK-induced adverse cardiac changes independent of increases in SBP, indicating that TRAF3IP2 plays a causal role, and thus a therapeutic target, in chronic inflammatory and fibro-proliferative diseases.
Collapse
Affiliation(s)
- Nitin A Das
- Cardiothoracic Surgery, University of Texas Health Science Center, San Antonio, TX, USA
| | - Andrea J Carpenter
- Cardiothoracic Surgery, University of Texas Health Science Center, San Antonio, TX, USA
| | - Tadashi Yoshida
- Medicine/Cardiology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Senthil A Kumar
- Medicine/Cardiology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Sandeep Gautam
- Medicine/Cardiology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Ricardo Mostany
- Department of Pharmacology, Tulane University Health Science Center, New Orleans, LA, USA
| | - Reza Izadpanah
- Medicine/Heart and Vascular Institute, Tulane University Health Science Center, New Orleans, LA, USA
| | - Ashok Kumar
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Srinivas Mummidi
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley School of Medicine, Edinburg, TX, USA
| | | | - Bysani Chandrasekar
- Medicine/Cardiology, University of Missouri School of Medicine, Columbia, MO, USA; Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
16
|
Goddio MV, Gattelli A, Tocci JM, Cuervo LP, Stedile M, Stumpo DJ, Hynes NE, Blackshear PJ, Meiss RP, Kordon EC. Expression of the mRNA stability regulator Tristetraprolin is required for lactation maintenance in the mouse mammary gland. Oncotarget 2018; 9:8278-8289. [PMID: 29492194 PMCID: PMC5823555 DOI: 10.18632/oncotarget.23904] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/14/2017] [Indexed: 11/25/2022] Open
Abstract
Tristetraprolin (TTP), an mRNA-binding protein that negatively controls levels of inflammatory factors, is highly expressed in the lactating mouse mammary gland. To determine the biological relevance of this expression profile, we developed bi-transgenic mice in which this protein is specifically down-regulated in the secretory mammary epithelium in the secretory mammary epithelium during lactation. Our data show that TTP conditional KO mice produced underweight litters, possibly due to massive mammary cell death induced during lactation without the requirement of additional stimuli. This effect was linked to overexpression of inflammatory cytokines, activation of STAT3 and down-regulation of AKT phosphorylation. Importantly, blocking TNFα activity in the lactating conditional TTP KO mice inhibited cell death and similar effects were observed when this treatment was applied to wild-type animals during 48 h after weaning. Therefore, our results demonstrate that during lactation TTP wards off early involution by preventing the increase of local inflammatory factors. In addition, our data reveal the relevance of locally secreted TNFα for triggering programmed cell death after weaning.
Collapse
Affiliation(s)
- María Victoria Goddio
- IFIBYNE-UBA-CONICET, Departamento de Química Biológica, FCEN-UBA, Buenos Aires, Argentina
| | - Albana Gattelli
- IFIBYNE-UBA-CONICET, Departamento de Química Biológica, FCEN-UBA, Buenos Aires, Argentina
| | - Johanna M Tocci
- IFIBYNE-UBA-CONICET, Departamento de Química Biológica, FCEN-UBA, Buenos Aires, Argentina
| | - Lourdes Pérez Cuervo
- IFIBYNE-UBA-CONICET, Departamento de Química Biológica, FCEN-UBA, Buenos Aires, Argentina
| | - Micaela Stedile
- IFIBYNE-UBA-CONICET, Departamento de Química Biológica, FCEN-UBA, Buenos Aires, Argentina
| | - Deborah J Stumpo
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, North Carolina, USA
| | - Nancy E Hynes
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Perry J Blackshear
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, North Carolina, USA
| | | | - Edith C Kordon
- IFIBYNE-UBA-CONICET, Departamento de Química Biológica, FCEN-UBA, Buenos Aires, Argentina
| |
Collapse
|
17
|
Frejo L, Requena T, Okawa S, Gallego-Martinez A, Martinez-Bueno M, Aran I, Batuecas-Caletrio A, Benitez-Rosario J, Espinosa-Sanchez JM, Fraile-Rodrigo JJ, García-Arumi AM, González-Aguado R, Marques P, Martin-Sanz E, Perez-Fernandez N, Pérez-Vázquez P, Perez-Garrigues H, Santos-Perez S, Soto-Varela A, Tapia MC, Trinidad-Ruiz G, Del Sol A, Alarcon Riquelme ME, Lopez-Escamez JA. Regulation of Fn14 Receptor and NF-κB Underlies Inflammation in Meniere's Disease. Front Immunol 2017; 8:1739. [PMID: 29326686 PMCID: PMC5733484 DOI: 10.3389/fimmu.2017.01739] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/23/2017] [Indexed: 12/17/2022] Open
Abstract
Meniere’s disease (MD) is a rare disorder characterized by episodic vertigo, sensorineural hearing loss, tinnitus, and aural fullness. It is associated with a fluid imbalance between the secretion of endolymph in the cochlear duct and its reabsorption into the subarachnoid space, leading to an accumulation of endolymph in the inner ear. Epidemiological evidence, including familial aggregation, indicates a genetic contribution and a consistent association with autoimmune diseases (AD). We conducted a case–control study in two phases using an immune genotyping array in a total of 420 patients with bilateral MD and 1,630 controls. We have identified the first locus, at 6p21.33, suggesting an association with bilateral MD [meta-analysis leading signal rs4947296, OR = 2.089 (1.661–2.627); p = 1.39 × 10−09]. Gene expression profiles of homozygous genotype-selected peripheral blood mononuclear cells (PBMCs) demonstrated that this region is a trans-expression quantitative trait locus (eQTL) in PBMCs. Signaling analysis predicted several tumor necrosis factor-related pathways, the TWEAK/Fn14 pathway being the top candidate (p = 2.42 × 10−11). This pathway is involved in the modulation of inflammation in several human AD, including multiple sclerosis, systemic lupus erythematosus, or rheumatoid arthritis. In vitro studies with genotype-selected lymphoblastoid cells from patients with MD suggest that this trans-eQTL may regulate cellular proliferation in lymphoid cells through the TWEAK/Fn14 pathway by increasing the translation of NF-κB. Taken together; these findings suggest that the carriers of the risk genotype may develop an NF-κB-mediated inflammatory response in MD.
Collapse
Affiliation(s)
- Lidia Frejo
- Otology and Neurotology Group CTS495, Department of Genomic Medicine - Centre for Genomics and Oncological Research - Pfizer/Universidad de Granada/Junta de Andalucía (GENYO), Granada, Spain
| | - Teresa Requena
- Otology and Neurotology Group CTS495, Department of Genomic Medicine - Centre for Genomics and Oncological Research - Pfizer/Universidad de Granada/Junta de Andalucía (GENYO), Granada, Spain
| | - Satoshi Okawa
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine (LCSB), Universite du Luxembourg, Belval, Luxembourg
| | - Alvaro Gallego-Martinez
- Otology and Neurotology Group CTS495, Department of Genomic Medicine - Centre for Genomics and Oncological Research - Pfizer/Universidad de Granada/Junta de Andalucía (GENYO), Granada, Spain
| | - Manuel Martinez-Bueno
- Group of Genetics of Complex Diseases, Department of Genomic Medicine - Centre for Genomics and Oncological Research - Pfizer/Universidad de Granada/Junta de Andalucía (GENYO), Granada, Spain
| | - Ismael Aran
- Department of Otolaryngology, Complexo Hospitalario de Pontevedra, Pontevedra, Spain
| | | | - Jesus Benitez-Rosario
- Department of Otolaryngology, Hospital Universitario de Gran Canaria Dr Negrin, Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Juan M Espinosa-Sanchez
- Otology and Neurotology Group CTS495, Department of Genomic Medicine - Centre for Genomics and Oncological Research - Pfizer/Universidad de Granada/Junta de Andalucía (GENYO), Granada, Spain.,Department of Otolaryngology, Instituto de Investigación Biosanitaria ibs.GRANADA, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | | | - Ana María García-Arumi
- Department of Otorhinolaryngology, Hospital Universitario Vall d'Hebron, Barcelona, Spain
| | - Rocío González-Aguado
- Department of Otorhinolaryngology, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, Spain
| | - Pedro Marques
- Department of Otorhinolaryngology, Centro Hospitalar de S.João, EPE, University of Porto Medical School, Porto, Portugal
| | - Eduardo Martin-Sanz
- Department of Otolaryngology, Hospital Universitario de Getafe, Getafe, Madrid, Spain
| | | | - Paz Pérez-Vázquez
- Department of Otorhinolaryngology, Hospital Universitario de Cabueñes, Gijón, Asturias, Spain
| | | | - Sofía Santos-Perez
- Division of Otoneurology, Department of Otorhinolaryngology, Complexo Hospitalario Universitario, Santiago de Compostela, Spain
| | - Andres Soto-Varela
- Division of Otoneurology, Department of Otorhinolaryngology, Complexo Hospitalario Universitario, Santiago de Compostela, Spain
| | - Maria C Tapia
- Department of Otorhinolaryngology, Instituto Antolí Candela, Madrid, Spain
| | - Gabriel Trinidad-Ruiz
- Division of Otoneurology, Department of Otorhinolaryngology, Complejo Hospitalario Badajoz, Badajoz, Spain
| | - Antonio Del Sol
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine (LCSB), Universite du Luxembourg, Belval, Luxembourg
| | - Marta E Alarcon Riquelme
- Group of Genetics of Complex Diseases, Department of Genomic Medicine - Centre for Genomics and Oncological Research - Pfizer/Universidad de Granada/Junta de Andalucía (GENYO), Granada, Spain.,Unit of Chronic Inflammatory Diseases, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jose A Lopez-Escamez
- Otology and Neurotology Group CTS495, Department of Genomic Medicine - Centre for Genomics and Oncological Research - Pfizer/Universidad de Granada/Junta de Andalucía (GENYO), Granada, Spain.,Department of Otolaryngology, Instituto de Investigación Biosanitaria ibs.GRANADA, Hospital Universitario Virgen de las Nieves, Granada, Spain.,Luxembourg Centre for System Biomedicine (LCSB), Universite du Luxembourg, Belval, Luxembourg
| |
Collapse
|
18
|
Velloso FJ, Bianco AFR, Farias JO, Torres NEC, Ferruzo PYM, Anschau V, Jesus-Ferreira HC, Chang THT, Sogayar MC, Zerbini LF, Correa RG. The crossroads of breast cancer progression: insights into the modulation of major signaling pathways. Onco Targets Ther 2017; 10:5491-5524. [PMID: 29200866 PMCID: PMC5701508 DOI: 10.2147/ott.s142154] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cancer is the disease with highest public health impact in developed countries. Particularly, breast cancer has the highest incidence in women worldwide and the fifth highest mortality in the globe, imposing a significant social and economic burden to society. The disease has a complex heterogeneous etiology, being associated with several risk factors that range from lifestyle to age and family history. Breast cancer is usually classified according to the site of tumor occurrence and gene expression profiling. Although mutations in a few key genes, such as BRCA1 and BRCA2, are associated with high breast cancer risk, the large majority of breast cancer cases are related to mutated genes of low penetrance, which are frequently altered in the whole population. Therefore, understanding the molecular basis of breast cancer, including the several deregulated genes and related pathways linked to this pathology, is essential to ensure advances in early tumor detection and prevention. In this review, we outline key cellular pathways whose deregulation has been associated with breast cancer, leading to alterations in cell proliferation, apoptosis, and the delicate hormonal balance of breast tissue cells. Therefore, here we describe some potential breast cancer-related nodes and signaling concepts linked to the disease, which can be positively translated into novel therapeutic approaches and predictive biomarkers.
