1
|
Lagman D, Leon A, Cieminska N, Deng W, Chatzigeorgiou M, Henriet S, Chourrout D. Pax3/7 gene function in Oikopleura dioica supports a neuroepithelial-like origin for its house-making Fol territory. Dev Biol 2024; 516:207-220. [PMID: 39181419 DOI: 10.1016/j.ydbio.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Larvacean tunicates feature a spectacular innovation not seen in other animals - the trunk oikoplastic epithelium (OE). This epithelium produces a house, a large and complex extracellular structure used for filtering and concentrating food particles. Previously we identified several homeobox transcription factor genes expressed during early OE patterning. Among these are two Pax3/7 copies that we named pax37A and pax37B. The vertebrate homologs, PAX3 and PAX7 are involved in developmental processes related to neural crest and muscles. In the ascidian tunicate Ciona intestinalis, Pax3/7 plays a role in the development of cells deriving from the neural plate border, including trunk epidermal sensory neurons and tail nerve cord neurons, as well as in the neural tube closure. Here we have investigated the roles of Oikopleura dioica pax37A and pax37B in the development of the OE, by using CRISPR-Cas9 mutant lines and analyzing scRNA-seq data from wild-type animals. We found that pax37B but not pax37A is essential for the differentiation of cell fields that produce the food concentrating filter of the house: the anterior Fol, giant Fol and Nasse cells. Trajectory analysis supported a neuroepithelial-like or a preplacodal ectoderm transcriptional signature in these cells. We propose that the highly specialized secretory epithelial cells of the Fol region either maintained or evolved neuroepithelial features. This is supported by a fragmented gene regulatory network involved in their development that also operates in ascidian epidermal neurons.
Collapse
Affiliation(s)
- David Lagman
- Michael Sars Centre, University of Bergen, Bergen, NO-5020, Norway; Department of Medical Cell Biology, Uppsala University, Uppsala, SE-75123, Sweden.
| | - Anthony Leon
- Michael Sars Centre, University of Bergen, Bergen, NO-5020, Norway
| | - Nadia Cieminska
- Michael Sars Centre, University of Bergen, Bergen, NO-5020, Norway
| | - Wei Deng
- Michael Sars Centre, University of Bergen, Bergen, NO-5020, Norway
| | | | - Simon Henriet
- Michael Sars Centre, University of Bergen, Bergen, NO-5020, Norway
| | - Daniel Chourrout
- Michael Sars Centre, University of Bergen, Bergen, NO-5020, Norway.
| |
Collapse
|
2
|
Todorov LG, Oonuma K, Kusakabe TG, Levine MS, Lemaire LA. Neural crest lineage in the protovertebrate model Ciona. Nature 2024:10.1038/s41586-024-08111-7. [PMID: 39443803 DOI: 10.1038/s41586-024-08111-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
Neural crest cells are multipotent progenitors that produce defining features of vertebrates such as the 'new head'1. Here we use the tunicate, Ciona, to explore the evolutionary origins of neural crest since this invertebrate chordate is among the closest living relatives of vertebrates2-4. Previous studies identified two potential neural crest cell types in Ciona, sensory pigment cells and bipolar tail neurons5,6. Recent findings suggest that bipolar tail neurons are homologous to cranial sensory ganglia rather than derivatives of neural crest7,8. Here we show that the pigment cell lineage also produces neural progenitor cells that form regions of the juvenile nervous system following metamorphosis. Neural progenitors are also a major derivative of neural crest in vertebrates, suggesting that the last common ancestor of tunicates and vertebrates contained a multipotent progenitor population at the neural plate border. It would therefore appear that a key property of neural crest, multipotentiality, preceded the emergence of vertebrates.
Collapse
Affiliation(s)
- Lauren G Todorov
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Kouhei Oonuma
- Department of Biology, Faculty of Science and Engineering and Institute for Integrative Neurobiology, Konan University, Kobe, Japan
- Frontier Research Institute, Chubu University, Kasugai, Japan
| | - Takehiro G Kusakabe
- Department of Biology, Faculty of Science and Engineering and Institute for Integrative Neurobiology, Konan University, Kobe, Japan.
| | - Michael S Levine
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| | - Laurence A Lemaire
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
- Department of Biology, Saint Louis University, St. Louis, MO, USA.
| |
Collapse
|
3
|
Drago L, Pennati A, Rothbächer U, Ashita R, Hashimoto S, Saito R, Fujiwara S, Ballarin L. Stress granule-related genes during embryogenesis of an invertebrate chordate. Front Cell Dev Biol 2024; 12:1414759. [PMID: 39149517 PMCID: PMC11324471 DOI: 10.3389/fcell.2024.1414759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/20/2024] [Indexed: 08/17/2024] Open
Abstract
Controlling global protein synthesis through the assembly of stress granules represents a strategy adopted by eukaryotic cells to face various stress conditions. TIA 1-related nucleolysin (TIAR), tristetraprolin (TTP), and Ras-GTPase-activating protein SH3-domain-binding protein (G3BP) are key components of stress granules, allowing the regulation of mRNA stability, and thus controlling not only stress responses but also cell proliferation and differentiation. In this study, we aimed at investigating the roles of tiar, ttp, and g3bp during embryogenesis of the solitary ascidian Ciona robusta under both physiological and stress conditions. We carried out CRISPR/Cas9 to evaluate the effects of gene knockout on normal embryonic development, and gene reporter assay to study the time and tissue specificity of gene transcription, together with whole-mount in situ hybridization and quantitative real time PCR. To induce acute stress conditions, we used iron and cadmium as "essential" and "non-essential" metals, respectively. Our results highlight, for the first time, the importance of tiar, ttp, and g3bp in controlling the development of mesendodermal tissue derivatives during embryogenesis of an invertebrate chordate.
Collapse
Affiliation(s)
- Laura Drago
- Department of Biology, University of Padova, Padua, Italy
| | | | - Ute Rothbächer
- Institute of Zoology, University of Innsbruck, Innsbruck, Austria
| | - Ryuji Ashita
- Department of Chemistry and Biotechnology, University of Kochi, Kochi, Japan
| | - Seika Hashimoto
- Department of Chemistry and Biotechnology, University of Kochi, Kochi, Japan
| | - Ryota Saito
- Department of Chemistry and Biotechnology, University of Kochi, Kochi, Japan
| | - Shigeki Fujiwara
- Department of Chemistry and Biotechnology, University of Kochi, Kochi, Japan
| | | |
Collapse
|
4
|
Gigante ED, Piekarz KM, Gurgis A, Cohen L, Razy-Krajka F, Popsuj S, Johnson CJ, Ali HS, Mohana Sundaram S, Stolfi A. Specification and survival of post-metamorphic branchiomeric neurons in a non-vertebrate chordate. Development 2024; 151:dev202719. [PMID: 38895900 PMCID: PMC11273300 DOI: 10.1242/dev.202719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
Tunicates are the sister group to the vertebrates, yet most species have a life cycle split between swimming larva and sedentary adult phases. During metamorphosis, larval neurons are replaced by adult-specific ones. The regulatory mechanisms underlying this replacement remain largely unknown. Using tissue-specific CRISPR/Cas9-mediated mutagenesis in the tunicate Ciona, we show that orthologs of conserved hindbrain and branchiomeric neuron regulatory factors Pax2/5/8 and Phox2 are required to specify the 'neck', a cellular compartment set aside in the larva to give rise to cranial motor neuron-like neurons post-metamorphosis. Using bulk and single-cell RNA-sequencing analyses, we characterize the transcriptome of the neck downstream of Pax2/5/8. We present evidence that neck-derived adult ciliomotor neurons begin to differentiate in the larva and persist through metamorphosis, contrary to the assumption that the adult nervous system is formed after settlement and the death of larval neurons during metamorphosis. Finally, we show that FGF signaling during the larval phase alters the patterning of the neck and its derivatives. Suppression of FGF converts neck cells into larval neurons that fail to survive metamorphosis, whereas prolonged FGF signaling promotes an adult neural stem cell-like fate.
Collapse
Affiliation(s)
- Eduardo D. Gigante
- School of Biological Sciences, College of Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Katarzyna M. Piekarz
- School of Biological Sciences, College of Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Alexandra Gurgis
- School of Biological Sciences, College of Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Leslie Cohen
- School of Biological Sciences, College of Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Florian Razy-Krajka
- School of Biological Sciences, College of Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Sydney Popsuj
- School of Biological Sciences, College of Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Christopher J. Johnson
- School of Biological Sciences, College of Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Hussan S. Ali
- School of Biological Sciences, College of Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Shruthi Mohana Sundaram
- School of Biological Sciences, College of Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Alberto Stolfi
- School of Biological Sciences, College of Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
5
|
Ishida T, Satou Y. Ascidian embryonic cells with properties of neural-crest cells and neuromesodermal progenitors of vertebrates. Nat Ecol Evol 2024; 8:1154-1164. [PMID: 38565680 DOI: 10.1038/s41559-024-02387-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
Neural-crest cells and neuromesodermal progenitors (NMPs) are multipotent cells that are important for development of vertebrate embryos. In embryos of ascidians, which are the closest invertebrate relatives of vertebrates, several cells located at the border between the neural plate and the epidermal region have neural-crest-like properties; hence, the last common ancestor of ascidians and vertebrates may have had ancestral cells similar to neural-crest cells. However, these ascidian neural-crest-like cells do not produce cells that are commonly of mesodermal origin. Here we showed that a cell population located in the lateral region of the neural plate has properties resembling those of vertebrate neural-crest cells and NMPs. Among them, cells with Tbx6-related expression contribute to muscle near the tip of the tail region and cells with Sox1/2/3 expression give rise to the nerve cord. These observations and cross-species transcriptome comparisons indicate that these cells have properties similar to those of NMPs. Meanwhile, transcription factor genes Dlx.b, Zic-r.b and Snai, which are reminiscent of a gene circuit in vertebrate neural-crest cells, are involved in activation of Tbx6-related.b. Thus, the last common ancestor of ascidians and vertebrates may have had cells with properties of neural-crest cells and NMPs and such ancestral cells may have produced cells commonly of ectodermal and mesodermal origins.
Collapse
Affiliation(s)
- Tasuku Ishida
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan.
| |
Collapse
|
6
|
Piekarz KM, Stolfi A. Development and circuitry of the tunicate larval Motor Ganglion, a putative hindbrain/spinal cord homolog. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:200-211. [PMID: 37675754 PMCID: PMC10918034 DOI: 10.1002/jez.b.23221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/13/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023]
Abstract
The Motor Ganglion (MG) is a small collection of neurons that control the swimming movements of the tunicate tadpole larva. Situated at the base of the tail, molecular and functional comparisons suggest that may be a homolog of the spinal cord and/or hindbrain ("rhombospinal" region) of vertebrates. Here we review the most current knowledge of the development, connectivity, functions, and unique identities of the neurons that comprise the MG, drawn mostly from studies in Ciona spp. The simple cell lineages, minimal cellular composition, and comprehensively mapped "connectome" of the Ciona MG all make this an excellent model for studying the development and physiology of motor control in aquatic larvae.
