1
|
Bosquez Huerta NA, Lee ZF, Christine Song EA, Woo J, Cheng YT, Sardar D, Sert O, Maleki E, Yu K, Akdemir ES, Sanchez K, Jo J, Rasband MN, Lee HK, Harmanci AS, Deneen B. Sex-specific astrocyte regulation of spinal motor circuits by Nkx6.1. Cell Rep 2025; 44:115121. [PMID: 39731735 PMCID: PMC11932065 DOI: 10.1016/j.celrep.2024.115121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 09/30/2024] [Accepted: 12/06/2024] [Indexed: 12/30/2024] Open
Abstract
Astrocytes exhibit diverse cellular and molecular properties across the central nervous system (CNS). Recent studies identified region-specific transcription factors (TF) that oversee these diverse properties; how sex differences intersect with region-specific transcriptional programs to regulate astrocyte function is unknown. Here, we show that the TF Nkx6.1 is specifically expressed in ventral astrocytes of the spinal cord and that its deletion results in sex-specific effects on astrocyte morphology. Astrocytes from males exhibit enhanced morphological complexity, accompanied by increased motor function and cholinergic synapses. In contrast, female astrocytes exhibit reduced complexity and no changes in motor function. Mechanistically, we found that Nkx6.1 exhibits sex-specific DNA-binding properties and epigenomic remodeling, identifying Semaphorin 4A (Sema4A) and Gabbr1 as targets regulating astrocyte morphology and cholinergic synapse formation. Collectively, our studies identify astrocytic Nkx6.1 as a key regulator of astrocyte properties in the spinal cord while adding sexual dimorphism as a layer of transcriptional regulation to astrocyte function and circuit activity.
Collapse
Affiliation(s)
- Navish A Bosquez Huerta
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Program in Development, Disease, Models, and Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhung-Fu Lee
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Program in Development, Disease, Models, and Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eun-Ah Christine Song
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Junsung Woo
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yi-Ting Cheng
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Debosmita Sardar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ozlem Sert
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ehson Maleki
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kwanha Yu
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ekin Su Akdemir
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kaitlyn Sanchez
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Juyeon Jo
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Matthew N Rasband
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Program in Development, Disease, Models, and Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hyun Kyoung Lee
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Program in Development, Disease, Models, and Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Akdes Serin Harmanci
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Benjamin Deneen
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Program in Development, Disease, Models, and Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
2
|
Dasen JS. Establishing the Molecular and Functional Diversity of Spinal Motoneurons. ADVANCES IN NEUROBIOLOGY 2022; 28:3-44. [PMID: 36066819 DOI: 10.1007/978-3-031-07167-6_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Spinal motoneurons are a remarkably diverse class of neurons responsible for facilitating a broad range of motor behaviors and autonomic functions. Studies of motoneuron differentiation have provided fundamental insights into the developmental mechanisms of neuronal diversification, and have illuminated principles of neural fate specification that operate throughout the central nervous system. Because of their relative anatomical simplicity and accessibility, motoneurons have provided a tractable model system to address multiple facets of neural development, including early patterning, neuronal migration, axon guidance, and synaptic specificity. Beyond their roles in providing direct communication between central circuits and muscle, recent studies have revealed that motoneuron subtype-specific programs also play important roles in determining the central connectivity and function of motor circuits. Cross-species comparative analyses have provided novel insights into how evolutionary changes in subtype specification programs may have contributed to adaptive changes in locomotor behaviors. This chapter focusses on the gene regulatory networks governing spinal motoneuron specification, and how studies of spinal motoneurons have informed our understanding of the basic mechanisms of neuronal specification and spinal circuit assembly.
Collapse
Affiliation(s)
- Jeremy S Dasen
- NYU Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Transplantation of Neural Precursors Derived from Induced Pluripotent Cells Preserve Perineuronal Nets and Stimulate Neural Plasticity in ALS Rats. Int J Mol Sci 2020; 21:ijms21249593. [PMID: 33339362 PMCID: PMC7766921 DOI: 10.3390/ijms21249593] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/05/2020] [Accepted: 12/13/2020] [Indexed: 12/11/2022] Open
Abstract
A promising therapeutic strategy for amyotrophic lateral sclerosis (ALS) treatment is stem cell therapy. Neural progenitors derived from induced pluripotent cells (NP-iPS) might rescue or replace dying motoneurons (MNs). However, the mechanisms responsible for the beneficial effect are not fully understood. The aim here was to investigate the mechanism by studying the effect of intraspinally injected NP-iPS into asymptomatic and early symptomatic superoxide dismutase (SOD)1G93A transgenic rats. Prior to transplantation, NP-iPS were characterized in vitro for their ability to differentiate into a neuronal phenotype. Motor functions were tested in all animals, and the tissue was analyzed by immunohistochemistry, qPCR, and Western blot. NP-iPS transplantation significantly preserved MNs, slowed disease progression, and extended the survival of all treated animals. The dysregulation of spinal chondroitin sulfate proteoglycans was observed in SOD1G93A rats at the terminal stage. NP-iPS application led to normalized host genes expression (versican, has-1, tenascin-R, ngf, igf-1, bdnf, bax, bcl-2, and casp-3) and the protection of perineuronal nets around the preserved MNs. In the host spinal cord, transplanted cells remained as progenitors, many in contact with MNs, but they did not differentiate. The findings suggest that NP-iPS demonstrate neuroprotective properties by regulating local gene expression and regulate plasticity by modulating the central nervous system (CNS) extracellular matrix such as perineuronal nets (PNNs).
Collapse
|
4
|
Yang L, Wang F, Strähle U. The Genetic Programs Specifying Kolmer-Agduhr Interneurons. Front Neurosci 2020; 14:577879. [PMID: 33162880 PMCID: PMC7581942 DOI: 10.3389/fnins.2020.577879] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/15/2020] [Indexed: 01/21/2023] Open
Abstract
Kolmer-Agduhr (KA) cells are a subgroup of interneurons positioned adjacent to the neurocoele with cilia on the apical surface protruding into the central canal of the spinal cord. Although KA cells were identified almost a century ago, their development and functions are only beginning to be unfolded. Recent studies have revealed the characteristics of KA cells in greater detail, including their spatial distribution, the timing of their differentiation, and their specification via extrinsic signaling and a unique combination of transcription factors in zebrafish and mouse. Cell lineage-tracing experiments have demonstrated that two subsets of KA cells, named KA' and KA" cells, differentiate from motoneuronal progenitors and floor-plate precursors, respectively, in both zebrafish and mouse. Although KA' and KA" cells originate from different progenitors/precursors, they each share a common set of transcription factors. Intriguingly, the combination of transcription factors that promote the acquisition of KA' cell characteristics differs from those that promote a KA" cell identity. In addition, KA' and KA" cells exhibit separable neuronal targets and differential responses to bending of the spinal cord. In this review, we summarize what is currently known about the genetic programs defining the identities of KA' and KA" cell identities. We then discuss how these two subgroups of KA cells are genetically specified.