Collapse
Affiliation(s)
| | | | | | | | | | - Valesca Anschau
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | | | - Ted Hung-Tse Chang
- Cancer Genomics Group, International Center for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
| | | | - Luiz F Zerbini
- Cancer Genomics Group, International Center for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
| | - Ricardo G Correa
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
19
|
Sau A, Cabrita MA, Pratt MAC. NF-κB at the Crossroads of Normal Mammary Gland Biology and the Pathogenesis and Prevention of BRCA1-Mutated Breast Cancer. Cancer Prev Res (Phila) 2017; 11:69-80. [PMID: 29101208 DOI: 10.1158/1940-6207.capr-17-0225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/03/2017] [Accepted: 10/27/2017] [Indexed: 11/16/2022]
Abstract
Recent studies have shown that progesterone receptor (PR)-expressing cells respond to progesterone in part through the induction of the receptor activator of NF-κB ligand (RANKL), which acts in a paracrine manner to induce expansion of a RANK-expressing luminal progenitor cell population. The RANK+ population in human breast tissue from carriers of BRCA1 mutations (BRCA1mut/+) as well as the luminal progenitor population in Brca1-deficient mouse mammary glands is abnormally amplified. Remarkably, mouse Brca1+/- and human BRCA1mut/+ progenitor cells are able to form colonies in vitro in the absence of progesterone, demonstrating a hormone-independent proliferative capacity. Our research has demonstrated that proliferation in BRCA1-deficient cells results in a DNA damage response (DDR) that activates a persistent NF-κB signal, which supplants progesterone/RANKL signaling for an extended time period. Thus, the transcriptional targets normally activated by RANKL that promote a proliferative response in luminal progenitors can contribute to the susceptibility of mammary epithelial cells to BRCA1-mutated breast cancers as a consequence of DDR-induced NF-κB. Together, these latest findings mark substantial progress in uncovering the mechanisms driving high rates of breast tumorigenesis in BRCA1 mutation carriers and ultimately reveal possibilities for nonsurgical prevention strategies. Cancer Prev Res; 11(2); 69-80. ©2017 AACR.
Collapse
Affiliation(s)
- Andrea Sau
- University of Ottawa, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
20
|
Camperio C, Armas F, Biasibetti E, Frassanito P, Giovannelli C, Spuria L, D’Agostino C, Tait S, Capucchio MT, Marianelli C. A mouse mastitis model to study the effects of the intramammary infusion of a food-grade Lactococcus lactis strain. PLoS One 2017; 12:e0184218. [PMID: 28873396 PMCID: PMC5584933 DOI: 10.1371/journal.pone.0184218] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 08/21/2017] [Indexed: 11/26/2022] Open
Abstract
Lactococcus lactis is one of the most important microorganisms in the dairy industry and has “generally recognized as safe” (GRAS) status. L. lactis belongs to the group of lactic acid bacteria (LAB) and is encountered in a wide range of environments. Recently, the use of the intramammary infusion of a live culture of LAB has been investigated as a new antibiotic alternative for treating mastitis in dairy ruminants. Controversial results are described in literature regarding its efficacy and safety. In this study we conducted in-depth investigation of the mammary gland immune response induced by intramammary inoculum of a live culture of L. lactis LMG 7930 using the mouse mastitis model. Overnight cultures either of L. lactis (≈ 107 CFU) or of the mastitis pathogens Staphylococcus chromogenes (≈ 105 CFU) or S. aureus (≈ 102 CFU/ml) were injected into the mouse inguinal glands. A double injection, consisting of S. chromogenes first and then L. lactis, was also investigated. Bacterial recovery from the gland and inflammatory cell infiltration were assessed. L. lactis-treated and control glands were analysed for proinflammatory cytokine production. Microbiological results showed that L. lactis was able to survive in the mammary gland 24 h post infection, as were the mastitis pathogens S. chromogenes and S. aureus. L. lactis reduced S. chromogenes survival in the glands and increased its own survival ability by coexisting with the pathogen. Histology showed that L. lactis-treated glands presented variable histological features, ranging from undamaged tissue with no inflammatory cell infiltrate to severe PMN infiltrate with focal areas of tissue damage. S. aureus-treated glands showed the most severe histological grade of inflammation despite the fact that the inoculum size was the smallest. In contrast, most S. chromogenes-treated glands showed normal structures with no infiltration or lesions. Significant increases in IL-1β and TNF-α levels were also found in L. lactis-inoculated glands. The above findings seem to suggest that food-grade L. lactis at a high-inoculum dose such as an overnight culture may elicit a suppurative inflammatory response in the mammary gland, thus becoming a potential mastitis-causing pathogen. Because of the unpredictable potential of L. lactis in acting as a potential mastitis pathogen, this organism cannot be considered a safe treatment for bovine mastitis.
Collapse
Affiliation(s)
- Cristina Camperio
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Federica Armas
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
- Department of Sciences, Roma Tre University, Rome, Italy
| | - Elena Biasibetti
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Paolo Frassanito
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Carlo Giovannelli
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Liliana Spuria
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Claudia D’Agostino
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Sabrina Tait
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Cinzia Marianelli
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
- * E-mail:
| |
Collapse
|
21
|
Wang H, Xu Q, Xu X, Hu Y, Hou Q, Zhu Y, Hu C. Ctenopharyngodon idella IKKβ interacts with PKR and IκBα. Acta Biochim Biophys Sin (Shanghai) 2017; 49:729-736. [PMID: 28673044 DOI: 10.1093/abbs/gmx065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/13/2017] [Indexed: 02/06/2023] Open
Abstract
Inhibitor of nuclear factor kappa-B kinase β (IKKβ) is a subunit of the IKK complex. It can activate the NF-κB pathway through phosphorylating IκB in response to a wide range of stimuli. In the present study, an IKKβ gene from grass carp (Ctenopharyngodon idella; KT282114) was cloned and identified by homologous cloning and rapid-amplification of cDNA ends (RACE) technique. The complete CiIKKβ cDNA is 3428 bp in length, with the longest open reading frame (ORF) of 2337 bp encoding a polypeptide of 778 amino acids. The deduced amino acid sequence of CiIKKβ has similar domain distribution to those of mammalian. For example, CiIKKβ consists of a serine/threonine kinase domain at the N-terminal, a basic region leucin zipper (BRLZ) domain in the middle, a homeobox associated leucin zipper (HALZ) domain and an IKKβ NEMO (NF-κB essential modulator) binding domain at the C-terminal. Phylogenetic tree analysis also showed that CiIKKβ is highly homologous to zebrafish IKKβ (DrIKKβ) and clearly distinct from the mammalian and amphibian counterparts. The expression of CiIKKβ was ubiquitously found in the liver, intestine, kidney, gill, spleen, heart, and brain tissues of grass carp and significantly up-regulated in CIK cells under the stimulation with Poly I:C and UV-inactivated grass carp hemorrhagic virus. To investigate the activation mechanism of NF-κB pathway in fish and the role of CiIKKβ in the pathway, we explored the protein interactions of protein kinase R (PKR) with IKKβ and IKKβ with IκBα by co-immunoprecipitation and GST-pull down assays. The interaction between each pair was confirmed. The results suggest that CiIKKβ may be a primary member in the activation of NF-κB pathway in fish.