Collapse
Affiliation(s)
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology
| |
Collapse
|
7
|
Imai KS. Gene regulatory networks in ascidian embryos. Genesis 2023; 61:e23570. [PMID: 37942672 DOI: 10.1002/dvg.23570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/10/2023]
Affiliation(s)
- Kaoru S Imai
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| |
Collapse
|
8
|
Nydam ML, Saffo MB, Di Gregorio A. Women in tunicate research: Pioneers of the past and their present legacy. Genesis 2023; 61:e23578. [PMID: 38009445 DOI: 10.1002/dvg.23578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/28/2023]
Abstract
The search for female scientists who pioneered the research on tunicates is hindered by the tradition of reporting only the first initials of authors' names on scientific publications using only the initials of their first names. While this practice has the theoretical merit of broadening the readership by preventing the possible bias that could be caused by the gender of the author(s) in some of the readers, it rendered the identification of female researchers active in, or before, the first half of the 20th century quite challenging. Sifting through several dozen electronic records, and with the help of references and/or quotes found online, we have stitched together the information that we were able to retrieve on the life of female scientists who authored some of the earliest publications on tunicates, and we have organized them in (approximate) chronological order. We have also compiled brief synopses of the findings of scientists active in the field of tunicate biology in more recent times, and organized them by subdiscipline.
Collapse
Affiliation(s)
- Marie L Nydam
- Life Sciences Concentration, Soka University of America, Aliso Viejo, California, USA
| | | | - Anna Di Gregorio
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, USA
| |
Collapse
|
9
|
Gigante ED, Piekarz KM, Gurgis A, Cohen L, Razy-Krajka F, Popsuj S, Ali HS, Sundaram SM, Stolfi A. Specification and survival of post-metamorphic branchiomeric neurons in the hindbrain of a non-vertebrate chordate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.16.545305. [PMID: 37645866 PMCID: PMC10461979 DOI: 10.1101/2023.06.16.545305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Tunicates are the sister group to the vertebrates, yet most species have a life cycle split between swimming larva and sedentary adult phases. During metamorphosis, larval neurons are largely replaced by adult-specific ones. Yet the regulatory mechanisms underlying this neural replacement remain largely unknown. Using tissue-specific CRISPR/Cas9-mediated mutagenesis in the tunicate Ciona, we show that orthologs of conserved hindbrain and branchiomeric neuron regulatory factors Pax2/5/8 and Phox2 are required to specify the "Neck", a compartment of cells set aside in the larva to give rise to cranial motor neuron-like neurons in the adult. Using bulk and single-cell RNAseq analyses, we also characterize the transcriptome of the Neck downstream of Pax2/5/8. Surprisingly, we find that Neck-derived adult ciliomotor neurons begin to differentiate in the larva, contrary to the long-held assumption that the adult nervous system is formed only after settlement and the death of larval neurons during metamorphosis. Finally, we show that manipulating FGF signaling during the larval phase alters the patterning of the Neck and its derivatives. Suppression of FGF converts Neck cells into larval neurons that fail to survive metamorphosis, while prolonged FGF signaling promotes an adult neural stem cell-like fate instead.
Collapse
Affiliation(s)
- Eduardo D Gigante
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332; USA
| | - Katarzyna M Piekarz
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332; USA
| | - Alexandra Gurgis
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332; USA
- Department of Biology, Case Western Reserve University, Cleveland, OH, 44106; USA
| | - Leslie Cohen
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332; USA
| | - Florian Razy-Krajka
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332; USA
| | - Sydney Popsuj
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332; USA
| | - Hussan S Ali
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332; USA
| | | | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332; USA
| |
Collapse
|
10
|
Schuster HC, Hirth F. Phylogenetic tracing of midbrain-specific regulatory sequences suggests single origin of eubilaterian brains. SCIENCE ADVANCES 2023; 9:eade8259. [PMID: 37224241 PMCID: PMC10208574 DOI: 10.1126/sciadv.ade8259] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 04/18/2023] [Indexed: 05/26/2023]
Abstract
Conserved cis-regulatory elements (CREs) control Engrailed-, Pax2-, and dachshund-related gene expression networks directing the formation and function of corresponding midbrain circuits in arthropods and vertebrates. Polarized outgroup analyses of 31 sequenced metazoan genomes representing all animal clades reveal the emergence of Pax2- and dachshund-related CRE-like sequences in anthozoan Cnidaria. The full complement, including Engrailed-related CRE-like sequences, is only detectable in spiralians, ecdysozoans, and chordates that have a brain; they exhibit comparable genomic locations and extensive nucleotide identities that reveal the presence of a conserved core domain, all of which are absent in non-neural genes and, together, distinguish them from randomly assembled sequences. Their presence concurs with a genetic boundary separating the rostral from caudal nervous systems, demonstrated for the metameric brains of annelids, arthropods, and chordates and the asegmental cycloneuralian and urochordate brain. These findings suggest that gene regulatory networks for midbrain circuit formation evolved within the lineage that led to the common ancestor of protostomes and deuterostomes.
Collapse
Affiliation(s)
- Helen C. Schuster
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, and Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | | |
Collapse
|
11
|
Kim K, Orvis J, Stolfi A. Pax3/7 regulates neural tube closure and patterning in a non-vertebrate chordate. Front Cell Dev Biol 2022; 10:999511. [PMID: 36172287 PMCID: PMC9511217 DOI: 10.3389/fcell.2022.999511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
Pax3/7 factors play numerous roles in the development of the dorsal nervous system of vertebrates. From specifying neural crest at the neural plate borders, to regulating neural tube closure and patterning of the resulting neural tube. However, it is unclear which of these roles are conserved in non-vertebrate chordates. Here we investigate the expression and function of Pax3/7 in the model tunicate Ciona. Pax3/7 is expressed in neural plate border cells during neurulation, and in central nervous system progenitors shortly after neural tube closure. We find that separate cis-regulatory elements control the expression in these two distinct lineages. Using CRISPR/Cas9-mediated mutagenesis, we knocked out Pax3/7 in F0 embryos specifically in these two separate territories. Pax3/7 knockout in the neural plate borders resulted in neural tube closure defects, suggesting an ancient role for Pax3/7 in this chordate-specific process. Furthermore, knocking out Pax3/7 in the neural impaired Motor Ganglion neuron specification, confirming a conserved role for this gene in patterning the neural tube as well. Taken together, these results suggests that key functions of Pax3/7 in neural tube development are evolutionarily ancient, dating back at least to the last common ancestor of vertebrates and tunicates.
Collapse
|
12
|
Sato A, Oba GM, Aubert-Kato N, Yura K, Bishop J. Co-expression network analysis of environmental canalization in the ascidian Ciona. BMC Ecol Evol 2022; 22:53. [PMID: 35484499 PMCID: PMC9052645 DOI: 10.1186/s12862-022-02006-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/01/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Canalization, or buffering, is defined as developmental stability in the face of genetic and/or environmental perturbations. Understanding how canalization works is important in predicting how species survive environmental change, as well as deciphering how development can be altered in the evolutionary process. However, how developmental gene expression is linked to buffering remains unclear. We addressed this by co-expression network analysis, comparing gene expression changes caused by heat stress during development at a whole-embryonic scale in reciprocal hybrid crosses of sibling species of the ascidian Ciona that are adapted to different thermal environments. RESULTS Since our previous work showed that developmental buffering in this group is maternally inherited, we first identified maternal developmental buffering genes (MDBGs) in which the expression level in embryos is both correlated to the level of environmental canalization and also differentially expressed depending on the species' gender roles in hybrid crosses. We found only 15 MDBGs, all of which showed high correlation coefficient values for expression with a large number of other genes, and 14 of these belonged to a single co-expression module. We then calculated correlation coefficients of expression between MDBGs and transcription factors in the central nervous system (CNS) developmental gene network that had previously been identified experimentally. We found that, compared to the correlation coefficients between MDBGs, which had an average of 0.96, the MDBGs are loosely linked to the CNS developmental genes (average correlation coefficient 0.45). Further, we investigated the correlation of each developmental to MDBGs, showing that only four out of 62 CNS developmental genes showed correlation coefficient > 0.9, comparable to the values between MDBGs, and three of these four genes were signaling molecules: BMP2/4, Wnt7, and Delta-like. CONCLUSIONS We show that the developmental pathway is not centrally located within the buffering network. We found that out of 62 genes in the developmental gene network, only four genes showed correlation coefficients as high as between MDBGs. We propose that loose links to MDBGs stabilize spatiotemporally dynamic development.
Collapse
Affiliation(s)
- Atsuko Sato
- Department of Biology, Ochanomizu University, Tokyo, Japan.
- The Laboratory, Marine Biological Association of the UK, Plymouth, UK.
- Human Life Innovation Center, Ochanomizu University, Tokyo, Japan.
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan.
| | - Gina M Oba
- Department of Biology, Ochanomizu University, Tokyo, Japan
- The Laboratory, Marine Biological Association of the UK, Plymouth, UK
| | - Nathanael Aubert-Kato
- Department of Information Sciences, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo, Japan
| | - Kei Yura
- Department of Biology, Ochanomizu University, Tokyo, Japan
- Department of Life Science & Medical Bioscience, Graduate School of Advanced Science & Engineering, Waseda University, Tokyo, Japan
- Human Life Innovation Center, Ochanomizu University, Tokyo, Japan
| | - John Bishop
- The Laboratory, Marine Biological Association of the UK, Plymouth, UK
| |
Collapse
|
13
|
Popsuj S, Stolfi A. Ebf Activates Expression of a Cholinergic Locus in a Multipolar Motor Ganglion Interneuron Subtype in Ciona. Front Neurosci 2022; 15:784649. [PMID: 34975385 PMCID: PMC8719597 DOI: 10.3389/fnins.2021.784649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Conserved transcription factors termed “terminal selectors” regulate neuronal sub-type specification and differentiation through combinatorial transcriptional regulation of terminal differentiation genes. The unique combinations of terminal differentiation gene products in turn contribute to the functional identities of each neuron. One well-characterized terminal selector is COE (Collier/Olf/Ebf), which has been shown to activate cholinergic gene batteries in C. elegans motor neurons. However, its functions in other metazoans, particularly chordates, is less clear. Here we show that the sole COE ortholog in the non-vertebrate chordate Ciona robusta, Ebf, controls the expression of the cholinergic locus VAChT/ChAT in a single dorsal interneuron of the larval Motor Ganglion, which is presumed to be homologous to the vertebrate spinal cord. We propose that, while the function of Ebf as a regulator of cholinergic neuron identity conserved across bilaterians, its exact role may have diverged in different cholinergic neuron subtypes (e.g., interneurons vs. motor neurons) in chordate-specific motor circuits.