Collapse
Affiliation(s)
- Lixin Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Feifei Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Uwe Strähle
- Institute of Biological and Chemical Systems - Biological Information Processing, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
5
|
Gong J, Hu S, Huang Z, Hu Y, Wang X, Zhao J, Qian P, Wang C, Sheng J, Lu X, Wei G, Liu D. The Requirement of Sox2 for the Spinal Cord Motor Neuron Development of Zebrafish. Front Mol Neurosci 2020; 13:34. [PMID: 32292330 PMCID: PMC7135881 DOI: 10.3389/fnmol.2020.00034] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/18/2020] [Indexed: 12/13/2022] Open
Abstract
Sex-determining region Y box 2 (Sox2), expressed in neural tissues, plays an important role as a transcription factor not only in the pluripotency and proliferation of neuronal cells but also in the opposite function of cell differentiation. Nevertheless, how Sox2 is linked to motor neuron development remains unknown. Here, we showed that Sox2 was localized in the motor neurons of spinal cord by in situ hybridization and cell separation, which acted as a positive regulator of motor neuron development. The deficiency of Sox2 in zebrafish larvae resulted in abnormal PMN development, including truncated but excessively branched CaP axons, loss of MiP, and increase of undifferentiated neuron cells. Importantly, transcriptome analysis showed that Sox2-depleted embryos caused many neurogenesis, axonogenesis, axon guidance, and differentiation-related gene expression changes, which further support the vital function of Sox2 in motor neuron development. Taken together, these data indicate that Sox2 plays a crucial role in the motor neuron development by regulating neuron differentiation and morphology of neuron axons.
Collapse
Affiliation(s)
- Jie Gong
- School of Life Science, Nantong University, Nantong, China
| | - Songqun Hu
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Zigang Huang
- School of Life Science, Nantong University, Nantong, China
| | - Yuebo Hu
- Key Laboratory of Neuroregeneration of Jiangsu and MOE, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xiaoning Wang
- Key Laboratory of Neuroregeneration of Jiangsu and MOE, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jinxiang Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and MOE, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Peipei Qian
- Key Laboratory of Neuroregeneration of Jiangsu and MOE, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Cheng Wang
- School of Life Science, Nantong University, Nantong, China
| | - Jiajing Sheng
- School of Life Science, Nantong University, Nantong, China
| | - Xiaofeng Lu
- School of Life Science, Nantong University, Nantong, China
| | - Guanyun Wei
- School of Life Science, Nantong University, Nantong, China
| | - Dong Liu
- School of Life Science, Nantong University, Nantong, China.,Key Laboratory of Neuroregeneration of Jiangsu and MOE, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
6
|
Hadjivasiliou Z, Moore RE, McIntosh R, Galea GL, Clarke JDW, Alexandre P. Basal Protrusions Mediate Spatiotemporal Patterns of Spinal Neuron Differentiation. Dev Cell 2020; 49:907-919.e10. [PMID: 31211994 PMCID: PMC6584357 DOI: 10.1016/j.devcel.2019.05.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 02/26/2019] [Accepted: 05/20/2019] [Indexed: 12/22/2022]
Abstract
During early spinal cord development, neurons of particular subtypes differentiate with a sparse periodic pattern while later neurons differentiate in the intervening space to eventually produce continuous columns of similar neurons. The mechanisms that regulate this spatiotemporal pattern are unknown. In vivo imaging in zebrafish reveals that differentiating spinal neurons transiently extend two long protrusions along the basal surface of the spinal cord before axon initiation. These protrusions express Delta protein, consistent with the hypothesis they influence Notch signaling at a distance of several cell diameters. Experimental reduction of Laminin expression leads to smaller protrusions and shorter distances between differentiating neurons. The experimental data and a theoretical model support the proposal that neuronal differentiation pattern is regulated by transient basal protrusions that deliver temporally controlled lateral inhibition mediated at a distance. This work uncovers a stereotyped protrusive activity of newborn neurons that organize long-distance spatiotemporal patterning of differentiation.
Collapse
Affiliation(s)
- Zena Hadjivasiliou
- Department of Biochemistry, Science II, University of Geneva, Geneva, Switzerland; Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, Gower Street, London WC1N 1EH, UK
| | - Rachel E Moore
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London SE1 1UL, UK
| | - Rebecca McIntosh
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London SE1 1UL, UK; Developmental Biology and Cancer, UCL GOS Institute of Child Health, London WC1N 1EH, UK
| | - Gabriel L Galea
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London WC1N 1EH, UK
| | - Jonathan D W Clarke
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London SE1 1UL, UK.
| | - Paula Alexandre
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London WC1N 1EH, UK.
| |
Collapse
|
7
|
Yildiz O, Downes GB, Sagerström CG. Zebrafish prdm12b acts independently of nkx6.1 repression to promote eng1b expression in the neural tube p1 domain. Neural Dev 2019; 14:5. [PMID: 30813944 PMCID: PMC6391800 DOI: 10.1186/s13064-019-0129-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 02/14/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Functioning of the adult nervous system depends on the establishment of neural circuits during embryogenesis. In vertebrates, neurons that make up motor circuits form in distinct domains along the dorsoventral axis of the neural tube. Each domain is characterized by a unique combination of transcription factors (TFs) that promote a specific fate, while repressing fates of adjacent domains. The prdm12 TF is required for the expression of eng1b and the generation of V1 interneurons in the p1 domain, but the details of its function remain unclear. METHODS We used CRISPR/Cas9 to generate the first germline mutants for prdm12 and employed this resource, together with classical luciferase reporter assays and co-immunoprecipitation experiments, to study prdm12b function in zebrafish. We also generated germline mutants for bhlhe22 and nkx6.1 to examine how these TFs act with prdm12b to control p1 formation. RESULTS We find that prdm12b mutants lack eng1b expression in the p1 domain and also possess an abnormal touch-evoked escape response. Using luciferase reporter assays, we demonstrate that Prdm12b acts as a transcriptional repressor. We also show that the Bhlhe22 TF binds via the Prdm12b zinc finger domain to form a complex. However, bhlhe22 mutants display normal eng1b expression in the p1 domain. While prdm12 has been proposed to promote p1 fates by repressing expression of the nkx6.1 TF, we do not observe an expansion of the nkx6.1 domain upon loss of prdm12b function, nor is eng1b expression restored upon simultaneous loss of prdm12b and nkx6.1. CONCLUSIONS We conclude that prdm12b germline mutations produce a phenotype that is indistinguishable from that of morpholino-mediated loss of prdm12 function. In terms of prdm12b function, our results indicate that Prdm12b acts as transcriptional repressor and interacts with both EHMT2/G9a and Bhlhe22. However, bhlhe22 function is not required for eng1b expression in vivo, perhaps indicating that other bhlh genes can compensate during embryogenesis. Lastly, we do not find evidence for nkx6.1 and prdm12b acting as a repressive pair in formation of the p1 domain - suggesting that prdm12b is not solely required to repress non-p1 fates, but is specifically needed to promote p1 fates.
