1
|
The branching code: A model of actin-driven dendrite arborization. Cell Rep 2022; 39:110746. [PMID: 35476974 DOI: 10.1016/j.celrep.2022.110746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/24/2021] [Accepted: 04/06/2022] [Indexed: 11/21/2022] Open
Abstract
The cytoskeleton is crucial for defining neuronal-type-specific dendrite morphologies. To explore how the complex interplay of actin-modulatory proteins (AMPs) can define neuronal types in vivo, we focused on the class III dendritic arborization (c3da) neuron of Drosophila larvae. Using computational modeling, we reveal that the main branches (MBs) of c3da neurons follow general models based on optimal wiring principles, while the actin-enriched short terminal branches (STBs) require an additional growth program. To clarify the cellular mechanisms that define this second step, we thus concentrated on STBs for an in-depth quantitative description of dendrite morphology and dynamics. Applying these methods systematically to mutants of six known and novel AMPs, we revealed the complementary roles of these individual AMPs in defining STB properties. Our data suggest that diverse dendrite arbors result from a combination of optimal-wiring-related growth and individualized growth programs that are neuron-type specific.
Collapse
|
2
|
Molecular mechanisms regulating the spatial configuration of neurites. Semin Cell Dev Biol 2022; 129:103-114. [PMID: 35248463 DOI: 10.1016/j.semcdb.2022.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 02/08/2023]
Abstract
Precise neural networks, composed of axons and dendrites, are the structural basis for information processing in the brain. Therefore, the correct formation of neurites is critical for accurate neural function. In particular, the three-dimensional structures of dendrites vary greatly among neuron types, and the unique shape of each dendrite is tightly linked to specific synaptic connections with innervating axons and is correlated with its information processing. Although many systems are involved in neurite formation, the developmental mechanisms that control the orientation, size, and arborization pattern of neurites definitively defines their three-dimensional structure in tissues. In this review, we summarize these regulatory mechanisms that establish proper spatial configurations of neurites, especially dendrites, in invertebrates and vertebrates.
Collapse
|
3
|
Pogodalla N, Winkler B, Klämbt C. Glial Tiling in the Insect Nervous System. Front Cell Neurosci 2022; 16:825695. [PMID: 35250488 PMCID: PMC8891220 DOI: 10.3389/fncel.2022.825695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/06/2022] [Indexed: 11/30/2022] Open
Abstract
The Drosophila nervous system comprises a small number of well characterized glial cell classes. The outer surface of the central nervous system (CNS) is protected by a glial derived blood-brain barrier generated by perineurial and subperineurial glia. All neural stem cells and all neurons are engulfed by cortex glial cells. The inner neuropil region, that harbors all synapses and dendrites, is covered by ensheathing glia and infiltrated by astrocyte-like glial cells. All these glial cells show a tiled organization with an often remarkable plasticity where glial cells of one cell type invade the territory of the neighboring glial cell type upon its ablation. Here, we summarize the different glial tiling patterns and based on the different modes of cell-cell contacts we hypothesize that different molecular mechanisms underlie tiling of the different glial cell types.
Collapse
|
4
|
DeSantis DF, Smith CJ. Tetris in the Nervous System: What Principles of Neuronal Tiling Can Tell Us About How Glia Play the Game. Front Cell Neurosci 2021; 15:734938. [PMID: 34512272 PMCID: PMC8430210 DOI: 10.3389/fncel.2021.734938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/09/2021] [Indexed: 11/14/2022] Open
Abstract
The precise organization and arrangement of neural cells is essential for nervous system functionality. Cellular tiling is an evolutionarily conserved phenomenon that organizes neural cells, ensuring non-redundant coverage of receptive fields in the nervous system. First recorded in the drawings of Ramon y Cajal more than a century ago, we now have extensive knowledge of the biochemical and molecular mechanisms that mediate tiling of neurons. The advent of live imaging techniques in both invertebrate and vertebrate model organisms has enhanced our understanding of these processes. Despite advancements in our understanding of neuronal tiling, we know relatively little about how glia, an essential non-neuronal component of the nervous system, tile and contribute to the overall spatial arrangement of the nervous system. Here, we discuss lessons learned from neurons and apply them to potential mechanisms that glial cells may use to tile, including cell diversity, contact-dependent repulsion, and chemical signaling. We also discuss open questions in the field of tiling and what new technologies need to be developed in order to better understand glial tiling.
Collapse
Affiliation(s)
- Dana F DeSantis
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, United States.,Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Cody J Smith
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, United States.,Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
5
|
Wang XX, Zhang S, Dong PP, Li YH, Zhang L, Shi SH, Yu ZQ, Chen S. MRCKβ links Dasm1 to actin rearrangements to promote dendrite development. J Biol Chem 2021; 296:100730. [PMID: 33933448 PMCID: PMC8191314 DOI: 10.1016/j.jbc.2021.100730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 01/12/2023] Open
Abstract
Proper dendrite morphogenesis and synapse formation are essential for neuronal development and function. Dasm1, a member of the immunoglobulin superfamily, is known to promote dendrite outgrowth and excitatory synapse maturation in vitro. However, the in vivo function of Dasm1 in neuronal development and the underlying mechanisms are not well understood. To learn more, Dasm1 knockout mice were constructed and employed to confirm that Dasm1 regulates dendrite arborization and spine formation in vivo. We performed a yeast two-hybrid screen using Dasm1, revealing MRCKβ as a putative partner; additional lines of evidence confirmed this interaction and identified cytoplasmic proline-rich region (823–947 aa) of Dasm1 and MRCKβ self-activated kinase domain (CC1, 410–744 aa) as necessary and sufficient for binding. Using co-immunoprecipitation assay, autophosphorylation assay, and BS3 cross-linking assay, we show that Dasm1 binding triggers a change in MRCKβ’s conformation and subsequent dimerization, resulting in autophosphorylation and activation. Activated MRCKβ in turn phosphorylates a class 2 regulatory myosin light chain, which leads to enhanced actin rearrangement, causing the dendrite outgrowth and spine formation observed before. Removal of Dasm1 in mice leads to behavioral abnormalities. Together, these results reveal a crucial molecular pathway mediating cell surface and intracellular signaling communication to regulate actin dynamics and neuronal development in the mammalian brain.