Collapse
Affiliation(s)
- Sydney Popsuj
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
14
|
Akahoshi T, Utsumi MK, Oonuma K, Murakami M, Horie T, Kusakabe TG, Oka K, Hotta K. A single motor neuron determines the rhythm of early motor behavior in Ciona. SCIENCE ADVANCES 2021; 7:eabl6053. [PMID: 34890229 PMCID: PMC8664258 DOI: 10.1126/sciadv.abl6053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/21/2021] [Indexed: 05/25/2023]
Abstract
Recent work in tunicate supports the similarity between the motor circuits of vertebrates and basal deuterostome lineages. To understand how the rhythmic activity in motor circuits is acquired during development of protochordate Ciona, we investigated the coordination of the motor response by identifying a single pair of oscillatory motor neurons (MN2/A10.64). The MN2 neurons had Ca2+ oscillation with an ~80-s interval that was cell autonomous even in a dissociated single cell. The Ca2+ oscillation of MN2 coincided with the early tail flick (ETF). The spikes of the membrane potential in MN2 gradually correlated with the rhythm of ipsilateral muscle contractions in ETFs. The optogenetic experiments indicated that MN2 is a necessary and sufficient component of ETFs. These results indicate that MN2 is indispensable for the early spontaneous rhythmic motor behavior of Ciona. Our findings shed light on the understanding of development and evolution of chordate rhythmical locomotion.
Collapse
Affiliation(s)
- Taichi Akahoshi
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kohoku, Yokohama 223-8522, Japan
| | - Madoka K. Utsumi
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kohoku, Yokohama 223-8522, Japan
| | - Kouhei Oonuma
- Institute for Integrative Neurobiology and Department of Biology, Konan University, Kobe 658-8501, Japan
| | - Makoto Murakami
- Institute for Integrative Neurobiology and Department of Biology, Konan University, Kobe 658-8501, Japan
| | - Takeo Horie
- Shimoda Marine Research Center, University of Tsukuba, Shimoda 415-0025, Japan
| | - Takehiro G. Kusakabe
- Institute for Integrative Neurobiology and Department of Biology, Konan University, Kobe 658-8501, Japan
| | - Kotaro Oka
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kohoku, Yokohama 223-8522, Japan
| | - Kohji Hotta
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kohoku, Yokohama 223-8522, Japan
| |
Collapse
|
15
|
Olivo P, Palladino A, Ristoratore F, Spagnuolo A. Brain Sensory Organs of the Ascidian Ciona robusta: Structure, Function and Developmental Mechanisms. Front Cell Dev Biol 2021; 9:701779. [PMID: 34552923 PMCID: PMC8450388 DOI: 10.3389/fcell.2021.701779] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/12/2021] [Indexed: 11/13/2022] Open
Abstract
During evolution, new characters are designed by modifying pre-existing structures already present in ancient organisms. In this perspective, the Central Nervous System (CNS) of ascidian larva offers a good opportunity to analyze a complex phenomenon with a simplified approach. As sister group of vertebrates, ascidian tadpole larva exhibits a dorsal CNS, made up of only about 330 cells distributed into the anterior sensory brain vesicle (BV), connected to the motor ganglion (MG) and a caudal nerve cord (CNC) in the tail. Low number of cells does not mean, however, low complexity. The larval brain contains 177 neurons, for which a documented synaptic connectome is now available, and two pigmented organs, the otolith and the ocellus, controlling larval swimming behavior. The otolith is involved in gravity perception and the ocellus in light perception. Here, we specifically review the studies focused on the development of the building blocks of ascidians pigmented sensory organs, namely pigment cells and photoreceptor cells. We focus on what it is known, up to now, on the molecular bases of specification and differentiation of both lineages, on the function of these organs after larval hatching during pre-settlement period, and on the most cutting-edge technologies, like single cell RNAseq and genome editing CRISPR/CAS9, that, adapted and applied to Ciona embryos, are increasingly enhancing the tractability of Ciona for developmental studies, including pigmented organs formation.
Collapse
Affiliation(s)
- Paola Olivo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Antonio Palladino
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Filomena Ristoratore
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| |
Collapse
|
16
|
Borba C, Kourakis MJ, Schwennicke S, Brasnic L, Smith WC. Fold Change Detection in Visual Processing. Front Neural Circuits 2021; 15:705161. [PMID: 34497492 PMCID: PMC8419522 DOI: 10.3389/fncir.2021.705161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
Visual processing transforms the complexities of the visual world into useful information. Ciona, an invertebrate chordate and close relative of the vertebrates, has one of the simplest nervous systems known, yet has a range of visuomotor behaviors. This simplicity has facilitated studies linking behavior and neural circuitry. Ciona larvae have two distinct visuomotor behaviors - a looming shadow response and negative phototaxis. These are mediated by separate neural circuits that initiate from different clusters of photoreceptors, with both projecting to a CNS structure called the posterior brain vesicle (pBV). We report here that inputs from both circuits are processed to generate fold change detection (FCD) outputs. In FCD, the behavioral response scales with the relative fold change in input, but is invariant to the overall magnitude of the stimulus. Moreover, the two visuomotor behaviors have fundamentally different stimulus/response relationships - indicative of differing circuit strategies, with the looming shadow response showing a power relationship to fold change, while the navigation behavior responds linearly. Pharmacological modulation of the FCD response points to the FCD circuits lying outside of the visual organ (the ocellus), with the pBV being the most likely location. Consistent with these observations, the connectivity and properties of pBV interneurons conform to known FCD circuit motifs, but with different circuit architectures for the two circuits. The negative phototaxis circuit forms a putative incoherent feedforward loop that involves interconnecting cholinergic and GABAergic interneurons. The looming shadow circuit uses the same cholinergic and GABAergic interneurons, but with different synaptic inputs to create a putative non-linear integral feedback loop. These differing circuit architectures are consistent with the behavioral outputs of the two circuits. Finally, while some reports have highlighted parallels between the pBV and the vertebrate midbrain, suggesting a common origin for the two, others reports have disputed this, suggesting that invertebrate chordates lack a midbrain homolog. The convergence of visual inputs at the pBV, and its putative role in visual processing reported here and in previous publications, lends further support to the proposed common origin of the pBV and the vertebrate midbrain.
Collapse
Affiliation(s)
- Cezar Borba
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Matthew J Kourakis
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Shea Schwennicke
- College of Creative Studies, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Lorena Brasnic
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States.,Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - William C Smith
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States.,College of Creative Studies, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
17
|
Winkley KM, Reeves WM, Veeman MT. Single-cell analysis of cell fate bifurcation in the chordate Ciona. BMC Biol 2021; 19:180. [PMID: 34465302 PMCID: PMC8408944 DOI: 10.1186/s12915-021-01122-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/12/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Inductive signaling interactions between different cell types are a major mechanism for the further diversification of embryonic cell fates. Most blastomeres in the model chordate Ciona robusta become restricted to a single predominant fate between the 64-cell and mid-gastrula stages. The deeply stereotyped and well-characterized Ciona embryonic cell lineages allow the transcriptomic analysis of newly established cell types very early in their divergence from sibling cell states without the pseudotime inference needed in the analysis of less synchronized cell populations. This is the first ascidian study to use droplet scRNAseq with large numbers of analyzed cells as early as the 64-cell stage when major lineages such as primary notochord first become fate restricted. RESULTS AND CONCLUSIONS We identify 59 distinct cell states, including new subregions of the b-line neural lineage and the early induction of the tail tip epidermis. We find that 34 of these cell states are directly or indirectly dependent on MAPK-mediated signaling critical to early Ciona patterning. Most of the MAPK-dependent bifurcations are canalized with the signal-induced cell fate lost upon MAPK inhibition, but the posterior endoderm is unique in being transformed into a novel state expressing some but not all markers of both endoderm and muscle. Divergent gene expression between newly bifurcated sibling cell types is dominated by upregulation in the induced cell type. The Ets family transcription factor Elk1/3/4 is uniquely upregulated in nearly all the putatively direct inductions. Elk1/3/4 upregulation together with Ets transcription factor binding site enrichment analysis enables inferences about which bifurcations are directly versus indirectly controlled by MAPK signaling. We examine notochord induction in detail and find that the transition between a Zic/Ets-mediated regulatory state and a Brachyury/FoxA-mediated regulatory state is unexpectedly late. This supports a "broad-hourglass" model of cell fate specification in which many early tissue-specific genes are induced in parallel to key tissue-specific transcriptional regulators via the same set of transcriptional inputs.
Collapse
Affiliation(s)
- Konner M Winkley
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Wendy M Reeves
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Michael T Veeman
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
18
|
Oonuma K, Yamamoto M, Moritsugu N, Okawa N, Mukai M, Sotani M, Tsunemi S, Sugimoto H, Nakagome E, Hasegawa Y, Shimai K, Horie T, Kusakabe TG. Evolution of Developmental Programs for the Midline Structures in Chordates: Insights From Gene Regulation in the Floor Plate and Hypochord Homologues of Ciona Embryos. Front Cell Dev Biol 2021; 9:704367. [PMID: 34235159 PMCID: PMC8256262 DOI: 10.3389/fcell.2021.704367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 05/25/2021] [Indexed: 11/24/2022] Open
Abstract
In vertebrate embryos, dorsal midline tissues, including the notochord, the prechordal plate, and the floor plate, play important roles in patterning of the central nervous system, somites, and endodermal tissues by producing extracellular signaling molecules, such as Sonic hedgehog (Shh). In Ciona, hedgehog.b, one of the two hedgehog genes, is expressed in the floor plate of the embryonic neural tube, while none of the hedgehog genes are expressed in the notochord. We have identified a cis-regulatory region of hedgehog.b that was sufficient to drive a reporter gene expression in the floor plate. The hedgehog.b cis-regulatory region also drove ectopic expression of the reporter gene in the endodermal strand, suggesting that the floor plate and the endodermal strand share a part of their gene regulatory programs. The endodermal strand occupies the same topographic position of the embryo as does the vertebrate hypochord, which consists of a row of single cells lined up immediately ventral to the notochord. The hypochord shares expression of several genes with the floor plate, including Shh and FoxA, and play a role in dorsal aorta development. Whole-embryo single-cell transcriptome analysis identified a number of genes specifically expressed in both the floor plate and the endodermal strand in Ciona tailbud embryos. A Ciona FoxA ortholog FoxA.a is shown to be a candidate transcriptional activator for the midline gene battery. The present findings suggest an ancient evolutionary origin of a common developmental program for the midline structures in Olfactores.