Collapse
Affiliation(s)
- Ozge Yildiz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, 364 Plantation St/LRB815, Worcester, MA 01605 USA
| | - Gerald B. Downes
- Department of Biology, University of Massachusetts, Amherst, MA 01003 USA
| | - Charles G. Sagerström
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, 364 Plantation St/LRB815, Worcester, MA 01605 USA
| |
Collapse
|
8
|
D'Elia KP, Dasen JS. Development, functional organization, and evolution of vertebrate axial motor circuits. Neural Dev 2018; 13:10. [PMID: 29855378 PMCID: PMC5984435 DOI: 10.1186/s13064-018-0108-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/26/2018] [Indexed: 12/20/2022] Open
Abstract
Neuronal control of muscles associated with the central body axis is an ancient and essential function of the nervous systems of most animal species. Throughout the course of vertebrate evolution, motor circuits dedicated to control of axial muscle have undergone significant changes in their roles within the motor system. In most fish species, axial circuits are critical for coordinating muscle activation sequences essential for locomotion and play important roles in postural correction. In tetrapods, axial circuits have evolved unique functions essential to terrestrial life, including maintaining spinal alignment and breathing. Despite the diverse roles of axial neural circuits in motor behaviors, the genetic programs underlying their assembly are poorly understood. In this review, we describe recent studies that have shed light on the development of axial motor circuits and compare and contrast the strategies used to wire these neural networks in aquatic and terrestrial vertebrate species.
Collapse
Affiliation(s)
- Kristen P D'Elia
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY, 10016, USA
| | - Jeremy S Dasen
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
9
|
Andrzejczuk LA, Banerjee S, England SJ, Voufo C, Kamara K, Lewis KE. Tal1, Gata2a, and Gata3 Have Distinct Functions in the Development of V2b and Cerebrospinal Fluid-Contacting KA Spinal Neurons. Front Neurosci 2018; 12:170. [PMID: 29651232 PMCID: PMC5884927 DOI: 10.3389/fnins.2018.00170] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 03/02/2018] [Indexed: 12/17/2022] Open
Abstract
Vertebrate locomotor circuitry contains distinct classes of ventral spinal cord neurons which each have particular functional properties. While we know some of the genes expressed by each of these cell types, we do not yet know how several of these neurons are specified. Here, we investigate the functions of Tal1, Gata2a, and Gata3 transcription factors in the development of two of these populations of neurons with important roles in locomotor circuitry: V2b neurons and cerebrospinal fluid-contacting Kolmer-Agduhr (KA) neurons (also called CSF-cNs). Our data provide the first demonstration, in any vertebrate, that Tal1 and Gata3 are required for correct development of KA and V2b neurons, respectively. We also uncover differences in the genetic regulation of V2b cell development in zebrafish compared to mouse. In addition, we demonstrate that Sox1a and Sox1b are expressed by KA and V2b neurons in zebrafish, which differs from mouse, where Sox1 is expressed by V2c neurons. KA neurons can be divided into ventral KA″ neurons and more dorsal KA′ neurons. Consistent with previous morpholino experiments, our mutant data suggest that Tal1 and Gata3 are required in KA′ but not KA″ cells, whereas Gata2a is required in KA″ but not KA′ cells, even though both of these cell types co-express all three of these transcription factors. In gata2a mutants, cells in the KA″ region of the spinal cord lose expression of most KA″ genes and there is an increase in the number of cells expressing V3 genes, suggesting that Gata2a is required to specify KA″ and repress V3 fates in cells that normally develop into KA″ neurons. On the other hand, our data suggest that Gata3 and Tal1 are both required for KA′ neurons to differentiate from progenitor cells. In the KA′ region of these mutants, cells no longer express KA′ markers and there is an increase in the number of mitotically-active cells. Finally, our data demonstrate that all three of these transcription factors are required for later stages of V2b neuron differentiation and that Gata2a and Tal1 have different functions in V2b development in zebrafish than in mouse.
Collapse
Affiliation(s)
| | - Santanu Banerjee
- Department of Biology, Syracuse University, Syracuse, NY, United States
| | | | - Christiane Voufo
- Department of Biology, Syracuse University, Syracuse, NY, United States
| | - Kadiah Kamara
- Department of Biology, Syracuse University, Syracuse, NY, United States
| | - Katharine E Lewis
- Department of Biology, Syracuse University, Syracuse, NY, United States
| |
Collapse
|
10
|
Gong J, Wang X, Zhu C, Dong X, Zhang Q, Wang X, Duan X, Qian F, Shi Y, Gao Y, Zhao Q, Chai R, Liu D. Insm1a Regulates Motor Neuron Development in Zebrafish. Front Mol Neurosci 2017; 10:274. [PMID: 28894416 PMCID: PMC5581358 DOI: 10.3389/fnmol.2017.00274] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 08/14/2017] [Indexed: 11/30/2022] Open
Abstract
Insulinoma-associated1a (insm1a) is a zinc-finger transcription factor playing a series of functions in cell formation and differentiation of vertebrate central and peripheral nervous systems and neuroendocrine system. However, its roles on the development of motor neuron have still remained uncovered. Here, we provided evidences that insm1a was a vital regulator of motor neuron development, and provided a mechanistic understanding of how it contributes to this process. Firstly, we showed the localization of insm1a in spinal cord, and primary motor neurons (PMNs) of zebrafish embryos by in situ hybridization, and imaging analysis of transgenic reporter line Tg(insm1a: mCherry)ntu805. Then we demonstrated that the deficiency of insm1a in zebrafish larvae lead to the defects of PMNs development, including the reduction of caudal primary motor neurons (CaP), and middle primary motor neurons (MiP), the excessive branching of motor axons, and the disorganized distance between adjacent CaPs. Additionally, knockout of insm1 impaired motor neuron differentiation in the spinal cord. Locomotion analysis showed that swimming activity was significantly reduced in the insm1a-null zebrafish. Furthermore, we showed that the insm1a loss of function significantly decreased the transcript levels of both olig2 and nkx6.1. Microinjection of olig2 and nkx6.1 mRNA rescued the motor neuron defects in insm1a deficient embryos. Taken together, these data indicated that insm1a regulated the motor neuron development, at least in part, through modulation of the expressions of olig2 and nkx6.1.
Collapse
Affiliation(s)
- Jie Gong
- School of Life Science, Nantong UniversityNantong, China
| | - Xin Wang
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong UniversityNantong, China
| | - Chenwen Zhu
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong UniversityNantong, China
| | - Xiaohua Dong
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing UniversityNanjing, China
| | - Qinxin Zhang
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing UniversityNanjing, China
| | - Xiaoning Wang
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong UniversityNantong, China
| | - Xuchu Duan
- School of Life Science, Nantong UniversityNantong, China
| | - Fuping Qian
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong UniversityNantong, China.,Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing, China
| | - Yunwei Shi
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong UniversityNantong, China
| | - Yu Gao
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong UniversityNantong, China
| | - Qingshun Zhao
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing UniversityNanjing, China
| | - Renjie Chai
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong UniversityNantong, China.,Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing, China
| | - Dong Liu
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong UniversityNantong, China
| |
Collapse
|
11
|
Seredick S, Hutchinson SA, Van Ryswyk L, Talbot JC, Eisen JS. Lhx3 and Lhx4 suppress Kolmer-Agduhr interneuron characteristics within zebrafish axial motoneurons. Development 2014; 141:3900-9. [PMID: 25231761 DOI: 10.1242/dev.105718] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A central problem in development is how fates of closely related cells are segregated. Lineally related motoneurons (MNs) and interneurons (INs) express many genes in common yet acquire distinct fates. For example, in mouse and chick Lhx3 plays a pivotal role in the development of both cell classes. Here, we utilize the ability to recognize individual zebrafish neurons to examine the roles of Lhx3 and its paralog Lhx4 in the development of MNs and ventral INs. We show that Lhx3 and Lhx4 are expressed by post-mitotic axial MNs derived from the MN progenitor (pMN) domain, p2 domain progenitors and by several types of INs derived from pMN and p2 domains. In the absence of Lhx3 and Lhx4, early-developing primary MNs (PMNs) adopt a hybrid fate, with morphological and molecular features of both PMNs and pMN-derived Kolmer-Agduhr' (KA') INs. In addition, we show that Lhx3 and Lhx4 distinguish the fates of two pMN-derived INs. Finally, we demonstrate that Lhx3 and Lhx4 are necessary for the formation of late-developing V2a and V2b INs. In conjunction with our previous work, these data reveal that distinct transcription factor families are deployed in post-mitotic MNs to unequivocally assign MN fate and suppress the development of alternative pMN-derived IN fates.