Collapse
Affiliation(s)
- Xiao-Xiao Wang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Si Zhang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ping-Ping Dong
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Surgery, Faculty of Medicine, Centre for Cancer Research, The University of Hong Kong, Hong Kong, China
| | - Yao-Hua Li
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Li Zhang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Song-Hai Shi
- IDG/McGovern Institute for Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center of Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China; Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Zhi-Qiang Yu
- NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China; Eye Department, Eye & ENT Hospital, Fudan University, Shanghai, China.
| | - She Chen
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Palavalli A, Tizón-Escamilla N, Rupprecht JF, Lecuit T. Deterministic and Stochastic Rules of Branching Govern Dendrite Morphogenesis of Sensory Neurons. Curr Biol 2020; 31:459-472.e4. [PMID: 33212017 DOI: 10.1016/j.cub.2020.10.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/22/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023]
Abstract
Dendrite morphology is necessary for the correct integration of inputs that neurons receive. The branching mechanisms allowing neurons to acquire their type-specific morphology remain unclear. Classically, axon and dendrite patterns were shown to be guided by molecules, providing deterministic cues. However, the extent to which deterministic and stochastic mechanisms, based upon purely statistical bias, contribute to the emergence of dendrite shape is largely unknown. We address this issue using the Drosophila class I vpda multi-dendritic neurons. Detailed quantitative analysis of vpda dendrite morphogenesis indicates that the primary branch grows very robustly in a fixed direction, though secondary branch numbers and lengths showed fluctuations characteristic of stochastic systems. Live-tracking dendrites and computational modeling revealed how neuron shape emerges from few local statistical parameters of branch dynamics. We report key opposing aspects of how tree architecture feedbacks on the local probability of branch shrinkage. Child branches promote stabilization of parent branches, although self-repulsion promotes shrinkage. Finally, we show that self-repulsion, mediated by the adhesion molecule Dscam1, indirectly patterns the growth of secondary branches by spatially restricting their direction of stable growth perpendicular to the primary branch. Thus, the stochastic nature of secondary branch dynamics and the existence of geometric feedback emphasize the importance of self-organization in neuronal dendrite morphogenesis.
Collapse
Affiliation(s)
- Amrutha Palavalli
- Aix Marseille Université and CNRS, IBDM - UMR7288 and Turing Centre for Living Systems Campus de Luminy Case 907, Marseille 13288, France
| | - Nicolás Tizón-Escamilla
- Aix-Marseille Université, Université de Toulon, CNRS, CPT, Turing Centre for Living Systems Campus de Luminy Case 907, Marseille 13288, France
| | - Jean-François Rupprecht
- Aix-Marseille Université, Université de Toulon, CNRS, CPT, Turing Centre for Living Systems Campus de Luminy Case 907, Marseille 13288, France.
| | - Thomas Lecuit
- Aix Marseille Université and CNRS, IBDM - UMR7288 and Turing Centre for Living Systems Campus de Luminy Case 907, Marseille 13288, France; Collège de France, 11 Place Marcelin Berthelot, Paris 75005, France.
| |
Collapse
|
7
|
Paul TJ, Kollmannsberger P. Biological network growth in complex environments: A computational framework. PLoS Comput Biol 2020; 16:e1008003. [PMID: 33253140 PMCID: PMC7728203 DOI: 10.1371/journal.pcbi.1008003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 12/10/2020] [Accepted: 10/29/2020] [Indexed: 11/19/2022] Open
Abstract
Spatial biological networks are abundant on all scales of life, from single cells to ecosystems, and perform various important functions including signal transmission and nutrient transport. These biological functions depend on the architecture of the network, which emerges as the result of a dynamic, feedback-driven developmental process. While cell behavior during growth can be genetically encoded, the resulting network structure depends on spatial constraints and tissue architecture. Since network growth is often difficult to observe experimentally, computer simulations can help to understand how local cell behavior determines the resulting network architecture. We present here a computational framework based on directional statistics to model network formation in space and time under arbitrary spatial constraints. Growth is described as a biased correlated random walk where direction and branching depend on the local environmental conditions and constraints, which are presented as 3D multilayer grid. To demonstrate the application of our tool, we perform growth simulations of a dense network between cells and compare the results to experimental data from osteocyte networks in bone. Our generic framework might help to better understand how network patterns depend on spatial constraints, or to identify the biological cause of deviations from healthy network function.
Collapse
Affiliation(s)
- Torsten Johann Paul
- Center for Computational and Theoretical Biology, University of Würzburg, Campus Hubland Nord 32, Würzburg, Germany
| | - Philip Kollmannsberger
- Center for Computational and Theoretical Biology, University of Würzburg, Campus Hubland Nord 32, Würzburg, Germany
| |
Collapse
|
8
|
Hsu HW, Liao CP, Chiang YC, Syu RT, Pan CL. Caenorhabditis elegans Flamingo FMI-1 controls dendrite self-avoidance through F-actin assembly. Development 2020; 147:dev179168. [PMID: 32631831 DOI: 10.1242/dev.179168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/29/2020] [Indexed: 12/11/2022]
Abstract
Self-avoidance is a conserved mechanism that prevents crossover between sister dendrites from the same neuron, ensuring proper functioning of the neuronal circuits. Several adhesion molecules are known to be important for dendrite self-avoidance, but the underlying molecular mechanisms are incompletely defined. Here, we show that FMI-1/Flamingo, an atypical cadherin, is required autonomously for self-avoidance in the multidendritic PVD neuron of Caenorhabditis elegans The fmi-1 mutant shows increased crossover between sister PVD dendrites. Our genetic analysis suggests that FMI-1 promotes transient F-actin assembly at the tips of contacting sister dendrites to facilitate their efficient retraction during self-avoidance events, probably by interacting with WSP-1/N-WASP. Mutations of vang-1, which encodes the planar cell polarity protein Vangl2 previously shown to inhibit F-actin assembly, suppress self-avoidance defects of the fmi-1 mutant. FMI-1 downregulates VANG-1 levels probably through forming protein complexes. Our study identifies molecular links between Flamingo and the F-actin cytoskeleton that facilitate efficient dendrite self-avoidance.
