1
|
Wang S, Zheng Z. Differences in Formation of Prepuce and Urethral Groove During Penile Development Between Guinea Pigs and Mice Are Controlled by Differential Expression of Shh, Fgf10 and Fgfr2. Cells 2025; 14:348. [PMID: 40072077 PMCID: PMC11899664 DOI: 10.3390/cells14050348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/15/2025] Open
Abstract
The penile tubular urethra forms by canalization of the urethral plate without forming an obvious urethral groove in mice, while the urethral epithelium forms a fully open urethral groove before urethra closure through the distal-opening-proximal-closing process in humans and guinea pigs. Our knowledge of the mechanism of penile development is mainly based on studies in mice. To reveal how the fully opened urethral groove forms in humans and guinea pigs, we compared the expression patterns and levels of key developmental genes using in situ hybridization and quantitative PCR during glans and preputial development between guinea pigs and mice. Our results revealed that, compared with mouse preputial development, which started before sexual differentiation, preputial development in guinea pigs was delayed and initiated at the same time that sexual differentiation began. Fgf10 was mainly expressed in the urethral epithelium in developing genital tubercle (GT) of guinea pigs. The relative expression of Shh, Fgf8, Fgf10, Fgfr2, and Hoxd13 was reduced more than 4-fold in the GT of guinea pigs compared to that of mice. Hedgehog and Fgf inhibitors induced urethral groove formation and restrained preputial development in cultured mouse GT, while Shh and Fgf10 proteins induced preputial development in cultured guinea pig GT. Our discovery suggests that the differential expression of Shh and Fgf10/Fgfr2 may be the main reason a fully opened urethral groove forms in guinea pigs, and it may be similar in humans as well.
Collapse
Affiliation(s)
| | - Zhengui Zheng
- Department of Biomedical Sciences, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA;
| |
Collapse
|
2
|
Gavazzi LM, Nair M, Suydam R, Usip S, Thewissen JGM, Cooper LN. Protein signaling and morphological development of the tail fluke in the embryonic beluga whale (Delphinapterus leucas). Dev Dyn 2024; 253:859-874. [PMID: 38494595 PMCID: PMC11656686 DOI: 10.1002/dvdy.704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/19/2024] Open
Abstract
BACKGROUND During the land-to-sea transition of cetaceans (whales, dolphins, and porpoises), the hindlimbs were lost and replaced by an elaborate tail fluke that evolved 32 Ma. All modern cetaceans utilize flukes for lift-based propulsion, and nothing is known of this organ's molecular origins during embryonic development. This study utilizes immunohistochemistry to identify the spatiotemporal location of protein signals known to drive appendage outgrowth in other vertebrates (e.g., Sonic Hedgehog [SHH], GREMLIN [GREM], wingless-type family member 7a [WNT], and fibroblast growth factors [FGFs]) and to test the hypothesis that signals associated with outgrowth and patterning of the tail fluke are similar to a tetrapod limb. Specifically, this study utilizes an embryo of a beluga whale (Delphinapterus leucas) as a case study. RESULTS Results showed epidermal signals of WNT and FGFs, and mesenchymal/epidermal signals of SHH and GREM. These patterns are most consistent with vertebrate limb development. Overall, these data are most consistent with the hypothesis that outgrowth of tail flukes in cetaceans employs a signaling pattern that suggests genes essential for limb outgrowth and patterning shape this evolutionarily novel appendage. CONCLUSIONS While these data add insights into the molecular signals potentially driving the evolution and development of tail flukes in cetaceans, further exploration of the molecular drivers of fluke development is required.
Collapse
Affiliation(s)
- L. M. Gavazzi
- School of Biomedical SciencesKent State UniversityKentOhioUSA
- Musculoskeletal Research Focus Area, Department of Anatomy and NeurobiologyNortheast Ohio Medical UniversityRootstownOhioUSA
| | - M. Nair
- Wright State UniversityDaytonOhioUSA
| | - R. Suydam
- Department of Wildlife ManagementNorth Slope BoroughUtqiaġvikAlaskaUSA
| | - S. Usip
- Musculoskeletal Research Focus Area, Department of Anatomy and NeurobiologyNortheast Ohio Medical UniversityRootstownOhioUSA
| | - J. G. M. Thewissen
- Musculoskeletal Research Focus Area, Department of Anatomy and NeurobiologyNortheast Ohio Medical UniversityRootstownOhioUSA
| | - L. N. Cooper
- Musculoskeletal Research Focus Area, Department of Anatomy and NeurobiologyNortheast Ohio Medical UniversityRootstownOhioUSA
| |
Collapse
|
3
|
Lozovska A, Korovesi AG, Dias A, Lopes A, Fowler DA, Martins GG, Nóvoa A, Mallo M. Tgfbr1 controls developmental plasticity between the hindlimb and external genitalia by remodeling their regulatory landscape. Nat Commun 2024; 15:2509. [PMID: 38509075 PMCID: PMC10954616 DOI: 10.1038/s41467-024-46870-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 03/13/2024] [Indexed: 03/22/2024] Open
Abstract
The hindlimb and external genitalia of present-day tetrapods are thought to derive from an ancestral common primordium that evolved to generate a wide diversity of structures adapted for efficient locomotion and mating in the ecological niche occupied by the species. We show that despite long evolutionary distance from the ancestral condition, the early primordium of the mouse external genitalia preserved the capacity to take hindlimb fates. In the absence of Tgfbr1, the pericloacal mesoderm generates an extra pair of hindlimbs at the expense of the external genitalia. It has been shown that the hindlimb and the genital primordia share many of their key regulatory factors. Tgfbr1 controls the response to those factors by modulating the accessibility status of regulatory elements that control the gene regulatory networks leading to the formation of genital or hindlimb structures. Our work uncovers a remarkable tissue plasticity with potential implications in the evolution of the hindlimb/genital area of tetrapods, and identifies an additional mechanism for Tgfbr1 activity that might also contribute to the control of other physiological or pathological processes.
Collapse
Affiliation(s)
- Anastasiia Lozovska
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Artemis G Korovesi
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - André Dias
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Alexandre Lopes
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Donald A Fowler
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Gabriel G Martins
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Ana Nóvoa
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Moisés Mallo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal.
| |
Collapse
|
4
|
Wang T, Wang X, Zhao N, Liu Q, Song Z, Li J. Developmental regulation of the male urogenital papilla in the male marine teleost black rockfish, Sebastes schlegelii (Hilgendorf, 1880)†. Biol Reprod 2023; 109:461-473. [PMID: 37552063 DOI: 10.1093/biolre/ioad086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/18/2023] [Accepted: 07/28/2023] [Indexed: 08/09/2023] Open
Abstract
The male external genitalia of the black rockfish (Sebastes schlegelii Hilgendorf, 1880) is a fleshy protrusion known as the urogenital papilla (UGP), which functions to deliver sperm into the female reproductive tract for internal fertilization. It is not known which genes regulate the development of the UGP. The aim of this study was to identify key genes that regulate the development of the UGP in black rockfish and to determine the distribution of androgen receptor gene (ar) in the UGP. A total of 26 adult males and 560 juvenile fish were used in the experiment, in which we divided all normally developing juveniles into normal development and androgen groups. We added methyltestosterone solution (100 μg/l) to the androgen group-treated fish tank, soaked for 2 h per day for 38 days, and sampled 5~10 samples each time every 5 days during the culture process. Gene expression changes related to UGP were analyzed with tissue specificity between control and androgen groups during sex differentiation, adult male maturation, and the copulation stage (September to December) using real-time quantitative polymerase chain reaction. The expression of ar was also localized by two-color in situ hybridization in the UGP region of juvenile fish. Androgen treatment enhanced ar expression levels and the ar signal was stronger in the UGP region of both adult breeding fish and androgen-treated juvenile fish. This study provides insights into the regulation of the external genitalia of black rockfish and presents vital information for the artificial breeding of viviparous fish.
Collapse
Affiliation(s)
- Tao Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xueying Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ning Zhao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qinghua Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zongcheng Song
- Weihai Shenghang Aquatic Product Science and Technology Co. Ltd., Weihai, China
| | - Jun Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
5
|
Young JJ. In preprints: of genitalia and six-legged mice. Development 2023; 150:dev202264. [PMID: 37647032 DOI: 10.1242/dev.202264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Affiliation(s)
- John J Young
- Simmons University, 300 The Fenway, Boston, MA 02115, USA
| |
Collapse
|
6
|
Tanaka K, Matsumaru D, Suzuki K, Yamada G, Miyagawa S. The role of p63 in embryonic external genitalia outgrowth in mice. Dev Growth Differ 2023; 65:132-140. [PMID: 36680528 PMCID: PMC11520970 DOI: 10.1111/dgd.12840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 01/22/2023]
Abstract
Embryonic external genitalia (genital tubercle [GT]) protrude from the cloaca and outgrow as cloacal development progresses. Individual gene functions and knockout phenotypes in GT development have been extensively analyzed; however, the interactions between these genes are not fully understood. In this study, we investigated the role of p63, focusing on its interaction with the Shh-Wnt/Ctnnb1-Fgf8 pathway, a signaling network that is known to play a role in GT outgrowth. p63 was expressed in the epithelial tissues of the GT at E11.5, and the distal tip of the GT predominantly expressed the ΔNp63α isoform. The GTs in p63 knockout embryos had normal Shh expression, but CTNNB1 protein and Fgf8 gene expression in the distal urethral epithelium was decreased or lost. Constitutive expression of CTNNB1 in p63-null embryos restored Fgf8 expression, accompanied by small bud structure development; however, such bud structures could not be maintained by E13.5, at which point mutant GTs exhibited severe abnormalities showing a split shape with a hemorrhagic cloaca. Therefore, p63 is a key component of the signaling pathway that triggers Fgf8 expression in the distal urethral epithelium and contributes to GT outgrowth by ensuring the structural integrity of the cloacal epithelia. Altogether, we propose that p63 plays an essential role in the signaling network for the development of external genitalia.