Collapse
Affiliation(s)
- Steve Seredick
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Sarah A Hutchinson
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Liesl Van Ryswyk
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Jared C Talbot
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Judith S Eisen
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
12
|
Moreno RL, Ribera AB. Spinal neurons require Islet1 for subtype-specific differentiation of electrical excitability. Neural Dev 2014; 9:19. [PMID: 25149090 PMCID: PMC4153448 DOI: 10.1186/1749-8104-9-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 07/16/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the spinal cord, stereotypic patterns of transcription factor expression uniquely identify neuronal subtypes. These transcription factors function combinatorially to regulate gene expression. Consequently, a single transcription factor may regulate divergent development programs by participation in different combinatorial codes. One such factor, the LIM-homeodomain transcription factor Islet1, is expressed in the vertebrate spinal cord. In mouse, chick and zebrafish, motor and sensory neurons require Islet1 for specification of biochemical and morphological signatures. Little is known, however, about the role that Islet1 might play for development of electrical membrane properties in vertebrates. Here we test for a role of Islet1 in differentiation of excitable membrane properties of zebrafish spinal neurons. RESULTS We focus our studies on the role of Islet1 in two populations of early born zebrafish spinal neurons: ventral caudal primary motor neurons (CaPs) and dorsal sensory Rohon-Beard cells (RBs). We take advantage of transgenic lines that express green fluorescent protein (GFP) to identify CaPs, RBs and several classes of interneurons for electrophysiological study. Upon knock-down of Islet1, cells occupying CaP-like and RB-like positions continue to express GFP. With respect to voltage-dependent currents, CaP-like and RB-like neurons have novel repertoires that distinguish them from control CaPs and RBs, and, in some respects, resemble those of neighboring interneurons. The action potentials fired by CaP-like and RB-like neurons also have significantly different properties compared to those elicited from control CaPs and RBs. CONCLUSIONS Overall, our findings suggest that, for both ventral motor and dorsal sensory neurons, Islet1 directs differentiation programs that ultimately specify electrical membrane as well as morphological properties that act together to sculpt neuron identity.
Collapse
Affiliation(s)
- Rosa L Moreno
- Department of Physiology, University of Colorado Anschutz Medical Campus, RC-1 North, 7403A, Mailstop 8307, 12800 E 19th Ave,, 80045 Aurora, CO, USA.
| | | |
Collapse
|
13
|
Babin PJ, Goizet C, Raldúa D. Zebrafish models of human motor neuron diseases: advantages and limitations. Prog Neurobiol 2014; 118:36-58. [PMID: 24705136 DOI: 10.1016/j.pneurobio.2014.03.001] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/11/2014] [Accepted: 03/14/2014] [Indexed: 01/08/2023]
Abstract
Motor neuron diseases (MNDs) are an etiologically heterogeneous group of disorders of neurodegenerative origin, which result in degeneration of lower (LMNs) and/or upper motor neurons (UMNs). Neurodegenerative MNDs include pure hereditary spastic paraplegia (HSP), which involves specific degeneration of UMNs, leading to progressive spasticity of the lower limbs. In contrast, spinal muscular atrophy (SMA) involves the specific degeneration of LMNs, with symmetrical muscle weakness and atrophy. Amyotrophic lateral sclerosis (ALS), the most common adult-onset MND, is characterized by the degeneration of both UMNs and LMNs, leading to progressive muscle weakness, atrophy, and spasticity. A review of the comparative neuroanatomy of the human and zebrafish motor systems showed that, while the zebrafish was a homologous model for LMN disorders, such as SMA, it was only partially relevant in the case of UMN disorders, due to the absence of corticospinal and rubrospinal tracts in its central nervous system. Even considering the limitation of this model to fully reproduce the human UMN disorders, zebrafish offer an excellent alternative vertebrate model for the molecular and genetic dissection of MND mechanisms. Its advantages include the conservation of genome and physiological processes and applicable in vivo tools, including easy imaging, loss or gain of function methods, behavioral tests to examine changes in motor activity, and the ease of simultaneous chemical/drug testing on large numbers of animals. This facilitates the assessment of the environmental origin of MNDs, alone or in combination with genetic traits and putative modifier genes. Positive hits obtained by phenotype-based small-molecule screening using zebrafish may potentially be effective drugs for treatment of human MNDs.
Collapse
Affiliation(s)
- Patrick J Babin
- Univ. Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), EA 4576, Talence, France.
| | - Cyril Goizet
- Univ. Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), EA 4576, Talence, France; CHU Bordeaux, Hôpital Pellegrin, Service de Génétique Médicale, Bordeaux, France
| | | |
Collapse
|
14
|
The role of inab in axon morphology of an identified zebrafish motoneuron. PLoS One 2014; 9:e88631. [PMID: 24533123 PMCID: PMC3922942 DOI: 10.1371/journal.pone.0088631] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 01/15/2014] [Indexed: 12/15/2022] Open
Abstract
The ability of an animal to move and to interact with its environment requires that motoneurons correctly innervate specific muscles. Although many genes that regulate motoneuron development have been identified, our understanding of motor axon branching remains incomplete. We used transcriptional expression profiling to identify potential candidate genes involved in development of zebrafish identified motoneurons. Here we focus on inab, an intermediate filament encoding gene dynamically expressed in a subset of motoneurons as well as in an identified interneuron. We show that inab is necessary for proper axon morphology of a specific motoneuron subtype.