Collapse
Affiliation(s)
- Hao-Wei Hsu
- Institute of Molecular Medicine and Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Chien-Po Liao
- Institute of Molecular Medicine and Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Yueh-Chen Chiang
- Institute of Molecular Medicine and Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Ru-Ting Syu
- Institute of Molecular Medicine and Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Chun-Liang Pan
- Institute of Molecular Medicine and Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| |
Collapse
|
9
|
Inberg S, Meledin A, Kravtsov V, Iosilevskii Y, Oren-Suissa M, Podbilewicz B. Lessons from Worm Dendritic Patterning. Annu Rev Neurosci 2019; 42:365-383. [PMID: 30939099 DOI: 10.1146/annurev-neuro-072116-031437] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The structural and functional properties of neurons have intrigued scientists since the pioneering work of Santiago Ramón y Cajal. Since then, emerging cutting-edge technologies, including light and electron microscopy, electrophysiology, biochemistry, optogenetics, and molecular biology, have dramatically increased our understanding of dendritic properties. This advancement was also facilitated by the establishment of different animal model organisms, from flies to mammals. Here we describe the emerging model system of a Caenorhabditis elegans polymodal neuron named PVD, whose dendritic tree follows a stereotypical structure characterized by repeating candelabra-like structural units. In the past decade, progress has been made in understanding PVD's functions, morphogenesis, regeneration, and aging, yet many questions still remain.
Collapse
Affiliation(s)
- Sharon Inberg
- Department of Biology, Technion Israel Institute of Technology, Haifa 3200003, Israel;
| | - Anna Meledin
- Department of Biology, Technion Israel Institute of Technology, Haifa 3200003, Israel;
| | - Veronika Kravtsov
- Department of Biology, Technion Israel Institute of Technology, Haifa 3200003, Israel;
| | - Yael Iosilevskii
- Department of Biology, Technion Israel Institute of Technology, Haifa 3200003, Israel;
| | - Meital Oren-Suissa
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Benjamin Podbilewicz
- Department of Biology, Technion Israel Institute of Technology, Haifa 3200003, Israel;
| |
Collapse
|
10
|
Zhu F, Tang X, Xiao S, Wang H, Zhang Y, Shao Y, Tang F, Chen S, Bai X. The role of Bombyx mori Bmtutl-519 protein in the infection of BmN cells by Nosema bombycis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 92:283-290. [PMID: 30528488 DOI: 10.1016/j.dci.2018.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/30/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
Bmtutl-519 is an isoform of the Bombyx Turtle protein and a member of the immunoglobulin superfamily (IgSF). The relative expression level of Bmtutl-519 was significantly upregulated when BmN cells were infected by Nosema bombycis. The subcellular localization of Bmtutl-519 was studied using an indirect immunoinfluscent assay (IFA), Co-localization assay, Western blotting, and enhanced green fluorescent protein (EGFP) fusion constructs expressed in BmN cells transfected with a Bmtutl-519 expression plasmid. The results indicate that Bmtutl-519 is distributed in both the cytoplasm and the cell membrane of BmN cells. Bmtutl-519 may be involved in the infection process of N. bombycis as a cell surface receptor or regulatory factor. Interaction analysis of Bmtutl-519 with NbSWP26, a spore wall protein of N. bombycis involved in host cell adherence and infection, showed that the C-terminal heparin-binding motif (HBM) of NbSWP26 mediates the interaction between these two proteins. Mutation of the NbSWP26 HBM at K208G, K209G, K210G, and K213G led to a loss of the ability to bind the Bmtutl-519 protein. Spore adherence and infection assays showed that Bmtutl-519 enhances the binding ability of N. bombycis to the host cell surface, but this did not enhance host cell infection by N. bombycis. In contrast, the sustained high expression of Bmtutl-519 in BmN cells inhibited the proliferation of N. bombycis spores.
Collapse
Affiliation(s)
- Feng Zhu
- Institute of Sericulture and Apiculture, Yunnan Academy of Agricultural Sciences, Mengzi, 661101, Yunnan, China.
| | - Xudong Tang
- Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, Jiangsu, China
| | - Shengyan Xiao
- Institute of Sericulture and Apiculture, Yunnan Academy of Agricultural Sciences, Mengzi, 661101, Yunnan, China
| | - Hongliang Wang
- Tengzhou No. 1 Middle School of Shangdong Province, Zaozhuang, 277599, Shangdong, China
| | - Yonghong Zhang
- Institute of Sericulture and Apiculture, Yunnan Academy of Agricultural Sciences, Mengzi, 661101, Yunnan, China
| | - Yulan Shao
- Institute of Sericulture and Apiculture, Yunnan Academy of Agricultural Sciences, Mengzi, 661101, Yunnan, China
| | - Fenfen Tang
- Institute of Sericulture and Apiculture, Yunnan Academy of Agricultural Sciences, Mengzi, 661101, Yunnan, China
| | - Shiliang Chen
- Institute of Sericulture and Apiculture, Yunnan Academy of Agricultural Sciences, Mengzi, 661101, Yunnan, China
| | - Xingrong Bai
- Institute of Sericulture and Apiculture, Yunnan Academy of Agricultural Sciences, Mengzi, 661101, Yunnan, China.
| |
Collapse
|
11
|
Abstract
Synapse formation is mediated by a surprisingly large number and wide variety of genes encoding many different protein classes. One of the families increasingly implicated in synapse wiring is the immunoglobulin superfamily (IgSF). IgSF molecules are by definition any protein containing at least one Ig-like domain, making this family one of the most common protein classes encoded by the genome. Here, we review the emerging roles for IgSF molecules in synapse formation specifically in the vertebrate brain, focusing on examples from three classes of IgSF members: ( a) cell adhesion molecules, ( b) signaling molecules, and ( c) immune molecules expressed in the brain. The critical roles for IgSF members in regulating synapse formation may explain their extensive involvement in neuropsychiatric and neurodevelopmental disorders. Solving the IgSF code for synapse formation may reveal multiple new targets for rescuing IgSF-mediated deficits in synapse formation and, eventually, new treatments for psychiatric disorders caused by altered IgSF-induced synapse wiring.
