1
|
Cole AG, Hashimshony T, Du Z, Yanai I. Gene regulatory patterning codes in early cell fate specification of the C. elegans embryo. eLife 2024; 12:RP87099. [PMID: 38284404 PMCID: PMC10945703 DOI: 10.7554/elife.87099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024] Open
Abstract
Pattern formation originates during embryogenesis by a series of symmetry-breaking steps throughout an expanding cell lineage. In Drosophila, classic work has shown that segmentation in the embryo is established by morphogens within a syncytium, and the subsequent action of the gap, pair-rule, and segment polarity genes. This classic model however does not translate directly to species that lack a syncytium - such as Caenorhabditis elegans - where cell fate is specified by cell-autonomous cell lineage programs and their inter-signaling. Previous single-cell RNA-Seq studies in C. elegans have analyzed cells from a mixed suspension of cells from many embryos to study late differentiation stages, or individual early stage embryos to study early gene expression in the embryo. To study the intermediate stages of early and late gastrulation (28- to 102-cells stages) missed by these approaches, here we determine the transcriptomes of the 1- to 102-cell stage to identify 119 embryonic cell states during cell fate specification, including 'equivalence-group' cell identities. We find that gene expression programs are modular according to the sub-cell lineages, each establishing a set of stripes by combinations of transcription factor gene expression across the anterior-posterior axis. In particular, expression of the homeodomain genes establishes a comprehensive lineage-specific positioning system throughout the embryo beginning at the 28-cell stage. Moreover, we find that genes that segment the entire embryo in Drosophila have orthologs in C. elegans that exhibit sub-lineage-specific expression. These results suggest that the C. elegans embryo is patterned by a juxtaposition of distinct lineage-specific gene regulatory programs each with a unique encoding of cell location and fate. This use of homologous gene regulatory patterning codes suggests a deep homology of cell fate specification programs across diverse modes of development.
Collapse
Affiliation(s)
- Alison G Cole
- Department of Molecular Evolution and Development, University of ViennaViennaAustria
- University of ViennaViennaAustria
| | - Tamar Hashimshony
- Department of Biology, Technion – Israel Institute of TechnologyHaifaIsrael
| | - Zhuo Du
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| | - Itai Yanai
- Institute for Computational Medicine, NYU School of MedicineNew YorkUnited States
| |
Collapse
|
2
|
Li Y, Chen S, Liu W, Zhao D, Gao Y, Hu S, Liu H, Li Y, Qu L, Liu X. A full-body transcription factor expression atlas with completely resolved cell identities in C. elegans. Nat Commun 2024; 15:358. [PMID: 38195740 PMCID: PMC10776613 DOI: 10.1038/s41467-023-42677-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/18/2023] [Indexed: 01/11/2024] Open
Abstract
Invariant cell lineage in C. elegans enables spatiotemporal resolution of transcriptional regulatory mechanisms controlling the fate of each cell. Here, we develop RAPCAT (Robust-point-matching- And Piecewise-affine-based Cell Annotation Tool) to automate cell identity assignment in three-dimensional image stacks of L1 larvae and profile reporter expression of 620 transcription factors in every cell. Transcription factor profile-based clustering analysis defines 80 cell types distinct from conventional phenotypic cell types and identifies three general phenotypic modalities related to these classifications. First, transcription factors are broadly downregulated in quiescent stage Hermaphrodite Specific Neurons, suggesting stage- and cell type-specific variation in transcriptome size. Second, transcription factor expression is more closely associated with morphology than other phenotypic modalities in different pre- and post-differentiation developmental stages. Finally, embryonic cell lineages can be associated with specific transcription factor expression patterns and functions that persist throughout postembryonic life. This study presents a comprehensive transcription factor atlas for investigation of intra-cell type heterogeneity.
Collapse
Affiliation(s)
- Yongbin Li
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Siyu Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Weihong Liu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Intelligent Perception Lab, Hanwang Technology Co., Ltd, Beijing, 100193, China
| | - Di Zhao
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise & Health, Tianjin University of Sport, Tianjin, 300381, China
| | - Yimeng Gao
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Shipeng Hu
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Hanyu Liu
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Yuanyuan Li
- Ministry of Education Key Laboratory of Intelligent Computation & Signal Processing, Information Materials and Intelligent Sensing Laboratory of Anhui Province, School of Electronics and Information Engineering, Anhui University, Hefei, 230039, China
| | - Lei Qu
- Ministry of Education Key Laboratory of Intelligent Computation & Signal Processing, Information Materials and Intelligent Sensing Laboratory of Anhui Province, School of Electronics and Information Engineering, Anhui University, Hefei, 230039, China
| | - Xiao Liu
- College of Life Sciences, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
3
|
Liu J, Murray JI. Mechanisms of lineage specification in Caenorhabditis elegans. Genetics 2023; 225:iyad174. [PMID: 37847877 PMCID: PMC11491538 DOI: 10.1093/genetics/iyad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/18/2023] [Indexed: 10/19/2023] Open
Abstract
The studies of cell fate and lineage specification are fundamental to our understanding of the development of multicellular organisms. Caenorhabditis elegans has been one of the premiere systems for studying cell fate specification mechanisms at single cell resolution, due to its transparent nature, the invariant cell lineage, and fixed number of somatic cells. We discuss the general themes and regulatory mechanisms that have emerged from these studies, with a focus on somatic lineages and cell fates. We next review the key factors and pathways that regulate the specification of discrete cells and lineages during embryogenesis and postembryonic development; we focus on transcription factors and include numerous lineage diagrams that depict the expression of key factors that specify embryonic founder cells and postembryonic blast cells, and the diverse somatic cell fates they generate. We end by discussing some future perspectives in cell and lineage specification.
Collapse
Affiliation(s)
- Jun Liu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - John Isaac Murray
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Lovato TL, Blotz B, Bileckyj C, Johnston CA, Cripps RM. Modeling a variant of unknown significance in the Drosophila ortholog of the human cardiogenic gene NKX2.5. Dis Model Mech 2023; 16:dmm050059. [PMID: 37691628 PMCID: PMC10548113 DOI: 10.1242/dmm.050059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 09/05/2023] [Indexed: 09/12/2023] Open
Abstract
Sequencing of human genome samples has unearthed genetic variants for which functional testing is necessary to validate their clinical significance. We used the Drosophila system to analyze a variant of unknown significance in the human congenital heart disease gene NKX2.5 (also known as NKX2-5). We generated an R321N allele of the NKX2.5 ortholog tinman (tin) to model a human K158N variant and tested its function in vitro and in vivo. The R321N Tin isoform bound poorly to DNA in vitro and was deficient in activating a Tin-dependent enhancer in tissue culture. Mutant Tin also showed a significantly reduced interaction with a Drosophila T-box cardiac factor named Dorsocross1. We generated a tinR321N allele using CRISPR/Cas9, for which homozygotes were viable and had normal heart specification, but showed defects in the differentiation of the adult heart that were exacerbated by further loss of tin function. We propose that the human K158N variant is pathogenic through causing a deficiency in DNA binding and a reduced ability to interact with a cardiac co-factor, and that cardiac defects might arise later in development or adult life.