Collapse
Affiliation(s)
- Haizhou Wang
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China
- College of Materials and Chemical Engineering, Pingxiang University, Pingxiang 337055, China
| | - Qun Xu
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China
| | - Xiaowen Xu
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China
| | - Yousheng Hu
- Medical College, Jinggangshan University, Ji'an 343009, China
| | - Qunhao Hou
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China
| | - Youlin Zhu
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China
| | - Chengyu Hu
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China
| |
Collapse
|
22
|
Understanding the Inguinal Sinus in Sheep (Ovis aries)-Morphology, Secretion, and Expression of Progesterone, Estrogens, and Prolactin Receptors. Int J Mol Sci 2017; 18:ijms18071516. [PMID: 28703772 PMCID: PMC5536006 DOI: 10.3390/ijms18071516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/10/2017] [Accepted: 07/10/2017] [Indexed: 01/09/2023] Open
Abstract
Post-parturient behavior of mammalian females is essential for early parent–offspring contact. After delivery, lambs need to ingest colostrum for obtaining the related immunological protection, and early interactions between the mother and the lamb are crucial. Despite visual and auditory cues, olfactory cues are decisive in lamb orientation to the mammary gland. In sheep, the inguinal sinus is located bilaterally near the mammary gland as a skin pouch (IGS) that presents a gland that secretes a strong-smelling wax. Sheep IGS gland functions have many aspects under evaluation. The objective of the present study was to evaluate sheep IGS gland functional aspects and mRNA transcription and the protein expression of several hormone receptors, such as progesterone receptor (PGR), estrogen receptor 1 (ESR1), and 2 (ESR2) and prolactin receptor (PRLR) present. In addition, another aim was to achieve information about IGS ultrastructure and chemical compounds produced in this gland. All hormone receptors evaluated show expression in IGS during the estrous cycle (follicular/luteal phases), pregnancy, and the post-partum period. IGS secretion is rich in triterpenoids that totally differ from the surrounding skin. They might be essential substances for the development of an olfactory preference of newborns to their mothers.
Collapse
|
23
|
Rodriguez-Barrueco R, Nekritz EA, Bertucci F, Yu J, Sanchez-Garcia F, Zeleke TZ, Gorbatenko A, Birnbaum D, Ezhkova E, Cordon-Cardo C, Finetti P, Llobet-Navas D, Silva JM. miR-424(322)/503 is a breast cancer tumor suppressor whose loss promotes resistance to chemotherapy. Genes Dev 2017; 31:553-566. [PMID: 28404630 PMCID: PMC5393051 DOI: 10.1101/gad.292318.116] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 03/06/2017] [Indexed: 01/08/2023]
Abstract
In this study, Rodriguez-Barrueco et al. analyzed ∼3000 primary tumors and show that miR-424(322)/503 is commonly lost in a subset of aggressive breast cancers; they then describe the genetic aberrations that inactivate its expression. Their data show that miR-424(322)/503 is a tumor suppressor in breast cancer and provide a link between mammary epithelial involution, tumorigenesis, and the phenomenon of chemoresistance. The female mammary gland is a very dynamic organ that undergoes continuous tissue remodeling during adulthood. Although it is well established that the number of menstrual cycles and pregnancy (in this case transiently) increase the risk of breast cancer, the reasons are unclear. Growing clinical and experimental evidence indicates that improper involution plays a role in the development of this malignancy. Recently, we described the miR-424(322)/503 cluster as an important regulator of mammary epithelial involution after pregnancy. Here, through the analysis of ∼3000 primary tumors, we show that miR-424(322)/503 is commonly lost in a subset of aggressive breast cancers and describe the genetic aberrations that inactivate its expression. Furthermore, through the use of a knockout mouse model, we demonstrate for the first time that loss of miR-424(322)/503 promotes breast tumorigenesis in vivo. Remarkably, we found that loss of miR-424(322)/503 promotes chemoresistance due to the up-regulation of two of its targets: BCL-2 and insulin-like growth factor-1 receptor (IGF1R). Importantly, targeted therapies blocking the aberrant activity of these targets restore sensitivity to chemotherapy. Overall, our studies reveal miR-424(322)/503 as a tumor suppressor in breast cancer and provide a link between mammary epithelial involution, tumorigenesis, and the phenomenon of chemoresistance.
Collapse
Affiliation(s)
- Ruth Rodriguez-Barrueco
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.,Institute of Genetic Medicine, Newcastle University, Newcastle-Upon-Tyne NE1 3BZ, United Kingdom
| | - Erin A Nekritz
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - François Bertucci
- Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille 13009, France
| | - Jiyang Yu
- St. Jude Children's Research Hospital, Kay Research and Care Center, IA6053, Memphis, Tennessee 38105, USA
| | - Felix Sanchez-Garcia
- Department of Systems Biology, Center for Computational Biology and Bioinformatics, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
| | - Tizita Z Zeleke
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Andrej Gorbatenko
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Daniel Birnbaum
- Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille 13009, France
| | - Elena Ezhkova
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Carlos Cordon-Cardo
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Pascal Finetti
- Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille 13009, France
| | - David Llobet-Navas
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.,Institute of Genetic Medicine, Newcastle University, Newcastle-Upon-Tyne NE1 3BZ, United Kingdom
| | - Jose M Silva
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
24
|
Guo Q, Betts C, Pennock N, Mitchell E, Schedin P. Mammary Gland Involution Provides a Unique Model to Study the TGF-β Cancer Paradox. J Clin Med 2017; 6:jcm6010010. [PMID: 28098775 PMCID: PMC5294963 DOI: 10.3390/jcm6010010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 12/21/2016] [Accepted: 12/27/2016] [Indexed: 12/12/2022] Open
Abstract
Transforming Growth Factor-β (TGF-β) signaling in cancer has been termed the “TGF-β paradox”, acting as both a tumor suppresser and promoter. The complexity of TGF-β signaling within the tumor is context dependent, and greatly impacted by cellular crosstalk between TGF-β responsive cells in the microenvironment including adjacent epithelial, endothelial, mesenchymal, and hematopoietic cells. Here we utilize normal, weaning-induced mammary gland involution as a tissue microenvironment model to study the complexity of TGF-β function. This article reviews facets of mammary gland involution that are TGF-β regulated, namely mammary epithelial cell death, immune activation, and extracellular matrix remodeling. We outline how distinct cellular responses and crosstalk between cell types during physiologically normal mammary gland involution contribute to simultaneous tumor suppressive and promotional microenvironments. We also highlight alternatives to direct TGF-β blocking anti-cancer therapies with an emphasis on eliciting concerted microenvironmental-mediated tumor suppression.
Collapse
Affiliation(s)
- Qiuchen Guo
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA.
| | - Courtney Betts
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA.
| | - Nathan Pennock
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA.
| | - Elizabeth Mitchell
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA.
| | - Pepper Schedin
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA.