Collapse
Affiliation(s)
- Scott Cameron
- Center for Neuroscience, University of California, Davis, California 95618, USA; ,
| | | |
Collapse
|
12
|
Millard SS, Pecot MY. Strategies for assembling columns and layers in the Drosophila visual system. Neural Dev 2018; 13:11. [PMID: 29875010 PMCID: PMC5991427 DOI: 10.1186/s13064-018-0106-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/24/2018] [Indexed: 11/23/2022] Open
Abstract
A striking feature of neural circuit structure is the arrangement of neurons into regularly spaced ensembles (i.e. columns) and neural connections into parallel layers. These patterns of organization are thought to underlie precise synaptic connectivity and provide a basis for the parallel processing of information. In this article we discuss in detail specific findings that contribute to a framework for understanding how columns and layers are assembled in the Drosophila visual system, and discuss their broader implications.
Collapse
Affiliation(s)
- S. Sean Millard
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Matthew Y. Pecot
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
13
|
Liao CP, Li H, Lee HH, Chien CT, Pan CL. Cell-Autonomous Regulation of Dendrite Self-Avoidance by the Wnt Secretory Factor MIG-14/Wntless. Neuron 2018; 98:320-334.e6. [DOI: 10.1016/j.neuron.2018.03.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 02/06/2018] [Accepted: 03/16/2018] [Indexed: 11/26/2022]
|
14
|
Chen Y, Cameron S, Chang WT, Rao Y. Turtle interacts with borderless in regulating glial extension and axon ensheathment. Mol Brain 2017; 10:17. [PMID: 28535795 PMCID: PMC5442652 DOI: 10.1186/s13041-017-0299-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 05/18/2017] [Indexed: 12/03/2022] Open
Abstract
Proper recognition between axons and glial processes is required for the establishment of axon ensheathment in the developing nervous system. Recent studies have begun to reveal molecular events underlying developmental control of axon-glia recognition. In our previous work, we showed that the transmembrane protein Borderless (Bdl) is specifically expressed in wrapping glia (WG), and is required for the extension of glial processes and the ensheathment of photoreceptor axons in the developing Drosophila visual system. The exact mechanism by which Bdl mediates axon-glia recognition, however, remains unknown. Here, we present evidence showing that Bdl interacts with the Ig transmembrane protein Turtle (Tutl). Tutl is specifically expressed in photoreceptor axons. Loss of tutl in photoreceptors, like loss of bdl in WG, disrupts glial extension and axon ensheatment. Epistasis analysis shows that Tutl interacts genetically with Bdl. Tutl interacts with Bdl in trans in cultured cells. We propose that Tutl interacts with Bdl in mediating axon-glia recognition for WG extension and axon ensheathment.
Collapse
Affiliation(s)
- Yixu Chen
- McGill Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, McGill University Health Centre, 1650 Cedar Avenue, Montreal, QC, H3G 1A4, Canada
| | - Scott Cameron
- McGill Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, McGill University Health Centre, 1650 Cedar Avenue, Montreal, QC, H3G 1A4, Canada.,Integrated Program in Neuroscience, McGill University Health Centre, 1650 Cedar Avenue, Montreal, QC, H3G 1A4, Canada
| | - Wen-Tzu Chang
- McGill Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, McGill University Health Centre, 1650 Cedar Avenue, Montreal, QC, H3G 1A4, Canada
| | - Yong Rao
- McGill Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, McGill University Health Centre, 1650 Cedar Avenue, Montreal, QC, H3G 1A4, Canada. .,Integrated Program in Neuroscience, McGill University Health Centre, 1650 Cedar Avenue, Montreal, QC, H3G 1A4, Canada. .,Department of Medicine, McGill University Health Centre, 1650 Cedar Avenue, Montreal, QC, H3G 1A4, Canada. .,Centre for Research in Neuroscience, McGill University Health Centre, Room L7-136, 1650 Cedar Avenue, Montreal, QC, H3G 1A4, Canada.
| |
Collapse
|
15
|
Molecular characterization and expression analysis of Turtle protein in silkworm that is associated with Nosema bombycis infection. INFECTION GENETICS AND EVOLUTION 2017; 52:67-74. [PMID: 28465230 DOI: 10.1016/j.meegid.2017.04.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/24/2017] [Accepted: 04/28/2017] [Indexed: 12/19/2022]
Abstract
In this report, we describe the cloning and characterization of a member of the immunoglobulin superfamily (IgSF); i.e., Turtle. The cDNA of Turtle was cloned from the silkworm Bombyx mori using the rapid amplification of cDNA ends (RACE) technique. Three isoforms of Bombyx Turtle were obtained, including Bmtutl-464, Bmtutl-519, and Bmtutl-810. The three isoforms had identical 27-amino acid signal peptides and four extracellular immunoglobulin (Ig) domains (IgI-IgIV). Sequence similarity and phylogenic analysis indicated that Bmtutl-810 belongs to the group of insect Turtle isoforms and shares 76.2% identity with Drosophila Turtle. Quantitative real-time PCR analysis revealed that the Bombyx Turtle isoforms were expressed throughout the entire development period, the highest levels of expression of Bmtutl-464 and Bmtutl-519 were observed at the second instar larvae stage, whereas that of Bmtutl-810 peaked at the embryonic stage. The ubiquitous expression of Bmtutl-464, Bmtutl-519, and Bmtutl-810 were observed in all studied tissues, except for Bmtutl-519 in the silk gland. The expression level of Bmtutl-464 was highest in the ovary, whereas that of Bmtutl-519 and Bmtutl-810 was highest in the hemolymph. Bmtutl-519 was upregulated in BmN cells infected by Nosema bombycis, We speculated that Bombyx Turtle was not only involved in neural development in silkworm, as well as Drosophila Turtle, but was also involved in the regulation of other biological functions. For example, Bmtutl-519 might be involved in N. bombycis infection and may play an important role in the immune response of silkworms to N. bombycis infection.