Collapse
Affiliation(s)
- Kouhei Oonuma
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan.,Institute for Integrative Neurobiology, Graduate School of Natural Science, Konan University, Kobe, Japan
| | - Maho Yamamoto
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan
| | - Naho Moritsugu
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan
| | - Nanako Okawa
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan.,Institute for Integrative Neurobiology, Graduate School of Natural Science, Konan University, Kobe, Japan
| | - Megumi Mukai
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan.,Institute for Integrative Neurobiology, Graduate School of Natural Science, Konan University, Kobe, Japan
| | - Miku Sotani
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan.,Institute for Integrative Neurobiology, Graduate School of Natural Science, Konan University, Kobe, Japan
| | - Shuto Tsunemi
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan.,Institute for Integrative Neurobiology, Graduate School of Natural Science, Konan University, Kobe, Japan
| | - Haruka Sugimoto
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan
| | - Eri Nakagome
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan
| | - Yuichi Hasegawa
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan.,Institute for Integrative Neurobiology, Graduate School of Natural Science, Konan University, Kobe, Japan
| | - Kotaro Shimai
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan.,Institute for Integrative Neurobiology, Graduate School of Natural Science, Konan University, Kobe, Japan
| | - Takeo Horie
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Japan
| | - Takehiro G Kusakabe
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan.,Institute for Integrative Neurobiology, Graduate School of Natural Science, Konan University, Kobe, Japan
| |
Collapse
|
19
|
Hudson C, Yasuo H. Neuromesodermal Lineage Contribution to CNS Development in Invertebrate and Vertebrate Chordates. Genes (Basel) 2021; 12:genes12040592. [PMID: 33920662 PMCID: PMC8073528 DOI: 10.3390/genes12040592] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Ascidians are invertebrate chordates and the closest living relative to vertebrates. In ascidian embryos a large part of the central nervous system arises from cells associated with mesoderm rather than ectoderm lineages. This seems at odds with the traditional view of vertebrate nervous system development which was thought to be induced from ectoderm cells, initially with anterior character and later transformed by posteriorizing signals, to generate the entire anterior-posterior axis of the central nervous system. Recent advances in vertebrate developmental biology, however, show that much of the posterior central nervous system, or spinal cord, in fact arises from cells that share a common origin with mesoderm. This indicates a conserved role for bi-potential neuromesoderm precursors in chordate CNS formation. However, the boundary between neural tissue arising from these distinct neural lineages does not appear to be fixed, which leads to the notion that anterior-posterior patterning and neural fate formation can evolve independently.
Collapse
|
20
|
Lowe EK, Racioppi C, Peyriéras N, Ristoratore F, Christiaen L, Swalla BJ, Stolfi A. A cis-regulatory change underlying the motor neuron-specific loss of Ebf expression in immotile tunicate larvae. Evol Dev 2021; 23:72-85. [PMID: 33355999 PMCID: PMC7920938 DOI: 10.1111/ede.12364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 10/23/2020] [Accepted: 12/06/2020] [Indexed: 11/26/2022]
Abstract
Many species in the tunicate family Molgulidae have independently lost their swimming larval form and instead develop as tailless, immotile larvae. These larvae do not develop structures that are essential for swimming such as the notochord, otolith, and tail muscles. However, little is known about neural development in these nonswimming larvae. Here, we studied the patterning of the Motor Ganglion (MG) of Molgula occulta, a nonswimming species. We found that spatial patterns of MG neuron regulators in this species are conserved, compared with species with swimming larvae, suggesting that the gene networks regulating their expression are intact despite the loss of swimming. However, expression of the key motor neuron regulatory gene Ebf (Collier/Olf/EBF) was reduced in the developing MG of M. occulta when compared with molgulid species with swimming larvae. This was corroborated by measuring allele-specific expression of Ebf in hybrid embryos from crosses of M. occulta with the swimming species M. oculata. Heterologous reporter construct assays in the model tunicate species Ciona robusta revealed a specific cis-regulatory sequence change that reduces expression of Ebf in the MG, but not in other cells. Taken together, these data suggest that MG neurons are still specified in M. occulta larvae, but their differentiation might be impaired due to reduction of Ebf expression levels.
Collapse
Affiliation(s)
- Elijah K. Lowe
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Station Biologique de Roscoff, Roscoff, France
| | - Claudia Racioppi
- Station Biologique de Roscoff, Roscoff, France
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, USA
| | - Nadine Peyriéras
- Station Biologique de Roscoff, Roscoff, France
- UPS3611 Complex Systems Institute Paris Ile-de-France (ISC-PIF), CNRS, Paris, France
- USR3695 BioEmergences, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Filomena Ristoratore
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Lionel Christiaen
- Station Biologique de Roscoff, Roscoff, France
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, USA
| | - Billie J. Swalla
- Station Biologique de Roscoff, Roscoff, France
- Department of Biology, University of Washington, Seattle, WA, USA
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, USA
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Station Biologique de Roscoff, Roscoff, France
| |
Collapse
|
21
|
Kobayashi K, Maeda K, Tokuoka M, Mochizuki A, Satou Y. Using linkage logic theory to control dynamics of a gene regulatory network of a chordate embryo. Sci Rep 2021; 11:4001. [PMID: 33597570 PMCID: PMC7889898 DOI: 10.1038/s41598-021-83045-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/28/2021] [Indexed: 11/09/2022] Open
Abstract
Linkage logic theory provides a mathematical criterion to control network dynamics by manipulating activities of a subset of network nodes, which are collectively called a feedback vertex set (FVS). Because many biological functions emerge from dynamics of biological networks, this theory provides a promising tool for controlling biological functions. By manipulating the activity of FVS molecules identified in a gene regulatory network (GRN) for fate specification of seven tissues in ascidian embryos, we previously succeeded in reproducing six of the seven cell types. Simultaneously, we discovered that the experimentally reconstituted GRN lacked information sufficient to reproduce muscle cells. Here, we utilized linkage logic theory as a tool to find missing edges in the GRN. Then, we identified a FVS from an updated version of the GRN and confirmed that manipulating the activity of this FVS was sufficient to induce all seven cell types, even in a multi-cellular environment. Thus, linkage logic theory provides tools to find missing edges in experimentally reconstituted networks, to determine whether reconstituted networks contain sufficient information to fulfil expected functions, and to reprogram cell fate.
Collapse
Affiliation(s)
- Kenji Kobayashi
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | - Kazuki Maeda
- Faculty of Informatics, The University of Fukuchiyama, 3370 Hori, Fukuchiyama, Kyoto, 620-0886, Japan
| | - Miki Tokuoka
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | - Atsushi Mochizuki
- Institute for Frontier Life and Medical Sciences, Kyoto University, Sakyo, Kyoto, 606-8507, Japan.
| | - Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto, 606-8502, Japan.
| |
Collapse
|
22
|
Reeves WM, Shimai K, Winkley KM, Veeman MT. Brachyury controls Ciona notochord fate as part of a feed-forward network. Development 2021; 148:dev195230. [PMID: 33419874 PMCID: PMC7875503 DOI: 10.1242/dev.195230] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/18/2020] [Indexed: 12/22/2022]
Abstract
The notochord is a defining feature of the chordates. The transcription factor Brachyury (Bra) is a key regulator of notochord fate but here we show that it is not a unitary master regulator in the model chordate Ciona Ectopic Bra expression only partially reprograms other cell types to a notochord-like transcriptional profile and a subset of notochord-enriched genes is unaffected by CRISPR Bra disruption. We identify Foxa.a and Mnx as potential co-regulators, and find that combinatorial cocktails are more effective at reprogramming other cell types than Bra alone. We reassess the network relationships between Bra, Foxa.a and other components of the notochord gene regulatory network, and find that Foxa.a expression in the notochord is regulated by vegetal FGF signaling. It is a direct activator of Bra expression and has a binding motif that is significantly enriched in the regulatory regions of notochord-enriched genes. These and other results indicate that Bra and Foxa.a act together in a regulatory network dominated by positive feed-forward interactions, with neither being a classically defined master regulator.
Collapse
Affiliation(s)
- Wendy M Reeves
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Kotaro Shimai
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Konner M Winkley
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Michael T Veeman
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
23
|
Transcription Factors of the bHLH Family Delineate Vertebrate Landmarks in the Nervous System of a Simple Chordate. Genes (Basel) 2020; 11:genes11111262. [PMID: 33114624 PMCID: PMC7693978 DOI: 10.3390/genes11111262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
Tunicates are marine invertebrates whose tadpole-like larvae feature a highly simplified version of the chordate body plan. Similar to their distant vertebrate relatives, tunicate larvae develop a regionalized central nervous system and form distinct neural structures, which include a rostral sensory vesicle, a motor ganglion, and a caudal nerve cord. The sensory vesicle contains a photoreceptive complex and a statocyst, and based on the comparable expression patterns of evolutionarily conserved marker genes, it is believed to include proto-hypothalamic and proto-retinal territories. The evolutionarily conserved molecular fingerprints of these landmarks of the vertebrate brain consist of genes encoding for different transcription factors, and of the gene batteries that they control, and include several members of the bHLH family. Here we review the complement of bHLH genes present in the streamlined genome of the tunicate Ciona robusta and their current classification, and summarize recent studies on proneural bHLH transcription factors and their expression territories. We discuss the possible roles of bHLH genes in establishing the molecular compartmentalization of the enticing nervous system of this unassuming chordate.
Collapse
|
24
|
Sinha S, Jones BM, Traniello IM, Bukhari SA, Halfon MS, Hofmann HA, Huang S, Katz PS, Keagy J, Lynch VJ, Sokolowski MB, Stubbs LJ, Tabe-Bordbar S, Wolfner MF, Robinson GE. Behavior-related gene regulatory networks: A new level of organization in the brain. Proc Natl Acad Sci U S A 2020; 117:23270-23279. [PMID: 32661177 PMCID: PMC7519311 DOI: 10.1073/pnas.1921625117] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Neuronal networks are the standard heuristic model today for describing brain activity associated with animal behavior. Recent studies have revealed an extensive role for a completely distinct layer of networked activities in the brain-the gene regulatory network (GRN)-that orchestrates expression levels of hundreds to thousands of genes in a behavior-related manner. We examine emerging insights into the relationships between these two types of networks and discuss their interplay in spatial as well as temporal dimensions, across multiple scales of organization. We discuss properties expected of behavior-related GRNs by drawing inspiration from the rich literature on GRNs related to animal development, comparing and contrasting these two broad classes of GRNs as they relate to their respective phenotypic manifestations. Developmental GRNs also represent a third layer of network biology, playing out over a third timescale, which is believed to play a crucial mediatory role between neuronal networks and behavioral GRNs. We end with a special emphasis on social behavior, discuss whether unique GRN organization and cis-regulatory architecture underlies this special class of behavior, and review literature that suggests an affirmative answer.