Collapse
Affiliation(s)
- Kosei Tanaka
- Department of Biological Science and Technology, Faculty of Advances EngineeringTokyo University of ScienceKatsushikaJapan
| | - Daisuke Matsumaru
- Laboratory of Hygienic Chemistry and Molecular ToxicologyGifu Pharmaceutical UniversityGifuJapan
| | - Kentaro Suzuki
- Faculty of Life and Environmental SciencesUniversity of YamanashiYamanashiJapan
| | - Gen Yamada
- Institute of Advanced MedicineWakayama Medical UniversityWakayamaJapan
| | - Shinichi Miyagawa
- Department of Biological Science and Technology, Faculty of Advances EngineeringTokyo University of ScienceKatsushikaJapan
- Division of Biological Environment Innovation, Research Institute for Science and TechnologyTokyo University of ScienceKatsushikaJapan
| |
Collapse
|
7
|
Yin Y, Haller M, Li T, Ma L. Development of an in-vitro high-throughput screening system to identify modulators of genitalia development. PNAS NEXUS 2023; 2:pgac300. [PMID: 36712925 PMCID: PMC9832959 DOI: 10.1093/pnasnexus/pgac300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
Sexually dimorphic outgrowth and differentiation of the embryonic genital tubercles (GTs) give rise to the penis in males and the clitoris in females. Defects in androgen production or in response to androgen signaling can lead to various congenital penile anomalies in both mice and humans. Due to lack of a high-throughput screening system, identification of crucial regulators of GT sexual differentiation has been slow. To overcome this research barrier, we isolated embryonic GT mesenchymal (GTme) cells to model genitalia growth and differentiation in vitro. Using either a mechanical or fluorescence-activated cell sorting-assisted purification method, GTme cells were isolated and assayed for their proliferation using a microscopy and image analysis system, on a single cell level over time. Male and female GTme cells inherently exhibit different cellular dynamics, consistent with their in-vivo behaviors. This system allows for the rapid quantitative analyses of numerous drug treatments, and enables the discovery of potential genetic modulators of GT morphogenesis on a large scale. Using this system, we completed a 438-compound library screen and identified 82 kinase inhibitor hits. In mice, in-utero exposure to one such candidate kinase inhibitor, Cediranib, resulted in embryos with severe genitalia defects, especially in males. Gene silencing by RNAi was optimized in this system, laying the foundation for future larger-scale genetic screenings. These findings demonstrate the power of this novel high-throughput system to rapidly and successfully identify modulators of genitalia growth and differentiation, expanding the toolbox for the study of functional genomics and environmental factors.
Collapse
Affiliation(s)
- Yan Yin
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Meade Haller
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Tian Li
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Liang Ma
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
- Department of Obstetrics and Gynecology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| |
Collapse
|
8
|
Tang B, Hu S, Ouyang Q, Wu T, Lu Y, Hu J, Hu B, Li L, Wang J. Comparative transcriptome analysis identifies crucial candidate genes and pathways in the hypothalamic-pituitary-gonadal axis during external genitalia development of male geese. BMC Genomics 2022; 23:136. [PMID: 35168567 PMCID: PMC8848681 DOI: 10.1186/s12864-022-08374-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/08/2022] [Indexed: 01/25/2023] Open
Abstract
Background All birds reproduce via internal fertilization, but only ~3% of male birds possess the external genitalia that allows for intromission. Waterfowl (e.g., duck and goose) are representatives of them, and the external genitalia development of male geese is directly related to mating ability. Notably, some male geese show abnormal external genitalia development during ontogenesis. However, until now little is known about the molecular mechanisms of the external genitalia development in goose. In the present study, comparative transcriptomic analyses were performed on the hypothalamus, pituitary gland, testis, and external genitalia isolated from the 245-day-old male Tianfu meat geese showing normal (NEGG, n = 3) and abnormal (AEGG, n = 3) external genitals in order to provide a better understanding of the mechanisms controlling the development of the external genitalia in aquatic bird species. Results There were 107, 284, 2192, and 1005 differentially expressed genes (DEGs) identified in the hypothalamus, pituitary gland, testis and external genitalia between NEGG and AEGG. Functional enrichment analysis indicated that the DEGs identified in the hypothalamus were mainly enriched in the ECM-receptor interaction pathway. The ECM-receptor interaction, focal adhesion, and neuroactive ligand-receptor interaction pathways were significantly enriched by the DEGs in the pituitary gland. In the testis, the DEGs were enriched in the neuroactive ligand-receptor interaction, cell cycle, oocyte meiosis, and purine metabolism. In the external genitalia, the DEGs were enriched in the metabolic, neuroactive ligand-receptor interaction, and WNT signaling pathways. Furthermore, through integrated analysis of protein-protein interaction (PPI) network and co-expression network, fifteen genes involved in the neuroactive ligand-receptor interaction and WNT signaling pathways were identified, including KNG1, LPAR2, LPAR3, NPY, PLCB1, AVPR1B, GHSR, GRM3, HTR5A, FSHB, FSHR, WNT11, WNT5A, WIF1, and WNT7B, which could play crucial roles in the development of goose external genitalia. Conclusions This study is the first systematically comparing the hypothalamus, pituitary gland, testis, and external genitalia transcriptomes of male geese exhibiting normal and abnormal external genitals. Both bioinformatic analysis and validation experiments indicated that the neuroactive ligand-receptor interaction pathway could regulate the WNT signaling pathway through PLCB1 to control male goose external genitalia development. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08374-2.
Collapse
Affiliation(s)
- Bincheng Tang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Qingyuan Ouyang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Tianhao Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Yao Lu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Bo Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
9
|
Tarulli GA, Cripps SM, Pask AJ, Renfree MB. Spatiotemporal map of key signaling factors during early penis development. Dev Dyn 2021; 251:609-624. [PMID: 34697862 PMCID: PMC9539974 DOI: 10.1002/dvdy.433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/27/2021] [Accepted: 09/28/2021] [Indexed: 12/31/2022] Open
Abstract
The formation of the external genitalia is a highly complex developmental process, considering it involves a wide range of cell types and results in sexually dimorphic outcomes. Development is controlled by several secreted signalling factors produced in complex spatiotemporal patterns, including the hedgehog (HH), bone morphogenic protein (BMP), fibroblast growth factor (FGF) and WNT signalling families. Many of these factors act on or are influenced by the actions of the androgen receptor (AR) that is critical to masculinisation. This complexity of expression makes it difficult to conceptualise patterns of potential importance. Mapping expression during key stages of development is needed to develop a comprehensive model of how different cell types interact in formation of external genitalia, and the global regulatory networks at play. This is particularly true in light of the sensitivity of this process to environmental disruption during key stages of development. The goal of this review is to integrate all recent studies on gene expression in early penis development to create a comprehensive spatiotemporal map. This serves as a resource to aid in visualising potentially significant interactions involved in external genital development. Diagrams of published RNA and protein localisation data for key secreted signalling factors during early penis development. Unconventional expression patterns are identified that suggest novel signalling axes during development. Key research gaps and limitations are identified and discussed.
Collapse
Affiliation(s)
- Gerard A Tarulli
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Samuel M Cripps
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew J Pask
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Marilyn B Renfree
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Female congenital aphallia: a unique case of congenital absence of the clitoris with an ectopic labium majorum. Clin Dysmorphol 2021; 30:17-21. [PMID: 33136658 DOI: 10.1097/mcd.0000000000000354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The spectrum of disorders of sexual development includes anatomical abnormalities of the external genitalia, the phenotypic variability of which and the underlying causes are numerous. However, female aphallia and ectopia of the labium majorum appear to be some of the rarest forms of external genitalia malformations. Aphallia is mostly described in males with a frequency of less than one per 40 000 male newborns. Although syndromic forms of aphallia in females have been reported, for example, in Robinow, CHARGE, and Prader-Willi syndrome, reports of isolated female aphallia are meager. Here, we describe the first case of isolated agenesis of the clitoris with an ectopic labium majorum and review the literature of this uncommon malformation and its potential dysmorphogenetic mechanism. We emphasize the need for a routine exhaustive physical examination to identify and characterize this unusual malformation correctly so that families can be appropriately counseled as to cause and potential complications.
Collapse
|
11
|
Chang J, Wang S, Zheng Z. Etiology of Hypospadias: A Comparative Review of Genetic Factors and Developmental Processes Between Human and Animal Models. Res Rep Urol 2021; 12:673-686. [PMID: 33381468 PMCID: PMC7769141 DOI: 10.2147/rru.s276141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 09/28/2020] [Indexed: 11/23/2022] Open
Abstract
Hypospadias is a congenital anomaly of the penis with an occurrence of approximately 1 in 200 boys, but the etiology of the majority of hypospadias has remained unknown. Numerous genes have been reported as having variants in hypospadias patients, and many studies on genetic deletion of key genes in mouse genital development have also been published. Until now, no comparative analysis in the genes related literature has been reported. The basic knowledge of penile development and hypospadias is mainly obtained from animal model studies. Understanding of the differences and similarities between human and animal models is crucial for studies of hypospadias. In this review, mutations and polymorphisms of hypospadias-related genes have been compared between humans and mice, and differential genotype–phenotype relationships of certain genes between humans and mice have been discussed using the data available in PubMed and MGI online databases, and our analysis only revealed mutations in seven out of 43 human hypospadias related genes which have been reported to show similar phenotypes in mutant mice. The differences and similarities in the processes of penile development and hypospadias malformation among human and commonly used animal models suggest that the guinea pig may be a good model to study the mechanism of human penile development and etiology of hypospadias.
Collapse
Affiliation(s)
- Jun Chang
- Department of Physiology, School of Medicine, Southern Illinois University Carbondale, Carbondale, IL 62901, USA.,School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, People's Republic of China
| | - Shanshan Wang
- Department of Physiology, School of Medicine, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
| | - Zhengui Zheng
- Department of Physiology, School of Medicine, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
| |
Collapse
|
12
|
Chen Y, Yu H, Pask AJ, Fujiyama A, Suzuki Y, Sugano S, Shaw G, Renfree MB. Hormone-responsive genes in the SHH and WNT/β-catenin signaling pathways influence urethral closure and phallus growth. Biol Reprod 2019; 99:806-816. [PMID: 29767687 DOI: 10.1093/biolre/ioy117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 05/13/2018] [Indexed: 11/14/2022] Open
Abstract
Environmental endocrine disruptors (EEDs) that affect androgen or estrogen activity may disrupt gene regulation during phallus development to cause hypospadias or a masculinized clitoris. We treated developing male tammar wallabies with estrogen and females with androgen from day 20-40 postpartum (pp) during the androgen imprinting window of sensitivity. Estrogen inhibited phallus elongation but had no effect on urethral closure and did not significantly depress testicular androgen synthesis. Androgen treatment in females did not promote phallus elongation but initiated urethral closure. Phalluses were collected for transcriptome sequencing at day 50 pp when they first become sexually dimorphic to examine changes in two signaling pathways, sonic hedgehog (SHH) and wingless-type MMTV integration site family (WNT)/β-catenin. SHH mRNA and β-catenin were predominantly expressed in the urethral epithelium in the tammar phallus, as in eutherian mammals. Estrogen treatment and castration of males induced an upregulation of SHH, while androgen treatment downregulated SHH. These effects appear to be direct since we detected putative estrogen receptor α (ERα) and androgen receptor (AR) binding sites near SHH. WNT5A, like SHH, was downregulated by androgen, while WNT4 was upregulated in female phalluses after androgen treatment. After estrogen treatment, WIF1 and WNT7A were both downregulated in male phalluses. After castration, WNT9A was upregulated. These results suggest that SHH and WNT pathways are regulated by both estrogen and androgen to direct the proliferation and elongation of the phallus during differentiation. Their response to exogenous hormones makes these genes potential targets of EEDs in the etiology of abnormal phallus development including hypospadias.