Collapse
Affiliation(s)
- TyAnna L. Lovato
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Brenna Blotz
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Cayleen Bileckyj
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | | | - Richard M. Cripps
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| |
Collapse
|
5
|
Sivaramakrishnan P, Watkins C, Murray JI. Transcript accumulation rates in the early Caenorhabditis elegans embryo. SCIENCE ADVANCES 2023; 9:eadi1270. [PMID: 37611097 PMCID: PMC10446496 DOI: 10.1126/sciadv.adi1270] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/21/2023] [Indexed: 08/25/2023]
Abstract
Dynamic transcriptional changes are widespread in rapidly dividing developing embryos when cell fate decisions are made quickly. The Caenorhabditis elegans embryo overcomes these constraints partly through the rapid production of high levels of transcription factor mRNAs. Transcript accumulation rates for some developmental genes are known at single-cell resolution, but genome-scale measurements are lacking. We estimate zygotic mRNA accumulation rates from single-cell RNA sequencing data calibrated with single-molecule transcript imaging. Rapid transcription is common in the early C. elegans embryo with rates highest soon after zygotic transcription begins. High-rate genes are enriched for recently duplicated cell-fate regulators and share common genomic features. We identify core promoter elements associated with high rate and measure their contributions for two early endomesodermal genes, ceh-51 and sdz-31. Individual motifs modestly affect accumulation rates, suggesting multifactorial control. These results are a step toward estimating absolute transcription kinetics and understanding how transcript dosage drives developmental decisions.
Collapse
Affiliation(s)
- Priya Sivaramakrishnan
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Cameron Watkins
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | | |
Collapse
|
6
|
Lovato TL, Blotz B, Bileckyj C, Johnston CA, Cripps RM. Using Drosophila to model a variant of unknown significance in the human cardiogenic gene Nkx2.5. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.28.546937. [PMID: 37425758 PMCID: PMC10327092 DOI: 10.1101/2023.06.28.546937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Sequencing of human genome samples has unearthed genetic variants for which functional testing is necessary to validate their clinical significance. We used the Drosophila system to analyze a variant of unknown significance in the human congenital heart disease gene, Nkx2 . 5 . We generated an R321N allele of the Nkx2 . 5 ortholog tinman ( tin ) to model a human K158N variant and tested its function in vitro and in vivo. The R321N Tin isoform bound poorly to DNA in vitro and was deficient in activating a Tin-dependent enhancer in tissue culture. Mutant Tin also showed a significantly reduced interaction with a Drosophila Tbox cardiac factor named Dorsocross1. We generated a tin R321N allele using CRISPR/Cas9, for which homozygotes were viable and had normal heart specification, but showed defects in the differentiation of the adult heart that were exacerbated by further loss of tin function. We conclude that the human K158N mutation is likely pathogenic through causing both a deficiency in DNA binding and a reduced ability to interact with a cardiac cofactor, and that cardiac defects might arise later in development or adult life.
Collapse
|
7
|
A 4D single-cell protein atlas of transcription factors delineates spatiotemporal patterning during embryogenesis. Nat Methods 2021; 18:893-902. [PMID: 34312566 DOI: 10.1038/s41592-021-01216-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 06/17/2021] [Indexed: 12/27/2022]
Abstract
Complex biological processes such as embryogenesis require precise coordination of cell differentiation programs across both space and time. Using protein-fusion fluorescent reporters and four-dimensional live imaging, we present a protein expression atlas of transcription factors (TFs) mapped onto developmental cell lineages during Caenorhabditis elegans embryogenesis, at single-cell resolution. This atlas reveals a spatiotemporal combinatorial code of TF expression, and a cascade of lineage-specific, tissue-specific and time-specific TFs that specify developmental states. The atlas uncovers regulators of embryogenesis, including an unexpected role of a skin specifier in neurogenesis and the critical function of an uncharacterized TF in convergent muscle differentiation. At the systems level, the atlas provides an opportunity to model cell state-fate relationships, revealing a lineage-dependent state diversity within functionally related cells and a winding trajectory of developmental state progression. Collectively, this single-cell protein atlas represents a valuable resource for elucidating metazoan embryogenesis at the molecular and systems levels.
Collapse
|
8
|
Goldstein B, Nance J. Caenorhabditis elegans Gastrulation: A Model for Understanding How Cells Polarize, Change Shape, and Journey Toward the Center of an Embryo. Genetics 2020; 214:265-277. [PMID: 32029580 PMCID: PMC7017025 DOI: 10.1534/genetics.119.300240] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/02/2019] [Indexed: 11/18/2022] Open
Abstract
Gastrulation is fundamental to the development of multicellular animals. Along with neurulation, gastrulation is one of the major processes of morphogenesis in which cells or whole tissues move from the surface of an embryo to its interior. Cell internalization mechanisms that have been discovered to date in Caenorhabditis elegans gastrulation bear some similarity to internalization mechanisms of other systems including Drosophila, Xenopus, and mouse, suggesting that ancient and conserved mechanisms internalize cells in diverse organisms. C. elegans gastrulation occurs at an early stage, beginning when the embryo is composed of just 26 cells, suggesting some promise for connecting the rich array of developmental mechanisms that establish polarity and pattern in embryos to the force-producing mechanisms that change cell shapes and move cells interiorly. Here, we review our current understanding of C. elegans gastrulation mechanisms. We address how cells determine which direction is the interior and polarize with respect to that direction, how cells change shape by apical constriction and internalize, and how the embryo specifies which cells will internalize and when. We summarize future prospects for using this system to discover some of the general principles by which animal cells change shape and internalize during development.
Collapse
Affiliation(s)
- Bob Goldstein
- Department of Biology and
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina 27599 and
| | - Jeremy Nance
- Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine and
- Department of Cell Biology, New York University School of Medicine, New York 10016
| |
Collapse
|
9
|
Evolutionary Dynamics of the SKN-1 → MED → END-1,3 Regulatory Gene Cascade in Caenorhabditis Endoderm Specification. G3-GENES GENOMES GENETICS 2020; 10:333-356. [PMID: 31740453 PMCID: PMC6945043 DOI: 10.1534/g3.119.400724] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Gene regulatory networks and their evolution are important in the study of animal development. In the nematode, Caenorhabditis elegans, the endoderm (gut) is generated from a single embryonic precursor, E. Gut is specified by the maternal factor SKN-1, which activates the MED → END-1,3 → ELT-2,7 cascade of GATA transcription factors. In this work, genome sequences from over two dozen species within the Caenorhabditis genus are used to identify MED and END-1,3 orthologs. Predictions are validated by comparison of gene structure, protein conservation, and putative cis-regulatory sites. All three factors occur together, but only within the Elegans supergroup, suggesting they originated at its base. The MED factors are the most diverse and exhibit an unexpectedly extensive gene amplification. In contrast, the highly conserved END-1 orthologs are unique in nearly all species and share extended regions of conservation. The END-1,3 proteins share a region upstream of their zinc finger and an unusual amino-terminal poly-serine domain exhibiting high codon bias. Compared with END-1, the END-3 proteins are otherwise less conserved as a group and are typically found as paralogous duplicates. Hence, all three factors are under different evolutionary constraints. Promoter comparisons identify motifs that suggest the SKN-1, MED, and END factors function in a similar gut specification network across the Elegans supergroup that has been conserved for tens of millions of years. A model is proposed to account for the rapid origin of this essential kernel in the gut specification network, by the upstream intercalation of duplicate genes into a simpler ancestral network.
Collapse
|
10
|
Packer JS, Zhu Q, Huynh C, Sivaramakrishnan P, Preston E, Dueck H, Stefanik D, Tan K, Trapnell C, Kim J, Waterston RH, Murray JI. A lineage-resolved molecular atlas of C. elegans embryogenesis at single-cell resolution. Science 2019; 365:eaax1971. [PMID: 31488706 PMCID: PMC7428862 DOI: 10.1126/science.aax1971] [Citation(s) in RCA: 292] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/21/2019] [Indexed: 12/18/2022]
Abstract
Caenorhabditis elegans is an animal with few cells but a wide diversity of cell types. In this study, we characterize the molecular basis for their specification by profiling the transcriptomes of 86,024 single embryonic cells. We identify 502 terminal and preterminal cell types, mapping most single-cell transcriptomes to their exact position in C. elegans' invariant lineage. Using these annotations, we find that (i) the correlation between a cell's lineage and its transcriptome increases from middle to late gastrulation, then falls substantially as cells in the nervous system and pharynx adopt their terminal fates; (ii) multilineage priming contributes to the differentiation of sister cells at dozens of lineage branches; and (iii) most distinct lineages that produce the same anatomical cell type converge to a homogenous transcriptomic state.