- Young Women's Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
25
|
Min JK. Is Urinary Tumor Necrosis Factor-like Weak Inducer of Apoptosis a Biomarker of Lupus Nephritis? JOURNAL OF RHEUMATIC DISEASES 2017. [DOI: 10.4078/jrd.2017.24.3.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Jun-Ki Min
- Division of Rheumatology, Department of Internal Medicine, The Catholic University of Korea, Bucheon St. Mary's Hospital, Bucheon, Korea
| |
Collapse
|
26
|
Singh K, Vetharaniam I, Dobson J, Prewitz M, Oden K, Murney R, Swanson K, McDonald R, Henderson H, Stelwagen K. Cell survival signaling in the bovine mammary gland during the transition from lactation to involution. J Dairy Sci 2016; 99:7523-7543. [DOI: 10.3168/jds.2015-10515] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 05/01/2016] [Indexed: 12/31/2022]
|
27
|
Sun Y, Han Y, Wang X, Wang W, Wang X, Wen M, Xia J, Xing H, Li X, Zhang Z. Correlation of EGFR Del 19 with Fn14/JAK/STAT signaling molecules in non-small cell lung cancer. Oncol Rep 2016; 36:1030-40. [PMID: 27350337 DOI: 10.3892/or.2016.4905] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 05/30/2016] [Indexed: 11/06/2022] Open
Abstract
Previous research has shown that p-EGFR (particularly mutated EGFR) may activate fibroblast growth factor-inducible 14 (Fn14) expression in non-small cell lung cancer (NSCLC), and the JAK/STAT signaling pathway may participate in this process. Thus, in order to verify this hypothesis, correlations among the expression levels of EGFR Del 19, Fn14 and JAK/STAT were detected and analyzed. The expression and location of these molecules were assessed using IHC, immunohistofluorescence, RT-qPCR and western blotting. The differences and correlations in the expression of these molecules and clinical pathological characteristics were statistically analyzed using Mann-Whitney U, Kruskal‑Wallis H and cross-table tests. Kaplan-Meier survival analysis and Cox proportional hazards models were used to estimate the effect of EGFR Del 19 and Fn14 expression on survival. Data showed that EGFR Del 19, Fn14 and JAK1/STAT1 expression was significantly related with differentiation, pTNM stage and lymphatic metastasis (P<0.01) and there was a marked correlation of EGFR Del 19, Fn14 and JAK1/STAT1 expression with histological type, differentiation, pTNM stage of NSCLC (P<0.05; rs>0.3). Immunohistofluorescence showed that there was a co-localization phenomenon between EGFR Del 19 and Fn14 expression. NSCLC patients with higher EGFR Del 19/Fn14 expression had a significantly worse prognosis than those with lower EGFR Del 19/Fn14 expression (P=0.0155/P=0.001; log-rank test). The multivariate analysis indicated that Fn14 expression may be an independent prognostic factor in NSCLC with EGFR Del 19 [hazard ratio (HR), 0.326; P=0.042]. Therefore, our results indicate that EGFR Del 19 may promote Fn14 and JAK1/STAT1 expression in NSCLC and Fn14 may serve as a prognostic biomarker in NSCLC with EGFR Del 19.
Collapse
Affiliation(s)
- Ying Sun
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Yong Han
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Xiaoping Wang
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Wuping Wang
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Xuejiao Wang
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Miaomiao Wen
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Jinghua Xia
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Hao Xing
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Xiaofei Li
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Zhipei Zhang
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| |
Collapse
|
28
|
Puimège L, Van Hauwermeiren F, Steeland S, Van Ryckeghem S, Vandewalle J, Lodens S, Dejager L, Vandevyver S, Staelens J, Timmermans S, Vandenbroucke RE, Libert C. Glucocorticoid-induced microRNA-511 protects against TNF by down-regulating TNFR1. EMBO Mol Med 2016; 7:1004-17. [PMID: 25995337 PMCID: PMC4551340 DOI: 10.15252/emmm.201405010] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
TNF is a central actor during inflammation and a well-recognized drug target for inflammatory diseases. We found that the mouse strain SPRET/Ei, known for extreme and dominant resistance against TNF-induced shock, displays weak expression of TNF receptor 1 protein (TNFR1) but normal mRNA expression, a trait genetically linked to the major TNFR1 coding gene Tnfrsf1a and to a locus harbouring the predicted TNFR1-regulating miR-511. This miRNA is a genuine TNFR1 regulator in cells. In mice, overexpression of miR-511 down-regulates TNFR1 and protects against TNF, while anti-miR-511 up-regulates TNFR1 and sensitizes for TNF, breaking the resistance of SPRET/Ei. We found that miR-511 inhibits endotoxemia and experimental hepatitis and that this miR is strongly induced by glucocorticoids and is a true TNFR1 modulator and thus an anti-inflammatory miR. Since minimal reductions of TNFR1 have considerable effects on TNF sensitivity, we believe that at least part of the anti-inflammatory effects of glucocorti-coids are mediated by induction of this miR, resulting in reduced TNFR1 expression.
Collapse
Affiliation(s)
- Leen Puimège
- VIB Inflammation Research Center, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Filip Van Hauwermeiren
- VIB Inflammation Research Center, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sophie Steeland
- VIB Inflammation Research Center, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sara Van Ryckeghem
- VIB Inflammation Research Center, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jolien Vandewalle
- VIB Inflammation Research Center, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sofie Lodens
- VIB Inflammation Research Center, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Lien Dejager
- VIB Inflammation Research Center, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sofie Vandevyver
- VIB Inflammation Research Center, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jan Staelens
- VIB Inflammation Research Center, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Steven Timmermans
- VIB Inflammation Research Center, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Roosmarijn E Vandenbroucke
- VIB Inflammation Research Center, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Claude Libert
- VIB Inflammation Research Center, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
29
|
Chen L, Mongan M, Meng Q, Wang Q, Kao W, Xia Y. Corneal Wound Healing Requires IKB kinase β Signaling in Keratocytes. PLoS One 2016; 11:e0151869. [PMID: 26987064 PMCID: PMC4795706 DOI: 10.1371/journal.pone.0151869] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 03/04/2016] [Indexed: 11/19/2022] Open
Abstract
IkB kinase β (IKKβ) is a key signaling kinase for inflammatory responses, but it also plays diverse cell type-specific roles that are not yet fully understood. Here we investigated the role of IKKβ in the cornea using IkkβΔCS mice in which the Ikkβ gene was specifically deleted in the corneal stromal keratocytes. The IkkβΔCS corneas had normal morphology, transparency and thickness; however, they did not heal well from mild alkali burn injury. In contrast to the IkkβF/F corneas that restored transparency in 2 weeks after injury, over 50% of the IkkβΔCS corneas failed to fully recover. They instead developed recurrent haze with increased stromal thickness, severe inflammation and apoptosis. This pathogenesis correlated with sustained myofibroblast transformation with increased α smooth muscle actin (α-SMA) expression, higher levels of senescence β-Gal activity and scar tissue formation at the late stage of wound healing. In addition, the IkkβΔCS corneas displayed elevated expression of hemo-oxygenase-1 (HO-1), a marker of oxidative stress, and activation of stress signaling pathways with increased JNK, c-Jun and SMAD2/3 phosphorylation. These data suggest that IKKβ in keratocytes is required to repress oxidative stress and attenuate fibrogenesis and senescence in corneal wound healing.
Collapse
Affiliation(s)
- Liang Chen
- Department of Environmental Health and Center of Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, Ohio, 45267–0056, United States of America
| | - Maureen Mongan
- Department of Environmental Health and Center of Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, Ohio, 45267–0056, United States of America
| | - Qinghang Meng
- Department of Environmental Health and Center of Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, Ohio, 45267–0056, United States of America
| | - Qin Wang
- Department of Environmental Health and Center of Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, Ohio, 45267–0056, United States of America
| | - Winston Kao
- Department of Ophthalmology, University of Cincinnati Medical Center, Cincinnati, Ohio, 45267–0056, United States of America
| | - Ying Xia
- Department of Environmental Health and Center of Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, Ohio, 45267–0056, United States of America
- * E-mail:
| |
Collapse
|
30
|
Kobayashi K, Kuki C, Oyama S, Kumura H. Pro-inflammatory cytokine TNF-α is a key inhibitory factor for lactose synthesis pathway in lactating mammary epithelial cells. Exp Cell Res 2016; 340:295-304. [DOI: 10.1016/j.yexcr.2015.10.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/23/2015] [Accepted: 10/24/2015] [Indexed: 10/24/2022]
|
31
|
Pearson H, Britt RD, Pabelick CM, Prakash Y, Amrani Y, Pandya HC. Fetal human airway smooth muscle cell production of leukocyte chemoattractants is differentially regulated by fluticasone. Pediatr Res 2015; 78:650-6. [PMID: 26331770 PMCID: PMC4725051 DOI: 10.1038/pr.2015.168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 06/11/2015] [Indexed: 01/05/2023]
Abstract
BACKGROUND Adult human airway smooth muscle (ASM) produce cytokines involved in recruitment and survival of leukocytes within airway walls. Cytokine generation by adult ASM is glucocorticoid-sensitive. Whether developing lung ASM produces cytokines in a glucocorticoid-sensitive fashion is unknown. METHODS Cultured fetal human ASM cells stimulated with TNF-α (0-20 ng/ml) were incubated with TNF-α receptor-blocking antibodies, fluticasone (1 and 100 nm), or vehicle. Supernatants and cells were assayed for the production of CCL5, CXCL10, and CXCL8 mRNA and protein and glucocorticoid receptor phosphorylation. RESULTS CCL5, CXCL10, and CXCL8 mRNA and protein production by fetal ASM cell was significantly and dose-dependently following TNF-α treatment. Cytokine mRNA and protein production were effectively blocked by TNF-α R1 and R2 receptor neutralizing antibodies but variably inhibited by fluticasone. TNF-α-induced TNF-R1 and R2 receptor mRNA expression was only partially attenuated by fluticasone. Glucocorticoid receptor phosphorylation at serine (Ser) 211 but not at Ser 226 was enhanced by fluticasone. CONCLUSION Production of CCL5, CXCL10, and CXCL8 by fetal ASM appears to involve pathways that are both qualitatively and mechanistically distinct to those described for adult ASM. The findings imply developing ASM has potential to recruit leukocyte into airways and, therefore, of relevance to childhood airway diseases.