Collapse
|
15
|
Distinct regulatory mechanisms act to establish and maintain Pax3 expression in the developing neural tube. PLoS Genet 2013; 9:e1003811. [PMID: 24098141 PMCID: PMC3789833 DOI: 10.1371/journal.pgen.1003811] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 08/05/2013] [Indexed: 02/07/2023] Open
Abstract
Pattern formation in developing tissues is driven by the interaction of extrinsic signals with intrinsic transcriptional networks that together establish spatially and temporally restricted profiles of gene expression. How this process is orchestrated at the molecular level by genomic cis-regulatory modules is one of the central questions in developmental biology. Here we have addressed this by analysing the regulation of Pax3 expression in the context of the developing spinal cord. Pax3 is induced early during neural development in progenitors of the dorsal spinal cord and is maintained as pattern is subsequently elaborated, resulting in the segregation of the tissue into dorsal and ventral subdivisions. We used a combination of comparative genomics and transgenic assays to define and dissect several functional cis-regulatory modules associated with the Pax3 locus. We provide evidence that the coordinated activity of two modules establishes and refines Pax3 expression during neural tube development. Mutational analyses of the initiating element revealed that in addition to Wnt signaling, Nkx family homeodomain repressors restrict Pax3 transcription to the presumptive dorsal neural tube. Subsequently, a second module mediates direct positive autoregulation and feedback to maintain Pax3 expression. Together, these data indicate a mechanism by which transient external signals are converted into a sustained expression domain by the activities of distinct regulatory elements. This transcriptional logic differs from the cross-repression that is responsible for the spatiotemporal patterns of gene expression in the ventral neural tube, suggesting that a variety of circuits are deployed within the neural tube regulatory network to establish and elaborate pattern formation. The complex organization of tissues is established precisely and reproducibly during development. In the vertebrate neural tube, as in many other tissues, the interplay between extrinsic morphogens and intrinsic transcription factors produces spatial patterns of gene expression that delineate precursors for specific cell types. One such transcription factor, Pax3, defines the precursors of all sensory neuron subtypes and distinguishes them from precursors fated to give rise to the motor circuits. To gain insight into the molecular mechanisms by which the spinal cord is segregated into these two functional domains, we analysed the genomic regulatory sequences responsible for controlling Pax3 activity. We identified two regions of the genome, the coordinated activity of which establishes and refines Pax3 activity. We showed that the combination of activating signals from secreted Wnt factors together with Nkx family homeodomain repressors restrict Pax3 activity to the presumptive sensory region of the neural tissue. Subsequently, Pax3 acts to directly potentiate its own transcription and this autoregulation sustains Pax3 expression at later developmental stages. Together, our study reveals the way in which intrinsic and extrinsic signals are integrated by cells and converted into a sustained pattern of gene activity in the developing nervous system.
Collapse
|
16
|
Lauter G, Söll I, Hauptmann G. Molecular characterization of prosomeric and intraprosomeric subdivisions of the embryonic zebrafish diencephalon. J Comp Neurol 2013; 521:1093-118. [PMID: 22949352 DOI: 10.1002/cne.23221] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 03/04/2012] [Accepted: 08/14/2012] [Indexed: 02/05/2023]
Abstract
During development of the early neural tube, positional information provided by signaling gradients is translated into a grid of transverse and longitudinal transcription factor expression domains. Transcription factor specification codes defining distinct histogenetic domains within this grid are evolutionarily conserved across vertebrates and may reflect an underlying common vertebrate bauplan. When compared to the rich body of comparative gene expression studies of tetrapods, there is considerably less comparative data available for teleost fish. We used sensitive multicolor fluorescent in situ hybridization to generate a detailed map of regulatory gene expression domains in the embryonic zebrafish diencephalon. The high resolution of this technique allowed us to resolve abutting and overlapping gene expression of different transcripts. We found that the relative topography of gene expression patterns in zebrafish was highly similar to those of orthologous genes in tetrapods and consistent with a three-prosomere organization of the alar and basal diencephalon. Our analysis further demonstrated a conservation of intraprosomeric subdivisions within prosomeres 1, 2, and 3 (p1, p2, and p3). A tripartition of zebrafish p1 was identified reminiscent of precommissural (PcP), juxtacommissural (JcP), and commissural (CoP) pretectal domains of tetrapods. The constructed detailed diencephalic transcription factor gene expression map further identified molecularly distinct thalamic and prethalamic rostral and caudal domains and a prethalamic eminence histogenetic domain in zebrafish. Our comparative gene expression analysis conformed with the idea of a common bauplan for the diencephalon of anamniote and amniote vertebrates from fish to mammals.
Collapse
Affiliation(s)
- Gilbert Lauter
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83 Huddinge, Sweden
| | | | | |
Collapse
|
17
|
Asakawa K, Abe G, Kawakami K. Cellular dissection of the spinal cord motor column by BAC transgenesis and gene trapping in zebrafish. Front Neural Circuits 2013; 7:100. [PMID: 23754985 PMCID: PMC3664770 DOI: 10.3389/fncir.2013.00100] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 05/04/2013] [Indexed: 11/13/2022] Open
Abstract
Bacterial artificial chromosome (BAC) transgenesis and gene/enhancer trapping are effective approaches for identification of genetically defined neuronal populations in the central nervous system (CNS). Here, we applied these techniques to zebrafish (Danio rerio) in order to obtain insights into the cellular architecture of the axial motor column in vertebrates. First, by using the BAC for the Mnx class homeodomain protein gene mnr2b/mnx2b, we established the mnGFF7 transgenic line expressing the Gal4FF transcriptional activator in a large part of the motor column. Single cell labeling of Gal4FF-expressing cells in the mnGFF7 line enabled a detailed investigation of the morphological characteristics of individual spinal motoneurons, as well as the overall organization of the motor column in a spinal segment. Secondly, from a large-scale gene trap screen, we identified transgenic lines that marked discrete subpopulations of spinal motoneurons with Gal4FF. Molecular characterization of these lines led to the identification of the ADAMTS3 gene, which encodes an evolutionarily conserved ADAMTS family of peptidases and is dynamically expressed in the ventral spinal cord. The transgenic fish established here, along with the identified gene, should facilitate an understanding of the cellular and molecular architecture of the spinal cord motor column and its connection to muscles in vertebrates.
Collapse
Affiliation(s)
- Kazuhide Asakawa
- Department of Developmental Genetics, Division of Molecular and Developmental Biology, National Institute of Genetics Mishima, Shizuoka, Japan ; Department of Genetics, Graduate University for Advanced Studies (SOKENDAI) Mishima, Shizuoka, Japan
| | | | | |
Collapse
|
18
|
Liu C, Ma W, Su W, Zhang J. Prdm14 acts upstream of islet2 transcription to regulate axon growth of primary motoneurons in zebrafish. Development 2012; 139:4591-600. [PMID: 23136389 DOI: 10.1242/dev.083055] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The precise formation of three-dimensional motor circuits is essential for movement control. Within these circuits, motoneurons (MNs) are specified from spinal progenitors by dorsoventral signals and distinct transcriptional programs. Different MN subpopulations have stereotypic cell body positions and show specific spatial axon trajectories. Our knowledge of MN axon outgrowth remains incomplete. Here, we report a zebrafish gene-trap mutant, short lightning (slg), in which prdm14 expression is disrupted. slg mutant embryos show shortened axons in caudal primary (CaP) MNs resulting in defective embryonic movement. Both the CaP neuronal defects and behavior abnormality of the mutants can be phenocopied by injection of a prdm14 morpholino into wild-type embryos. By removing a copy of the inserted transposon from homozygous mutants, prdm14 expression and normal embryonic movement were restored, confirming that loss of prdm14 expression accounts for the observed defects. Mechanistically, Prdm14 protein binds to the promoter region of islet2, a known transcription factor required for CaP development. Notably, disruption of islet2 function caused similar CaP axon outgrowth defects as observed in slg mutant embryos. Furthermore, overexpression of islet2 in slg mutant embryos rescued the shortened CaP axon phenotypes. Together, these data reveal that prdm14 regulates CaP axon outgrowth through activation of islet2 expression.