Collapse
Affiliation(s)
- Saurabh Sinha
- Department of Computer Science, University of Illinois, Urbana-Champaign, IL 61801;
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL 61801
| | - Beryl M Jones
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL 61801
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544
| | - Ian M Traniello
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL 61801
- Neuroscience Program, University of Illinois, Urbana-Champaign, IL 61801
| | - Syed A Bukhari
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL 61801
- Informatics Program, University of Illinois, Urbana-Champaign, IL 61820
| | - Marc S Halfon
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, NY 14203
| | - Hans A Hofmann
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712
- Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX 78712
| | - Sui Huang
- Institute for Systems Biology, Seattle, WA 98109
| | - Paul S Katz
- Department of Biology, University of Massachusetts, Amherst, MA 01003
| | - Jason Keagy
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois, Urbana-Champaign, IL 61801
| | - Vincent J Lynch
- Department of Biological Sciences, University at Buffalo-State University of New York, Buffalo, NY 14260
| | - Marla B Sokolowski
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
- Program in Child and Brain Development, Canadian Institute for Advanced Research, Toronto, ON M5G 1M1, Canada
| | - Lisa J Stubbs
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL 61801
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL 61801
| | - Shayan Tabe-Bordbar
- Department of Computer Science, University of Illinois, Urbana-Champaign, IL 61801
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850
| | - Gene E Robinson
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL 61801;
- Neuroscience Program, University of Illinois, Urbana-Champaign, IL 61801
- Department of Entomology, University of Illinois, Urbana-Champaign, IL 61801
| |
Collapse
|
25
|
Coppola U, Olivo P, D’Aniello E, Johnson CJ, Stolfi A, Ristoratore F. Rimbp, a New Marker for the Nervous System of the Tunicate Ciona robusta. Genes (Basel) 2020; 11:genes11091006. [PMID: 32867148 PMCID: PMC7565545 DOI: 10.3390/genes11091006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/16/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
Establishment of presynaptic mechanisms by proteins that regulate neurotransmitter release in the presynaptic active zone is considered a fundamental step in animal evolution. Rab3 interacting molecule-binding proteins (Rimbps) are crucial components of the presynaptic active zone and key players in calcium homeostasis. Although Rimbp involvement in these dynamics has been described in distantly related models such as fly and human, the role of this family in most invertebrates remains obscure. To fill this gap, we defined the evolutionary history of Rimbp family in animals, from sponges to mammals. We report, for the first time, the expression of the two isoforms of the unique Rimbp family member in Ciona robusta in distinct domains of the larval nervous system. We identify intronic enhancers that are able to drive expression in different nervous system territories partially corresponding to Rimbp endogenous expression. The analysis of gene expression patterns and the identification of regulatory elements of Rimbp will positively impact our understanding of this family of genes in the context of Ciona embryogenesis.
Collapse
Affiliation(s)
- Ugo Coppola
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy; (U.C.); (P.O.); (E.D.)
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Paola Olivo
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy; (U.C.); (P.O.); (E.D.)
| | - Enrico D’Aniello
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy; (U.C.); (P.O.); (E.D.)
| | | | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- Correspondence: (A.S.); (F.R.)
| | - Filomena Ristoratore
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy; (U.C.); (P.O.); (E.D.)
- Correspondence: (A.S.); (F.R.)
| |
Collapse
|
26
|
Ancestral regulatory mechanisms specify conserved midbrain circuitry in arthropods and vertebrates. Proc Natl Acad Sci U S A 2020; 117:19544-19555. [PMID: 32747566 PMCID: PMC7431035 DOI: 10.1073/pnas.1918797117] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Comparative developmental genetics indicate insect and mammalian forebrains form and function in comparable ways. However, these data are open to opposing interpretations that advocate either a single origin of the brain and its adaptive modification during animal evolution; or multiple, independent origins of the many different brains present in extant Bilateria. Here, we describe conserved regulatory elements that mediate the spatiotemporal expression of developmental control genes directing the formation and function of midbrain circuits in flies, mice, and humans. These circuits develop from corresponding midbrain-hindbrain boundary regions and regulate comparable behaviors for balance and motor control. Our findings suggest that conserved regulatory mechanisms specify cephalic circuits for sensory integration and coordinated behavior common to all animals that possess a brain. Corresponding attributes of neural development and function suggest arthropod and vertebrate brains may have an evolutionarily conserved organization. However, the underlying mechanisms have remained elusive. Here, we identify a gene regulatory and character identity network defining the deutocerebral–tritocerebral boundary (DTB) in Drosophila. This network comprises genes homologous to those directing midbrain-hindbrain boundary (MHB) formation in vertebrates and their closest chordate relatives. Genetic tracing reveals that the embryonic DTB gives rise to adult midbrain circuits that in flies control auditory and vestibular information processing and motor coordination, as do MHB-derived circuits in vertebrates. DTB-specific gene expression and function are directed by cis-regulatory elements of developmental control genes that include homologs of mammalian Zinc finger of the cerebellum and Purkinje cell protein 4. Drosophila DTB-specific cis-regulatory elements correspond to regulatory sequences of human ENGRAILED-2, PAX-2, and DACHSHUND-1 that direct MHB-specific expression in the embryonic mouse brain. We show that cis-regulatory elements and the gene networks they regulate direct the formation and function of midbrain circuits for balance and motor coordination in insects and mammals. Regulatory mechanisms mediating the genetic specification of cephalic neural circuits in arthropods correspond to those in chordates, thereby implying their origin before the divergence of deuterostomes and ecdysozoans.
Collapse
|
27
|
Kim K, Gibboney S, Razy-Krajka F, Lowe EK, Wang W, Stolfi A. Regulation of Neurogenesis by FGF Signaling and Neurogenin in the Invertebrate Chordate Ciona. Front Cell Dev Biol 2020; 8:477. [PMID: 32656209 PMCID: PMC7324659 DOI: 10.3389/fcell.2020.00477] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/21/2020] [Indexed: 12/22/2022] Open
Abstract
Neurogenesis is a complex sequence of cellular processes and behaviors driven by the coordinated expression of conserved effectors. The bipolar tail neurons (BTNs) of Ciona develop according to a highly dynamic, yet highly stereotyped developmental program and thus could serve as an accessible model system for neurogenesis, including underlying cell behaviors like neuronal delamination, migration, and polarized axon outgrowth. Here we investigate both the upstream events that shape BTN neurogenesis through spatiotemporal regulation of the conserved proneural factor Neurog, spatiotemporal, and the gene expression profile of differentiating BTNs downstream of Neurog activity. We show that, although early FGF signaling is required for Neurog expression and BTN specification, Fgf8/17/18 is expressed in tail tip cells at later stages and suppresses sustained Neurog expression in the anterior BTN (aBTN) lineage, such that only one cell (the one furthest from the source of Fgf8/17/18) maintains Neurog expression and becomes a neuron. Curiously, Fgf8/17/18 might not affect neurogenesis of the posterior BTNs (pBTNs), which are in direct contact with the Fgf8/17/18-expressing cells. Finally, to profile gene expression associated with BTN neurogenesis we performed RNAseq of isolated BTN lineage cells in which BTN neurogenesis was enhanced or suppressed by perturbing Neurog function. This allowed us to identify several candidate genes that might play conserved roles in neurogenesis and neuronal migration in other animals, including mammals.
Collapse
Affiliation(s)
- Kwantae Kim
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Susanne Gibboney
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Florian Razy-Krajka
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Elijah K. Lowe
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Wei Wang
- Department of Biology, New York University, New York, NY, United States
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
28
|
Liu B, Satou Y. The genetic program to specify ectodermal cells in ascidian embryos. Dev Growth Differ 2020; 62:301-310. [PMID: 32130723 DOI: 10.1111/dgd.12660] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/11/2020] [Accepted: 02/21/2020] [Indexed: 12/18/2022]
Abstract
The ascidian belongs to the sister group of vertebrates and shares many features with them. The gene regulatory network (GRN) controlling gene expression in ascidian embryonic development leading to the tadpole larva has revealed evolutionarily conserved gene circuits between ascidians and vertebrates. These conserved mechanisms are indeed useful to infer the original developmental programs of the ancestral chordates. Simultaneously, these studies have revealed which gene circuits are missing in the ascidian GRN; these gene circuits may have been acquired in the vertebrate lineage. In particular, the GRN responsible for gene expression in ectodermal cells of ascidian embryos has revealed the genetic programs that regulate the regionalization of the brain, formation of palps derived from placode-like cells, and differentiation of sensory neurons derived from neural crest-like cells. We here discuss how these studies have given insights into the evolution of these traits.
Collapse
Affiliation(s)
- Boqi Liu
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
29
|
Gibboney S, Orvis J, Kim K, Johnson CJ, Martinez-Feduchi P, Lowe EK, Sharma S, Stolfi A. Effector gene expression underlying neuron subtype-specific traits in the Motor Ganglion of Ciona. Dev Biol 2020; 458:52-63. [PMID: 31639337 PMCID: PMC6987015 DOI: 10.1016/j.ydbio.2019.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/11/2019] [Accepted: 10/16/2019] [Indexed: 12/31/2022]
Abstract
The central nervous system of the Ciona larva contains only 177 neurons. The precise regulation of neuron subtype-specific morphogenesis and differentiation observed during the formation of this minimal connectome offers a unique opportunity to dissect gene regulatory networks underlying chordate neurodevelopment. Here we compare the transcriptomes of two very distinct neuron types in the hindbrain/spinal cord homolog of Ciona, the Motor Ganglion (MG): the Descending decussating neuron (ddN, proposed homolog of Mauthner Cells in vertebrates) and the MG Interneuron 2 (MGIN2). Both types are invariantly represented by a single bilaterally symmetric left/right pair of cells in every larva. Supernumerary ddNs and MGIN2s were generated in synchronized embryos and isolated by fluorescence-activated cell sorting for transcriptome profiling. Differential gene expression analysis revealed ddN- and MGIN2-specific enrichment of a wide range of genes, including many encoding potential "effectors" of subtype-specific morphological and functional traits. More specifically, we identified the upregulation of centrosome-associated, microtubule-stabilizing/bundling proteins and extracellular guidance cues part of a single intrinsic regulatory program that might underlie the unique polarization of the ddNs, the only descending MG neurons that cross the midline. Consistent with our predictions, CRISPR/Cas9-mediated, tissue-specific elimination of two such candidate effectors, Efcab6-related and Netrin1, impaired ddN polarized axon outgrowth across the midline.