Collapse
Affiliation(s)
- Yu Chen
- School of BioSciences, The University of Melbourne, Victoria, Australia
| | - Hongshi Yu
- School of BioSciences, The University of Melbourne, Victoria, Australia
| | - Andrew J Pask
- School of BioSciences, The University of Melbourne, Victoria, Australia
| | - Asao Fujiyama
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Sumio Sugano
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Geoff Shaw
- School of BioSciences, The University of Melbourne, Victoria, Australia
| | - Marilyn B Renfree
- School of BioSciences, The University of Melbourne, Victoria, Australia
| |
Collapse
|
13
|
Su T, Liu H, Zhang D, Xu G, Liu J, Evans SM, Pan J, Cui S. LIM homeodomain transcription factor Isl1 affects urethral epithelium differentiation and apoptosis via Shh. Cell Death Dis 2019; 10:713. [PMID: 31558700 PMCID: PMC6763423 DOI: 10.1038/s41419-019-1952-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/25/2019] [Accepted: 09/03/2019] [Indexed: 12/14/2022]
Abstract
Urethral hypoplasia, including failure of urethral tube closure, is one of the common phenotypes observed in hereditary human disorders, the mechanism of which remains unclear. The present study was thus designed to study the expression, functions, and related mechanisms of the LIM homeobox transcription factor Isl1 throughout mouse urethral development. Results showed that Isl1 was highly expressed in urethral epithelial cells and mesenchymal cells of the genital tubercle (GT). Functional studies were carried out by utilizing the tamoxifen-inducible Isl1-knockout mouse model. Histological and morphological results indicated that Isl1 deletion caused urethral hypoplasia and inhibited maturation of the complex urethral epithelium. In addition, we show that Isl1-deleted mice failed to maintain the progenitor cell population required for renewal of urethral epithelium during tubular morphogenesis and exhibited significantly increased cell death within the urethra. Dual-Luciferase reporter assays and yeast one-hybrid assays showed that ISL1 was essential for normal urethral development by directly targeting the Shh gene. Collectively, results presented here demonstrated that Isl1 plays a crucial role in mouse urethral development, thus increasing our potential for understanding the mechanistic basis of hereditary urethral hypoplasia.
Collapse
Affiliation(s)
- Tiantian Su
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Hui Liu
- College of Veterinary Medicine, Yangzhou University, 225009, Yangzhou, Jiangsu, People's Republic of China
| | - Di Zhang
- College of Veterinary Medicine, Yangzhou University, 225009, Yangzhou, Jiangsu, People's Republic of China
| | - Guojin Xu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Jiali Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Sylvia M Evans
- Skaggs School of Pharmacy, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Jirong Pan
- Key Laboratory of Human Disease Comparative MedicineInstitute of Laboratory Animal Science, Chinese Academy of Medical Science and Comparative Medical Center, Peking Union Medical College, 100021, Beijing, People's Republic of China.
| | - Sheng Cui
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, People's Republic of China. .,College of Veterinary Medicine, Yangzhou University, 225009, Yangzhou, Jiangsu, People's Republic of China.
| |
Collapse
|
14
|
Haller M, Ma L. Temporal, spatial, and genetic regulation of external genitalia development. Differentiation 2019; 110:1-7. [PMID: 31521888 DOI: 10.1016/j.diff.2019.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 12/26/2022]
Abstract
Fertilization requires the physical combination of gametes, and terrestrial mammals necessitated the evolution of genitalia capable of successfully completing the fertilization process in a non-aqueous environment. Thus, the male mammalian external genitalia evolved as an outgrowth from the body, an appendage sufficient to fertilize eggs housed deep inside the female. In this way, sexual dimorphism of mammalian genitalia became highly pronounced. This highly complex evolutionary divergence both from aqueous fertilization, as well as divergence between the sexes of terrestrial mammals, required exquisitely coordinated, novel patterns of gene expression to regulate the spatial and temporal events governing external genitalia development. Recent studies delineating the genetic regulation of external genitalia development, largely focusing on development of the murine genital tubercle, have vastly enlightened the field of reproductive developmental biology. Murine homologs of human genes have been selectively deleted in the mouse, either in the whole body or using tissue-specific and temporally-specific genetic drivers. The defects in outgrowth and urethral tubularization subsequent to the deletion of specific genes in the developing murine external genitalia delineates which genes are required in which compartments and at what times. This review details how these murine genetic models have created a somewhat modest but rapidly growing library of knowledge detailing the spatial-temporal genetic regulation of external genitalia development.
Collapse
Affiliation(s)
- Meade Haller
- Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
| | - Liang Ma
- Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO, 63110, USA.
| |
Collapse
|
15
|
Ching ST, Infante CR, Du W, Sharir A, Park S, Menke DB, Klein OD. Isl1 mediates mesenchymal expansion in the developing external genitalia via regulation of Bmp4, Fgf10 and Wnt5a. Hum Mol Genet 2019; 27:107-119. [PMID: 29126155 DOI: 10.1093/hmg/ddx388] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 10/25/2017] [Indexed: 12/20/2022] Open
Abstract
Genital malformations are among the most common human birth defects, and both genetic and environmental factors can contribute to these malformations. Development of the external genitalia in mammals relies on complex signaling networks, and disruption of these signaling pathways can lead to genital defects. Islet-1 (ISL1), a member of the LIM/Homeobox family of transcription factors, has been identified as a major susceptibility gene for classic bladder exstrophy in humans, a common form of the bladder exstrophy-epispadias complex (BEEC), and is implicated in a role in urinary tract development. We report that deletion of Isl1 from the genital mesenchyme in mice led to hypoplasia of the genital tubercle and prepuce, with an ectopic urethral opening and epispadias-like phenotype. These mice also developed hydroureter and hydronephrosis. Identification of ISL1 transcriptional targets via ChIP-Seq and expression analyses revealed that Isl1 regulates several important signaling pathways during embryonic genital development, including the BMP, WNT, and FGF cascades. An essential function of Isl1 during development of the external genitalia is to induce Bmp4-mediated apoptosis in the genital mesenchyme. Together, these studies demonstrate that Isl1 plays a critical role during development of the external genitalia and forms the basis for a greater understanding of the molecular mechanisms underlying the pathogenesis of BEEC and urinary tract defects in humans.
Collapse
Affiliation(s)
- Saunders T Ching
- Department of Orofacial Sciences, University of California, San Francisco, CA 94143, USA
| | - Carlos R Infante
- Department of Genetics, University of Georgia, GA 30602, USA.,Department of Molecular and Cellular Biology, University of Arizona, AZ 85721, USA
| | - Wen Du
- Department of Orofacial Sciences, University of California, San Francisco, CA 94143, USA.,State Key Laboratory of Oral Diseases, Department of Prosthetics, West China College of Stomatology, Sichuan University, Sichuan Sheng 610041, China
| | - Amnon Sharir
- Department of Orofacial Sciences, University of California, San Francisco, CA 94143, USA
| | - Sungdae Park
- Department of Genetics, University of Georgia, GA 30602, USA
| | - Douglas B Menke
- Department of Genetics, University of Georgia, GA 30602, USA
| | - Ophir D Klein
- Department of Orofacial Sciences, University of California, San Francisco, CA 94143, USA.,Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
16
|
Miyado M, Miyado K, Nakamura A, Fukami M, Yamada G, Oda SI. Expression patterns of Fgf8 and Shh in the developing external genitalia of Suncus murinus. Reproduction 2017; 153:187-195. [DOI: 10.1530/rep-16-0231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 01/23/2023]
Abstract
Reciprocal epithelial–mesenchymal interactions and several signalling pathways regulate the development of the genital tubercle (GT), an embryonic primordium of external genitalia. The morphology of the adult male external genitalia of the Asian house musk shrew Suncus murinus (hereafter, laboratory name: suncus) belonging to the order Eulipotyphla (the former order Insectivora or Soricomorpha) differs from those of mice and humans. However, the developmental process of the suncus GT and its regulatory genes are unknown. In the present study, we explored the morphological changes and gene expression patterns during the development of the suncus GT. Morphological observations suggested the presence of common (during the initial outgrowth) and species-specific (during the sexual differentiation of GT) developmental processes of the suncus GT. In gene expression analysis, fibroblast growth factor 8 (Fgf8) and sonic hedgehog (Shh), an indicator and regulator of GT development in mice respectively, were found to be expressed in the cloacal epithelium and the developing urethral epithelium of the suncus GT. This pattern of expression specifically in GT epithelium is similar to that observed in the developing mouse GT. Our results indicate that the mechanism of GT formation regulated by the FGF and SHH signalling pathways is widely conserved in mammals.
Collapse
|
17
|
de Graaf P, van der Linde EM, Rosier PFWM, Izeta A, Sievert KD, Bosch JLHR, de Kort LMO. Systematic Review to Compare Urothelium Differentiation with Urethral Epithelium Differentiation in Fetal Development, as a Basis for Tissue Engineering of the Male Urethra. TISSUE ENGINEERING PART B-REVIEWS 2016; 23:257-267. [PMID: 27809709 DOI: 10.1089/ten.teb.2016.0352] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Tissue-engineered (TE) urethra is desirable in men with urethral disease (stricture or hypospadias) and shortage of local tissue. Although ideally a TE graft would contain urethral epithelium cells, currently, bladder epithelium (urothelium) is widely used, but morphologically different. Understanding the differences and similarities of urothelium and urethral epithelium could help design a protocol for in vitro generation of urethral epithelium to be used in TE grafts for the urethra. PURPOSE To understand the development toward urethral epithelium or urothelium to improve TE of the urethra. METHODS A literature search was done following PRISMA guidelines. Articles describing urethral epithelium and bladder urothelium development in laboratory animals and humans were selected. RESULTS Twenty-nine studies on development of urethral epithelium and 29 studies on development of urothelium were included. Both tissue linings derive from endoderm and although adult urothelium and urethral epithelium are characterized by different gene expression profiles, the signaling pathways underlying their development are similar, including Shh, BMP, Wnt, and FGF. The progenitor of the urothelium and the urethral epithelium is the early fetal urogenital sinus (UGS). The urethral plate and the urothelium are both formed from the p63+ cells of the UGS. Keratin 20 and uroplakins are exclusively expressed in urothelium, not in the urethral epithelium. Further research has to be done on unique markers for the urethral epithelium. CONCLUSION This review has summarized the current knowledge about embryonic development of urothelium versus urethral epithelium and especially focuses on the influencing factors that are potentially specific for the eventual morphological differences of both cell linings, to be a basis for developmental or tissue engineering of urethral tissue.