Collapse
Affiliation(s)
- Chao Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | |
Collapse
|
19
|
Seredick SD, Van Ryswyk L, Hutchinson SA, Eisen JS. Zebrafish Mnx proteins specify one motoneuron subtype and suppress acquisition of interneuron characteristics. Neural Dev 2012; 7:35. [PMID: 23122226 PMCID: PMC3570319 DOI: 10.1186/1749-8104-7-35] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 10/16/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Precise matching between motoneuron subtypes and the muscles they innervate is a prerequisite for normal behavior. Motoneuron subtype identity is specified by the combination of transcription factors expressed by the cell during its differentiation. Here we investigate the roles of Mnx family transcription factors in specifying the subtypes of individually identified zebrafish primary motoneurons. RESULTS Zebrafish has three Mnx family members. We show that each of them has a distinct and temporally dynamic expression pattern in each primary motoneuron subtype. We also show that two Mnx family members are expressed in identified VeLD interneurons derived from the same progenitor domain that generates primary motoneurons. Surprisingly, we found that Mnx proteins appear unnecessary for differentiation of VeLD interneurons or the CaP motoneuron subtype. Mnx proteins are, however, required for differentiation of the MiP motoneuron subtype. We previously showed that MiPs require two temporally-distinct phases of Islet1 expression for normal development. Here we show that in the absence of Mnx proteins, the later phase of Islet1 expression is initiated but not sustained, and MiPs become hybrids that co-express morphological and molecular features of motoneurons and V2a interneurons. Unexpectedly, these hybrid MiPs often extend CaP-like axons, and some MiPs appear to be entirely transformed to a CaP morphology. CONCLUSIONS Our results suggest that Mnx proteins promote MiP subtype identity by suppressing both interneuron development and CaP axon pathfinding. This is, to our knowledge, the first report of transcription factors that act to distinguish CaP and MiP subtype identities. Our results also suggest that MiP motoneurons are more similar to V2 interneurons than are CaP motoneurons.
Collapse
Affiliation(s)
- Steve D Seredick
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | | | | | | |
Collapse
|
20
|
Wolfram V, Southall TD, Brand AH, Baines RA. The LIM-homeodomain protein islet dictates motor neuron electrical properties by regulating K(+) channel expression. Neuron 2012; 75:663-74. [PMID: 22920257 PMCID: PMC3427859 DOI: 10.1016/j.neuron.2012.06.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2012] [Indexed: 11/24/2022]
Abstract
Neuron electrical properties are critical to function and generally subtype specific, as are patterns of axonal and dendritic projections. Specification of motoneuron morphology and axon pathfinding has been studied extensively, implicating the combinatorial action of Lim-homeodomain transcription factors. However, the specification of electrical properties is not understood. Here, we address the key issues of whether the same transcription factors that specify morphology also determine subtype specific electrical properties. We show that Drosophila motoneuron subtypes express different K+ currents and that these are regulated by the conserved Lim-homeodomain transcription factor Islet. Specifically, Islet is sufficient to repress a Shaker-mediated A-type K+ current, most likely due to a direct transcriptional effect. A reduction in Shaker increases the frequency of action potential firing. Our results demonstrate the deterministic role of Islet on the excitability patterns characteristic of motoneuron subtypes.
Collapse
|
21
|
Chondrolectin mediates growth cone interactions of motor axons with an intermediate target. J Neurosci 2012; 32:4426-39. [PMID: 22457492 DOI: 10.1523/jneurosci.5179-11.2012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The C-type lectin chondrolectin (chodl) represents one of the major gene products dysregulated in spinal muscular atrophy models in mice. However, to date, no function has been determined for the gene. We have identified chodl and other novel genes potentially involved in motor axon differentiation, by expression profiling of transgenically labeled motor neurons in embryonic zebrafish. To enrich the profile for genes involved in differentiation of peripheral motor axons, we inhibited the function of LIM-HDs (LIM homeodomain factors) by overexpression of a dominant-negative cofactor, thereby rendering labeled axons unable to grow out of the spinal cord. Importantly, labeled cells still exhibited axon growth and most cells retained markers of motor neuron identity. Functional tests of chodl, by overexpression and knockdown, confirm crucial functions of this gene for motor axon growth in vivo. Indeed, knockdown of chodl induces arrest or stalling of motor axon growth at the horizontal myoseptum, an intermediate target and navigational choice point, and reduced muscle innervation at later developmental stages. This phenotype is rescued by chodl overexpression, suggesting that correct expression levels of chodl are important for interactions of growth cones of motor axons with the horizontal myoseptum. Combined, these results identify upstream regulators and downstream functions of chodl during motor axon growth.
Collapse
|
22
|
England S, Batista MF, Mich JK, Chen JK, Lewis KE. Roles of Hedgehog pathway components and retinoic acid signalling in specifying zebrafish ventral spinal cord neurons. Development 2012; 138:5121-34. [PMID: 22069186 DOI: 10.1242/dev.066159] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In mouse, Hedgehog (Hh) signalling is required for most ventral spinal neurons to form. Here, we analyse the spinal cord phenotype of zebrafish maternal-zygotic smoothened (MZsmo) mutants that completely lack Hh signalling. We find that most V3 domain cells and motoneurons are lost, whereas medial floorplate still develops normally and V2, V1 and V0v cells form in normal numbers. This phenotype resembles that of mice that lack both Hh signalling and Gli repressor activity. Ventral spinal cord progenitor domain transcription factors are not expressed at 24 hpf in zebrafish MZsmo mutants. However, pMN, p2 and p1 domain markers are expressed at early somitogenesis stages in these mutants. This suggests that Gli repressor activity does not extend into zebrafish ventral spinal cord at these stages, even in the absence of Hh signalling. Consistent with this, ectopic expression of Gli3R represses ventral progenitor domain expression at these early stages and knocking down Gli repressor activity rescues later expression. We investigated whether retinoic acid (RA) signalling specifies ventral spinal neurons in the absence of Hh signalling. The results suggest that RA is required for the correct number of many different spinal neurons to form. This is probably mediated, in part, by an effect on cell proliferation. However, V0v, V1 and V2 cells are still present, even in the absence of both Hh and RA signalling. We demonstrate that Gli1 has a Hh-independent role in specifying most of the remaining motoneurons and V3 domain cells in embryos that lack Hh signalling, but removal of Gli1 activity does not affect more dorsal neurons.
Collapse
Affiliation(s)
- Samantha England
- Biology Department, Syracuse University, 107 College Place, Syracuse, NY 13244, USA
| | | | | | | | | |
Collapse
|
23
|
Hale LA, Fowler DK, Eisen JS. Netrin signaling breaks the equivalence between two identified zebrafish motoneurons revealing a new role of intermediate targets. PLoS One 2011; 6:e25841. [PMID: 22003409 PMCID: PMC3189217 DOI: 10.1371/journal.pone.0025841] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 09/12/2011] [Indexed: 12/11/2022] Open
Abstract
Background We previously showed that equivalence between two identified zebrafish motoneurons is broken by interactions with identified muscle fibers that act as an intermediate target for the axons of these motoneurons. Here we investigate the molecular basis of the signaling interaction between the intermediate target and the motoneurons. Principal Findings We provide evidence that Netrin 1a is an intermediate target-derived signal that causes two equivalent motoneurons to adopt distinct fates. We show that although these two motoneurons express the same Netrin receptors, their axons respond differently to Netrin 1a encountered at the intermediate target. Furthermore, we demonstrate that when Netrin 1a is knocked down, more distal intermediate targets that express other Netrins can also function to break equivalence between these motoneurons. Significance Our results suggest a new role for intermediate targets in breaking neuronal equivalence. The data we present reveal that signals encountered during axon pathfinding can cause equivalent neurons to adopt distinct fates. Such signals may be key in diversifying a neuronal population and leading to correct circuit formation.