Collapse
Affiliation(s)
- Susanne Gibboney
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jameson Orvis
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Kwantae Kim
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Christopher J Johnson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | | | - Elijah K Lowe
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Sarthak Sharma
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
30
|
Foxg specifies sensory neurons in the anterior neural plate border of the ascidian embryo. Nat Commun 2019; 10:4911. [PMID: 31664020 PMCID: PMC6820760 DOI: 10.1038/s41467-019-12839-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 10/02/2019] [Indexed: 12/12/2022] Open
Abstract
Foxg constitutes a regulatory loop with Fgf8 and plays an important role in the development of anterior placodes and the telencephalon in vertebrate embryos. Ascidians, which belong to Tunicata, the sister group of vertebrates, develop a primitive placode-like structure at the anterior boundary of the neural plate, but lack a clear counterpart of the telencephalon. In this animal, Foxg is expressed in larval palps, which are adhesive organs with sensory neurons. Here, we show that Foxg begins to be expressed in two separate rows of cells within the neural plate boundary region under the control of the MAPK pathway to pattern this region. However, Foxg is not expressed in the brain, and we find no evidence that knockdown of Foxg affects brain formation. Our data suggest that recruitment of Fgf to the downstream of Foxg might have been a critical evolutionary event for the telencephalon in the vertebrate lineage. Vertebrate telencephalon formation requires Foxg-Fgf8 cross-regulation, but while ascidians express Foxg in the neural plate, they lack a telencephalon. Here the authors show that Foxg loss does not affect ascidian brain formation, indicating that telencephalon evolution required recruitment of Fgf downstream of Foxg.
Collapse
|
31
|
Razy-Krajka F, Stolfi A. Regulation and evolution of muscle development in tunicates. EvoDevo 2019; 10:13. [PMID: 31249657 PMCID: PMC6589888 DOI: 10.1186/s13227-019-0125-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/08/2019] [Indexed: 12/16/2022] Open
Abstract
For more than a century, studies on tunicate muscle formation have revealed many principles of cell fate specification, gene regulation, morphogenesis, and evolution. Here, we review the key studies that have probed the development of all the various muscle cell types in a wide variety of tunicate species. We seize this occasion to explore the implications and questions raised by these findings in the broader context of muscle evolution in chordates.
Collapse
Affiliation(s)
- Florian Razy-Krajka
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, USA
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, USA
| |
Collapse
|
32
|
Evolution of Snail-mediated regulation of neural crest and placodes from an ancient role in bilaterian neurogenesis. Dev Biol 2019; 453:180-190. [PMID: 31211947 DOI: 10.1016/j.ydbio.2019.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 12/26/2022]
Abstract
A major challenge in vertebrate evolution is to identify the gene regulatory mechanisms that facilitated the origin of neural crest cells and placodes from ancestral precursors in invertebrates. Here, we show in lamprey, a primitively jawless vertebrate, that the transcription factor Snail is expressed simultaneously throughout the neural plate, neural plate border, and pre-placodal ectoderm in the early embryo and is then upregulated in the CNS throughout neurogenesis. Using CRISPR/Cas9-mediated genome editing, we demonstrate that Snail plays functional roles in all of these embryonic domains or their derivatives. We first show that Snail patterns the neural plate border by repressing lateral expansion of Pax3/7 and activating nMyc and ZicA. We also present evidence that Snail is essential for DlxB-mediated establishment of the pre-placodal ectoderm but is not required for SoxB1a expression during formation of the neural plate proper. At later stages, Snail regulates formation of neural crest-derived and placode-derived PNS neurons and controls CNS neural differentiation in part by promoting cell survival. Taken together with established functions of invertebrate Snail genes, we identify a pan-bilaterian mechanism that extends to jawless vertebrates for regulating neurogenesis that is dependent on Snail transcription factors. We propose that ancestral vertebrates deployed an evolutionarily conserved Snail expression domain in the CNS and PNS for neurogenesis and then acquired derived functions in neural crest and placode development by recruitment of regulatory genes downstream of neuroectodermal Snail activity. Our results suggest that Snail regulatory mechanisms in vertebrate novelties such as the neural crest and placodes may have emerged from neurogenic roles that originated early in bilaterian evolution.
Collapse
|
33
|
Sharma S, Wang W, Stolfi A. Single-cell transcriptome profiling of the Ciona larval brain. Dev Biol 2019; 448:226-236. [PMID: 30392840 PMCID: PMC6487232 DOI: 10.1016/j.ydbio.2018.09.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/10/2018] [Accepted: 09/10/2018] [Indexed: 11/27/2022]
Abstract
The tadpole-type larva of Ciona has emerged as an intriguing model system for the study of neurodevelopment. The Ciona intestinalis connectome has been recently mapped, revealing the smallest central nervous system (CNS) known in any chordate, with only 177 neurons. This minimal CNS is highly reminiscent of larger CNS of vertebrates, sharing many conserved developmental processes, anatomical compartments, neuron subtypes, and even specific neural circuits. Thus, the Ciona tadpole offers a unique opportunity to understand the development and wiring of a chordate CNS at single-cell resolution. Here we report the use of single-cell RNAseq to profile the transcriptomes of single cells isolated by fluorescence-activated cell sorting (FACS) from the whole brain of Ciona robusta (formerly intestinalis Type A) larvae. We have also compared these profiles to bulk RNAseq data from specific subsets of brain cells isolated by FACS using cell type-specific reporter plasmid expression. Taken together, these datasets have begun to reveal the compartment- and cell-specific gene expression patterns that define the organization of the Ciona larval brain.
Collapse
Affiliation(s)
- Sarthak Sharma
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA, United States
| | - Wei Wang
- New York University, Department of Biology, New York, NY, United States
| | - Alberto Stolfi
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA, United States.
| |
Collapse
|
34
|
Antero-posterior ectoderm patterning by canonical Wnt signaling during ascidian development. PLoS Genet 2019; 15:e1008054. [PMID: 30925162 PMCID: PMC6457572 DOI: 10.1371/journal.pgen.1008054] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/10/2019] [Accepted: 02/28/2019] [Indexed: 01/21/2023] Open
Abstract
Wnt/β-catenin signaling is an ancient pathway in metazoans and controls various developmental processes, in particular the establishment and patterning of the embryonic primary axis. In vertebrates, a graded Wnt activity from posterior to anterior endows cells with positional information in the central nervous system. Recent studies in hemichordates support a conserved role for Wnt/β-catenin in ectoderm antero-posterior patterning at the base of the deuterostomes. Ascidians are marine invertebrates and the closest relatives of vertebrates. By combining gain- and loss-of-function approaches, we have determined the role of Wnt/β-catenin in patterning the three ectoderm derivatives of the ascidian Ciona intestinalis, central nervous system, peripheral nervous system and epidermis. Activating Wnt/β-catenin signaling from gastrulation led to a dramatic transformation of the ectoderm with a loss of anterior identities and a reciprocal anterior extension of posterior identities, consistent with studies in other metazoans. Surprisingly, inhibiting Wnt signaling did not produce a reciprocal anteriorization of the embryo with a loss of more posterior identities like in vertebrates and hemichordate. Epidermis patterning was overall unchanged. Only the identity of two discrete regions of the central nervous system, the anteriormost and the posteriormost regions, were under the control of Wnt. Finally, the caudal peripheral nervous system, while being initially Wnt dependent, formed normally. Our results show that the Ciona embryonic ectoderm responds to Wnt activation in a manner that is compatible with the proposed function for this pathway at the base of the deuterostomes. However, possibly because of its fast and divergent mode of development that includes extensive use of maternal determinants, the overall antero-posterior patterning of the Ciona ectoderm is Wnt independent, and Wnt/β-catenin signaling controls the formation of some sub-domains. Our results thus indicate that there has likely been a drift in the developmental systems controlling ectoderm patterning in the lineage leading to ascidians. The Wnt/β-catenin pathway is a system of cell-cell communication. It has an ancient origin in animals and plays multiple roles during embryogenesis and adult life. In particular, it is involved in determining, in the vertebrate embryo, the identity of the different parts of the body and their relative positions along the antero-posterior axis. We have investigated in an ascidian (or sea squirt) species, a marine invertebrate that is closely related to vertebrates, whether this pathway had a similar role. Like in vertebrates, activating Wnt/β-catenin led to a posteriorization of the embryo with a loss of anterior structures. By contrast, unlike vertebrates, ascidian embryos formed rather normally following Wnt/β-catenin inactivation. Since hemichordates (or acorn worms), earlier divergent invertebrates, use Wnt/β-catenin in a manner comparable to vertebrates, it is in the ascidian lineage that changes have occurred. Consequently, ascidians build an antero-posterior axis, very similarly organized to that of vertebrates, but in a different way.
Collapse
|
35
|
Oonuma K, Kusakabe TG. Spatio-temporal regulation of Rx and mitotic patterns shape the eye-cup of the photoreceptor cells in Ciona. Dev Biol 2018; 445:245-255. [PMID: 30502325 DOI: 10.1016/j.ydbio.2018.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/18/2018] [Accepted: 11/18/2018] [Indexed: 10/27/2022]
Abstract
The ascidian larva has a pigmented ocellus comprised of a cup-shaped array of approximately 30 photoreceptor cells, a pigment cell, and three lens cells. Morphological, physiological and molecular evidence has suggested evolutionary kinship between the ascidian larval photoreceptors and vertebrate retinal and/or pineal photoreceptors. Rx, an essential factor for vertebrate photoreceptor development, has also been suggested to be involved in the development of the ascidian photoreceptor cells, but a recent revision of the photoreceptor cell lineage raised a crucial discrepancy between the reported expression patterns of Rx and the cell lineage. Here, we report spatio-temporal expression patterns of Rx at single-cell resolution along with mitotic patterns up to the final division of the photoreceptor-lineage cells in Ciona. The expression of Rx commences in non-photoreceptor a-lineage cells on the right side of the anterior sensory vesicle at the early tailbud stage. At the mid tailbud stage, Rx begins to be expressed in the A-lineage photoreceptor cell progenitors located on the right side of the posterior sensory vesicle. Thus, Rx is specifically but not exclusively expressed in the photoreceptor-lineage cells in the ascidian embryo. Two cis-regulatory modules are shown to be important for the photoreceptor-lineage expression of Rx. The cell division patterns of the photoreceptor-lineage cells rationally explain the generation of the cup-shaped structure of the pigmented ocellus. The present findings demonstrate the complete cell lineage of the ocellus photoreceptor cells and provide a framework elucidating the molecular and cellular mechanisms of photoreceptor development in Ciona.