Collapse
|
16
|
Copf T. Importance of gene dosage in controlling dendritic arbor formation during development. Eur J Neurosci 2015; 42:2234-49. [PMID: 26108333 DOI: 10.1111/ejn.13002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 06/05/2015] [Accepted: 06/18/2015] [Indexed: 12/11/2022]
Abstract
Proper dendrite morphology is crucial for normal nervous system functioning. While a number of genes have been implicated in dendrite morphogenesis in both invertebrates and mammals, it remains unclear how developing dendrites respond to changes in gene dosage and what type of patterns their responses may follow. To understand this, I review here evidence from the recent literature, focusing on the genetic studies performed in the Drosophila larval dendritic arborization class IV neuron, an excellent cell type to understand dendrite morphogenesis. I summarize how class IV arbors change morphology in response to developmental fluctuations in the expression levels of 47 genes, studied by means of genetic manipulations such as loss-of-function and gain-of-function, and for which sufficient information is available. I find that arbors can respond to changing gene dosage in several distinct ways, each characterized by a singular dose-response curve. Interestingly, in 72% of cases arbors are sensitive, and thus adjust their morphology, in response to both decreases and increases in the expression of a given gene, indicating that dendrite morphogenesis is a process particularly sensitive to gene dosage. By summarizing the parallels between Drosophila and mammals, I show that many Drosophila dendrite morphogenesis genes have orthologs in mammals, and that some of these are associated with mammalian dendrite outgrowth and human neurodevelopmental disorders. One notable disease-related molecule is kinase Dyrk1A, thought to be a causative factor in Down syndrome. Both increases and decreases in Dyrk1A gene dosage lead to impaired dendrite morphogenesis, which may contribute to Down syndrome pathoetiology.
Collapse
Affiliation(s)
- Tijana Copf
- Institute of Molecular Biology and Biotechnology, Nikolaou Plastira 100, PO Box 1385, Heraklion, GR-70013, Crete, Greece
| |
Collapse
|
17
|
Kostadinov D, Sanes JR. Protocadherin-dependent dendritic self-avoidance regulates neural connectivity and circuit function. eLife 2015; 4. [PMID: 26140686 PMCID: PMC4548410 DOI: 10.7554/elife.08964] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 07/02/2015] [Indexed: 12/30/2022] Open
Abstract
Dendritic and axonal arbors of many neuronal types exhibit self-avoidance, in which branches repel each other. In some cases, these neurites interact with those of neighboring neurons, a phenomenon called self/non-self discrimination. The functional roles of these processes remain unknown. In this study, we used retinal starburst amacrine cells (SACs), critical components of a direction-selective circuit, to address this issue. In SACs, both processes are mediated by the gamma-protocadherins (Pcdhgs), a family of 22 recognition molecules. We manipulated Pcdhg expression in SACs and recorded from them and their targets, direction-selective ganglion cells (DSGCs). SACs form autapses when self-avoidance is disrupted and fail to form connections with other SACs when self/non-self discrimination is perturbed. Pcdhgs are also required to prune connections between closely spaced SACs. These alterations degrade the direction selectivity of DSGCs. Thus, self-avoidance, self/non-self discrimination, and synapse elimination are essential for proper function of a circuit that computes directional motion. DOI:http://dx.doi.org/10.7554/eLife.08964.001 Nerve cells (or neurons) connect to one another to form circuits that control the animal's behavior. Typically, each neuron receives signals from other cells via branch-like structures called dendrites. Each specific type of neuron has a characteristic pattern of branched dendrites, which is different from the pattern of other types of neuron. Therefore, it is reasonable to imagine that the shape of these branches can influence how the neuron works; however, this idea has rarely been tested experimentally. Different processes are known to act together to control the pattern of the branched dendrites. For example, dendrites in some neurons avoid other dendrites from the same neuron. This phenomenon is referred to as ‘self-avoidance’. In some of these cases, the same dendrites freely interact with the dendrites of neighboring neurons of the same type; this is called ‘self/non-self discrimination’. It is not clear, however, how these two processes influence the activity of neural circuits. Both self-avoidance and self/non-self discrimination rely on the expression of genes that encode so-called recognition molecules. Kostadinov and Sanes have now altered the expression of these genes in mice to see the effect that disrupting these two phenomena has on a set of neurons called ‘starburst amacrine cells’ that are found at the back the eye. The dendrites of starburst amacrine cells generate signals when objects move across the animal's field of vision. These dendrites then signal to other starburst amacrine cells and to so-called ‘direction-selective ganglion cells’, which in turn send this information to the brain for further processing. The experiments revealed that these disruptions affected the connections between the dendrites. Starburst amacrine cells that lacked self-avoidance mistakenly formed connections with themselves—as if they mistook their own dendrites for those of other starburst cells. In contrast, neurons that lacked self/non-self discrimination made the opposite mistake, and rarely formed connections with each other—as if they mistook the dendrites of other starbursts for their own. Disruptions to either phenomenon interfered with the activity of the direction-selective ganglion cells. Following on from the work of Kostadinov and Sanes, the next challenges include uncovering how the recognition molecules help with self-avoidance and self/non-self discrimination. It will also be important to examine whether the conclusions based on one type of neurons can be generalized to others that also exhibit these two phenomena. DOI:http://dx.doi.org/10.7554/eLife.08964.002
Collapse
Affiliation(s)
- Dimitar Kostadinov
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Joshua R Sanes
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| |
Collapse
|
18
|
Soba P, Han C, Zheng Y, Perea D, Miguel-Aliaga I, Jan LY, Jan YN. The Ret receptor regulates sensory neuron dendrite growth and integrin mediated adhesion. eLife 2015; 4. [PMID: 25764303 PMCID: PMC4391025 DOI: 10.7554/elife.05491] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 03/11/2015] [Indexed: 12/11/2022] Open
Abstract
Neurons develop highly stereotyped receptive fields by coordinated growth of their dendrites. Although cell surface cues play a major role in this process, few dendrite specific signals have been identified to date. We conducted an in vivo RNAi screen in Drosophila class IV dendritic arborization (C4da) neurons and identified the conserved Ret receptor, known to play a role in axon guidance, as an important regulator of dendrite development. The loss of Ret results in severe dendrite defects due to loss of extracellular matrix adhesion, thus impairing growth within a 2D plane. We provide evidence that Ret interacts with integrins to regulate dendrite adhesion via rac1. In addition, Ret is required for dendrite stability and normal F-actin distribution suggesting it has an essential role in dendrite maintenance. We propose novel functions for Ret as a regulator in dendrite patterning and adhesion distinct from its role in axon guidance.