Collapse
MESH Headings
- Antibodies/pharmacology
- Cells, Cultured
- Chemokine CCL5/genetics
- Chemokine CCL5/metabolism
- Chemokine CXCL10/genetics
- Chemokine CXCL10/metabolism
- Chemotaxis, Leukocyte/drug effects
- Cytokines/immunology
- Cytokines/metabolism
- Dose-Response Relationship, Drug
- Fluticasone/pharmacology
- Gestational Age
- Glucocorticoids/pharmacology
- Humans
- Interleukin-8/genetics
- Interleukin-8/metabolism
- Lung/drug effects
- Lung/embryology
- Lung/immunology
- Lung/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/immunology
- Myocytes, Smooth Muscle/metabolism
- Phosphorylation
- Receptors, Glucocorticoid/agonists
- Receptors, Glucocorticoid/metabolism
- Receptors, Tumor Necrosis Factor, Type I/drug effects
- Receptors, Tumor Necrosis Factor, Type I/immunology
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Receptors, Tumor Necrosis Factor, Type II/drug effects
- Receptors, Tumor Necrosis Factor, Type II/immunology
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Serine
- Signal Transduction/drug effects
- Tumor Necrosis Factor-alpha/pharmacology
Collapse
Affiliation(s)
- Helen Pearson
- Department of Infection, Immunity and inflammation, University of Leicester, Leicester, UK
| | - Rodney D. Britt
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Christine M. Pabelick
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota
| | - Y.S. Prakash
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota
| | - Yassine Amrani
- Department of Infection, Immunity and inflammation, University of Leicester, Leicester, UK
- Institute of Lung Health, Glenfield Hospital Leicester, Leicester, UK
| | - Hitesh C. Pandya
- Department of Infection, Immunity and inflammation, University of Leicester, Leicester, UK
- Institute of Lung Health, Glenfield Hospital Leicester, Leicester, UK
| |
Collapse
|
32
|
Dang HV, Sakai T, Pham TA, Tran DH, Yorita K, Shishido Y, Fukui K. Nucling, a novel apoptosis-associated protein, controls mammary gland involution by regulating NF-κB and STAT3. J Biol Chem 2015; 290:24626-35. [PMID: 26269594 DOI: 10.1074/jbc.m115.673848] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Indexed: 11/06/2022] Open
Abstract
Postpartum mammary gland involution is the physiological process by which the lactating gland returns to its pre-pregnant state. In rodent models, the microenvironment of mammary gland involution is sufficient to induce enhanced tumor cell growth, local invasion, and metastasis. Therefore, a deeper understanding of the physiological regulation of involution may provide in-depth information on breast cancer therapy. We herein identified Nucling as an important regulator of involution of the mammary gland. A knock-out mouse model was generated and revealed that postpartum involution were impaired in mice lacking Nucling. Involution is normally associated with an increase in the activation of NF-κB and STAT3, which is required for the organized regulation of involution, and was observed in WT glands, but not in the absence of Nucling. Furthermore, the loss of Nucling led to the suppression of Calpain-1, IL-6, and C/EBPδ factors, which are known to be essential for normal involution. The number of M2 macrophages, which are crucial for epithelial cell death and adipocyte repopulation after weaning, was also reduced in Nucling-KO glands. Taken together, the results of the present study demonstrated that Nucling played an important role in mammary gland involution by regulating NF-κB and STAT3 signaling pathways.
Collapse
Affiliation(s)
- Huy Van Dang
- From The Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Takashi Sakai
- From The Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Tuan Anh Pham
- From The Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Diem Hong Tran
- From The Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Kazuko Yorita
- From The Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Yuji Shishido
- From The Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Kiyoshi Fukui
- From The Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| |
Collapse
|
33
|
Santiago FE, Almeida MC, Carrettiero DC. BAG2 Is Repressed by NF-κB Signaling, and Its Overexpression Is Sufficient to Shift Aβ1-42 from Neurotrophic to Neurotoxic in Undifferentiated SH-SY5Y Neuroblastoma. J Mol Neurosci 2015; 57:83-9. [PMID: 25985852 DOI: 10.1007/s12031-015-0579-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/05/2015] [Indexed: 12/26/2022]
Abstract
Amyloid-beta (Aβ) binds to various neuronal receptors and elicits a context- and dose-dependent toxic or trophic response from neurons. The molecular mechanisms for this phenomenon are presently unknown. The cochaperone BAG2 has been shown to mediate important cellular responses to stress, including cell cycle arrest and apoptosis. Here, we use SH-SY5Y neuroblastoma cells to characterize BAG2 expression and regulation and investigate the involvement of BAG2 in Aβ1-42-mediated neurotrophism or neurotoxicity in the context of differentiation. We report that BAG2 is upregulated on differentiation of SH-SY5Y cells into neuron-like cells. This increase in BAG2 expression is accompanied by a change in response to treatment with Aβ1-42 from neurotrophic to neurotoxic. Further, overexpression of BAG2 in undifferentiated SH-SY5Y cells was sufficient to induce the change from neurotrophic to neurotoxic response. Of several transcription factors queried, the putative BAG2 promoter had a higher-than-expected occurrence of response elements (RE) for nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Treatment with JSH-23, a potent inhibitor of NF-κB, caused a marked increase in BAG2 mRNA expression, suggesting that NF-κB is a repressor of BAG2 transcription in undifferentiated SH-SY5Y cells. Together, these data suggest that NF-κB-mediated modulation of BAG2 expression constitutes a "switch" that regulates the shift between the neurotrophic and neurotoxic effects of Aβ1-42.
Collapse
Affiliation(s)
- Fernando E Santiago
- Pós-graduação em Neurociência e Cognição, Universidade Federal do ABC, São Bernardo do Campo, Brazil,
| | | | | |
Collapse
|
34
|
Zaragozá R, García-Trevijano ER, Lluch A, Ribas G, Viña JR. Involvement of Different networks in mammary gland involution after the pregnancy/lactation cycle: Implications in breast cancer. IUBMB Life 2015; 67:227-38. [PMID: 25904072 DOI: 10.1002/iub.1365] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 02/03/2015] [Indexed: 11/06/2022]
Abstract
Early pregnancy is associated with a reduction in a woman's lifetime risk for breast cancer. However, different studies have demonstrated an increase in breast cancer risk in the years immediately following pregnancy. Early and long-term risk is even higher if the mother age is above 35 years at the time of first parity. The proinflammatory microenvironment within the mammary gland after pregnancy renders an "ideal niche" for oncogenic events. Signaling pathways involved in programmed cell death and tissue remodeling during involution are also activated in breast cancer. Herein, the major signaling pathways involved in mammary gland involution, signal transducer and activator of transcription (STAT3), nuclear factor-kappa B (NF-κB), transforming growth factor beta (TGFβ), and retinoid acid receptors (RARs)/retinoid X receptors (RXRs), are reviewed as part of the complex network of signaling pathways that crosstalk in a contextual-dependent manner. These factors, also involved in breast cancer development, are important regulatory nodes for signaling amplification after weaning. Indeed, during involution, p65/p300 target genes such as MMP9, Capn1, and Capn2 are upregulated. Elevated expression and activities of these proteases in breast cancer have been extensively documented. The role of these proteases during mammary gland involution is further discussed. MMPs, calpains, and cathepsins exert their effect by modification of the extracellular matrix and intracellular proteins. Calpains, activated in the mammary gland during involution, cleave several proteins located in cell membrane, lysosomes, mitochondria, and nuclei favoring cell death. Besides, during this period, Capn1 is most probably involved in the modulation of preadipocyte differentiation through chromatin remodeling. Calpains can be implicated in cell anchoring loss, providing a proper microenvironment for tumor growth. A better understanding of the role of any of these proteases in tumorigenesis may yield novel therapeutic targets or prognostic markers for breast cancer.
Collapse
Affiliation(s)
- Rosa Zaragozá
- Instituto INCLIVA, Facultad de Medicina/Hospital Clínico, Universidad de Valencia, Valencia, Spain
| | - Elena R García-Trevijano
- Instituto INCLIVA, Facultad de Medicina/Hospital Clínico, Universidad de Valencia, Valencia, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Ana Lluch
- Instituto INCLIVA, Facultad de Medicina/Hospital Clínico, Universidad de Valencia, Valencia, Spain.,Servicio Oncología Médica, Hospital Clínico Universitario Valencia, Valencia, Spain
| | - Gloria Ribas
- Instituto INCLIVA, Facultad de Medicina/Hospital Clínico, Universidad de Valencia, Valencia, Spain.,Servicio Oncología Médica, Hospital Clínico Universitario Valencia, Valencia, Spain
| | - Juan R Viña
- Instituto INCLIVA, Facultad de Medicina/Hospital Clínico, Universidad de Valencia, Valencia, Spain.,Servicio Oncología Médica, Hospital Clínico Universitario Valencia, Valencia, Spain
| |
Collapse
|
35
|
Ingman WV, Glynn DJ, Hutchinson MR. Mouse models of mastitis - how physiological are they? Int Breastfeed J 2015; 10:12. [PMID: 25848399 PMCID: PMC4386103 DOI: 10.1186/s13006-015-0038-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 03/04/2015] [Indexed: 11/10/2022] Open
Abstract
Lactation mastitis is a common, but poorly understood, inflammatory breast disease that is a significant health burden. A better understanding of the aetiology of mastitis is urgently required, and will assist in the development of improved prevention and treatment strategies in both human and animal species. Studies in mice have the potential to greatly assist in identifying new drug candidates for clinical trials, and in developing a better understanding of the disease. Mouse models of mastitis involve administration of a mastitis-inducing agent to the mammary gland usually during lactation to examine the host immune response, and progression through to resolution of the disease. There are important variations in the protocols of these mouse models that critically affect the conclusions that can be drawn from the research. Some protocols involve weaning of offspring at the time of mastitis induction, and there are variations in the mastitis-inducing agent and its carrier. Induction of mammary gland involution through weaning of offspring limits the capacity to study the disease in the context of a lactating mammary gland. Administration of live bacteria in an aqueous carrier can cause sepsis, restricting the physiological relevance of the model. Mouse model research should employ appropriately designed controls and closely monitor the health of the mice. In this commentary, we discuss the advantages and study design limitations of each mouse model, and highlight the potential for further development of physiologically relevant mouse models of mastitis.