Collapse
Affiliation(s)
- Petra de Graaf
- 1 Department of Urology, University Medical Centre Utrecht , Utrecht, The Netherlands .,2 Regenerative Medicine Center Utrecht , Utrecht, The Netherlands
| | | | - Peter F W M Rosier
- 1 Department of Urology, University Medical Centre Utrecht , Utrecht, The Netherlands
| | - Ander Izeta
- 3 Tissue Engineering Laboratory, Bioengineering Area, Instituto Biodonostia, Hospital Universitario Donostia , San Sebastián, Spain .,4 Department of Biomedical Engineering, School of Engineering, Tecnun-University of Navarra , San Sebastián, Spain
| | | | - J L H Ruud Bosch
- 1 Department of Urology, University Medical Centre Utrecht , Utrecht, The Netherlands
| | - Laetitia M O de Kort
- 1 Department of Urology, University Medical Centre Utrecht , Utrecht, The Netherlands
| |
Collapse
|
18
|
Gredler ML. Developmental and Evolutionary Origins of the Amniote Phallus. Integr Comp Biol 2016; 56:694-704. [DOI: 10.1093/icb/icw102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
19
|
Aurora M, Spence JR. hPSC-derived lung and intestinal organoids as models of human fetal tissue. Dev Biol 2016; 420:230-238. [PMID: 27287882 DOI: 10.1016/j.ydbio.2016.06.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 05/23/2016] [Accepted: 06/04/2016] [Indexed: 02/07/2023]
Abstract
In vitro human pluripotent stem cell (hPSC) derived tissues are excellent models to study certain aspects of normal human development. Current research in the field of hPSC derived tissues reveals these models to be inherently fetal-like on both a morphological and gene expression level. In this review we briefly discuss current methods for differentiating lung and intestinal tissue from hPSCs into individual 3-dimensional units called organoids. We discuss how these methods mirror what is known about in vivo signaling pathways of the developing embryo. Additionally, we will review how the inherent immaturity of these models lends them to be particularly valuable in the study of immature human tissues in the clinical setting of premature birth. Human lung organoids (HLOs) and human intestinal organoids (HIOs) not only model normal development, but can also be utilized to study several important diseases of prematurity such as respiratory distress syndrome (RDS), bronchopulmonary dysplasia (BPD), and necrotizing enterocolitis (NEC).
Collapse
Affiliation(s)
- Megan Aurora
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Jason R Spence
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Center for Organogenesis, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
20
|
Requirement for basement membrane laminin α5 during urethral and external genital development. Mech Dev 2016; 141:62-69. [PMID: 27208857 DOI: 10.1016/j.mod.2016.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 05/11/2016] [Accepted: 05/16/2016] [Indexed: 12/31/2022]
Abstract
Hypospadias, a congenital malformation of the penis characteristic of an abnormal urethral orifice, affects 1 in every 125 boys, and its incidence is rising. Herein we test the hypothesis that the basement membrane protein laminin α5 (LAMA5) plays a key role in the development of the mouse genital tubercle, the embryonic anlage of the external genitalia. Using standard histological analyses and electron microscopy, we characterized the morphology of the external genitalia in Lama5 knockout (LAMA5-KO) mouse embryos during both androgen-independent genital tubercle development and androgen-mediated sexual differentiation. We compared regulatory gene expression between control and LAMA5-KO by in situ hybridization. We also examined the epithelial structure of the mutant genital tubercle using immunofluorescence staining and histological analyses of semi-thin sections. We found that Lama5 was expressed in both ectodermal and endodermal epithelia of the cloaca. The LAMA5-KO displayed a profound external genital malformation in which the genital tubercle was underdeveloped with a large ectopic orifice at the proximal end. In older embryos, the urethra failed to form a tubular structure and was left completely exposed. These defects were not associated with a significant alteration in regulatory gene expression, but rather with a defective ectodermal epithelium and an abnormal disintegration of the cloacal membrane. We conclude that LAMA5 is required in the basement membrane to maintain normal architecture of the ventral ectoderm during genital tubercle development, which is essential for the formation of a tubular urethra. Perturbation of LAMA5, and possibly other basement membrane components, may cause hypospadias in humans.
Collapse
|
21
|
Computational modeling and simulation of genital tubercle development. Reprod Toxicol 2016; 64:151-61. [PMID: 27180093 DOI: 10.1016/j.reprotox.2016.05.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/13/2016] [Accepted: 05/07/2016] [Indexed: 11/22/2022]
Abstract
Hypospadias is a developmental defect of urethral tube closure that has a complex etiology involving genetic and environmental factors, including anti-androgenic and estrogenic disrupting chemicals; however, little is known about the morphoregulatory consequences of androgen/estrogen balance during genital tubercle (GT) development. Computer models that predictively model sexual dimorphism of the GT may provide a useful resource to translate chemical-target bipartite networks and their developmental consequences across the human-relevant chemical universe. Here, we describe a multicellular agent-based model of genital tubercle (GT) development that simulates urethrogenesis from the sexually-indifferent urethral plate stage to urethral tube closure. The prototype model, constructed in CompuCell3D, recapitulates key aspects of GT morphogenesis controlled by SHH, FGF10, and androgen pathways through modulation of stochastic cell behaviors, including differential adhesion, motility, proliferation, and apoptosis. Proper urethral tube closure in the model was shown to depend quantitatively on SHH- and FGF10-induced effects on mesenchymal proliferation and epithelial apoptosis-both ultimately linked to androgen signaling. In the absence of androgen, GT development was feminized and with partial androgen deficiency, the model resolved with incomplete urethral tube closure, thereby providing an in silico platform for probabilistic prediction of hypospadias risk across combinations of minor perturbations to the GT system at various stages of embryonic development.
Collapse
|
22
|
Schultz NG, Ingels J, Hillhouse A, Wardwell K, Chang PL, Cheverud JM, Lutz C, Lu L, Williams RW, Dean MD. The Genetic Basis of Baculum Size and Shape Variation in Mice. G3 (BETHESDA, MD.) 2016; 6:1141-51. [PMID: 26935419 PMCID: PMC4856068 DOI: 10.1534/g3.116.027888] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 02/05/2016] [Indexed: 01/01/2023]
Abstract
The rapid divergence of male genitalia is a preeminent evolutionary pattern. This rapid divergence is especially striking in the baculum, a bone that occurs in the penis of many mammalian species. Closely related species often display diverse baculum morphology where no other morphological differences can be discerned. While this fundamental pattern of evolution has been appreciated at the level of gross morphology, nearly nothing is known about the genetic basis of size and shape divergence. Quantifying the genetic basis of baculum size and shape variation has been difficult because these structures generally lack obvious landmarks, so comparing them in three dimensions is not straightforward. Here, we develop a novel morphometric approach to quantify size and shape variation from three-dimensional micro-CT scans taken from 369 bacula, representing 75 distinct strains of the BXD family of mice. We identify two quantitative trait loci (QTL) that explain ∼50% of the variance in baculum size, and a third QTL that explains more than 20% of the variance in shape. Together, our study demonstrates that baculum morphology may diverge relatively easily, with mutations at a few loci of large effect that independently modulate size and shape. Based on a combination of bioinformatic investigations and new data on RNA expression, we prioritized these QTL to 16 candidate genes, which have hypothesized roles in bone morphogenesis and may enable future genetic manipulation of baculum morphology.
Collapse
Affiliation(s)
- Nicholas G Schultz
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089
| | - Jesse Ingels
- University of Tennessee, Health Science Center, Memphis, Tennessee 38163
| | - Andrew Hillhouse
- Texas A & M, Veterinary Medicine and Biomedical Sciences, College Station, Texas 77845
| | | | - Peter L Chang
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089
| | - James M Cheverud
- Loyola University, Department of Biology, Chicago, Illinois 60626
| | | | - Lu Lu
- University of Tennessee, Health Science Center, Memphis, Tennessee 38163
| | - Robert W Williams
- University of Tennessee, Health Science Center, Memphis, Tennessee 38163
| | - Matthew D Dean
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089
| |
Collapse
|
23
|
Fernández N, Pérez J, Zarante I. Is hypospadias a spectrum of different diseases? MAMLD1 gen: A new candidate gene for hypospadias. Rev Urol 2015. [DOI: 10.1016/j.uroco.2015.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Fernández N, Pérez J, Zarante I. ¿Son las hipospadias la expresión de diferentes enfermedades? MAMLD1 : un nuevo gen candidato para hipospadias. UROLOGÍA COLOMBIANA 2015. [DOI: 10.1016/j.uroco.2015.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
25
|
Keenan MM, Liu B, Tang X, Wu J, Cyr D, Stevens RD, Ilkayeva O, Huang Z, Tollini LA, Murphy SK, Lucas J, Muoio DM, Kim SY, Chi JT. ACLY and ACC1 Regulate Hypoxia-Induced Apoptosis by Modulating ETV4 via α-ketoglutarate. PLoS Genet 2015; 11:e1005599. [PMID: 26452058 PMCID: PMC4599891 DOI: 10.1371/journal.pgen.1005599] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 09/21/2015] [Indexed: 12/13/2022] Open
Abstract
In order to propagate a solid tumor, cancer cells must adapt to and survive under various tumor microenvironment (TME) stresses, such as hypoxia or lactic acidosis. To systematically identify genes that modulate cancer cell survival under stresses, we performed genome-wide shRNA screens under hypoxia or lactic acidosis. We discovered that genetic depletion of acetyl-CoA carboxylase (ACACA or ACC1) or ATP citrate lyase (ACLY) protected cancer cells from hypoxia-induced apoptosis. Additionally, the loss of ACLY or ACC1 reduced levels and activities of the oncogenic transcription factor ETV4. Silencing ETV4 also protected cells from hypoxia-induced apoptosis and led to remarkably similar transcriptional responses as with silenced ACLY or ACC1, including an anti-apoptotic program. Metabolomic analysis found that while α-ketoglutarate levels decrease under hypoxia in control cells, α-ketoglutarate is paradoxically increased under hypoxia when ACC1 or ACLY are depleted. Supplementation with α-ketoglutarate rescued the hypoxia-induced apoptosis and recapitulated the decreased expression and activity of ETV4, likely via an epigenetic mechanism. Therefore, ACC1 and ACLY regulate the levels of ETV4 under hypoxia via increased α-ketoglutarate. These results reveal that the ACC1/ACLY-α-ketoglutarate-ETV4 axis is a novel means by which metabolic states regulate transcriptional output for life vs. death decisions under hypoxia. Since many lipogenic inhibitors are under investigation as cancer therapeutics, our findings suggest that the use of these inhibitors will need to be carefully considered with respect to oncogenic drivers, tumor hypoxia, progression and dormancy. More broadly, our screen provides a framework for studying additional tumor cell stress-adaption mechanisms in the future. During the development of most solid tumors, there are characteristic physiological differences in the tumor that result from tumor cells outgrowing their local blood supply. Two of these physiological differences, or “stresses,” that occur in the tumor are low oxygen levels (hypoxia) and an accumulation of lactic acidic (lactic acidosis). Cancer cells experiencing hypoxia and lactic acidosis tend to be more resistant to chemo- and radio-therapy and metastasize more readily. Therefore, it is important to understand how tumor cells adapt to and survive these stresses. We used a large scale screening experiment in order to find which genes and proteins are involved in tumor cell adaptation and survival under hypoxia or lactic acidosis. We found that inhibiting either of two genes involved in lipid synthesis allowed tumor cells to survive hypoxia. This occurred because silencing these genes led to an increase in the metabolite α-ketoglutarate, which repressed a transcription factor that contributed to cell death under hypoxia. This research specifically advances our understanding of how tumor cells survive hypoxia and lactic acidosis and more broadly enhances our understanding of the cellular biology of solid tumors.