Collapse
Affiliation(s)
- Laura A. Hale
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Daniel K. Fowler
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Judith S. Eisen
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
- * E-mail:
| |
Collapse
|
24
|
Ikenaga T, Urban JM, Gebhart N, Hatta K, Kawakami K, Ono F. Formation of the spinal network in zebrafish determined by domain-specific pax genes. J Comp Neurol 2011; 519:1562-79. [PMID: 21452218 PMCID: PMC3402917 DOI: 10.1002/cne.22585] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In the formation of the spinal network, various transcription factors interact to develop specific cell types. By using a gene trap technique, we established a stable line of zebrafish in which the red fluorescent protein (RFP) was inserted into the pax8 gene. RFP insertion marked putative pax8-lineage cells with fluorescence and inhibited pax8 expression in homozygous embryos. Pax8 homozygous embryos displayed defects in the otic vesicle, as previously reported in studies with morpholinos. The pax8 homozygous embryos survived to adulthood, in contrast to mammalian counterparts that die prematurely. RFP is expressed in the dorsal spinal cord. Examination of the axon morphology revealed that RFP(+) neurons include commissural bifurcating longitudinal (CoBL) interneurons, but other inhibitory neurons such as commissural local (CoLo) interneurons and circumferential ascending (CiA) interneurons do not express RFP. We examined the effect of inhibiting pax2a/pax8 expression on interneuron development. In pax8 homozygous fish, the RFP(+) cells underwent differentiation similar to that of pax8 heterozygous fish, and the swimming behavior remained intact. In contrast, the RFP(+) cells of pax2a/pax8 double mutants displayed altered cell fates. CoBLs were not observed. Instead, RFP(+) cells exhibited axons descending ipsilaterally, a morphology resembling that of V2a/V2b interneurons.
Collapse
Affiliation(s)
- Takanori Ikenaga
- Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jason M. Urban
- Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nichole Gebhart
- The Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL, 32080, USA
| | - Kohei Hatta
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako-gun, Hyogo 678-1297, Japan
| | - Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics
- Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Fumihito Ono
- Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
25
|
Principles governing recruitment of motoneurons during swimming in zebrafish. Nat Neurosci 2010; 14:93-9. [PMID: 21113162 DOI: 10.1038/nn.2704] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 10/19/2010] [Indexed: 11/08/2022]
Abstract
Locomotor movements are coordinated by a network of neurons that produces sequential muscle activation. Different motoneurons need to be recruited in an orderly manner to generate movement with appropriate speed and force. However, the mechanisms governing recruitment order have not been fully clarified. Using an in vitro juvenile/adult zebrafish brainstem-spinal cord preparation, we found that motoneurons were organized into four pools with specific topographic locations and were incrementally recruited to produce swimming at different frequencies. The threshold of recruitment was not dictated by the input resistance of motoneurons, but was instead set by a combination of specific biophysical properties and the strength of the synaptic currents. Our results provide insights into the cellular and synaptic computations governing recruitment of motoneurons during locomotion.
Collapse
|
26
|
Binot AC, Manfroid I, Flasse L, Winandy M, Motte P, Martial JA, Peers B, Voz ML. Nkx6.1 and nkx6.2 regulate alpha- and beta-cell formation in zebrafish by acting on pancreatic endocrine progenitor cells. Dev Biol 2010; 340:397-407. [PMID: 20122912 DOI: 10.1016/j.ydbio.2010.01.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 01/20/2010] [Accepted: 01/21/2010] [Indexed: 11/30/2022]
Abstract
In mice, the Nkx6 genes are crucial to alpha- and beta-cell differentiation, but the molecular mechanisms by which they regulate pancreatic subtype specification remain elusive. Here it is shown that in zebrafish, nkx6.1 and nkx6.2 are co-expressed at early stages in the first pancreatic endocrine progenitors, but that their expression domains gradually segregate into different layers, nkx6.1 being expressed ventrally with respect to the forming islet while nkx6.2 is expressed mainly in beta-cells. Knockdown of nkx6.2 or nkx6.1 expression leads to nearly complete loss of alpha-cells but has no effect on beta-, delta-, or epsilon-cells. In contrast, nkx6.1/nkx6.2 double knockdown leads additionally to a drastic reduction of beta-cells. Synergy between the effects of nkx6.1 and nkx6.2 knockdown on both beta- and alpha-cell differentiation suggests that nkx6.1 and nkx6.2 have the same biological activity, the required total nkx6 threshold being higher for alpha-cell than for beta-cell differentiation. Finally, we demonstrate that the nkx6 act on the establishment of the pancreatic endocrine progenitor pool whose size is correlated with the total nkx6 expression level. On the basis of our data, we propose a model in which nkx6.1 and nkx6.2, by allowing the establishment of the endocrine progenitor pool, control alpha- and beta-cell differentiation.
Collapse
Affiliation(s)
- A-C Binot
- GIGA-Research - Unité de Biologie Moleculaire et Génie Génétique, Tour B34, Université de Liège, B-4000 Sart Tilman, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Prakash N, Puelles E, Freude K, Trümbach D, Omodei D, Di Salvio M, Sussel L, Ericson J, Sander M, Simeone A, Wurst W. Nkx6-1 controls the identity and fate of red nucleus and oculomotor neurons in the mouse midbrain. Development 2009; 136:2545-55. [PMID: 19592574 PMCID: PMC2729334 DOI: 10.1242/dev.031781] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2009] [Indexed: 11/20/2022]
Abstract
Little is known about the cues controlling the generation of motoneuron populations in the mammalian ventral midbrain. We show that Otx2 provides the crucial anterior-posterior positional information for the generation of red nucleus neurons in the murine midbrain. Moreover, the homeodomain transcription factor Nkx6-1 controls the proper development of the red nucleus and of the oculomotor and trochlear nucleus neurons. Nkx6-1 is expressed in ventral midbrain progenitors and acts as a fate determinant of the Brn3a(+) (also known as Pou4f1) red nucleus neurons. These progenitors are partially dorsalized in the absence of Nkx6-1, and a fraction of their postmitotic offspring adopts an alternative cell fate, as revealed by the activation of Dbx1 and Otx2 in these cells. Nkx6-1 is also expressed in postmitotic Isl1(+) oculomotor and trochlear neurons. Similar to hindbrain visceral (branchio-) motoneurons, Nkx6-1 controls the proper migration and axon outgrowth of these neurons by regulating the expression of at least three axon guidance/neuronal migration molecules. Based on these findings, we provide additional evidence that the developmental mechanism of the oculomotor and trochlear neurons exhibits more similarity with that of special visceral motoneurons than with that controlling the generation of somatic motoneurons located in the murine caudal hindbrain and spinal cord.