Collapse
Affiliation(s)
- Wendy V Ingman
- Discipline of Surgery, School of Medicine, The Queen Elizabeth Hospital, University of Adelaide, Woodville, Australia ; Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Danielle J Glynn
- Discipline of Surgery, School of Medicine, The Queen Elizabeth Hospital, University of Adelaide, Woodville, Australia ; Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Mark R Hutchinson
- Discipline Physiology, School of Medical Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
36
|
Sanz AB, Izquierdo MC, Sanchez-Niño MD, Ucero AC, Egido J, Ruiz-Ortega M, Ramos AM, Putterman C, Ortiz A. TWEAK and the progression of renal disease: clinical translation. Nephrol Dial Transplant 2014; 29 Suppl 1:i54-i62. [PMID: 24493870 DOI: 10.1093/ndt/gft342] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Tumour necrosis factor-like weak inducer of apoptosis (TWEAK) activates the fibroblast growth factor-inducible-14 (Fn14) receptor. TWEAK has actions on intrinsic kidney cells and on inflammatory cells of potential pathophysiological relevance. The effects of TWEAK in tubular cells have been explored in most detail. In cultured murine tubular cells TWEAK induces the expression of inflammatory cytokines, downregulates the expression of Klotho, is mitogenic, and in the presence of sensitizing agents promotes apoptosis. Similar actions were observed on glomerular mesangial cells. In vivo TWEAK actions on healthy kidneys mimic cell culture observations. Increased expression of TWEAK and Fn14 was reported in human and experimental acute and chronic kidney injury. The role of TWEAK/Fn14 in kidney injury has been demonstrated in non-inflammatory compensatory renal growth, acute kidney injury and chronic kidney disease of immune and non-immune origin, including hyperlipidaemic nephropathy, lupus nephritis (LN) and anti-GBM nephritis. The nephroprotective effect of TWEAK or Fn14 targeting in immune-mediated kidney injury is the result of protection from TWEAK-induced injury of renal intrinsic cells, not from interference with the immune response. A phase I dose-ranging clinical trial demonstrated the safety of anti-TWEAK antibodies in humans. A phase II randomized placebo-controlled clinical trial exploring the efficacy, safety and tolerability of neutralizing anti-TWEAK antibodies as a tissue protection strategy in LN is ongoing. The eventual success of this trial may expand the range of kidney diseases in which TWEAK targeting should be explored.
Collapse
Affiliation(s)
- Ana B Sanz
- Dialysis Unit, IIS-Fundacion Jimenez Diaz, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Wajant H. The TWEAK-Fn14 system as a potential drug target. Br J Pharmacol 2014; 170:748-64. [PMID: 23957828 DOI: 10.1111/bph.12337] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/29/2013] [Accepted: 08/12/2013] [Indexed: 12/27/2022] Open
Abstract
Fibroblast growth factor-inducible 14 (Fn14) is a member of the tumour necrosis factor (TNF) receptor family that is induced in a variety of cell types in situations of tissue injury. Fn14 becomes activated by TNF-like weak inducer of apoptosis (TWEAK), a typical member of the TNF ligand family. TWEAK is constitutively expressed by monocytes and some tumour cell lines and also shows cytokine inducible expression in various other cell types. Fn14 activation results in stimulation of signalling pathways culminating in the activation of NFκB transcription factors and various MAPKs but might also trigger the PI3K/Akt pathway and GTPases of the Rho family. In accordance with its tissue damage-associated expression pattern and its pleiotropic proinflammatory signalling capabilities, the TWEAK-Fn14 system has been implicated in a huge number of pathologies. The use of TWEAK- and Fn14-knockout mice identified the TWEAK-Fn14 system as a crucial player in muscle atrophy, cerebral ischaemia, kidney injury, atherosclerosis and infarction as well as in various autoimmune scenarios including experimental autoimmune encephalitis, rheumatoid arthritis and inflammatory bowel disease. Moreover, there is increasing preclinical evidence that Fn14 targeting is a useful option in tumour therapy. Based on a discussion of the signalling capabilities of TWEAK and Fn14, this review is focused on two major issues. On the one hand, on the molecular and cellular basis of the TWEAK/Fn14-related pathological outcomes in the aforementioned diseases and on the other hand, on the preclinical experience that have been made so far with TWEAK and Fn14 targeting drugs.
Collapse
Affiliation(s)
- Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
38
|
Ingman WV, Glynn DJ, Hutchinson MR. Inflammatory mediators in mastitis and lactation insufficiency. J Mammary Gland Biol Neoplasia 2014; 19:161-7. [PMID: 24961655 DOI: 10.1007/s10911-014-9325-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 06/18/2014] [Indexed: 12/15/2022] Open
Abstract
Mastitis is a common inflammatory disease during lactation that causes reduced milk supply. A growing body of evidence challenges the central role of pathogenic bacteria in mastitis, with disease severity associated with markers of inflammation rather than infection. Inflammation in the mammary gland may be triggered by microbe-associated molecular patterns (MAMPs) as well as danger-associated molecular patterns (DAMPs) binding to pattern recognition receptors such as the toll-like receptors (TLRs) on the surface of mammary epithelial cells and local immune cell populations. Activation of the TLR4 signalling pathway and downstream nuclear factor kappa B (NFkB) is critical to mediating local mammary gland inflammation and systemic immune responses in mouse models of mastitis. However, activation of NFkB also induces epithelial cell apoptosis and reduced milk protein synthesis, suggesting that inflammatory mediators activated during mastitis promote partial involution. Perturbed milk flow, maternal stress and genetic predisposition are significant risk factors for mastitis, and could lead to a heightened TLR4-mediated inflammatory response, resulting in increased susceptibility and severity of mastitis disease in the context of low MAMP abundance. Therefore, heightened host inflammatory signalling may act in concert with pathogenic or commensal bacterial species to cause both the inflammation associated with mastitis and lactation insufficiency. Here, we present an alternate paradigm to the widely held notion that breast inflammation is driven principally by infectious bacterial pathogens, and suggest there may be other therapeutic strategies, apart from the currently utilised antimicrobial agents, that could be employed to prevent and treat mastitis in women.
Collapse
Affiliation(s)
- Wendy V Ingman
- Discipline of Surgery, School of Medicine, The Queen Elizabeth Hospital, University of Adelaide, Woodville, Australia
| | | | | |
Collapse
|
39
|
Puimège L, Libert C, Van Hauwermeiren F. Regulation and dysregulation of tumor necrosis factor receptor-1. Cytokine Growth Factor Rev 2014; 25:285-300. [PMID: 24746195 DOI: 10.1016/j.cytogfr.2014.03.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 03/10/2014] [Indexed: 01/18/2023]
Abstract
TNF is an essential regulator of the immune system. Dysregulation of TNF plays a role in the pathology of many auto-immune diseases. TNF-blocking agents have proven successful in the treatment of such diseases. Development of novel, safer or more effective drugs requires a deeper understanding of the regulation of the pro-inflammatory activities of TNF and its receptors. The ubiquitously expressed TNFR1 is responsible for most TNF effects, while TNFR2 has a limited expression pattern and performs immune-regulatory functions. Despite extensive knowledge of TNFR1 signaling, the regulation of TNFR1 expression, its modifications, localization and processing are less clear and the data are scattered. Here we review the current knowledge of TNFR1 regulation and discuss the impact this has on the host.