Collapse
Affiliation(s)
- Melissa M. Keenan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Beiyu Liu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Xiaohu Tang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Jianli Wu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Derek Cyr
- Department of Electrical and Computer Engineering, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Robert D. Stevens
- Sarah W Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina, United States of America
- Duke Institute of Molecular Physiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Olga Ilkayeva
- Sarah W Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina, United States of America
- Duke Institute of Molecular Physiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Zhiqing Huang
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Laura A. Tollini
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Susan K. Murphy
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Joseph Lucas
- Department of Electrical and Computer Engineering, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Deborah M. Muoio
- Sarah W Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina, United States of America
- Duke Institute of Molecular Physiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - So Young Kim
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
26
|
Harada M, Omori A, Nakahara C, Nakagata N, Akita K, Yamada G. Tissue-specific roles of FGF signaling in external genitalia development. Dev Dyn 2015; 244:759-73. [DOI: 10.1002/dvdy.24277] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 03/22/2015] [Accepted: 03/22/2015] [Indexed: 11/11/2022] Open
Affiliation(s)
- Masayo Harada
- Institute of Molecular Embryology and Genetics; Kumamoto University; Kumamoto Japan
- Department of Clinical Anatomy; Graduate School of Medical and Dental Sciences; Tokyo Medical and Dental University; Tokyo Japan
| | - Akiko Omori
- Institute of Molecular Embryology and Genetics; Kumamoto University; Kumamoto Japan
- Department of Developmental Genetics; Institute of Advanced Medicine; Wakayama Medical University; Wakayama Japan
| | - Chiaki Nakahara
- Institute of Molecular Embryology and Genetics; Kumamoto University; Kumamoto Japan
| | - Naomi Nakagata
- Division of Reproductive Engineering; Center for Animal Resources and Development, Kumamoto University; Kumamoto Japan
| | - Keiichi Akita
- Department of Clinical Anatomy; Graduate School of Medical and Dental Sciences; Tokyo Medical and Dental University; Tokyo Japan
| | - Gen Yamada
- Institute of Molecular Embryology and Genetics; Kumamoto University; Kumamoto Japan
- Department of Developmental Genetics; Institute of Advanced Medicine; Wakayama Medical University; Wakayama Japan
| |
Collapse
|
27
|
Georgas KM, Armstrong J, Keast JR, Larkins CE, McHugh KM, Southard-Smith EM, Cohn MJ, Batourina E, Dan H, Schneider K, Buehler DP, Wiese CB, Brennan J, Davies JA, Harding SD, Baldock RA, Little MH, Vezina CM, Mendelsohn C. An illustrated anatomical ontology of the developing mouse lower urogenital tract. Development 2015; 142:1893-908. [PMID: 25968320 DOI: 10.1242/dev.117903] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 04/01/2015] [Indexed: 01/10/2023]
Abstract
Malformation of the urogenital tract represents a considerable paediatric burden, with many defects affecting the lower urinary tract (LUT), genital tubercle and associated structures. Understanding the molecular basis of such defects frequently draws on murine models. However, human anatomical terms do not always superimpose on the mouse, and the lack of accurate and standardised nomenclature is hampering the utility of such animal models. We previously developed an anatomical ontology for the murine urogenital system. Here, we present a comprehensive update of this ontology pertaining to mouse LUT, genital tubercle and associated reproductive structures (E10.5 to adult). Ontology changes were based on recently published insights into the cellular and gross anatomy of these structures, and on new analyses of epithelial cell types present in the pelvic urethra and regions of the bladder. Ontology changes include new structures, tissue layers and cell types within the LUT, external genitalia and lower reproductive structures. Representative illustrations, detailed text descriptions and molecular markers that selectively label muscle, nerves/ganglia and epithelia of the lower urogenital system are also presented. The revised ontology will be an important tool for researchers studying urogenital development/malformation in mouse models and will improve our capacity to appropriately interpret these with respect to the human situation.
Collapse
Affiliation(s)
- Kylie M Georgas
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jane Armstrong
- Center for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Janet R Keast
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christine E Larkins
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Kirk M McHugh
- Centre for Molecular and Human Genetics, The Research Institute at Nationwide Children's Hospital and Division of Anatomy, The Ohio State University, Columbus, OH 43205/10, USA
| | - E Michelle Southard-Smith
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Martin J Cohn
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA Department of Biology, Genetics Institute, University of Florida, Gainesville, FL 32610, USA Howard Hughes Medical Institute, University of Florida, Gainesville, FL 32610, USA
| | | | - Hanbin Dan
- Columbia University, Department of Urology, New York, NY 10032, USA
| | - Kerry Schneider
- Columbia University, Department of Urology, New York, NY 10032, USA
| | - Dennis P Buehler
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Carrie B Wiese
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jane Brennan
- Center for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Jamie A Davies
- Center for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Simon D Harding
- MRC Human Genetics Unit, MRC IGMM, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Richard A Baldock
- MRC Human Genetics Unit, MRC IGMM, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Melissa H Little
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Chad M Vezina
- University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI 53706, USA
| | - Cathy Mendelsohn
- Columbia University, Department of Urology, New York, NY 10032, USA
| |
Collapse
|
28
|
Mahawong P, Sinclair A, Li Y, Schlomer B, Rodriguez E, Ferretti MM, Liu B, Baskin LS, Cunha GR. Comparative effects of neonatal diethylstilbestrol on external genitalia development in adult males of two mouse strains with differential estrogen sensitivity. Differentiation 2014; 88:70-83. [PMID: 25449353 PMCID: PMC4254630 DOI: 10.1016/j.diff.2014.09.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/27/2014] [Accepted: 09/19/2014] [Indexed: 11/28/2022]
Abstract
The effect of neonatal exposure to diethylstilbestrol (DES), a potent synthetic estrogen, was examined to evaluate whether the CD-1 (estrogen insensitive, outbred) and C57 (estrogen sensitive, inbred) mouse strains differ in their response to estrogen disruption of male ExG differentiation. CD-1 and C57BL/6 litters were injected with sesame oil or DES (200 ng/g/5 μl in sesame oil vehicle) every other day from birth to day 10. Animals were sacrificed at the following time points: birth, 5, 10 and 60 days postnatal. Neonatally DES-treated mice from both strains had many ExG abnormalities that included the following: (a) severe truncation of the prepuce and glans penis, (b) an abnormal urethral meatus, (c) ventral tethering of the penis, (d) reduced os penis length and glans width, (e) impaired differentiation of cartilage, (f) absence of urethral flaps, and (g) impaired differentiation of erectile bodies. Adverse effects of DES correlated with the expression of estrogen receptors within the affected tissues. While the effects of DES were similar in the more estrogen-sensitive C57BL/6 mice versus the less estrogen-sensitive CD-1 mice, the severity of DES effects was consistently greater in C57BL/6 mice. We suggest that many of the effects of DES, including the induction of hypospadias, are due to impaired growth and tissue fusion events during development.
Collapse
Affiliation(s)
- Phitsanu Mahawong
- Division of Pediatric Urology, University of California, San Francisco, CA 94143, USA
| | - Adriane Sinclair
- Division of Pediatric Urology, University of California, San Francisco, CA 94143, USA
| | - Yi Li
- Division of Pediatric Urology, University of California, San Francisco, CA 94143, USA
| | - Bruce Schlomer
- Division of Pediatric Urology, University of California, San Francisco, CA 94143, USA
| | - Esequiel Rodriguez
- Division of Pediatric Urology, University of California, San Francisco, CA 94143, USA
| | - Max M Ferretti
- Division of Pediatric Urology, University of California, San Francisco, CA 94143, USA
| | - Baomai Liu
- Division of Pediatric Urology, University of California, San Francisco, CA 94143, USA
| | - Laurence S Baskin
- Division of Pediatric Urology, University of California, San Francisco, CA 94143, USA
| | - Gerald R Cunha
- Division of Pediatric Urology, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
29
|
Zeidler C, Woelfle J, Draaken M, Mughal SS, Große G, Hilger AC, Dworschak GC, Boemers TM, Jenetzky E, Zwink N, Lacher M, Schmidt D, Schmiedeke E, Grasshoff-Derr S, Märzheuser S, Holland-Cunz S, Schäfer M, Bartels E, Keppler K, Palta M, Leonhardt J, Kujath C, Rißmann A, Nöthen MM, Reutter H, Ludwig M. Heterozygous FGF8 mutations in patients presenting cryptorchidism and multiple VATER/VACTERL features without limb anomalies. ACTA ACUST UNITED AC 2014; 100:750-9. [PMID: 25131394 DOI: 10.1002/bdra.23278] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/31/2014] [Accepted: 06/03/2014] [Indexed: 11/09/2022]
Abstract
BACKGROUND The acronym VATER/VACTERL association describes the combination of at least three of the following cardinal features: vertebral defects, anorectal malformations, cardiac defects, tracheoesophageal fistula with or without esophageal atresia, renal malformations, and limb defects. Although fibroblast growth factor-8 (FGF8) mutations have mainly found in patients with Kallmann syndrome, mice with a hypomorphic Fgf8 allele or complete gene invalidation display, aside from gonadotropin-releasing hormone deficiency, parts or even the entire spectrum of human VATER/VACTERL association. METHODS We performed FGF8 gene analysis in 49 patients with VATER/VACTERL association and 27 patients presenting with a VATER/VACTERL-like phenotype (two cardinal features). RESULTS We identified two heterozygous FGF8 mutations in patients displaying either VATER/VACTERL association (p.Gly29_Arg34dup) or a VATER/VACTERL-like phenotype (p.Pro26Leu) without limb anomalies. Whereas the duplication mutation has not been reported before, p.Pro26Leu was once observed in a Kallmann syndrome patient. Both our patients had additional bilateral cryptorchidism, a key phenotypic feature in males with FGF8 associated Kallmann syndrome. Each mutation was paternally inherited. Besides delayed puberty in both and additional unilateral cryptorchidism in one of the fathers, they were otherwise healthy. Serum hormone levels downstream the gonadotropin-releasing hormone in both patients and their fathers were within normal range. CONCLUSION Our results suggest FGF8 mutations to contribute to the formation of the VATER/VACTERL association. Further studies are needed to support this observation.