Collapse
Affiliation(s)
- Jonathan S Packer
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Qin Zhu
- Genomics and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Chau Huynh
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Priya Sivaramakrishnan
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elicia Preston
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hannah Dueck
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Derek Stefanik
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Kai Tan
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Junhyong Kim
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.
| | - Robert H Waterston
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| | - John I Murray
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
11
|
OrthoList 2: A New Comparative Genomic Analysis of Human and Caenorhabditis elegans Genes. Genetics 2018; 210:445-461. [PMID: 30120140 DOI: 10.1534/genetics.118.301307] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/15/2018] [Indexed: 11/18/2022] Open
Abstract
OrthoList, a compendium of Caenorhabditis elegans genes with human orthologs compiled in 2011 by a meta-analysis of four orthology-prediction methods, has been a popular tool for identifying conserved genes for research into biological and disease mechanisms. However, the efficacy of orthology prediction depends on the accuracy of gene-model predictions, an ongoing process, and orthology-prediction algorithms have also been updated over time. Here we present OrthoList 2 (OL2), a new comparative genomic analysis between C. elegans and humans, and the first assessment of how changes over time affect the landscape of predicted orthologs between two species. Although we find that updates to the orthology-prediction methods significantly changed the landscape of C. elegans-human orthologs predicted by individual programs and-unexpectedly-reduced agreement among them, we also show that our meta-analysis approach "buffered" against changes in gene content. We show that adding results from more programs did not lead to many additions to the list and discuss reasons to avoid assigning "scores" based on support by individual orthology-prediction programs; the treatment of "legacy" genes no longer predicted by these programs; and the practical difficulties of updating due to encountering deprecated, changed, or retired gene identifiers. In addition, we consider what other criteria may support claims of orthology and alternative approaches to find potential orthologs that elude identification by these programs. Finally, we created a new web-based tool that allows for rapid searches of OL2 by gene identifiers, protein domains [InterPro and SMART (Simple Modular Architecture Research Tool], or human disease associations ([OMIM (Online Mendelian Inheritence in Man], and also includes available RNA-interference resources to facilitate potential translational cross-species studies.
Collapse
|
12
|
Murray JI. Systems biology of embryonic development: Prospects for a complete understanding of the Caenorhabditis elegans embryo. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 7:e314. [PMID: 29369536 DOI: 10.1002/wdev.314] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/01/2017] [Accepted: 12/12/2017] [Indexed: 01/07/2023]
Abstract
The convergence of developmental biology and modern genomics tools brings the potential for a comprehensive understanding of developmental systems. This is especially true for the Caenorhabditis elegans embryo because its small size, invariant developmental lineage, and powerful genetic and genomic tools provide the prospect of a cellular resolution understanding of messenger RNA (mRNA) expression and regulation across the organism. We describe here how a systems biology framework might allow large-scale determination of the embryonic regulatory relationships encoded in the C. elegans genome. This framework consists of two broad steps: (a) defining the "parts list"-all genes expressed in all cells at each time during development and (b) iterative steps of computational modeling and refinement of these models by experimental perturbation. Substantial progress has been made towards defining the parts list through imaging methods such as large-scale green fluorescent protein (GFP) reporter analysis. Imaging results are now being augmented by high-resolution transcriptome methods such as single-cell RNA sequencing, and it is likely the complete expression patterns of all genes across the embryo will be known within the next few years. In contrast, the modeling and perturbation experiments performed so far have focused largely on individual cell types or genes, and improved methods will be needed to expand them to the full genome and organism. This emerging comprehensive map of embryonic expression and regulatory function will provide a powerful resource for developmental biologists, and would also allow scientists to ask questions not accessible without a comprehensive picture. This article is categorized under: Invertebrate Organogenesis > Worms Technologies > Analysis of the Transcriptome Gene Expression and Transcriptional Hierarchies > Gene Networks and Genomics.
Collapse
Affiliation(s)
- John Isaac Murray
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
13
|
Robertson SM, Medina J, Oldenbroek M, Lin R. Reciprocal signaling by Wnt and Notch specifies a muscle precursor in the C. elegans embryo. Development 2017; 144:419-429. [PMID: 28049659 DOI: 10.1242/dev.145391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/12/2016] [Indexed: 11/20/2022]
Abstract
The MS blastomere produces one-third of the body wall muscles (BWMs) in the C. elegans embryo. MS-derived BWMs require two distinct cell-cell interactions, the first inhibitory and the second, two cell cycles later, required to overcome this inhibition. The inductive interaction is not required if the inhibitory signal is absent. Although the Notch receptor GLP-1 was implicated in both interactions, the molecular nature of the two signals was unknown. We now show that zygotically expressed MOM-2 (Wnt) is responsible for both interactions. Both the inhibitory and the activating interactions require precise spatiotemporal expression of zygotic MOM-2, which is dependent upon two distinct Notch signals. In a Notch mutant defective only in the inductive interaction, MS-derived BWMs can be restored by preventing zygotic MOM-2 expression, which removes the inhibitory signal. Our results suggest that the inhibitory interaction ensures the differential lineage specification of MS and its sister blastomere, whereas the inductive interaction promotes the expression of muscle-specifying genes by modulating TCF and β-catenin levels. These results highlight the complexity of cell fate specification by cell-cell interactions in a rapidly dividing embryo.
Collapse
Affiliation(s)
- Scott M Robertson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jessica Medina
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Marieke Oldenbroek
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rueyling Lin
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
14
|
Boeck ME, Huynh C, Gevirtzman L, Thompson OA, Wang G, Kasper DM, Reinke V, Hillier LW, Waterston RH. The time-resolved transcriptome of C. elegans. Genome Res 2016; 26:1441-1450. [PMID: 27531719 PMCID: PMC5052054 DOI: 10.1101/gr.202663.115] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 08/15/2016] [Indexed: 12/29/2022]
Abstract
We generated detailed RNA-seq data for the nematode Caenorhabditis elegans with high temporal resolution in the embryo as well as representative samples from post-embryonic stages across the life cycle. The data reveal that early and late embryogenesis is accompanied by large numbers of genes changing expression, whereas fewer genes are changing in mid-embryogenesis. This lull in genes changing expression correlates with a period during which histone mRNAs produce almost 40% of the RNA-seq reads. We find evidence for many more splice junctions than are annotated in WormBase, with many of these suggesting alternative splice forms, often with differential usage over the life cycle. We annotated internal promoter usage in operons using SL1 and SL2 data. We also uncovered correlated transcriptional programs that span >80 kb. These data provide detailed annotation of the C. elegans transcriptome.