Collapse
Affiliation(s)
- Kouhei Oonuma
- Institute for Integrative Neurobiology and Department of Biology, Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan.
| | - Takehiro G Kusakabe
- Institute for Integrative Neurobiology and Department of Biology, Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan.
| |
Collapse
|
36
|
Prünster MM, Ricci L, Brown FD, Tiozzo S. De novo neurogenesis in a budding chordate: Co-option of larval anteroposterior patterning genes in a transitory neurogenic organ. Dev Biol 2018; 448:342-352. [PMID: 30563648 DOI: 10.1016/j.ydbio.2018.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/29/2018] [Accepted: 10/16/2018] [Indexed: 01/29/2023]
Abstract
During metamorphosis of solitary ascidians, part of the larval tubular nervous system is recruited to form the adult central nervous system (CNS) through neural stem-like cells called ependymal cells. The anteroposterior (AP) gene expression patterning of the larval CNS regionalize the distribution of the ependymal cells, which contains the positional information of the neurons of the adult nervous system. In colonial ascidians, the CNS of asexually developed zooids has the same morphology of the one of the post-metamorphic zooids. However, its development follows a completely different organogenesis that lacks embryogenesis, a larval phase and metamorphosis. In order to describe neurogenesis during asexual development (blastogenesis), we followed the expression of six CNS AP patterning genes conserved in chordates and five neural-related genes to determine neural cell identity in Botryllus schlosseri. We observed that a neurogenesis occurs de novo on each blastogenic cycle starting from a neurogenic transitory structure, the dorsal tube. The dorsal tube partially co-opts the AP patterning of the larval CNS markers, and potentially combine the neurogenesis role and provider of positional clues for neuron patterning. This study shows how a larval developmental module is reused in a direct asexual development in order to generate the same structures.
Collapse
Affiliation(s)
- Maria Mandela Prünster
- Sorbonne Universités, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), 06230 Paris, France
| | - Lorenzo Ricci
- Sorbonne Universités, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), 06230 Paris, France; Harvard University, Department of Organismic&Evolutionary Biology, 52 Oxford Street, Cambridge, MA 02138, United States
| | - Federico D Brown
- Departamento de Zoologia - Instituto Biociências, Universidade de São Paulo, São Paulo, SP CEP 05508-090, Brazil; Centro de Biologia Marinha (CEBIMar), Universidade de São Paulo, São Sebastião, SP CEP 11612-109, Brazil
| | - Stefano Tiozzo
- Sorbonne Universités, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), 06230 Paris, France.
| |
Collapse
|
37
|
Evolution of the bilaterian mouth and anus. Nat Ecol Evol 2018; 2:1358-1376. [PMID: 30135501 DOI: 10.1038/s41559-018-0641-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 06/26/2018] [Accepted: 07/11/2018] [Indexed: 12/17/2022]
Abstract
It is widely held that the bilaterian tubular gut with mouth and anus evolved from a simple gut with one major gastric opening. However, there is no consensus on how this happened. Did the single gastric opening evolve into a mouth, with the anus forming elsewhere in the body (protostomy), or did it evolve into an anus, with the mouth forming elsewhere (deuterostomy), or did it evolve into both mouth and anus (amphistomy)? These questions are addressed by the comparison of developmental fates of the blastopore, the opening of the embryonic gut, in diverse animals that live today. Here we review comparative data on the identity and fate of blastoporal tissue, investigate how the formation of the through-gut relates to the major body axes, and discuss to what extent evolutionary scenarios are consistent with these data. Available evidence indicates that stem bilaterians had a slit-like gastric opening that was partially closed in subsequent evolution, leaving open the anus and most likely also the mouth, which would favour amphistomy. We discuss remaining difficulties, and outline directions for future research.
Collapse
|
38
|
Lowe EK, Stolfi A. Developmental system drift in motor ganglion patterning between distantly related tunicates. EvoDevo 2018; 9:18. [PMID: 30062003 PMCID: PMC6057086 DOI: 10.1186/s13227-018-0107-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/18/2018] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The larval nervous system of the solitary tunicate Ciona is a simple model for the study of chordate neurodevelopment. The development and connectivity of the Ciona motor ganglion have been studied in fine detail, but how this important structure develops in other tunicates is not well known. METHODS AND RESULTS By comparing gene expression patterns in the developing MG of the distantly related tunicate Molgula occidentalis, we found that its patterning is highly conserved compared to the Ciona MG. MG neuronal subtypes in Molgula were specified in the exact same positions as in Ciona, though the timing of subtype-specific gene expression onset was slightly shifted to begin earlier, relative to mitotic exit and differentiation. In transgenic Molgula embryos electroporated with Dmbx reporter plasmids, we were also able to characterize the morphology of the lone pair of descending decussating neurons (ddNs) in Molgula, revealing the same unique contralateral projection seen in Ciona ddNs and their putative vertebrate homologs the Mauthner cells. Although Dmbx expression labels the ddNs in both species, cross-species transgenic assays revealed significant changes to the regulatory logic underlying Dmbx transcription. We found that Dmbx cis-regulatory DNAs from Ciona can drive highly specific reporter gene expression in Molgula ddNs, but Molgula sequences are not active in Ciona ddNs. CONCLUSIONS This acute divergence in the molecular mechanisms that underlie otherwise functionally conserved cis-regulatory DNAs supports the recently proposed idea that the extreme genetic plasticity observed in tunicates may be attributed to the extreme rigidity of the spatial organization of their embryonic cell lineages.
Collapse
Affiliation(s)
- Elijah K. Lowe
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA USA
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA USA
| |
Collapse
|
39
|
Abstract
Ascidians are tunicates, which constitute the sister group of vertebrates. The ascidian genome contains two Zic genes, called Zic-r.a (also called Macho-1) and Zic-r.b (ZicL). The latter is a multi-copy gene, and the precise copy number has not yet been determined. Zic-r.a is maternally expressed, and soon after fertilization Zic-r.a mRNA is localized in the posterior pole of the zygote. Zic-r.a protein is translated there and is involved in specification of posterior fate; in particular it is important for specification of muscle fate. Zic-r.a is also expressed zygotically in neural cells of the tailbud stage. On the other hand, Zic-r.b is first expressed in marginal cells of the vegetal hemisphere of 32-cell embryos and then in neural cells that contribute to the central nervous system during gastrulation. Zic-r.b is required first for specification of mesodermal tissues and then for specification of the central nervous system. Their upstream and downstream genetic pathways have been studied extensively by functional assays, which include gene knockdown and chromatin immunoprecipitation assays. Thus, ascidian Zic genes play central roles in specification of mesodermal and neural fates.
Collapse
Affiliation(s)
- Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan.
| | - Kaoru S Imai
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| |
Collapse
|
40
|
Tokuoka M, Kobayashi K, Satou Y. Distinct regulation of Snail in two muscle lineages of the ascidian embryo achieves temporal coordination of muscle development. Development 2018; 145:dev.163915. [PMID: 29764858 DOI: 10.1242/dev.163915] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 05/03/2018] [Indexed: 01/29/2023]
Abstract
The transcriptional repressor Snail is required for proper differentiation of the tail muscle of ascidian tadpole larvae. Two muscle lineages (B5.1 and B6.4) contribute to the anterior tail muscle cells, and are consecutively separated from a transcriptionally quiescent germ cell lineage at the 16- and 32-cell stages. Concomitantly, cells of these lineages begin to express Tbx6.b (Tbx6-r.b) at the 16- and 32-cell stages, respectively. Meanwhile, Snail expression begins in these two lineages simultaneously at the 32-cell stage. Here, we show that Snail expression is regulated differently between these two lineages. In the B5.1 lineage, Snail was activated through Tbx6.b, which is activated by maternal factors, including Zic-r.a. In the B6.4 lineage, the MAPK pathway was cell-autonomously activated by a constitutively active form of Raf, enabling Zic-r.a to activate Snail independently of Tbx6.b As a result, Snail begins to be expressed at the 32-cell stage simultaneously in these two lineages. Such shortcuts might be required for coordinating developmental programs in embryos in which cells become separated progressively from stem cells, including germline cells.
Collapse
Affiliation(s)
- Miki Tokuoka
- Department of Zoology, Graduate School of Science, Kyoto University Sakyo, Kyoto, 606-8502, Japan
| | - Kenji Kobayashi
- Department of Zoology, Graduate School of Science, Kyoto University Sakyo, Kyoto, 606-8502, Japan
| | - Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University Sakyo, Kyoto, 606-8502, Japan
| |
Collapse
|
41
|
Lowe EK, Cuomo C, Arnone MI. Omics approaches to study gene regulatory networks for development in echinoderms. Brief Funct Genomics 2018; 16:299-308. [PMID: 28957458 DOI: 10.1093/bfgp/elx012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Gene regulatory networks (GRNs) describe the interactions for a developmental process at a given time and space. Historically, perturbation experiments represent one of the key methods for analyzing and reconstructing a GRN, and the GRN governing early development in the sea urchin embryo stands as one of the more deeply dissected so far. As technology progresses, so do the methods used to address different biological questions. Next-generation sequencing (NGS) has become a standard experimental technique for genome and transcriptome sequencing and studies of protein-DNA interactions and DNA accessibility. While several efforts have been made toward the integration of different omics approaches for the study of the regulatory genome in many animals, in a few cases, these are applied with the purpose of reconstructing and experimentally testing developmental GRNs. Here, we review emerging approaches integrating multiple NGS technologies for the prediction and validation of gene interactions within echinoderm GRNs. These approaches can be applied to both 'model' and 'non-model' organisms. Although a number of issues still need to be addressed, advances in NGS applications, such as assay for transposase-accessible chromatin sequencing, combined with the availability of embryos belonging to different species, all separated by various evolutionary distances and accessible to experimental regulatory biology, place echinoderms in an unprecedented position for the reconstruction and evolutionary comparison of developmental GRNs. We conclude that sequencing technologies and integrated omics approaches allow the examination of GRNs on a genome-wide scale only if biological perturbation and cis-regulatory analyses are experimentally accessible, as in the case of echinoderm embryos.