Collapse
Affiliation(s)
- Claudia Zeidler
- Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Gredler ML, Seifert AW, Cohn MJ. Morphogenesis and Patterning of the Phallus and Cloaca in the American Alligator, Alligator mississippiensis. Sex Dev 2014; 9:53-67. [DOI: 10.1159/000364817] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
31
|
Leal F, Cohn MJ. Development of Hemipenes in the Ball Python Snake Python regius. Sex Dev 2014; 9:6-20. [DOI: 10.1159/000363758] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
32
|
|
33
|
Gredler ML, Sanger TJ, Cohn MJ. Development of the Cloaca, Hemipenes, and Hemiclitores in the Green Anole, Anolis carolinensis. Sex Dev 2014; 9:21-33. [DOI: 10.1159/000363757] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
34
|
Ng RCL, Matsumaru D, Ho ASH, Garcia-Barceló MM, Yuan ZW, Smith D, Kodjabachian L, Tam PKH, Yamada G, Lui VCH. Dysregulation of Wnt inhibitory factor 1 (Wif1) expression resulted in aberrant Wnt-β-catenin signaling and cell death of the cloaca endoderm, and anorectal malformations. Cell Death Differ 2014; 21:978-89. [PMID: 24632949 PMCID: PMC4013516 DOI: 10.1038/cdd.2014.20] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 10/29/2013] [Accepted: 11/13/2013] [Indexed: 02/08/2023] Open
Abstract
In mammalian urorectal development, the urorectal septum (urs) descends from the ventral body wall to the cloaca membrane (cm) to partition the cloaca into urogenital sinus and rectum. Defective urs growth results in human congenital anorectal malformations (ARMs), and their pathogenic mechanisms are unclear. Recent studies only focused on the importance of urs mesenchyme proliferation, which is induced by endoderm-derived Sonic Hedgehog (Shh). Here, we showed that the programmed cell death of the apical urs and proximal cm endoderm is particularly crucial for the growth of urs during septation. The apoptotic endoderm was closely associated with the tempo-spatial expression of Wnt inhibitory factor 1 (Wif1), which is an inhibitor of Wnt-β-catenin signaling. In Wif1lacZ/lacZ mutant mice and cultured urorectum with exogenous Wif1, cloaca septation was defective with undescended urs and hypospadias-like phenotypes, and such septation defects were also observed in Shh−/− mutants and in endodermal β-catenin gain-of-function (GOF) mutants. In addition, Wif1 and Shh were expressed in a complementary manner in the cloaca endoderm, and Wif1 was ectopically expressed in the urs and cm associated with excessive endodermal apoptosis and septation defects in Shh−/− mutants. Furthermore, apoptotic cells were markedly reduced in the endodermal β-catenin GOF mutant embryos, which counteracted the inhibitory effects of Wif1. Taken altogether, these data suggest that regulated expression of Wif1 is critical for the growth of the urs during cloaca septation. Hence, Wif1 governs cell apoptosis of urs endoderm by repressing β-catenin signal, which may facilitate the protrusion of the underlying proliferating mesenchymal cells towards the cm for cloaca septation. Dysregulation of this endodermal Shh-Wif1-β-catenin signaling axis contributes to ARM pathogenesis.
Collapse
Affiliation(s)
- R C-L Ng
- 1] Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China [2] Centre of Reproduction, Development and Growth, Hong Kong SAR, China
| | - D Matsumaru
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - A S-H Ho
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - M-M Garcia-Barceló
- 1] Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China [2] Centre of Reproduction, Development and Growth, Hong Kong SAR, China
| | - Z-W Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shengyang, China
| | - D Smith
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - L Kodjabachian
- Aix-Marseille Université CNRS UMR 7288, Institut de Biologie du Dévelopment de Marseille, Marseille, France
| | - P K-H Tam
- 1] Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China [2] Centre of Reproduction, Development and Growth, Hong Kong SAR, China
| | - G Yamada
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - V C-H Lui
- 1] Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China [2] Centre of Reproduction, Development and Growth, Hong Kong SAR, China
| |
Collapse
|
35
|
Ipulan LA, Suzuki K, Matsushita S, Suzuki H, Okazawa M, Jacinto S, Hirai SI, Yamada G. Development of the external genitalia and their sexual dimorphic regulation in mice. Sex Dev 2014; 8:297-310. [PMID: 24503953 DOI: 10.1159/000357932] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The study of the external genitalia is divided into 2 developmental stages: the formation and growth of a bipotential genital tubercle (GT) and the sexual differentiation of the male and female GT. The sexually dimorphic processes, which occur during the second part of GT differentiation, are suggested to be governed by androgen signaling and more recently crosstalk with other signaling factors. The process of elucidating the regulatory mechanisms of hormone signaling towards other signaling networks in the GT is still in its early stages. Nevertheless, it is becoming a productive area of research. This review summarizes various studies on the development of the murine GT and the defining characteristics of a masculinized GT and presents the different signaling pathways possibly involved during masculinization.
Collapse
Affiliation(s)
- Lerrie Ann Ipulan
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University (WMU), Wakayama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Gredler ML, Larkins CE, Leal F, Lewis AK, Herrera AM, Perriton CL, Sanger TJ, Cohn MJ. Evolution of External Genitalia: Insights from Reptilian Development. Sex Dev 2014; 8:311-26. [DOI: 10.1159/000365771] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
37
|
Ching ST, Cunha GR, Baskin LS, Basson MA, Klein OD. Coordinated activity of Spry1 and Spry2 is required for normal development of the external genitalia. Dev Biol 2013; 386:1-11. [PMID: 24361260 DOI: 10.1016/j.ydbio.2013.12.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 12/05/2013] [Accepted: 12/10/2013] [Indexed: 11/16/2022]
Abstract
Development of the mammalian external genitalia is controlled by a network of signaling molecules and transcription factors. Because FGF signaling plays a central role in this complicated morphogenetic process, we investigated the role of Sprouty genes, which are important intracellular modulators of FGF signaling, during embryonic development of the external genitalia in mice. We found that Sprouty genes are expressed by the urethral epithelium during embryogenesis, and that they have a critical function during urethral canalization and fusion. Development of the genital tubercle (GT), the anlage of the prepuce and glans penis in males and glans clitoris in females, was severely affected in male embryos carrying null alleles of both Spry1 and Spry2. In Spry1(-/-);Spry2(-/-) embryos, the internal tubular urethra was absent, and urothelial morphology and organization was abnormal. These effects were due, in part, to elevated levels of epithelial cell proliferation in Spry1(-/-);Spry2(-/-) embryos. Despite changes in overall organization, terminal differentiation of the urothelium was not significantly affected. Characterization of the molecular pathways that regulate normal GT development confirmed that deletion of Sprouty genes leads to elevated FGF signaling, whereas levels of signaling in other cascades were largely preserved. Together, these results show that levels of FGF signaling must be tightly regulated during embryonic development of the external genitalia in mice, and that this regulation is mediated in part through the activity of Sprouty gene products.
Collapse
Affiliation(s)
- Saunders T Ching
- Department of Orofacial Sciences, University of California, San Francisco, United States; Department of Urology, University of California, San Francisco, United States
| | - Gerald R Cunha
- Department of Urology, University of California, San Francisco, United States
| | - Laurence S Baskin
- Department of Urology, University of California, San Francisco, United States
| | - M Albert Basson
- Department of Craniofacial Development and Stem Cell Biology, King's College, London, UK
| | - Ophir D Klein
- Department of Orofacial Sciences, University of California, San Francisco, United States; Program in Craniofacial and Mesenchymal Biology, University of California, San Francisco, United States; Institute for Human Genetics, University of California, San Francisco, United States; Department of Pediatrics, University of California, San Francisco, United States.
| |
Collapse
|
38
|
Herrera A, Shuster S, Perriton C, Cohn M. Developmental Basis of Phallus Reduction during Bird Evolution. Curr Biol 2013; 23:1065-74. [DOI: 10.1016/j.cub.2013.04.062] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 04/18/2013] [Accepted: 04/23/2013] [Indexed: 01/13/2023]
|
39
|
Penile Anatomy and Hypotheses of Erectile Function in the American Alligator (Alligator mississippiensis): Muscular Eversion and Elastic Retraction. Anat Rec (Hoboken) 2013; 296:488-94. [DOI: 10.1002/ar.22644] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 11/19/2012] [Indexed: 11/07/2022]
|
40
|
Wang C, Wang J, Borer JG, Li X. Embryonic origin and remodeling of the urinary and digestive outlets. PLoS One 2013; 8:e55587. [PMID: 23390542 PMCID: PMC3563631 DOI: 10.1371/journal.pone.0055587] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 12/27/2012] [Indexed: 01/03/2023] Open
Abstract
Separating digestive and urinary outlets is a critical step during mammalian embryogenesis. However, the natural history of these structures is poorly studied, and little is known about their embryonic origin. Here, we show that peri-cloacal mesenchymal (PCM) progenitors are the major source of these structures. Surprisingly, PCM progenitors also contribute to perineum, a structural barrier separating the urinary and digestive tracts, suggesting a potential role of PCM progenitors in establishing independent urinary and digestive outlets. We demonstrate that Six1 and Six2 are complementarily but asymmetrically expressed in the PCM progenitors. Deletion of these genes results in decreased cell survival and proliferation, and consequently in agenesis of the perineum and severe hypoplasia of the genital tubercle. Together, these findings suggest that PCM progenitors are the unexpected source of perineum and genital tubercle, and establish a basic framework for investigating normal and abnormal development of anorectal and genitourinary structures.