Collapse
Affiliation(s)
- Max E Boeck
- Department of Genome Sciences, School of Medicine, University of Washington, Seattle, Washington 98195, USA; Department of Biology, Regis University, Denver, Colorado 80221, USA
| | - Chau Huynh
- Department of Genome Sciences, School of Medicine, University of Washington, Seattle, Washington 98195, USA
| | - Lou Gevirtzman
- Department of Genome Sciences, School of Medicine, University of Washington, Seattle, Washington 98195, USA
| | - Owen A Thompson
- Department of Genome Sciences, School of Medicine, University of Washington, Seattle, Washington 98195, USA
| | - Guilin Wang
- Department of Genetics, School of Medicine, Yale University, New Haven, Connecticut 06520, USA
| | - Dionna M Kasper
- Department of Genetics, School of Medicine, Yale University, New Haven, Connecticut 06520, USA
| | - Valerie Reinke
- Department of Genetics, School of Medicine, Yale University, New Haven, Connecticut 06520, USA
| | - LaDeana W Hillier
- Department of Genome Sciences, School of Medicine, University of Washington, Seattle, Washington 98195, USA
| | - Robert H Waterston
- Department of Genome Sciences, School of Medicine, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
15
|
Abstract
The nematode Caenorhabditis elegans is a simple metazoan animal that is widely used as a model to understand the genetic control of development. The completely sequenced C. elegans genome contains 22 T-box genes, and they encode factors that show remarkable diversity in sequence, DNA-binding specificity, and function. Only three of the C. elegans T-box factors can be grouped into the conserved subfamilies found in other organisms, while the remaining factors are significantly diverged and unlike those in most other animals. While some of the C. elegans factors can bind canonical T-box binding elements, others bind and regulate target gene expression through distinct sequences. The nine genetically characterized T-box factors have varied functions in development and morphogenesis of muscle, hypodermal tissues, and neurons, as well as in early blastomere fate specification, cell migration, apoptosis, and sex determination, but the functions of most of the C. elegans T-box factors have not yet been extensively characterized. Like T-box factors in other animals, interaction with a Groucho-family corepressor and posttranslational SUMOylation have been shown to affect C. elegans T-box factor activity, and it is likely that additional mechanisms affecting T-box factor activity will be discovered using the effective genetic approaches in this organism.
Collapse
|
16
|
Loboda A, Damulewicz M, Pyza E, Jozkowicz A, Dulak J. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci 2016; 73:3221-47. [PMID: 27100828 PMCID: PMC4967105 DOI: 10.1007/s00018-016-2223-0] [Citation(s) in RCA: 1755] [Impact Index Per Article: 195.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 12/12/2022]
Abstract
The multifunctional regulator nuclear factor erythroid 2-related factor (Nrf2) is considered not only as a cytoprotective factor regulating the expression of genes coding for anti-oxidant, anti-inflammatory and detoxifying proteins, but it is also a powerful modulator of species longevity. The vertebrate Nrf2 belongs to Cap 'n' Collar (Cnc) bZIP family of transcription factors and shares a high homology with SKN-1 from Caenorhabditis elegans or CncC found in Drosophila melanogaster. The major characteristics of Nrf2 are to some extent mimicked by Nrf2-dependent genes and their proteins including heme oxygenase-1 (HO-1), which besides removing toxic heme, produces biliverdin, iron ions and carbon monoxide. HO-1 and their products exert beneficial effects through the protection against oxidative injury, regulation of apoptosis, modulation of inflammation as well as contribution to angiogenesis. On the other hand, the disturbances in the proper HO-1 level are associated with the pathogenesis of some age-dependent disorders, including neurodegeneration, cancer or macular degeneration. This review summarizes our knowledge about Nrf2 and HO-1 across different phyla suggesting their conservative role as stress-protective and anti-aging factors.
Collapse
Affiliation(s)
- Agnieszka Loboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland.
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| | - Milena Damulewicz
- Department of Cell Biology and Imaging, Faculty of Biology and Earth Sciences, Jagiellonian University, Krakow, Poland
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Faculty of Biology and Earth Sciences, Jagiellonian University, Krakow, Poland
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Jozef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
17
|
Tintori SC, Osborne Nishimura E, Golden P, Lieb JD, Goldstein B. A Transcriptional Lineage of the Early C. elegans Embryo. Dev Cell 2016; 38:430-44. [PMID: 27554860 PMCID: PMC4999266 DOI: 10.1016/j.devcel.2016.07.025] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/19/2016] [Accepted: 07/27/2016] [Indexed: 12/30/2022]
Abstract
During embryonic development, cells must establish fates, morphologies, and behaviors in coordination with one another to form a functional body. A prevalent hypothesis for how this coordination is achieved is that each cell's fate and behavior is determined by a defined mixture of RNAs. Only recently has it become possible to measure the full suite of transcripts in a single cell. Here we quantify genome-wide mRNA abundance in each cell of the Caenorhabditis elegans embryo up to the 16-cell stage. We describe spatially dynamic expression, quantify cell-specific differential activation of the zygotic genome, and identify genes that were previously unappreciated as being critical for development. We present an interactive data visualization tool that allows broad access to our dataset. This genome-wide single-cell map of mRNA abundance, alongside the well-studied life history and fate of each cell, describes at a cellular resolution the mRNA landscape that guides development.
Collapse
Affiliation(s)
- Sophia C Tintori
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Erin Osborne Nishimura
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Patrick Golden
- School of Information and Library Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jason D Lieb
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bob Goldstein
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
18
|
Ahn JH, Rechsteiner A, Strome S, Kelly WG. A Conserved Nuclear Cyclophilin Is Required for Both RNA Polymerase II Elongation and Co-transcriptional Splicing in Caenorhabditis elegans. PLoS Genet 2016; 12:e1006227. [PMID: 27541139 PMCID: PMC4991786 DOI: 10.1371/journal.pgen.1006227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/08/2016] [Indexed: 01/22/2023] Open
Abstract
The elongation phase of transcription by RNA Polymerase II (Pol II) involves numerous events that are tightly coordinated, including RNA processing, histone modification, and chromatin remodeling. RNA splicing factors are associated with elongating Pol II, and the interdependent coupling of splicing and elongation has been documented in several systems. Here we identify a conserved, multi-domain cyclophilin family member, SIG-7, as an essential factor for both normal transcription elongation and co-transcriptional splicing. In embryos depleted for SIG-7, RNA levels for over a thousand zygotically expressed genes are substantially reduced, Pol II becomes significantly reduced at the 3' end of genes, marks of transcription elongation are reduced, and unspliced mRNAs accumulate. Our findings suggest that SIG-7 plays a central role in both Pol II elongation and co-transcriptional splicing and may provide an important link for their coordination and regulation.
Collapse
Affiliation(s)
- Jeong H. Ahn
- Biology Department, Emory University, Atlanta, Georgia, United States of America
- Program in Genetics and Molecular Biology, Emory University, Atlanta, Georgia, United States of America
| | - Andreas Rechsteiner
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California
| | - Susan Strome
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California
| | - William G. Kelly
- Biology Department, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
19
|
Zacharias AL, Murray JI. Combinatorial decoding of the invariant C. elegans embryonic lineage in space and time. Genesis 2016; 54:182-97. [PMID: 26915329 PMCID: PMC4840027 DOI: 10.1002/dvg.22928] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/18/2016] [Accepted: 02/22/2016] [Indexed: 12/19/2022]
Abstract
Understanding how a single cell, the zygote, can divide and differentiate to produce the diverse animal cell types is a central goal of developmental biology research. The model organism Caenorhabditis elegans provides a system that enables a truly comprehensive understanding of this process across all cells. Its invariant cell lineage makes it possible to identify all of the cells in each individual and compare them across organisms. Recently developed methods automate the process of cell identification, allowing high-throughput gene expression characterization and phenotyping at single cell resolution. In this Review, we summarize the sequences of events that pattern the lineage including establishment of founder cell identity, the signaling pathways that diversify embryonic fate, and the regulators involved in patterning within these founder lineages before cells adopt their terminal fates. We focus on insights that have emerged from automated approaches to lineage tracking, including insights into mechanisms of robustness, context-specific regulation of gene expression, and temporal coordination of differentiation. We suggest a model by which lineage history produces a combinatorial code of transcription factors that act, often redundantly, to ensure terminal fate.