Collapse
Affiliation(s)
- Leen Puimège
- Inflammation Research Center, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Claude Libert
- Inflammation Research Center, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Filip Van Hauwermeiren
- Inflammation Research Center, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
40
|
Novoyatleva T, Sajjad A, Pogoryelov D, Patra C, Schermuly RT, Engel FB. FGF1-mediated cardiomyocyte cell cycle reentry depends on the interaction of FGFR-1 and Fn14. FASEB J 2014; 28:2492-503. [PMID: 24571920 DOI: 10.1096/fj.13-243576] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fibroblast growth factors (FGFs) signal through FGF receptors (FGFRs) mediating a broad range of cellular functions during embryonic development, as well as disease and regeneration during adulthood. Thus, it is important to understand the underlying molecular mechanisms that modulate this system. Here, we show that FGFR-1 can interact with the TNF receptor superfamily member fibroblast growth factor-inducible molecule 14 (Fn14) resulting in cardiomyocyte cell cycle reentry. FGF1-induced cell cycle reentry in neonatal cardiomyocytes could be blocked by Fn14 inhibition, while TWEAK-induced cell cycle activation was inhibited by blocking FGFR-1 signaling. In addition, costimulation experiments revealed a synergistic effect of FGF1 and TWEAK in regard to cardiomyocyte cell cycle induction via PI3K/Akt signaling. Overexpression of Fn14 with either FGFR-1 long [FGFR-1(L)] or FGFR-1 short [FGFR-1(S)] isoforms resulted after FGF1/TWEAK stimulation in cell cycle reentry of >40% adult cardiomyocytes. Finally, coimmunoprecipitation and proximity ligation assays indicated that endogenous FGFR-1 and Fn14 interact with each other in cardiomyocytes. This interaction was strongly enhanced in the presence of their corresponding ligands, FGF1 and TWEAK. Taken together, our data suggest that FGFR-1/Fn14 interaction may represent a novel endogenous mechanism to modulate the action of these receptors and their ligands and to control cardiomyocyte cell cycle reentry.
Collapse
Affiliation(s)
- Tatyana Novoyatleva
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany;
| | - Amna Sajjad
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Government College University Faisalabad, Faisalabad, Pakistan
| | - Denys Pogoryelov
- Membrane Transport Machineries Group, Cluster of Excellence Frankfurt-Macromolecular Complexes, Institute of Biochemistry, Goethe University of Frankfurt, Frankfurt am Main, Germany
| | - Chinmoy Patra
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ralph T Schermuly
- Department of Pulmonary Pharmacotherapy, Justus Liebig University Giessen, Giessen, Germany; and
| | - Felix B Engel
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
41
|
Abstract
Molecular genetics and other contemporary approaches have contributed to a better understanding of prolactin (PRL) actions at the cellular and organismal levels. In this review, several advances in knowledge of PRL actions are highlighted. Special emphasis is paid to areas of progress with consequences for understanding of human PRL actions. The impacts of these advances on future research priorities are analyzed.
Collapse
Affiliation(s)
- Nelson D Horseman
- Program in Systems Biology and Physiology, Department of Molecular and Cellular Physiology James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio 45067-0476, USA
| | | |
Collapse
|
42
|
Macias H, Hinck L. Mammary gland development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2014; 1:533-57. [PMID: 22844349 DOI: 10.1002/wdev.35] [Citation(s) in RCA: 500] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mammary gland develops through several distinct stages. The first transpires in the embryo as the ectoderm forms a mammary line that resolves into placodes. Regulated by epithelial–mesenchymal interactions, the placodes descend into the underlying mesenchyme and produce the rudimentary ductal structure of the gland present at birth. Subsequent stages of development—pubertal growth, pregnancy, lactation, and involution—occur postnatally under the regulation of hormones. Puberty initiates branching morphogenesis, which requires growth hormone (GH) and estrogen, as well as insulin-like growth factor 1 (IGF1), to create a ductal tree that fills the fat pad. Upon pregnancy, the combined actions of progesterone and prolactin generate alveoli, which secrete milk during lactation. Lack of demand for milk at weaning initiates the process of involution whereby the gland is remodeled back to its prepregnancy state. These processes require numerous signaling pathways that have distinct regulatory functions at different stages of gland development. Signaling pathways also regulate a specialized subpopulation of mammary stem cells that fuel the dramatic changes in the gland occurring with each pregnancy. Our knowledge of mammary gland development and mammary stem cell biology has significantly contributed to our understanding of breast cancer and has advanced the discovery of therapies to treat this disease.
Collapse
Affiliation(s)
- Hector Macias
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA, USA
| | | |
Collapse
|
43
|
Al-Sawaf O, Fragoulis A, Rosen C, Kan YW, Sönmez TT, Pufe T, Wruck CJ. Nrf2 protects against TWEAK-mediated skeletal muscle wasting. Sci Rep 2014; 4:3625. [PMID: 24406502 PMCID: PMC3887379 DOI: 10.1038/srep03625] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 12/04/2013] [Indexed: 11/09/2022] Open
Abstract
Skeletal muscle (SM) regeneration after injury is impaired by excessive inflammation. Particularly, the inflammatory cytokine tumour necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) is a potent inducer of skeletal muscle wasting and fibrosis. In this study we investigated the role of Nrf2, a major regulator of oxidative stress defence, in SM ischemia/reperfusion (I/R) injury and TWEAK induced atrophy. We explored the time-dependent expression of TWEAK after I/R in SM of Nrf2-wildtype (WT) and knockout (KO) mice. Nrf2-KO mice expressed significant higher levels of TWEAK as compared to WT mice. Consequently, Nrf2-KO mice present an insufficient regeneration as compared to Nrf2-WT mice. Moreover, TWEAK stimulation activates Nrf2 in the mouse myoblast cell line C2C12. This Nrf2 activation inhibits TWEAK induced atrophy in C2C12 differentiated myotubes. In summary, we show that Nrf2 protects SM from TWEAK-induced cell death in vitro and that Nrf2-deficient mice therefore have poorer muscle regeneration.
Collapse
Affiliation(s)
- Othman Al-Sawaf
- Department of Anatomy and Cell Biology, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Athanassios Fragoulis
- Department of Anatomy and Cell Biology, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Christian Rosen
- Department of Anatomy and Cell Biology, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Yuet Wai Kan
- Department of Laboratory Medicine, University of California, San Francisco, California, USA
| | - Tolga Taha Sönmez
- Department of Oral and Maxillofacial Surgery, Medical Faculty, RWTH Aachen University, Aachen 52072, Germany
| | - Thomas Pufe
- Department of Anatomy and Cell Biology, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Christoph Jan Wruck
- Department of Anatomy and Cell Biology, University Hospital, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
44
|
Transglutaminase 2 and NF-κB: an odd couple that shapes breast cancer phenotype. Breast Cancer Res Treat 2012; 137:329-36. [PMID: 23224146 DOI: 10.1007/s10549-012-2351-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 11/21/2012] [Indexed: 12/17/2022]
Abstract
Owing to numerous pro-survival target genes, aberrant activation of the NF-κB transcription factor is associated with a drug-resistant phenotype and aggressive breast tumor behavior. Transglutaminase 2 (TG2), a ubiquitously expressed protein cross-linking enzyme, activates NF-κB through a non-conventional mechanism that disables the IκBα inhibitor. Our group has recently documented that the TG2 gene (termed TGM2) is a direct transcriptional target of NF-κB. These developments uncover a novel self-reinforcing molecular feedback loop where TG2 activates NF-κB and, in turn, NF-κB directly upregulates the transcription of TGM2. This manuscript reviews the literature that supports the existence of the TG2/NF-κB signaling loop, the nature of the signal transduction that activates this loop, and the phenotypic consequences stemming from the aberrant activation of this novel signaling mechanism in breast cancer.
Collapse
|
45
|
Wakefield A, Soukupova J, Montagne A, Ranger J, French R, Muller WJ, Clarkson RWE. Bcl3 selectively promotes metastasis of ERBB2-driven mammary tumors. Cancer Res 2012; 73:745-55. [PMID: 23149915 DOI: 10.1158/0008-5472.can-12-1321] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bcl3 is a putative proto-oncogene deregulated in hematopoietic and solid tumors. Studies in cell lines suggest that its oncogenic effects are mediated through the induction of proliferation and inhibition of cell death, yet its role in endogenous solid tumors has not been established. Here, we address the oncogenic effect of Bcl3 in vivo and describe how this Stat3-responsive oncogene promotes metastasis of ErbB2-positive mammary tumors without affecting primary tumor growth or normal mammary function. Deletion of the Bcl3 gene in ErbB2-positive (MMTV-Neu) mice resulted in a 75% reduction in metastatic tumor burden in the lungs with a 3.6-fold decrease in cell turnover index in these secondary lesions with no significant effect on primary mammary tumor growth, cyclin D1 levels, or caspase-3 activity. Direct inhibition of Bcl3 by siRNA in a transplantation model of an Erbb2-positive mammary tumor cell line confirmed the effect of Bcl3 in malignancy, suggesting that the effect of Bcl3 was intrinsic to the tumor cells. Bcl3 knockdown resulted in a 61% decrease in tumor cell motility and a concomitant increase in the cell migration inhibitors Nme1, Nme2, and Nme3, the GDP dissociation inhibitor Arhgdib, and the metalloprotease inhibitors Timp1 and Timp2. Independent knockdown of Nme1, Nme2, and Arhgdib partially rescued the Bcl3 motility phenotype. These results indicate for the first time a cell-autonomous disease-modifying role for Bcl3 in vivo, affecting metastatic disease progression rather than primary tumor growth.