Collapse
|
42
|
Reporter Analyses Reveal Redundant Enhancers that Confer Robustness on Cis-Regulatory Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [PMID: 29542081 DOI: 10.1007/978-981-10-7545-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Reporter analyses of Hox1 and Brachyury (Bra) genes have revealed examples of redundant enhancers that provide regulatory robustness. Retinoic acid (RA) activates through an RA-response element the transcription of Hox1 in the nerve cord of the ascidian Ciona intestinalis. We also found a weak RA-independent neural enhancer within the second intron of Hox1. The Hox1 gene in the larvacean Oikopleura dioica is also expressed in the nerve cord. The O. dioica genome, however, does not contain the RA receptor-encoding gene, and the expression of Hox1 has become independent of RA. We have found that the upstream sequence of the O. dioica Hox1 was able to activate reporter gene expression in the nerve cord of the C. intestinalis embryo, suggesting that an RA-independent regulatory system in the nerve cord might be common in larvaceans and ascidians. This RA-independent redundant regulatory system may have facilitated the Oikopleura ancestor losing RA signaling without an apparent impact on Hox1 expression domains. On the other hand, vertebrate Bra is expressed in the ventral mesoderm and notochord, whereas its ascidian ortholog is exclusively expressed in the notochord. Fibroblast growth factor (FGF) induces Bra in the ventral mesoderm in vertebrates, whereas it induces Bra in the notochord in ascidians. Disruption of the FGF signal does not completely silence Bra expression in ascidians, suggesting that FGF-dependent and independent enhancers might comprise a redundant regulatory system in ascidians. The existence of redundant enhancers, therefore, provides regulatory robustness that may facilitate the acquisition of new expression domains.
Collapse
|
43
|
Shimai K, Kusakabe TG. The Use of cis-Regulatory DNAs as Molecular Tools. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [DOI: 10.1007/978-981-10-7545-2_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
Nishino A. Morphology and Physiology of the Ascidian Nervous Systems and the Effectors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [PMID: 29542090 DOI: 10.1007/978-981-10-7545-2_16] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurobiology in ascidians has made many advances. Ascidians have offered natural advantages to researchers, including fecundity, structural simplicity, invariant morphology, and fast and stereotyped developmental processes. The researchers have also accumulated on this animal a great deal of knowledge, genomic resources, and modern genetic techniques. A recent connectomic analysis has shown an ultimately resolved image of the larval nervous system, whereas recent applications of live imaging and optogenetics have clarified the functional organization of the juvenile nervous system. Progress in resources and techniques have provided convincing ways to deepen what we have wanted to know about the nervous systems of ascidians. Here, the research history and the current views regarding ascidian nervous systems are summarized.
Collapse
Affiliation(s)
- Atsuo Nishino
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori, Japan.
| |
Collapse
|
45
|
Transgenic Techniques for Investigating Cell Biology During Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [PMID: 29542088 DOI: 10.1007/978-981-10-7545-2_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ascidians are increasingly being used as a system for investigating cell biology during development. The extreme genetic and cellular simplicity of ascidian embryos in combination with superior experimental tractability make this an ideal system for in vivo analysis of dynamic cellular processes. Transgenic approaches to cellular and sub-cellular analysis of ascidian development have begun to yield new insights into the mechanisms regulating developmental signaling and morphogenesis. This chapter focuses on the targeted expression of fusion proteins in ascidian embryos and how this technique is being deployed to garner new insights into the cell biology of development.
Collapse
|
46
|
Sasakura Y, Hozumi A. Formation of adult organs through metamorphosis in ascidians. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 7. [PMID: 29105358 DOI: 10.1002/wdev.304] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/28/2017] [Accepted: 09/11/2017] [Indexed: 02/05/2023]
Abstract
The representative characteristic of ascidians is their vertebrate-like, tadpole shape at the larval stage. Ascidians lose the tadpole shape through metamorphosis to become adults with a nonmotile, sessile body and a shape generally considered distinct from that of vertebrates. Solitary ascidians including Ciona species are extensively studied to understand the developmental mechanisms of ascidians, and to compare these mechanisms with their counterparts in vertebrates. In these ascidian species, the digestive and circulatory systems are not well developed in the larval trunk and the larvae do not take food. This is in contrast with the inner conditions of vertebrate tadpoles, which have functional organs comparable to those of adults. The adult organs and tissues of these ascidians become functional during metamorphosis that is completed quickly, suggesting that the ascidian larvae of solitary species are a transient stage of development. We here discuss how the cells and tissues in the ascidian larval body are converted into those of adults. The hearts of ascidians and vertebrates use closely related cellular and molecular mechanisms that suggest their shared origin. Hox genes of ascidians are essential for forming adult endodermal structures. To fully understand the development and evolution of chordates, a complete elucidation of the mechanisms underlying the adult tissue/organ formation of ascidians will be needed. WIREs Dev Biol 2018, 7:e304. doi: 10.1002/wdev.304 This article is categorized under: Comparative Development and Evolution > Body Plan Evolution Early Embryonic Development > Development to the Basic Body Plan.
Collapse
Affiliation(s)
- Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| | - Akiko Hozumi
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| |
Collapse
|
47
|
Yoshida K, Nakahata A, Treen N, Sakuma T, Yamamoto T, Sasakura Y. Hox-mediated endodermal identity patterns the pharyngeal muscle formation in the chordate pharynx. Development 2017; 144:1629-1634. [DOI: 10.1242/dev.144436] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 03/07/2017] [Indexed: 01/10/2023]
Abstract
The pharynx, possessing gill slits and the endostyle, is a characteristic of chordates that is a complex of multiple tissues well organized along the anterior-posterior (AP) axis. Although Hox genes show AP coordinated expression in the pharyngeal endoderm, tissue specific roles of these factors for establishing the regional identities within this tissue is largely unknown. Here, we show that Hox1 is essential for the establishment of AP axial identity of the endostyle, a major structure of the pharyngeal endoderm, in the ascidian Ciona intestinalis. We found that Hox1 knockout causes posterior to anterior transformation of the endostyle identity, and Hox1 represses Otx expression and anterior identity, and vice versa. Furthermore, alteration of the regional identity of the endostyle disrupts the formation of body wall muscles, suggesting that the endodermal axial identity is essential for the coordinated pharyngeal development. Our results reveal an essential role of Hox genes for establishment of the AP regional identity in the pharyngeal endoderm and crosstalk between endoderm and mesoderm for the development of chordate pharynx.
Collapse
Affiliation(s)
- Keita Yoshida
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025, Japan
| | - Azusa Nakahata
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025, Japan
| | - Nicholas Treen
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025, Japan
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025, Japan
| |
Collapse
|
48
|
Esposito R, Yasuo H, Sirour C, Palladino A, Spagnuolo A, Hudson C. Patterning of brain precursors in ascidian embryos. Development 2016; 144:258-264. [PMID: 27993985 DOI: 10.1242/dev.142307] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 12/02/2016] [Indexed: 11/20/2022]
Abstract
In terms of their embryonic origins, the anterior and posterior parts of the ascidian central nervous system (CNS) are associated with distinct germ layers. The anterior part of the sensory vesicle, or brain, originates from ectoderm lineages following a neuro-epidermal binary fate decision. In contrast, a large part of the remaining posterior CNS is generated following neuro-mesodermal binary fate decisions. Here, we address the mechanisms that pattern the anterior brain precursors along the medial-lateral axis (future ventral-dorsal) at neural plate stages. Our functional studies show that Nodal signals are required for induction of lateral genes, including Delta-like, Snail, Msxb and Trp Delta-like/Notch signalling induces intermediate (Gsx) over medial (Meis) gene expression in intermediate cells, whereas the combinatorial action of Snail and Msxb prevents the expression of Gsx in lateral cells. We conclude that despite the distinct embryonic lineage origins within the larval CNS, the mechanisms that pattern neural precursors are remarkably similar.
Collapse
Affiliation(s)
- Rosaria Esposito
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli 80121, Italy
| | - Hitoyoshi Yasuo
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanologique, Villefranche-sur-mer 06230, France
| | - Cathy Sirour
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanologique, Villefranche-sur-mer 06230, France
| | - Antonio Palladino
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli 80121, Italy
| | - Antonietta Spagnuolo
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli 80121, Italy
| | - Clare Hudson
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanologique, Villefranche-sur-mer 06230, France
| |
Collapse
|
49
|
Navarrete IA, Levine M. Nodal and FGF coordinate ascidian neural tube morphogenesis. Development 2016; 143:4665-4675. [PMID: 27827820 DOI: 10.1242/dev.144733] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/21/2016] [Indexed: 01/06/2023]
Abstract
Formation of the vertebrate neural tube represents one of the premier examples of morphogenesis in animal development. Here, we investigate this process in the simple chordate Ciona intestinalis Previous studies have implicated Nodal and FGF signals in the specification of lateral and ventral neural progenitors. We show that these signals also control the detailed cellular behaviors underlying morphogenesis of the neural tube. Live-imaging experiments show that FGF controls the intercalary movements of ventral neural progenitors, whereas Nodal is essential for the characteristic stacking behavior of lateral cells. Ectopic activation of FGF signaling is sufficient to induce intercalary behaviors in cells that have not received Nodal. In the absence of FGF and Nodal, neural progenitors exhibit a default behavior of sequential cell divisions, and fail to undergo the intercalary and stacking behaviors essential for normal morphogenesis. Thus, cell specification events occurring prior to completion of gastrulation coordinate the morphogenetic movements underlying the organization of the neural tube.
Collapse
Affiliation(s)
- Ignacio A Navarrete
- Department of Molecular and Cell Biology, Division of Genetics, Genomics and Development, University of California, Berkeley, CA 94720, USA
| | - Michael Levine
- Department of Molecular and Cell Biology, Division of Genetics, Genomics and Development, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
50
|
Abstract
Ascidians are invertebrate chordates with a biphasic life cycle characterized by a dual body plan that displays simplified versions of chordate structures, such as a premetamorphic 40-cell notochord topped by a dorsal nerve cord and postmetamorphic pharyngeal slits. These relatively simple chordates are characterized by rapid development, compact genomes and ease of transgenesis, and thus provide the opportunity to rapidly characterize the genomic organization, developmental function, and transcriptional regulation of evolutionarily conserved gene families. This review summarizes the current knowledge on members of the T-box family of transcription factors in Ciona and other ascidians. In both chordate and nonchordate animals, these genes control a variety of morphogenetic processes, and their mutations are responsible for malformations and developmental defects in organisms ranging from flies to humans. In ascidians, T-box transcription factors are required for the formation and specialization of essential structures, including notochord, muscle, heart, and differentiated neurons. In recent years, the experimental advantages offered by ascidian embryos have allowed the rapid accumulation of a wealth of information on the molecular mechanisms that regulate the expression of T-box genes. These studies have also elucidated the strategies employed by these transcription factors to orchestrate the appropriate spatial and temporal deployment of the numerous target genes that they control.
Collapse
Affiliation(s)
- A Di Gregorio
- New York University College of Dentistry, New York, NY, United States.
| |
Collapse
|