Collapse
Affiliation(s)
- Peter Soba
- Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf (UKE), University of Hamburg, Hamburg, Germany
| | - Chun Han
- Department of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Yi Zheng
- Department of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Daniel Perea
- Gut Signalling and Metabolism Group, MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom
| | - Irene Miguel-Aliaga
- Gut Signalling and Metabolism Group, MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom
| | - Lily Yeh Jan
- Department of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Yuh Nung Jan
- Department of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
19
|
Lee J, Peng Y, Lin WY, Parrish JZ. Coordinate control of terminal dendrite patterning and dynamics by the membrane protein Raw. Development 2014; 142:162-73. [PMID: 25480915 DOI: 10.1242/dev.113423] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The directional flow of information in neurons depends on compartmentalization: dendrites receive inputs whereas axons transmit them. Axons and dendrites likewise contain structurally and functionally distinct subcompartments. Axon/dendrite compartmentalization can be attributed to neuronal polarization, but the developmental origin of subcompartments in axons and dendrites is less well understood. To identify the developmental bases for compartment-specific patterning in dendrites, we screened for mutations that affect discrete dendritic domains in Drosophila sensory neurons. From this screen, we identified mutations that affected distinct aspects of terminal dendrite development with little or no effect on major dendrite patterning. Mutation of one gene, raw, affected multiple aspects of terminal dendrite patterning, suggesting that Raw might coordinate multiple signaling pathways to shape terminal dendrite growth. Consistent with this notion, Raw localizes to branch-points and promotes dendrite stabilization together with the Tricornered (Trc) kinase via effects on cell adhesion. Raw independently influences terminal dendrite elongation through a mechanism that involves modulation of the cytoskeleton, and this pathway is likely to involve the RNA-binding protein Argonaute 1 (AGO1), as raw and AGO1 genetically interact to promote terminal dendrite growth but not adhesion. Thus, Raw defines a potential point of convergence in distinct pathways shaping terminal dendrite patterning.
Collapse
Affiliation(s)
- Jiae Lee
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Yun Peng
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Wen-Yang Lin
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Jay Z Parrish
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
20
|
He L, Cao G, Huang M, Xue R, Hu X, Gong C. Expression pattern of immunoglobulin superfamily members in the silkworm, Bombyx mori. Gene 2014; 548:198-209. [PMID: 25020261 DOI: 10.1016/j.gene.2014.07.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 07/09/2014] [Accepted: 07/11/2014] [Indexed: 12/18/2022]
Abstract
Immunoglobulin superfamily (IgSF) proteins are involved in cell adhesion, cell communication and immune functions. In this study, 152 IgSF genes containing at least one immunoglobulin (Ig) domain were predicted in the Bombyx mori silkworm genome. Of these, 145 were distributed on 25 chromosomes with no genes on chromosomes 16, 18 and 26. Multiple sequence alignments and phylogenetic evolution analysis indicated that IgSFs evolved rapidly. Gene ontology (GO) annotation indicated that IgSF members functioned as cellular components and in molecular functions and biological processes. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis suggested that IgSF proteins were involved in signal transduction, signaling molecules and interaction, and cell communication. Microarray-based expression data showed tissue expression for 136 genes in anterior silkgland, middle silkgland, posterior silkgland, testis, ovary, fat body, midgut, integument, hemocyte, malpighian tubule and head. Expression pattern of IgSF genes in the silkworm ovary and midgut was analyzed by RNA-Seq. Expression of 105 genes was detected in the ovary in strain Dazao. Expression in the midgut was detected for 74 genes in strain Lan5 and 75 genes in strain Ou17. Expression of 34 IgSF genes in the midgut relative to the actin A3 gene was significantly different between strains Lan5 and Ou17. Furthermore, 1 IgSF gene was upregulated and 1 IgSF gene was downregulated in strain Lan5, and 4 IgSF genes were upregulated and 2 IgSF genes were downregulated in strain Ou17 after silkworms were challenged with B. mori cypovirus (BmCPV), indicating potential involvement in the response to BmCPV-infection. These results provide an overview of IgSF family members in silkworms, and lay the foundation for further functional studies.