Collapse
Affiliation(s)
- Alison Wakefield
- University of Cardiff School of Biosciences, Museum Avenue, Cardiff, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
46
|
Zhi-Chun L, Qiao-Ling Z, Zhi-Qin L, Xiao-Zhao L, Xiao-xia Z, Rong T. Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) mediates p38 mitogen-activated protein kinase activation and signal transduction in peripheral blood mononuclear cells from patients with lupus nephritis. Inflammation 2012; 35:935-43. [PMID: 22009442 DOI: 10.1007/s10753-011-9396-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Forty-two patients with systemic lupus erythematosus (SLE), including 26 patients with renal damage and 16 without, and 20 healthy controls were included in the study. The isolated peripheral blood mononuclear cells (PBMCs) were treated with a p38 inhibitor (SB203580) or anti-tumor necrosis factor-like weak inducer of apoptosis (TWEAK) mAb, with or without phytohemagglutinin/phorbol myristate acetate (PHA/PMA) stimulation. Western blot experiments were used to evaluate the protein expression of TWEAK and p38 MAPK in PBMCs .Next, the contents of interleukin-10 (IL-10) and monocyte chemoattractant protein-1 (MCP-1) in the supernatant were measured by ELISA. The results showed that expression of TWEAK protein in PBMCs from lupus nephritis patients was significantly higher than that from SLE patients without renal damage and healthy controls. PHA/PMA simulation could upregulate the productions of TWEAK and p-p38MAPK in PBMCs from patients with SLE. Anti-TWEAK mAb treatment downregulated both TWEAK and p-p38 MAPK expression in PBMCs, as well as IL-10 and MCP-1 in the supernatant; SB203580 had the same effect on cytokine production in PBMC, but had no effect on the expression of TWEAK. Our results suggested that TWEAK-p38 MAPK-IL-10, MCP-1 signaling pathway in PBMC played an important pathogenic role in lupus nephritis.
Collapse
Affiliation(s)
- Liu Zhi-Chun
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Suzhou University, Suzhou, China
| | | | | | | | | | | |
Collapse
|
47
|
Nahmod KA, Walther T, Cambados N, Fernandez N, Meiss R, Tappenbeck N, Wang Y, Raffo D, Simian M, Schwiebs A, Pozner RG, Fuxman Bass JI, Pozzi AG, Geffner JR, Kordon EC, Schere-Levy C. AT1 receptor blockade delays postlactational mammary gland involution: a novel role for the renin angiotensin system. FASEB J 2012; 26:1982-94. [PMID: 22286690 DOI: 10.1096/fj.11-191932] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Angiotensin II (AngII), the main effector peptide of the renin-angiotensin system (RAS), participates in multiple biological processes, including cell growth, apoptosis, and tissue remodeling. Since AngII activates, in different cell types, signal transducing pathways that are critical for mammary gland postlactational regression, we investigated the role of the RAS during this process. We found that exogenous administration of AngII in mammary glands of lactating Balb/c mice induced epithelium apoptosis [2.9±0.5% (control) vs. 9.6±1.1% (AngII); P < 0.001] and activation of the proapoptotic factor STAT3, an effect inhibited by irbesartan, an AT(1) receptor blocker. Subsequently, we studied the expression kinetics of RAS components during involution. We found that angiotensin-converting enzyme (ACE) mRNA expression peaked 6 h after weaning (5.7-fold; P<0.01), while induction of angiotensinogen and AT(1) and AT(2) receptors expression was detected 96 h after weaning (6.2-, 10-, and 6.2-fold increase, respectively; P<0.01). To assess the role of endogenously generated AngII, mice were treated with losartan, an AT(1) receptor blocker, during mammary involution. Mammary glands from losartan-treated mice showed activation of the survival factors AKT and BCL-(XL), significantly lower LIF and TNF-α mRNA expression (P<0.05), reduced apoptosis [12.1±2.1% (control) vs. 4.8±0.7% (losartan); P<0.001] and shedding of epithelial cells, inhibition of MMP-9 activity in a dose-dependent manner (80%; P<0.05; with losartan IC(50) value of 6.9 mg/kg/d] and lower collagen deposition and adipocyte invasion causing a delayed involution compared to vehicle-treated mice. Furthermore, mammary glands of forced weaned AT(1A)- and/or AT(1B)-deficient mice exhibited retarded apoptosis of epithelial cells [6.3±0.95% (WT) vs. 3.3±0.56% (AT(1A)/AT(1B) DKO); P<0.05] with remarkable delayed postlactational regression compared to wild-type animals. Taken together, these results strongly suggest that AngII, via the AT(1) receptor, plays a major role in mouse mammary gland involution identifying a novel role for the RAS. angiotensin system.
Collapse
Affiliation(s)
- Karen A Nahmod
- IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hughes K, Wickenden JA, Allen JE, Watson CJ. Conditional deletion of Stat3 in mammary epithelium impairs the acute phase response and modulates immune cell numbers during post-lactational regression. J Pathol 2012; 227:106-17. [PMID: 22081431 PMCID: PMC3477635 DOI: 10.1002/path.3961] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 10/04/2011] [Accepted: 10/31/2011] [Indexed: 12/31/2022]
Abstract
Mammary gland regression following weaning (involution) is associated with extensive cell death and the acquisition of an inflammatory signature. Characterizing the interplay between mammary epithelial cells, the re-emerging stroma and immune cells has implications for the understanding of the pathogenesis of pregnancy-associated breast cancer. Stat3 has a role in orchestrating cell death and involution, and we sought to determine whether expression of Stat3 by the mammary epithelium also influences the innate immune environment and inflammatory cell influx in the gland. We examined mice in which Stat3 is conditionally deleted only in the mammary epithelium. Distinct sets of genes associated with the acute phase response and innate immunity are markedly up-regulated during first phase involution in a Stat3-dependent manner. During second phase involution, chitinase 3-like 1, which has been associated with wound healing and chronic inflammatory conditions, is dramatically up-regulated by Stat3. Also at this time, the number of mammary macrophages and mast cells increases per unit area, and this increase is impaired in the absence of epithelial Stat3. Furthermore, expression of arginase-1 and Ym1, markers of alternatively activated macrophages, is significantly decreased in the absence of Stat3, whilst iNOS, a marker associated with classically activated macrophages, shows significantly increased expression in the Stat3-deleted glands. Thus, Stat3 is a key transcriptional regulator of genes associated with innate immunity and wound healing and influences mammary macrophage and mast cell numbers. The presence of epithelial Stat3 appears to polarize the macrophages and epithelial cells towards an alternatively activated phenotype, since in the absence of Stat3, the gland retains a phenotype associated with classically activated macrophages. These findings have relevance to the study of pregnancy-associated breast cancer and the role of Stat3 signalling in recruitment of alternatively activated tumour-associated macrophages in breast cancer. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
|
49
|
Wan X, Yang J, Xing L, Fan L, Hu B, Chen X, Cao C. Inhibition of IκB Kinase β attenuates hypoxia-induced inflammatory mediators in rat renal tubular cells. Transplant Proc 2011; 43:1503-10. [PMID: 21693225 DOI: 10.1016/j.transproceed.2011.01.179] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 01/11/2011] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Inflammation is now believed to play a major role in the pathophysiology of ischemic acute kidney injury (AKI), which is thought to be directly regulated by nuclear factor-κB (NF-κB). Our previous study indicated that ischemic preconditioning (IPC) alleviated renal ischemic-reperfusion injury due to inhibition of IκB kinase β (IKK β) activity. Using small interfering RNA (siRNA) to silence the expression of IKKβ, which consists of the IKK complex residing at a key convergence site that leads to NF-κB activation in multiple signaling pathways, we protected organs from ischemic AKI. Herein, we have report a siRNA-based treatment to prevent ischemic AKI. METHODS Ischemic AKI was induced by a hypoxia-mimicking agent cobalt chloride (CoCl(2)). The therapeutic effects of IKKβ-specific siRNA were evaluated on the expression of interleukin (IL)-18, neutrophil gelatinase-associated lipocalin (NGAL), and cell apoptosis. RESULTS Compared with CoCl(2)-induced NRK52E cells, pretransfected IKKβ-specific siRNA reduced the expression of IL-18 and NGAL to 62.5% and 50.4% in messenger RNA (mRNA) and to 57.2% and 62.7% in protein levels, respectively. The necrosis index in the IKKβ-specific siRNA transfected group was decreased compared with a nonspecific siRNA transfected group. CONCLUSIONS These data revealed that hypoxia-induced inflammatory responses were IKKβ/NF-κB-dependent. Knockdown of IKKβ by siRNA suppressed the transcription IKKβ/NF-κB-mediated inflammatory mediators in tumor necrosis factor-α or CoCl(2)-treated tubular epithelial cells, and decreased CoCl(2)-induced cell death, which may be a useful, preventive and therapeutic strategy for ischemic AKI.
Collapse
Affiliation(s)
- X Wan
- Department of Nephrology, Nanjing First Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | |
Collapse
|
50
|
Page A, Cascallana JL, Casanova ML, Navarro M, Alameda JP, Pérez P, Bravo A, Ramírez A. IKKβ Overexpression Leads to Pathologic Lesions in Stratified Epithelia and Exocrine Glands and to Tumoral Transformation of Oral Epithelia. Mol Cancer Res 2011; 9:1329-38. [DOI: 10.1158/1541-7786.mcr-11-0168] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|