Collapse
Affiliation(s)
- Amanda L. Zacharias
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA
| | - John Isaac Murray
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA
| |
Collapse
|
20
|
Bertrand V. β-catenin-driven binary cell fate decisions in animal development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:377-88. [PMID: 26952169 PMCID: PMC5069452 DOI: 10.1002/wdev.228] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 12/06/2015] [Accepted: 12/29/2015] [Indexed: 02/05/2023]
Abstract
The Wnt/β‐catenin pathway plays key roles during animal development. In several species, β‐catenin is used in a reiterative manner to regulate cell fate diversification between daughter cells following division. This binary cell fate specification mechanism has been observed in animals that belong to very diverse phyla: the nematode Caenorhabditis elegans, the annelid Platynereis, and the ascidian Ciona. It may also play a role in the regulation of several stem cell lineages in vertebrates. While the molecular mechanism behind this binary cell fate switch is not fully understood, it appears that both secreted Wnt ligands and asymmetric cortical factors contribute to the generation of the difference in nuclear β‐catenin levels between daughter cells. β‐Catenin then cooperates with lineage specific transcription factors to induce the expression of novel sets of transcription factors at each round of divisions, thereby diversifying cell fate. WIREs Dev Biol 2016, 5:377–388. doi: 10.1002/wdev.228 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Vincent Bertrand
- Aix-Marseille Université, CNRS, Institut de Biologie du Développement de Marseille, Marseille, France
| |
Collapse
|
21
|
Maduro MF. Developmental robustness in the Caenorhabditis elegans embryo. Mol Reprod Dev 2015; 82:918-31. [PMID: 26382067 DOI: 10.1002/mrd.22582] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/03/2015] [Indexed: 12/25/2022]
Abstract
Developmental robustness is the ability of an embryo to develop normally despite many sources of variation, from differences in the environment to stochastic cell-to-cell differences in gene expression. The nematode Caenorhabditis elegans exhibits an additional level of robustness: Unlike most other animals, the embryonic pattern of cell divisions is nearly identical from animal to animal. The endoderm (gut) lineage is an ideal model for studying such robustness as the juvenile gut has a simple anatomy, consisting of 20 cells that are derived from a single cell, E, and the gene regulatory network that controls E specification shares features with developmental regulatory networks in many other systems, including genetic redundancy, parallel pathways, and feed-forward loops. Early studies were initially concerned with identifying the genes in the network, whereas recent work has focused on understanding how the endoderm produces a robust developmental output in the face of many sources of variation. Genetic control exists at three levels of endoderm development: Progenitor specification, cell divisions within the developing gut, and maintenance of gut differentiation. Recent findings show that specification genes regulate all three of these aspects of gut development, and that mutant embryos can experience a "partial" specification state in which some, but not all, E descendants adopt a gut fate. Ongoing studies using newer quantitative and genome-wide methods promise further insights into how developmental gene-regulatory networks buffer variation.
Collapse
Affiliation(s)
- Morris F Maduro
- Department of Biology, University of California, Riverside, California
| |
Collapse
|
22
|
Murgan S, Bertrand V. How targets select activation or repression in response to Wnt. WORM 2015; 4:e1086869. [PMID: 27123368 PMCID: PMC4826150 DOI: 10.1080/21624054.2015.1086869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 08/20/2015] [Indexed: 11/18/2022]
Abstract
In metazoans, the Wnt signaling pathway plays a key role in the regulation of binary decisions during development. During this process different sets of target genes are activated in cells where the Wnt pathway is active (classic target genes) versus cells where the pathway is inactive (opposite target genes). While the mechanism of transcriptional activation is well understood for classic target genes, how opposite target genes are activated in the absence of Wnt remains poorly characterized. Here we discuss how the key transcriptional mediator of the Wnt pathway, the TCF family member POP-1, regulates opposite target genes during C. elegans development. We examine recent findings suggesting that the direction of the transcriptional output (activation or repression) can be determined by the way TCF is recruited and physically interacts with its target gene.
Collapse
Affiliation(s)
- Sabrina Murgan
- Aix-Marseille UniversitéCNRSInstitut de Biologie du Développement de Marseille ; Marseille, France
| | - Vincent Bertrand
- Aix-Marseille UniversitéCNRSInstitut de Biologie du Développement de Marseille ; Marseille, France
| |
Collapse
|
23
|
Yumerefendi H, Dickinson DJ, Wang H, Zimmerman SP, Bear JE, Goldstein B, Hahn K, Kuhlman B. Control of Protein Activity and Cell Fate Specification via Light-Mediated Nuclear Translocation. PLoS One 2015; 10:e0128443. [PMID: 26083500 PMCID: PMC4471001 DOI: 10.1371/journal.pone.0128443] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/27/2015] [Indexed: 12/21/2022] Open
Abstract
Light-activatable proteins allow precise spatial and temporal control of biological processes in living cells and animals. Several approaches have been developed for controlling protein localization with light, including the conditional inhibition of a nuclear localization signal (NLS) with the Light Oxygen Voltage (AsLOV2) domain of phototropin 1 from Avena sativa. In the dark, the switch adopts a closed conformation that sterically blocks the NLS motif. Upon activation with blue light the C-terminus of the protein unfolds, freeing the NLS to direct the protein to the nucleus. A previous study showed that this approach can be used to control the localization and activity of proteins in mammalian tissue culture cells. Here, we extend this result by characterizing the binding properties of a LOV/NLS switch and demonstrating that it can be used to control gene transcription in yeast. Additionally, we show that the switch, referred to as LANS (light-activated nuclear shuttle), functions in the C. elegans embryo and allows for control of nuclear localization in individual cells. By inserting LANS into the C. elegans lin-1 locus using Cas9-triggered homologous recombination, we demonstrated control of cell fate via light-dependent manipulation of a native transcription factor. We conclude that LANS can be a valuable experimental method for spatial and temporal control of nuclear localization in vivo.
Collapse
Affiliation(s)
- Hayretin Yumerefendi
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Daniel J. Dickinson
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Hui Wang
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Seth P. Zimmerman
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - James E. Bear
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Bob Goldstein
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Klaus Hahn
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail: (BK); (KH)
| | - Brian Kuhlman
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail: (BK); (KH)
| |
Collapse
|
24
|
Murgan S, Kari W, Rothbächer U, Iché-Torres M, Mélénec P, Hobert O, Bertrand V. Atypical Transcriptional Activation by TCF via a Zic Transcription Factor in C. elegans Neuronal Precursors. Dev Cell 2015; 33:737-45. [PMID: 26073017 DOI: 10.1016/j.devcel.2015.04.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 01/15/2015] [Accepted: 04/23/2015] [Indexed: 12/24/2022]
Abstract
Transcription factors of the TCF family are key mediators of the Wnt/β-catenin pathway. TCF usually activates transcription on cis-regulatory elements containing TCF binding sites when the pathway is active and represses transcription when the pathway is inactive. However, some direct targets display an opposite regulation (activated by TCF in the absence of Wnt), but the mechanism behind this atypical regulation remains poorly characterized. Here, we use the cis-regulatory region of an opposite target gene, ttx-3, to dissect the mechanism of this atypical regulation. Using a combination of genetic, molecular, and biochemical experiments, we establish that, in the absence of Wnt pathway activation, TCF activates ttx-3 expression via a Zic binding site by forming a complex with a Zic transcription factor. This mechanism is later reinforced by specific bHLH factors. This study reveals an atypical mode of action for TCF that may apply to other binary decisions mediated by Wnt signaling.