Collapse
Affiliation(s)
- Chen Wang
- Department of Urology, Boston Children's Hospital, Boston, Massachusetts, United States of America
| | - JingYing Wang
- Department of Urology, Boston Children's Hospital, Boston, Massachusetts, United States of America
- Department of Surgery and Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard Stem Cell Institute, Cambridge, Massachusetts, United States of America
| | - Joseph G. Borer
- Department of Urology, Boston Children's Hospital, Boston, Massachusetts, United States of America
| | - Xue Li
- Department of Urology, Boston Children's Hospital, Boston, Massachusetts, United States of America
- Department of Surgery and Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard Stem Cell Institute, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
41
|
Lin C, Yin Y, Bell SM, Veith GM, Chen H, Huh SH, Ornitz DM, Ma L. Delineating a conserved genetic cassette promoting outgrowth of body appendages. PLoS Genet 2013; 9:e1003231. [PMID: 23358455 PMCID: PMC3554569 DOI: 10.1371/journal.pgen.1003231] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 11/26/2012] [Indexed: 12/27/2022] Open
Abstract
The acquisition of the external genitalia allowed mammals to cope with terrestrial-specific reproductive needs for internal fertilization, and thus it represents one of the most fundamental steps in evolution towards a life on land. How genitalia evolved remains obscure, and the key to understanding this process may lie in the developmental genetics that underpins the early establishment of the genital primordium, the genital tubercle (GT). Development of the GT is similar to that of the limb, which requires precise regulation from a distal signaling epithelium. However, whether outgrowth of the GT and limbs is mediated by common instructive signals remains unknown. In this study, we used comprehensive genetic approaches to interrogate the signaling cascade involved in GT formation in comparison with limb formation. We demonstrate that the FGF ligand responsible for GT development is FGF8 expressed in the cloacal endoderm. We further showed that forced Fgf8 expression can rescue limb and GT reduction in embryos deficient in WNT signaling activity. Our studies show that the regulation of Fgf8 by the canonical WNT signaling pathway is mediated in part by the transcription factor SP8. Sp8 mutants elicit appendage defects mirroring WNT and FGF mutants, and abolishing Sp8 attenuates ectopic appendage development caused by a gain-of-function β-catenin mutation. These observations indicate that a conserved WNT-SP8-FGF8 genetic cassette is employed by both appendages for promoting outgrowth, and suggest a deep homology shared by the limb and external genitalia. Mammalian limbs and external genitalia are body appendages specialized for locomotion and internal fertilization, respectively. Despite their marked anatomical and functional differences, development of the limb and external genitalia appears to involve similar genetic controls, and some have suggested that regulatory mechanisms common to both might be evolutionarily linked. One essential aspect for appendage development is the establishment and maintenance of a separated proximodistal developmental axis apart from the main body axis, which is often instructed by a distal signaling epithelium. Herein, we adopted comprehensive mouse genetic approaches to investigate regulatory mechanisms underlying the distal signaling center in the limb and the GT, and uncovered a conserved genetic cassette that is utilized by both paired and unpaired appendages to establish a distal signaling center in the epithelium that mediates subsequent proximodistal outgrowth. Our results further suggested that the evolution of the external genital organ involved co-option of the same genetic program underpinning limb development.
Collapse
Affiliation(s)
- Congxing Lin
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Yan Yin
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Sheila M. Bell
- Perinatal Institute of Cincinnati Children's Hospital Medical Center, Division of Neonatology-and Pulmonary Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - G. Michael Veith
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Hong Chen
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Sung-Ho Huh
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - David M. Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Liang Ma
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
42
|
Blaschko SD, Cunha GR, Baskin LS. Molecular mechanisms of external genitalia development. Differentiation 2012; 84:261-8. [PMID: 22790208 DOI: 10.1016/j.diff.2012.06.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 05/09/2012] [Accepted: 06/16/2012] [Indexed: 12/21/2022]
Abstract
External genitalia development occurs through a combination of hormone independent, hormone dependent, and endocrine pathways. Perturbation of these pathways can lead to abnormal external genitalia development. We review human and animal mechanisms of normal and abnormal external genitalia development, and we evaluate abnormal mechanisms that lead to hypospadias. We also discuss recent laboratory findings that further our understanding of animal models of hypospadias.
Collapse
Affiliation(s)
- Sarah D Blaschko
- University of California San Francisco, Department of Urology, 400 Parnassus Avenue, A610, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
43
|
Xu K, Wu X, Shapiro E, Huang H, Zhang L, Hickling D, Deng Y, Lee P, Li J, Lepor H, Grishina I. Bmp7 functions via a polarity mechanism to promote cloacal septation. PLoS One 2012; 7:e29372. [PMID: 22253716 PMCID: PMC3258230 DOI: 10.1371/journal.pone.0029372] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 11/27/2011] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND During normal development in human and other placental mammals, the embryonic cloacal cavity separates along the axial longitudinal plane to give rise to the urethral system, ventrally, and the rectum, dorsally. Defects in cloacal development are very common and present clinically as a rectourethral fistula in about 1 in 5,000 live human births. Yet, the cellular mechanisms of cloacal septation remain poorly understood. METHODOLOGY/PRINCIPAL FINDINGS We previously detected Bone morphogenetic protein 7 (Bmp7) expression in the urorectal mesenchyme (URM), and have shown that loss of Bmp7 function results in the arrest of cloacal septation. Here, we present evidence that cloacal partitioning is driven by Bmp7 signaling in the cloacal endoderm. We performed TUNEL and immunofluorescent analysis on cloacal sections from Bmp7 null and control littermate embryos. We found that loss of Bmp7 results in a dramatic decrease in the endoderm survival and a delay in differentiation. We used immunological methods to show that Bmp7 functions by activating the c-Jun N-terminal kinase (JNK) pathway. We carried out confocal and 3D imaging analysis of mitotic chromosome bundles to show that during normal septation cells in the cloacal endoderm divide predominantly in the apical-basal direction. Loss of Bmp7/JNK signaling results in randomization of mitotic angles in the cloacal endoderm. We also conducted immunohistochemical analysis of human fetal sections to show that BMP/phospho-SMAD and JNK pathways function in the human cloacal region similar as in the mouse. CONCLUSION/SIGNIFICANCE Our results strongly indicate that Bmp7/JNK signaling regulates remodeling of the cloacal endoderm resulting in a topological separation of the urinary and digestive systems. Our study points to the importance of Bmp and JNK signaling in cloacal development and rectourethral malformations.
Collapse
Affiliation(s)
- Kun Xu
- Department of Urology, School of Medicine, New York University, New York, New York, United States of America
- Department of Toxicology, Jilin University, Changchun City, China
| | - Xinyu Wu
- Department of Urology, School of Medicine, New York University, New York, New York, United States of America
- Department of Pathology, School of Medicine, New York University, New York, New York, United States of America
| | - Ellen Shapiro
- Department of Urology, School of Medicine, New York University, New York, New York, United States of America
| | - Honging Huang
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Lixia Zhang
- Department of Urology, School of Medicine, New York University, New York, New York, United States of America
| | - Duane Hickling
- Department of Urology, School of Medicine, New York University, New York, New York, United States of America
| | - Yan Deng
- Microscopy Core, School of Medicine, New York University, New York, New York, United States of America
| | - Peng Lee
- Department of Urology, School of Medicine, New York University, New York, New York, United States of America
- Department of Pathology, School of Medicine, New York University, New York, New York, United States of America
| | - Juan Li
- Department of Toxicology, Jilin University, Changchun City, China
| | - Herbert Lepor
- Department of Urology, School of Medicine, New York University, New York, New York, United States of America
| | - Irina Grishina
- Department of Urology, School of Medicine, New York University, New York, New York, United States of America
| |
Collapse
|
44
|
Liu L, Suzuki K, Nakagata N, Mihara K, Matsumaru D, Ogino Y, Yashiro K, Hamada H, Liu Z, Evans SM, Mendelsohn C, Yamada G. Retinoic acid signaling regulates sonic hedgehog and bone morphogenetic protein signalings during genital tubercle development. ACTA ACUST UNITED AC 2011; 95:79-88. [PMID: 22127979 DOI: 10.1002/bdrb.20344] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 10/04/2011] [Indexed: 01/07/2023]
Abstract
Retinoic acid (RA) plays pivotal roles in organogenesis, and both excessive and reduced amounts of RA cause developmental abnormalities. Reproductive organs are susceptible to teratogen toxigenicity, and the genital tubercle (GT) is one such representative organ. The physiological function of endogenous RA signaling and the mechanisms of RA-induced teratogenicity are poorly understood during the GT development. The objective of this study is to understand the developmental and teratogenic roles of RA during GT development by analyzing genetically modified mouse models. We found dynamic patterns of gene expression for the RA-synthesizing enzyme, Raldh2, and for the RA-catabolizing enzyme, Cyp26b1, during GT development. Rarb, an indicator gene for RA signaling, starts its expression in the prospective corpus cavernosum penis and in the urethral plate epithelium (UE), which plays central roles during GT development. Excessive RA signaling in Cyp26b1(-/-) mutants leads to abnormal extents of cell proliferation and differentiation during GT development, and also upregulates expression of growth factor signalings. They include Sonic hedgehog (Shh) signaling and Bone morphogenetic protein (Bmp) signaling, which are expressed in the UE and its bilateral mesenchyme. RA signaling positively regulatesShh and Bmp4 expression during GT development as testified also by the experiment of RA administration and analyses of loss-of-function of RA signaling mutants. Thus, RA signaling is involved in the developmental cascade necessary for UE formation and GT development.
Collapse
Affiliation(s)
- Liqing Liu
- Department of Organ Formation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Wang C, Gargollo P, Guo C, Tang T, Mingin G, Sun Y, Li X. Six1 and Eya1 are critical regulators of peri-cloacal mesenchymal progenitors during genitourinary tract development. Dev Biol 2011; 360:186-94. [PMID: 21968101 DOI: 10.1016/j.ydbio.2011.09.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 09/14/2011] [Accepted: 09/16/2011] [Indexed: 12/31/2022]
Abstract
The evolutionarily conserved Six1-Eya1 transcription complex is central to mammalian organogenesis, and deletion of these genes in mice results in developmental anomalies of multiple organs that recapitulate human branchio-oto-renal (BOR) and DiGeorge syndromes. Here, we report that both Six1 and Eya1 are strongly expressed in the peri-cloacal mesenchyme (PCM) surrounding the cloaca, the terminal end of hindgut dilation. Six1 and Eya1 are absent from the intra-cloacal mesenchyme (ICM), a cell mass that divides the cloaca into dorsal hindgut and ventral urogenital sinus. Deletion of either or both Six1 and Eya1 genes results in a spectrum of genitourinary tract defects including persistent cloaca - hypoplastic perineum tissue between external urogenital and anorectal tracts; hypospadias - ectopic ventral positioning of the urethral orifice; and hypoplastic genitalia. Analyses of critical signaling molecules indicate normal expression of Shh in the cloaca and cloaca-derived endodermal epithelia. Using a Cre/loxP genetic fate mapping strategy, we demonstrate that Six1-positive PCM progenitors give rise to the most caudal structures of the body plan including the urogenital and anorectal complex, and the perineum region. Thus, Six1 and Eya1 are key regulators of both upper and lower urinary tract morphogenesis. Results from this study uncover essential roles of the PCM progenitors during genitourinary tract formation.
Collapse
Affiliation(s)
- Chen Wang
- Department of Urology, Children's Hospital Boston, 300 Longwood Avenue, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Cohn MJ. Development of the external genitalia: conserved and divergent mechanisms of appendage patterning. Dev Dyn 2011; 240:1108-15. [PMID: 21465625 PMCID: PMC4761266 DOI: 10.1002/dvdy.22631] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2011] [Indexed: 12/28/2022] Open
Abstract
Over the past decade, the genetics of external genital development have begun to be understood. Male and female external genitalia develop from the genital tubercle. The early tubercle has a superficial resemblance to the limb bud, but an important distinction is that the limb consists of only mesoderm and ectoderm, whereas the genital tubercle also has an endodermal component, the urethral epithelium. Urethral epithelium, which expresses Sonic hedgehog, acts as a signaling region that controls outgrowth and pattern formation, and ultimately differentiates into the urethral tube. While there are intriguing parallels between limb and genital development, recent studies have identified some key differences, including the role of Fgf signaling. Our understanding of the mechanisms of genital development still lags far behind the limb, and major questions remain to be answered, including the molecular nature of the signals that initiate genital budding, sustain outgrowth, induce tissue polarity and orchestrate urethral tubulogenesis.