Collapse
Affiliation(s)
- Lei He
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Guangli Cao
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, China
| | - Moli Huang
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Renyu Xue
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, China
| | - Xiaolong Hu
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, China
| | - Chengliang Gong
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, China.
| |
Collapse
|
21
|
Gibson DA, Tymanskyj S, Yuan RC, Leung HC, Lefebvre JL, Sanes JR, Chédotal A, Ma L. Dendrite self-avoidance requires cell-autonomous slit/robo signaling in cerebellar purkinje cells. Neuron 2014; 81:1040-1056. [PMID: 24607227 DOI: 10.1016/j.neuron.2014.01.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2013] [Indexed: 10/25/2022]
Abstract
Dendrites from the same neuron usually develop nonoverlapping patterns by self-avoidance, a process requiring contact-dependent recognition and repulsion. Recent studies have implicated homophilic interactions of cell surface molecules, including Dscams and Pcdhgs, in self-recognition, but repulsive molecular mechanisms remain obscure. Here, we report a role for the secreted molecule Slit2 and its receptor Robo2 in self-avoidance of cerebellar Purkinje cells (PCs). Both molecules are highly expressed by PCs, and their deletion leads to excessive dendrite self-crossing without affecting arbor size and shape. This cell-autonomous function is supported by the boundary-establishing activity of Slit in culture and the phenotype rescue by membrane-associated Slit2 activities. Furthermore, genetic studies show that they act independently from Pcdhg-mediated recognition. Finally, PC-specific deletion of Robo2 is associated with motor behavior alterations. Thus, our study uncovers a local repulsive mechanism required for self-avoidance and demonstrates the molecular complexity at the cell surface in dendritic patterning.
Collapse
Affiliation(s)
- Daniel A Gibson
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Neuroscience Graduate Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Stephen Tymanskyj
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Rachel C Yuan
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Neuroscience Graduate Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Haiwen C Leung
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Julie L Lefebvre
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Alain Chédotal
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMR_S968, CNRS_UMR7210, Institut de la Vision, 750012, Paris, France
| | - Le Ma
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Neuroscience Graduate Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
22
|
Genetic evidence for the adhesion protein IgSF9/Dasm1 to regulate inhibitory synapse development independent of its intracellular domain. J Neurosci 2014; 34:4187-99. [PMID: 24647940 DOI: 10.1523/jneurosci.3671-13.2014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Normal brain function requires balanced development of excitatory and inhibitory synapses. An imbalance in synaptic transmission underlies many brain disorders such as epilepsy, schizophrenia, and autism. Compared with excitatory synapses, relatively little is known about the molecular control of inhibitory synapse development. We used a genetic approach in mice to identify the Ig superfamily member IgSF9/Dasm1 as a candidate homophilic synaptic adhesion protein that regulates inhibitory synapse development. IgSF9 is expressed in pyramidal cells and subsets of interneurons in the CA1 region of hippocampus. Electrophysiological recordings of acute hippocampal slices revealed that genetic inactivation of the IgSF9 gene resulted in fewer functional inhibitory synapses; however, the strength of the remaining synapses was unaltered. These physiological abnormalities were correlated with decreased expression of inhibitory synapse markers in IgSF9(-/-) mice, providing anatomical evidence for a reduction in inhibitory synapse numbers, whereas excitatory synapse development was normal. Surprisingly, knock-in mice expressing a mutant isoform of IgSF9 lacking the entire cytoplasmic domain (IgSF9(ΔC/ΔC) mice) had no defects in inhibitory synapse development, providing genetic evidence that IgSF9 regulates synapse development via ectodomain interactions rather than acting itself as a signaling receptor. Further, we found that IgSF9 mediated homotypic binding and cell aggregation, but failed to induce synapse formation, suggesting that IgSF9 acts as a cell adhesion molecule (CAM) to maintain synapses. Juvenile IgSF9(-/-) mice exhibited increased seizure susceptibility indicative of an imbalance in synaptic excitation and inhibition. These results provide genetic evidence for a specific role of IgSF9 in inhibitory synapse development/maintenance, presumably by its CAM-like activity.
Collapse
|
23
|
Nagai T, Mizuno K. Multifaceted roles of Furry proteins in invertebrates and vertebrates. J Biochem 2014; 155:137-46. [PMID: 24403109 DOI: 10.1093/jb/mvu001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Furry (Fry) is a large protein that is evolutionarily conserved from yeast to human. Fry and its orthologues in invertebrates (termed Tao3p in budding yeast, Mor2p in fission yeast, Sax-2 in nematode and Fry in fruit fly) genetically and physically interact with nuclear Dbf2-related (NDR) kinases (termed Cbk1p in budding yeast, Orb6p in fission yeast, Sax-1 in nematode and Trc in fruitfly), and function as activators or scaffolds of these kinases. Fry-NDR kinase signals are implicated in the control of polarized cell growth and morphogenesis in yeast, neurite outgrowth in nematode, and epidermal morphogenesis and dendritic tiling in fruit fly. Recent studies revealed that mammalian Fry is a microtubule-associated protein that is involved in the control of chromosome alignment, spindle organization and Polo-like kinase-1 activation in mitosis, and promotes microtubule acetylation in mitotic spindles via inhibiting the tubulin deacetylase Sirtuin 2. Here, we review current knowledge about the diverse cellular functions and regulation of Fry proteins in invertebrates and vertebrates.
Collapse
Affiliation(s)
- Tomoaki Nagai
- Laboratory of Molecular Cell Biology, Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | | |
Collapse
|
24
|
Visual circuit assembly requires fine tuning of the novel Ig transmembrane protein Borderless. J Neurosci 2013; 33:17413-21. [PMID: 24174674 DOI: 10.1523/jneurosci.1878-13.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Establishment of synaptic connections in the neuropils of the developing nervous system requires the coordination of specific neurite-neurite interactions (i.e., axon-axon, dendrite-dendrite and axon-dendrite interactions). The molecular mechanisms underlying coordination of neurite-neurite interactions for circuit assembly are incompletely understood. In this report, we identify a novel Ig superfamily transmembrane protein that we named Borderless (Bdl), as a novel regulator of neurite-neurite interactions in Drosophila. Bdl induces homotypic cell-cell adhesion in vitro and mediates neurite-neurite interactions in the developing visual system. Bdl interacts physically and genetically with the Ig transmembrane protein Turtle, a key regulator of axonal tiling. Our results also show that the receptor tyrosine phosphatase leukocyte common antigen-related protein (LAR) negatively regulates Bdl to control synaptic-layer selection. We propose that precise regulation of Bdl action coordinates neurite-neurite interactions for circuit formation in Drosophila.