Collapse
Affiliation(s)
- Sabrina Murgan
- Aix-Marseille Université, CNRS, Institut de Biologie du Développement de Marseille, 13288 Marseille Cedex 9, France
| | - Willi Kari
- Aix-Marseille Université, CNRS, Institut de Biologie du Développement de Marseille, 13288 Marseille Cedex 9, France
| | - Ute Rothbächer
- Aix-Marseille Université, CNRS, Institut de Biologie du Développement de Marseille, 13288 Marseille Cedex 9, France
| | - Magali Iché-Torres
- Aix-Marseille Université, CNRS, Institut de Biologie du Développement de Marseille, 13288 Marseille Cedex 9, France
| | - Pauline Mélénec
- Aix-Marseille Université, CNRS, Institut de Biologie du Développement de Marseille, 13288 Marseille Cedex 9, France
| | - Oliver Hobert
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University Medical Center, New York, NY 10032, USA.
| | - Vincent Bertrand
- Aix-Marseille Université, CNRS, Institut de Biologie du Développement de Marseille, 13288 Marseille Cedex 9, France; Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
25
|
|
26
|
Dresen A, Finkbeiner S, Dottermusch M, Beume JS, Li Y, Walz G, Neumann-Haefelin E. Caenorhabditis elegans OSM-11 signaling regulates SKN-1/Nrf during embryonic development and adult longevity and stress response. Dev Biol 2015; 400:118-31. [DOI: 10.1016/j.ydbio.2015.01.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 12/02/2014] [Accepted: 01/19/2015] [Indexed: 11/26/2022]
|
27
|
Du Z, He F, Yu Z, Bowerman B, Bao Z. E3 ubiquitin ligases promote progression of differentiation during C. elegans embryogenesis. Dev Biol 2014; 398:267-79. [PMID: 25523393 DOI: 10.1016/j.ydbio.2014.12.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 12/02/2014] [Accepted: 12/04/2014] [Indexed: 01/22/2023]
Abstract
Regulated choice between cell fate maintenance and differentiation provides decision points in development to progress toward more restricted cell fates or to maintain the current one. Caenorhabditis elegans embryogenesis follows an invariant cell lineage where cell fate is generally more restricted upon each cell division. EMS is a progenitor cell in the four-cell embryo that gives rise to the endomesoderm. We recently found that when ubiquitin-mediated protein degradation is compromised, the anterior daughter of EMS, namely MS, reiterates the EMS fate. This observation demonstrates an essential function of ubiquitin-mediated protein degradation in driving the progression of EMS-to-MS differentiation. Here we report a genome-wide screen of the ubiquitin pathway and extensive lineage analyses. The results suggest a broad role of E3 ligases in driving differentiation progression. First, we identified three substrate-binding proteins for two Cullin-RING ubiquitin ligase (CRL) E3 complexes that promote the progression from the EMS fate to MS, namely LIN-23/β-TrCP and FBXB-3 for the CRL1/SCF complex and ZYG-11/ZYG-11B for the CRL2 complex. Genetic analyses suggest these E3 ligases function through a multifunctional protein OMA-1 and the endomesoderm lineage specifier SKN-1 to drive differentiation. Second, we found that depletion of components of the CRL1/SCF complex induces fate reiteration in all major founder cell lineages. These data suggest that regulated choice between self-renewal and differentiation is widespread during C. elegans embryogenesis as in organisms with regulative development, and ubiquitin-mediated protein degradation drives the choice towards differentiation. Finally, bioinformatic analysis of time series gene expression data showed that expression of E3 genes is transiently enriched during time windows of developmental stage transitions. Transcription factors show similar enrichment, but not other classes of regulatory genes. Based on these findings we propose that ubiquitin-mediated protein degradation, like many transcription factors, function broadly as regulators driving developmental progression during embryogenesis in C. elegans.
Collapse
Affiliation(s)
- Zhuo Du
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Ave. New York, NY 10065, United States
| | - Fei He
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Ave. New York, NY 10065, United States
| | - Zidong Yu
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Ave. New York, NY 10065, United States; School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Bruce Bowerman
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, United States
| | - Zhirong Bao
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Ave. New York, NY 10065, United States.
| |
Collapse
|
28
|
Rasmussen JP, Feldman JL, Reddy SS, Priess JR. Cell interactions and patterned intercalations shape and link epithelial tubes in C. elegans. PLoS Genet 2013; 9:e1003772. [PMID: 24039608 PMCID: PMC3764189 DOI: 10.1371/journal.pgen.1003772] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/19/2013] [Indexed: 01/15/2023] Open
Abstract
Many animal organs are composed largely or entirely of polarized epithelial tubes, and the formation of complex organ systems, such as the digestive or vascular systems, requires that separate tubes link with a common polarity. The Caenorhabditis elegans digestive tract consists primarily of three interconnected tubes—the pharynx, valve, and intestine—and provides a simple model for understanding the cellular and molecular mechanisms used to form and connect epithelial tubes. Here, we use live imaging and 3D reconstructions of developing cells to examine tube formation. The three tubes develop from a pharynx/valve primordium and a separate intestine primordium. Cells in the pharynx/valve primordium polarize and become wedge-shaped, transforming the primordium into a cylindrical cyst centered on the future lumenal axis. For continuity of the digestive tract, valve cells must have the same, radial axis of apicobasal polarity as adjacent intestinal cells. We show that intestinal cells contribute to valve cell polarity by restricting the distribution of a polarizing cue, laminin. After developing apicobasal polarity, many pharyngeal and valve cells appear to explore their neighborhoods through lateral, actin-rich lamellipodia. For a subset of cells, these lamellipodia precede more extensive intercalations that create the valve. Formation of the valve tube begins when two valve cells become embedded at the left-right boundary of the intestinal primordium. Other valve cells organize symmetrically around these two cells, and wrap partially or completely around the orthogonal, lumenal axis, thus extruding a small valve tube from the larger cyst. We show that the transcription factors DIE-1 and EGL-43/EVI1 regulate cell intercalations and cell fates during valve formation, and that the Notch pathway is required to establish the proper boundary between the pharyngeal and valve tubes. Tubes composed of epithelial cells are universal building blocks of animal organs, and complex organs typically contain multiple interconnected tubes, such as in the digestive tract or vascular system. The nematode Caenorhabditis elegans provides a simple genetic system to study how tubes form and link. Understanding these events provides insight into basic biology, and can inform engineering strategies for building or repairing cellular tubes. A small tube called the valve connects the two major tubular organs of the nematode digestive tract, the pharynx and intestine. The pharynx and valve form from the same primordium, while the intestine forms from a separate primordium. Cells in each primordium polarize around a central axis, and valve formation involves connecting these axes. Using live imaging, we show that valve cells initially resemble other pharyngeal cells, but undergo additional and extensive intercalations around the lumenal axis, effectively squeezing a small tube from the larger primordium. Valve cells develop the same polarity axis as intestinal cells, and we show that this depends on interactions with the intestinal cells. We show that valve formation involves dynamic changes in the localization of adhesive proteins, and identify transcription factors that play a role in valve cell specification and intercalation.
Collapse
Affiliation(s)
- Jeffrey P. Rasmussen
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America
| | - Jessica L. Feldman
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Sowmya Somashekar Reddy
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - James R. Priess
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- Department of Biology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
29
|
Ruf V, Holzem C, Peyman T, Walz G, Blackwell TK, Neumann-Haefelin E. TORC2 signaling antagonizes SKN-1 to induce C. elegans mesendodermal embryonic development. Dev Biol 2013; 384:214-27. [PMID: 23973804 DOI: 10.1016/j.ydbio.2013.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 08/12/2013] [Accepted: 08/13/2013] [Indexed: 01/18/2023]
Abstract
The evolutionarily conserved target of rapamycin (TOR) kinase controls fundamental metabolic processes to support cell and tissue growth. TOR functions within the context of two distinct complexes, TORC1 and TORC2. TORC2, with its specific component Rictor, has been recently implicated in aging and regulation of growth and metabolism. Here, we identify rict-1/Rictor as a regulator of embryonic development in C. elegans. The transcription factor skn-1 establishes development of the mesendoderm in embryos, and is required for cellular homeostasis and longevity in adults. Loss of maternal skn-1 function leads to mis-specification of the mesendodermal precursor and failure to form intestine and pharynx. We found that genetic inactivation of rict-1 suppressed skn-1-associated lethality by restoring mesendodermal specification in skn-1 deficient embryos. Inactivation of other TORC2 but not TORC1 components also partially rescued skn-1 embryonic lethality. The SGK-1 kinase mediated these functions downstream of rict-1/TORC2, as a sgk-1 gain-of-function mutant suppressed the rict-1 mutant phenotype. These data indicate that TORC2 and SGK-1 antagonize SKN-1 during embryonic development.