Collapse
Affiliation(s)
- Martin J Cohn
- Howard Hughes Medical Institute, Department of Molecular Genetics and Microbiology, Department of Biology, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
47
|
Chen H, Yong W, Hinds TD, Yang Z, Zhou Y, Sanchez ER, Shou W. Fkbp52 regulates androgen receptor transactivation activity and male urethra morphogenesis. J Biol Chem 2010; 285:27776-84. [PMID: 20605780 PMCID: PMC2934645 DOI: 10.1074/jbc.m110.156091] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 07/01/2010] [Indexed: 01/12/2023] Open
Abstract
Hypospadias is a common birth defect in humans, yet its etiology and pattern of onset are largely unknown. Recent studies have shown that male mice with targeted ablation of FK506-binding protein-52 (Fkbp52) develop hypospadias, most likely due to actions of Fkbp52 as a molecular co-chaperone of the androgen receptor (AR). Here, we further dissect the developmental and molecular mechanisms that underlie hypospadias in Fkbp52-deficient mice. Scanning electron microscopy revealed a defect in the elevation of prepucial swelling that led to the onset of the ventral penile cleft. Interestingly, expression of Fkbp52 was highest in the ventral aspect of the developing penis that undergoes fusion of the urethral epithelium. Although in situ hybridization and immunohistochemical analyses suggested that Fkbp52 mutants had a normal urethral epithelium signaling center and epithelial differentiation, a reduced apoptotic cell index at ventral epithelial cells at the site of fusion and a defect of genital mesenchymal cell migration were observed. Supplementation of gestating females with excess testosterone partially rescued the hypospadic phenotype in Fkbp52 mutant males, showing that loss of Fkbp52 desensitizes AR to hormonal activation. Direct measurement of AR activity was performed in mouse embryonic fibroblast cells treated with dihydrotestosterone or synthetic agonist R1881. Reduced AR activity at genes controlling sexual dimorphism and cell growth was found in Fkbp52-deficient mouse embryonic fibroblast cells. However, chromatin immunoprecipitation analysis revealed normal occupancy of AR at gene promoters, suggesting that Fkbp52 exerts downstream effects on the transactivation function of AR. Taken together, our data show Fkbp52 to be an important molecular regulator in the androgen-mediated pathway of urethra morphogenesis.
Collapse
Affiliation(s)
- Hanying Chen
- From the Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Weidong Yong
- From the Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Terry D. Hinds
- the Center for Diabetes and Endocrine Research, Department of Physiology and Pharmacology, College of Medicine, University of Toledo, Toledo, Ohio 43614
| | - Zuocheng Yang
- From the Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
- the Department of Pediatrics, Third Xiang-Ya Hospital, Central South University, Xiang-Ya School of Medicine, Changsha 410013, China, and
| | - Yuhong Zhou
- From the Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
- the Department of Pharmacology, Harbin Medical University, Harbin 150086, China
| | - Edwin R. Sanchez
- the Center for Diabetes and Endocrine Research, Department of Physiology and Pharmacology, College of Medicine, University of Toledo, Toledo, Ohio 43614
| | - Weinian Shou
- From the Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
| |
Collapse
|
48
|
Chiu HS, Szucsik JC, Georgas KM, Jones JL, Rumballe BA, Tang D, Grimmond SM, Lewis AG, Aronow BJ, Lessard JL, Little MH. Comparative gene expression analysis of genital tubercle development reveals a putative appendicular Wnt7 network for the epidermal differentiation. Dev Biol 2010; 344:1071-87. [PMID: 20510229 DOI: 10.1016/j.ydbio.2010.05.495] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 04/23/2010] [Accepted: 05/15/2010] [Indexed: 02/08/2023]
Abstract
Here we describe the first detailed catalog of gene expression in the developing lower urinary tract (LUT), including epithelial and mesenchymal portions of the developing bladder, urogenital sinus, urethra, and genital tubercle (GT) at E13 and E14. Top compartment-specific genes implicated by the microarray data were validated using whole-mount in situ hybridization (ISH) over the entire LUT. To demonstrate the potential of this resource to implicate developmentally critical features, we focused on gene expression patterns and pathways in the sexually indeterminate, androgen-independent GT. GT expression patterns reinforced the proposed similarities between development of GT, limb, and craniofacial prominences. Comparison of spatial expression patterns predicted a network of Wnt7a-associated GT-enriched epithelial genes, including Gjb2, Dsc3, Krt5, and Sostdc1. Known from other contexts, these genes are associated with normal epidermal differentiation, with disruptions in Dsc3 and Gjb2 showing palmo-plantar keratoderma in the limb. We propose that this gene network contributes to normal foreskin, scrotum, and labial development. As several of these genes are known to be regulated by, or contain cis elements responsive to retinoic acid, estrogen, or androgen, this implicates this pathway in the later androgen-dependent development of the GT.
Collapse
Affiliation(s)
- Han Sheng Chiu
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia 4072, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Miyagawa S, Moon A, Haraguchi R, Inoue C, Harada M, Nakahara C, Suzuki K, Matsumaru D, Kaneko T, Matsuo I, Yang L, Taketo MM, Iguchi T, Evans SM, Yamada G. Dosage-dependent hedgehog signals integrated with Wnt/beta-catenin signaling regulate external genitalia formation as an appendicular program. Development 2009; 136:3969-78. [PMID: 19906864 PMCID: PMC2778744 DOI: 10.1242/dev.039438] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2009] [Indexed: 12/22/2022]
Abstract
Embryonic appendicular structures, such as the limb buds and the developing external genitalia, are suitable models with which to analyze the reciprocal interactions of growth factors in the regulation of outgrowth. Although several studies have evaluated the individual functions of different growth factors in appendicular growth, the coordinated function and integration of input from multiple signaling cascades is poorly understood. We demonstrate that a novel signaling cascade governs formation of the embryonic external genitalia [genital tubercle (GT)]. We show that the dosage of Shh signal is tightly associated with subsequent levels of Wnt/beta-catenin activity and the extent of external genitalia outgrowth. In Shh-null mouse embryos, both expression of Wnt ligands and Wnt/beta-catenin signaling activity are downregulated. beta-catenin gain-of-function mutation rescues defective GT outgrowth and Fgf8 expression in Shh-null embryos. These data indicate that Wnt/beta-catenin signaling in the distal urethral epithelium acts downstream of Shh signaling during GT outgrowth. The current data also suggest that Wnt/beta-catenin regulates Fgf8 expression via Lef/Tcf binding sites in a 3' conserved enhancer. Fgf8 induces phosphorylation of Erk1/2 and cell proliferation in the GT mesenchyme in vitro, yet Fgf4/8 compound-mutant phenotypes indicate dispensable functions of Fgf4/8 and the possibility of redundancy among multiple Fgfs in GT development. Our results provide new insights into the integration of growth factor signaling in the appendicular developmental programs that regulate external genitalia development.
Collapse
Affiliation(s)
- Shinichi Miyagawa
- Institute of Molecular Embryology and Genetics, Global COE ‘Cell Fate Regulation Research and Education Unit’, Kumamoto University, Kumamoto 860-0811, Japan
- Center for Animal Resources and Development, Kumamoto University, Kumamoto 860-0811, Japan
| | - Anne Moon
- Departments of Pediatrics, Neurobiology and Anatomy, and Human Genetics, University of Utah, UT 84112, USA
| | - Ryuma Haraguchi
- Center for Animal Resources and Development, Kumamoto University, Kumamoto 860-0811, Japan
| | - Chie Inoue
- Graduate School of Molecular and Genomic Pharmacy, Kumamoto University, Kumamoto 860-0811, Japan
| | - Masayo Harada
- Institute of Molecular Embryology and Genetics, Global COE ‘Cell Fate Regulation Research and Education Unit’, Kumamoto University, Kumamoto 860-0811, Japan
| | - Chiaki Nakahara
- Graduate School of Molecular and Genomic Pharmacy, Kumamoto University, Kumamoto 860-0811, Japan
| | - Kentaro Suzuki
- Institute of Molecular Embryology and Genetics, Global COE ‘Cell Fate Regulation Research and Education Unit’, Kumamoto University, Kumamoto 860-0811, Japan
| | - Daisuke Matsumaru
- Graduate School of Molecular and Genomic Pharmacy, Kumamoto University, Kumamoto 860-0811, Japan
| | - Takehito Kaneko
- Center for Animal Resources and Development, Kumamoto University, Kumamoto 860-0811, Japan
| | - Isao Matsuo
- Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka 594-1101, Japan
| | - Lei Yang
- Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Makoto M. Taketo
- Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Taisen Iguchi
- National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Sylvia M. Evans
- Skaggs School of Pharmacy, University of California, San Diego, CA 92093, USA
| | - Gen Yamada
- Institute of Molecular Embryology and Genetics, Global COE ‘Cell Fate Regulation Research and Education Unit’, Kumamoto University, Kumamoto 860-0811, Japan
- Graduate School of Molecular and Genomic Pharmacy, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
50
|
Penislike clitorises with megalourethras in nonvirilized female fetuses and a newborn. A histopathologic study and its bearing on their pathogenesis. J Pediatr Surg 2009; 44:2223-9. [PMID: 19944238 DOI: 10.1016/j.jpedsurg.2009.07.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Accepted: 07/03/2009] [Indexed: 01/24/2023]
Abstract
PURPOSE The aim of the study was to analyze the microstructure of penislike clitorises in female pseudohermaphroditism in relation to their pathogenesis. METHODS Penislike clitorises from 2 fetuses and 1 newborn with anorectal malformations and multiple other caudal anomalies and 1 fetus with phallic urethra duplication were histologically examined in toto. RESULTS The penislike clitorises revealed basically female features in the histogenesis of the corpora cavernosa and glans and in the absence of penile raphe, septum, fasciae, and periurethral glands. In 2 cases, the "phallic urethra" was completely surrounded by a single corpus cavernosum and in 3 cases by a circular glans. Labia minora and vestibular bulbs had not developed in 3 cases. The urethras had transformed into fusiform or scaphoid megalourethras with stenotic meatuses in 3 specimens and an extra orifice in the fourth specimen. CONCLUSIONS Penislike clitorises in female pseudohermaphroditism show a fundamental dysgenesis of major structural elements. The pattern favors the hypothesis of an early error in the formation of the cloacal membrane and adjacent cloaca in embryos between 26 and 29 days postovulation that may lead to dysregulation of molecular developmental interactions during the following formation of the genital tubercle.
Collapse
|