Collapse
Affiliation(s)
- Nilima Prakash
- Helmholtz Centre Munich, German Research Centre for Environmental Health (GmbH) and Technical University Munich, Institute of Developmental Genetics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Munich/Neuherberg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Menelaou E, Husbands EE, Pollet RG, Coutts CA, Ali DW, Svoboda KR. Embryonic motor activity and implications for regulating motoneuron axonal pathfinding in zebrafish. Eur J Neurosci 2008; 28:1080-96. [PMID: 18823502 PMCID: PMC2741004 DOI: 10.1111/j.1460-9568.2008.06418.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Zebrafish embryos exhibit spontaneous contractions of the musculature as early as 18-19 h post fertilization (hpf) when removed from their protective chorion. These movements are likely initiated by early embryonic central nervous system activity. We have made the observation that narrowminded mutant embryos (hereafter, nrd(-/-)) lack normal embryonic motor output upon dechorionation. However, these mutants can swim and respond to tactile stimulation by larval stages of development. nrd(-/-) embryos exhibit defects in neural crest development, slow muscle development and also lack spinal mechanosensory neurons known as Rohon-Beard (RB) neurons. At early developmental stages (i.e. 21-22 hpf) and while still in their chorions, nrd siblings (nrd(+/?)) exhibited contractions of the musculature at a rate similar to wild-type embryos. Anatomical analysis indicated that RB neurons were present in the motile embryos, but absent in the non-motile embryos, indicating that the non-motile embryos were nrd(-/-) embryos. Further anatomical analysis of nrd(-/-) embryos revealed errors in motoneuron axonal pathfinding that persisted into the larval stage of development. These errors were reversed when nrd(-/-) embryos were raised in high [K(+)] beginning at 21 hpf, indicating that the abnormal axonal phenotypes may be related to a lack of depolarizing activity early in development. When activity was blocked with tricaine in wild-type embryos, motoneuron phenotypes were similar to the motoneuron phenotypes in nrd(-/-) embryos. These results implicate early embryonic activity in conjunction with other factors as necessary for normal motoneuron development.
Collapse
Affiliation(s)
- Evdokia Menelaou
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | | | | | | | |
Collapse
|
29
|
Tallafuss A, Eisen JS. The Met receptor tyrosine kinase prevents zebrafish primary motoneurons from expressing an incorrect neurotransmitter. Neural Dev 2008; 3:18. [PMID: 18664287 PMCID: PMC2542365 DOI: 10.1186/1749-8104-3-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 07/29/2008] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Expression of correct neurotransmitters is crucial for normal nervous system function. How neurotransmitter expression is regulated is not well-understood; however, previous studies provide evidence that both environmental signals and intrinsic differentiation programs are involved. One environmental signal known to regulate neurotransmitter expression in vertebrate motoneurons is Hepatocyte growth factor, which acts through the Met receptor tyrosine kinase and also affects other aspects of motoneuron differentiation, including axonal extension. Here we test the role of Met in development of motoneurons in embryonic zebrafish. RESULTS We found that met is expressed in all early developing, individually identified primary motoneurons and in at least some later developing secondary motoneurons. We used morpholino antisense oligonucleotides to knock down Met function and found that Met has distinct roles in primary and secondary motoneurons. Most secondary motoneurons were absent from met morpholino-injected embryos, suggesting that Met is required for their formation. We used chemical inhibitors to test several downstream pathways activated by Met and found that secondary motoneuron development may depend on the p38 and/or Akt pathways. In contrast, primary motoneurons were present in met morpholino-injected embryos. However, a significant fraction of them had truncated axons. Surprisingly, some CaPs in met morpholino antisense oligonucleotide (MO)-injected embryos developed a hybrid morphology in which they had both a peripheral axon innervating muscle and an interneuron-like axon within the spinal cord. In addition, in met MO-injected embryos primary motoneurons co-expressed mRNA encoding Choline acetyltransferase, the synthetic enzyme for their normal neurotransmitter, acetylcholine, and mRNA encoding Glutamate decarboxylase 1, the synthetic enzyme for GABA, a neurotransmitter never normally found in these motoneurons, but found in several types of interneurons. Our inhibitor studies suggest that Met function in primary motoneurons may be mediated through the MEK1/2 pathway. CONCLUSION We provide evidence that Met is necessary for normal development of zebrafish primary and secondary motoneurons. Despite their many similarities, our results show that these two motoneuron subtypes have different requirements for Met function during development, and raise the possibility that Met may act through different intracellular signaling cascades in primary and secondary motoneurons. Surprisingly, although met is not expressed in primary motoneurons until many hours after they have extended axons to and innervated their muscle targets, Met knockdown causes some of these cells to develop a hybrid phenotype in which they co-expressed motoneuron and interneuron neurotransmitters and have both peripheral and central axons.
Collapse
|
30
|
De Marco Garcia NV, Jessell TM. Early motor neuron pool identity and muscle nerve trajectory defined by postmitotic restrictions in Nkx6.1 activity. Neuron 2008; 57:217-31. [PMID: 18215620 DOI: 10.1016/j.neuron.2007.11.033] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 10/11/2007] [Accepted: 11/26/2007] [Indexed: 12/29/2022]
Abstract
The fidelity with which spinal motor neurons innervate their limb target muscles helps to coordinate motor behavior, but the mechanisms that determine precise patterns of nerve-muscle connectivity remain obscure. We show that Nkx6 proteins, a set of Hox-regulated homeodomain transcription factors, are expressed by motor pools soon after motor neurons leave the cell cycle, before the formation of muscle nerve side branches in the limb. Using mouse genetics, we show that the status of Nkx6.1 expression in certain motor neuron pools regulates muscle nerve formation, and the pattern of innervation of individual muscles. Our findings provide genetic evidence that neurons within motor pools possess an early transcriptional identity that controls target muscle specificity.
Collapse
|
31
|
Proliferation and patterning are mediated independently in the dorsal spinal cord downstream of canonical Wnt signaling. Dev Biol 2007; 313:398-407. [PMID: 18062957 DOI: 10.1016/j.ydbio.2007.10.041] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 10/23/2007] [Accepted: 10/25/2007] [Indexed: 01/16/2023]
Abstract
Canonical Wnt signaling can regulate proliferation and patterning in the developing spinal cord, but the relationship between these functions has remained elusive. It has been difficult to separate the distinct activities of Wnts because localized changes in proliferation could conceivably alter patterning, and gain and loss of function experiments have resulted in both types of defects. To resolve this issue we have investigated canonical Wnt signaling in the zebrafish spinal cord using multiple approaches. We demonstrate that Wnt signaling is required initially for proliferation throughout the entire spinal cord, and later for patterning dorsal progenitor domains. Furthermore, we find that spinal cord patterning is normal in embryos after cell division has been pharmacologically blocked. Finally, we determine the transcriptional mediators of Wnt signaling that are responsible for patterning and proliferation. We show that tcf7 gene knockdown results in dorsal patterning defects without decreasing the mitotic index in dorsal domains. In contrast, tcf3 gene knockdown results in a reduced mitotic index without affecting dorsal patterning. Together, our work demonstrates that proliferation and patterning in the developing spinal cord are separable events that are regulated independently by Wnt signaling.
Collapse
|
32
|
Recent Papers on Zebrafish and Other Aquarium Fish Models. Zebrafish 2007. [DOI: 10.1089/zeb.2007.9987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|