Collapse
Affiliation(s)
- Vanessa Ruf
- Department of Medicine, Renal Division, University Hospital Freiburg, D-79106 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
30
|
McGhee JD. TheCaenorhabditis elegansintestine. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:347-67. [DOI: 10.1002/wdev.93] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
31
|
Kuntz SG, Williams BA, Sternberg PW, Wold BJ. Transcription factor redundancy and tissue-specific regulation: evidence from functional and physical network connectivity. Genome Res 2012; 22:1907-19. [PMID: 22730465 PMCID: PMC3460186 DOI: 10.1101/gr.133306.111] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Two major transcriptional regulators of Caenorhabditis elegans bodywall muscle (BWM) differentiation, hlh-1 and unc-120, are expressed in muscle where they are known to bind and regulate several well-studied muscle-specific genes. Simultaneously mutating both factors profoundly inhibits formation of contractile BWM. These observations were consistent with a simple network model in which the muscle regulatory factors drive tissue-specific transcription by binding selectively near muscle-specific targets to activate them. We tested this model by measuring the number, identity, and tissue-specificity of functional regulatory targets for each factor. Some joint regulatory targets (218) are BWM-specific and enriched for nearby HLH-1 binding. However, contrary to the simple model, the majority of genes regulated by one or both muscle factors are also expressed significantly in non-BWM tissues. We also mapped global factor occupancy by HLH-1, and created a genetic interaction map that identifies hlh-1 collaborating transcription factors. HLH-1 binding did not predict proximate regulatory action overall, despite enrichment for binding among BWM-specific positive regulatory targets of hlh-1. We conclude that these tissue-specific factors contribute much more broadly to the transcriptional output of muscle tissue than previously thought, offering a partial explanation for widespread HLH-1 occupancy. We also identify a novel regulatory connection between the BWM-specific hlh-1 network and the hlh-8/twist nonstriated muscle network. Finally, our results suggest a molecular basis for synthetic lethality in which hlh-1 and unc-120 mutant phenotypes are mutually buffered by joint additive regulation of essential target genes, with additional buffering suggested via newly identified hlh-1 interacting factors.
Collapse
Affiliation(s)
- Steven G Kuntz
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | |
Collapse
|
32
|
Murray JI, Boyle TJ, Preston E, Vafeados D, Mericle B, Weisdepp P, Zhao Z, Bao Z, Boeck M, Waterston RH. Multidimensional regulation of gene expression in the C. elegans embryo. Genome Res 2012; 22:1282-94. [PMID: 22508763 PMCID: PMC3396369 DOI: 10.1101/gr.131920.111] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
How cells adopt different expression patterns is a fundamental question of developmental biology. We quantitatively measured reporter expression of 127 genes, primarily transcription factors, in every cell and with high temporal resolution in C. elegans embryos. Embryonic cells are highly distinct in their gene expression; expression of the 127 genes studied here can distinguish nearly all pairs of cells, even between cells of the same tissue type. We observed recurrent lineage-regulated expression patterns for many genes in diverse contexts. These patterns are regulated in part by the TCF-LEF transcription factor POP-1. Other genes' reporters exhibited patterns correlated with tissue, position, and left–right asymmetry. Sequential patterns both within tissues and series of sublineages suggest regulatory pathways. Expression patterns often differ between embryonic and larval stages for the same genes, emphasizing the importance of profiling expression in different stages. This work greatly expands the number of genes in each of these categories and provides the first large-scale, digitally based, cellular resolution compendium of gene expression dynamics in live animals. The resulting data sets will be a useful resource for future research.
Collapse
Affiliation(s)
- John Isaac Murray
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Krause M, Liu J. Somatic muscle specification during embryonic and post-embryonic development in the nematode C. elegans. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2011; 1:203-14. [PMID: 23801436 DOI: 10.1002/wdev.15] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Myogenesis has proved to be a powerful paradigm for understanding cell fate specification and differentiation in many model organisms. Studies of somatic bodywall muscle (BWM) development in Caenorhabditis elegans allow us to define, with single cell resolution, the distinct hierarchies of transcriptional regulators needed for myogenesis throughout development. Although all 95 BWM cells appear uniform after differentiation, there are several different regulatory cascades employed embryonically and post-embryonically. These, in turn, are integrated into multiple extrinsic cell signaling events. The convergence of these different pathways on the key nodal point, that is the activation of the core muscle module, commits individual cells to myogenesis. Comparisons of myogenesis between C. elegans and other model systems provide insights into the evolution of contractile cell types, demonstrating the conservation of regulatory schemes for muscles throughout the animal kingdom.
Collapse
Affiliation(s)
- Michael Krause
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA.
| | | |
Collapse
|
34
|
Broitman-Maduro G, Maduro MF. In situ hybridization of embryos with antisense RNA probes. Methods Cell Biol 2011; 106:253-70. [PMID: 22118280 DOI: 10.1016/b978-0-12-544172-8.00009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Detection of transcripts in situ is a rapid means by which gene expression can be characterized in many systems. In the nematode, Caenorhabditis elegans, the ease with which transgenics can be made and the general reliability of reporter fusion expression patterns, have made this technique comparatively less popular than in other systems. There are, however, still applications in which in situ hybridization is desired, such as for maternally expressed genes, or in related species without established transgene methods. The most frequently used method of in situ hybridization uses DNA probes and formaldehyde fixation. A newer approach that permits single-transcript detection has been reported and will not be described here (Raj and Tyagi, 2010). Rather, we describe an alternative protocol that uses RNA probes with a different fixative. This approach has been applied to C. elegans and related nematodes, providing reliable, sensitive detection of endogenous transcripts.
Collapse
Affiliation(s)
- Gina Broitman-Maduro
- Department of Biology, University of California at Riverside, Riverside, California, USA
| | | |
Collapse
|
35
|
The conserved role and divergent regulation of foxa, a pan-eumetazoan developmental regulatory gene. Dev Biol 2010; 357:21-6. [PMID: 21130759 DOI: 10.1016/j.ydbio.2010.11.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 11/15/2010] [Accepted: 11/24/2010] [Indexed: 11/23/2022]
Abstract
Foxa is a forkhead transcription factor that is expressed in the endoderm lineage across metazoans. Orthologs of foxa are expressed in cells that intercalate, polarize, and form tight junctions in the digestive tracts of the mouse, the sea urchin, and the nematode and in the chordate notochord. The loss of foxa expression eliminates these morphogenetic processes. The remarkable similarity in foxa phenotypes in these diverse organisms raises the following questions: why is the developmental role of Foxa so highly conserved? Is foxa transcriptional regulation as conserved as its developmental role? Comparison of the regulation of foxa orthologs in sea urchin and in Caenorhabditis elegans shows that foxa transcriptional regulation has diverged significantly between these two organisms, particularly in the cells that contribute to the C. elegans pharynx formation. We suggest that the similarity of foxa phenotype is due to its role in an ancestral gene regulatory network that controlled intercalation followed by mesenchymal-to-epithelial transition. foxa transcriptional regulation had evolved to support the developmental program in each species so foxa would play its role controlling morphogenesis at the necessary embryonic address.
Collapse
|
36
|
Harrell JR, Goldstein B. Internalization of multiple cells during C. elegans gastrulation depends on common cytoskeletal mechanisms but different cell polarity and cell fate regulators. Dev Biol 2010; 350:1-12. [PMID: 20875815 DOI: 10.1016/j.ydbio.2010.09.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 09/17/2010] [Indexed: 01/09/2023]
Abstract
Understanding the links between developmental patterning mechanisms and force-producing cytoskeletal mechanisms is a central goal in studies of morphogenesis. Gastrulation is the first morphogenetic event in the development of many organisms. Gastrulation involves the internalization of surface cells, often driven by the contraction of actomyosin networks that are deployed with spatial precision-both in specific cells and in a polarized manner within each cell. These cytoskeletal mechanisms rely on different cell fate and cell polarity regulators in different organisms. Caenorhabditis elegans gastrulation presents an opportunity to examine the extent to which diverse mechanisms may be used by dozens of cells that are internalized at distinct times within a single organism. We identified 66 cells that are internalized in C. elegans gastrulation, many of which were not known previously to gastrulate. To gain mechanistic insights into how these cells internalize, we genetically manipulated cell fate, cell polarity and cytoskeletal regulators and determined the effects on cell internalization. We found that cells of distinct lineages depend on common actomyosin-based mechanisms to gastrulate, but different cell fate regulators, and, surprisingly, different cell polarity regulators. We conclude that diverse cell fate and cell polarity regulators control common mechanisms of morphogenesis in C. elegans. The results highlight the variety of developmental patterning mechanisms that can be associated with common cytoskeletal mechanisms in the morphogenesis of an animal embryo.
Collapse
Affiliation(s)
- Jessica R Harrell
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
37
|
Abstract
Cell specification requires that particular subsets of cells adopt unique expression patterns that ultimately define the fates of their descendants. In C. elegans, cell fate specification involves the combinatorial action of multiple signals that produce activation of a small number of "blastomere specification" factors. These initiate expression of gene regulatory networks that drive development forward, leading to activation of "tissue specification" factors. In this review, the C. elegans embryo is considered as a model system for studies of cell specification. The techniques used to study cell fate in this species, and the themes that have emerged, are described.
Collapse
Affiliation(s)
- Morris F Maduro
- Department of Biology, University of California, Riverside, Riverside, California 92521, USA.
| |
Collapse
|
38
|
Gaudet J, McGhee JD. Recent advances in understanding the molecular mechanisms regulating C. elegans transcription. Dev Dyn 2010; 239:1388-404. [PMID: 20175193 DOI: 10.1002/dvdy.22246] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We review recent studies that have advanced our understanding of the molecular mechanisms regulating transcription in the nematode C. elegans. Topics covered include: (i) general properties of C. elegans promoters; (ii) transcription factors and transcription factor combinations involved in cell fate specification and cell differentiation; (iii) new roles for general transcription factors; (iv) nucleosome positioning in C. elegans "chromatin"; and (v) some characteristics of histone variants and histone modifications and their possible roles in controlling C. elegans transcription.
Collapse
Affiliation(s)
- Jeb Gaudet
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute for Child and Maternal Health, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
39
|
Kormish JD, Gaudet J, McGhee JD. Development of the C. elegans digestive tract. Curr Opin Genet Dev 2010; 20:346-54. [PMID: 20570129 DOI: 10.1016/j.gde.2010.04.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 04/20/2010] [Accepted: 04/24/2010] [Indexed: 12/11/2022]
Abstract
The C. elegans digestive tract (pharynx, intestine, and rectum) contains only approximately 100 cells but develops under the control of the same types of transcription factors (e.g. FoxA and GATA factors) that control digestive tract development in far more complex animals. The GATA-factor dominated core regulatory hierarchy directing development of the homogenous clonal intestine from oocyte to mature organ is now known with some degree of certainty, setting the stage for more biochemical experiments to understand developmental mechanisms. The FoxA-factor dominated development of the pharynx (and rectum) is less well understood but is beginning to reveal how transcription factor combinations produce unique cell types within organs.
Collapse
Affiliation(s)
- Jay D Kormish
- Department of Molecular Biology and Biochemistry, Department of Medical Genetics, Alberta Children's Hospital Research Institute for Child and Maternal Health, University of Calgary, Calgary, Alberta, Canada
| | | | | |
Collapse
|
40
|
Roh-Johnson M, Goldstein B. In vivo roles for Arp2/3 in cortical actin organization during C. elegans gastrulation. J Cell Sci 2010; 122:3983-93. [PMID: 19889970 DOI: 10.1242/jcs.057562] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The Arp2/3 complex is important for morphogenesis in various developmental systems, but specific in vivo roles for this complex in cells that move during morphogenesis are not well understood. We have examined cellular roles for Arp2/3 in the Caenorhabditis elegans embryo. In C. elegans, the first morphogenetic movement, gastrulation, is initiated by the internalization of two endodermal precursor cells. These cells undergo a myosin-dependent apical constriction, pulling a ring of six neighboring cells into a gap left behind on the ventral surface of the embryo. In agreement with a previous report, we found that in Arp2/3-depleted C. elegans embryos, membrane blebs form and the endodermal precursor cells fail to fully internalize. We show that these cells are normal with respect to several key requirements for gastrulation: cell cycle timing, cell fate, apicobasal cell polarity and apical accumulation and activation of myosin-II. To further understand the function of Arp2/3 in gastrulation, we examined F-actin dynamics in wild-type embryos. We found that three of the six neighboring cells extend short, dynamic F-actin-rich processes at their apical borders with the internalizing cells. These processes failed to form in embryos that were depleted of Arp2/3 or the apical protein PAR-3. Our results identify an in vivo role for Arp2/3 in the formation of subcellular structures during morphogenesis. The results also suggest a new layer to the model of C. elegans gastrulation: in addition to apical constriction, internalization of the endoderm might involve dynamic Arp2/3-dependent F-actin-rich extensions on one side of a ring of cells.
Collapse
Affiliation(s)
- Minna Roh-Johnson
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
41
|
Owraghi M, Broitman-Maduro G, Luu T, Roberson H, Maduro MF. Roles of the Wnt effector POP-1/TCF in the C. elegans endomesoderm specification gene network. Dev Biol 2009; 340:209-21. [PMID: 19818340 DOI: 10.1016/j.ydbio.2009.09.042] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 09/23/2009] [Accepted: 09/25/2009] [Indexed: 10/20/2022]
Abstract
In C. elegans the 4-cell stage blastomere EMS is an endomesodermal precursor. Its anterior daughter, MS, makes primarily mesodermal cells, while its posterior daughter E generates the entire intestine. The gene regulatory network underlying specification of MS and E has been the subject of study for more than 15 years. A key component of the specification of the two cells is the involvement of the Wnt/beta-catenin asymmetry pathway, which through its nuclear effector POP-1, specifies MS and E as different from each other. Loss of pop-1 function results in the mis-specification of MS as an E-like cell, because POP-1 directly represses the end-1 and end-3 genes in MS, which would otherwise promote an endoderm fate. A long-standing question has been whether POP-1 plays a role in specifying MS fate beyond repression of endoderm fate. This question has been difficult to ask because the only chromosomal lesions that remove both end-1 and end-3 are large deletions removing hundreds of genes. Here, we report the construction of bona fide end-1 end-3 double mutants. In embryos lacking activity of end-1, end-3 and pop-1 together, we find that MS fate is partially restored, while E expresses early markers of MS fate and adopts characteristics of both MS and C. Our results suggest that POP-1 is not critical for MS specification beyond repression of endoderm specification, and reveal that Wnt-modified POP-1 and END-1/3 further reinforce E specification by repressing MS fate in E. By comparison, a previous work suggested that in the related nematode C. briggsae, Cb-POP-1 is not required to repress endoderm specification in MS, in direct contrast with Ce-POP-1, but is critical for repression of MS fate in E. The findings reported here shed new light on the flexibility of combinatorial control mechanisms in endomesoderm specification in Caenorhabditis.
Collapse
Affiliation(s)
- Melissa Owraghi
- Department of Biology, University of California, 2121A Genomics Building, Riverside, Riverside, CA 92521, USA
| | | | | | | | | |
Collapse
|