Collapse
|
25
|
Abstract
Oppositely directed projections of some homologous neurons in the developing CNS of the medicinal leech (Hirudo verbana), such as the AP cells, undergo a form of contact-dependent homolog avoidance. Embryonic APs extend axons within the connective nerve toward adjacent ganglia, in which they meet and form gap junctions (GJs) with the oppositely directed axons of their segmental homologs, stop growing, and are later permanently retracted (Wolszon et al., 1994a,b). However, early deletion of an AP neuron leads to resumed growth and permanent maintenance of the projections of neighboring APs. Here we test the hypothesis that a GJ-based signaling mechanism is responsible for this instance of homolog avoidance. We demonstrate that selective knockdown of GJ gene Hve-inx1 expression in single embryonic APs, by expressing a short-hairpin interfering RNA, leads to continued growth of the projections of the cell toward, into, and beyond adjacent ganglia. Moreover, the projections of the APs in adjacent ganglia also resume growth, mimicking their responses to cell deletion. Continued growth was also observed when two different INX1 mutant transgenes that abolish dye coupling between APs were expressed. These include a mutant transgene that effectively downregulates all GJ plaques that include the INX1 protein and a closed channel INX1 mutant that retains the adhesive cellular binding characteristic of INX1 GJs but not the open channel pore function. Our results add GJ intercellular communication to the list of molecular signaling mechanisms that can act as mediators of growth-inhibiting cell-cell interactions that define the topography of neuronal arbors.
Collapse
|
26
|
Hattori Y, Usui T, Satoh D, Moriyama S, Shimono K, Itoh T, Shirahige K, Uemura T. Sensory-neuron subtype-specific transcriptional programs controlling dendrite morphogenesis: genome-wide analysis of Abrupt and Knot/Collier. Dev Cell 2013; 27:530-44. [PMID: 24290980 DOI: 10.1016/j.devcel.2013.10.024] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 08/08/2013] [Accepted: 10/31/2013] [Indexed: 11/18/2022]
Abstract
The transcription factors Abrupt (Ab) and Knot (Kn) act as selectors of distinct dendritic arbor morphologies in two classes of Drosophila sensory neurons, termed class I and class IV, respectively. We performed binding-site mapping and transcriptional profiling of these isolated neurons. Their profiles were similarly enriched in cell-type-specific enhancers of genes implicated in neural development. We identified a total of 429 target genes, of which 56 were common to Ab and Kn; these targets included genes necessary to shape dendritic arbors in either or both of the two sensory subtypes. Furthermore, a common target gene, encoding the cell adhesion molecule Ten-m, was expressed more strongly in class I than class IV, and this differential was critical to the class-selective directional control of dendritic branch sprouting or extension. Our analyses illustrate how differentiating neurons employ distinct and shared repertoires of gene expression to produce class-selective morphological traits.
Collapse
Affiliation(s)
- Yukako Hattori
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Tadao Usui
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Daisuke Satoh
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Sanefumi Moriyama
- Kobayashi-Maskawa Institute, Nagoya University, Aichi 464-8602, Japan; Graduate School of Mathematics, Nagoya University, Aichi 464-8602, Japan
| | - Kohei Shimono
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Takehiko Itoh
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Kanagawa 226-8501, Japan
| | - Katsuhiko Shirahige
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
| | - Tadashi Uemura
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
27
|
Woo J, Kwon SK, Nam J, Choi S, Takahashi H, Krueger D, Park J, Lee Y, Bae JY, Lee D, Ko J, Kim H, Kim MH, Bae YC, Chang S, Craig AM, Kim E. The adhesion protein IgSF9b is coupled to neuroligin 2 via S-SCAM to promote inhibitory synapse development. ACTA ACUST UNITED AC 2013; 201:929-44. [PMID: 23751499 PMCID: PMC3678166 DOI: 10.1083/jcb.201209132] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Synaptic adhesion molecules regulate diverse aspects of synapse formation and maintenance. Many known synaptic adhesion molecules localize at excitatory synapses, whereas relatively little is known about inhibitory synaptic adhesion molecules. Here we report that IgSF9b is a novel, brain-specific, homophilic adhesion molecule that is strongly expressed in GABAergic interneurons. IgSF9b was preferentially localized at inhibitory synapses in cultured rat hippocampal and cortical interneurons and was required for the development of inhibitory synapses onto interneurons. IgSF9b formed a subsynaptic domain distinct from the GABAA receptor- and gephyrin-containing domain, as indicated by super-resolution imaging. IgSF9b was linked to neuroligin 2, an inhibitory synaptic adhesion molecule coupled to gephyrin, via the multi-PDZ protein S-SCAM. IgSF9b and neuroligin 2 could reciprocally cluster each other. These results suggest a novel mode of inhibitory synaptic organization in which two subsynaptic domains, one containing IgSF9b for synaptic adhesion and the other containing gephyrin and GABAA receptors for synaptic transmission, are interconnected through S-SCAM and neuroligin 2.
Collapse
Affiliation(s)
- Jooyeon Woo
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon 305-701, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hakeda S, Suzuki T. Golden goal controls dendrite elongation and branching of multidendritic arborization neurons in Drosophila. Genes Cells 2013; 18:960-73. [PMID: 23919529 DOI: 10.1111/gtc.12089] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/03/2013] [Indexed: 11/30/2022]
Abstract
Precise refinement of axonal and dendritic patterns is essential for the maturation of functional neuronal circuits. Although several transmembrane molecules have been shown to control the development of both axons and dendrites, the molecular mechanisms that regulate these different processes are poorly understood. Golden Goal (Gogo) is one of the molecules that are known to control the development of axons in the Drosophila visual system. In this study, we analyzed Gogo function in dendritic field formation of dorsal multidendritic arborization (md-da) neurons of the Drosophila Peripheral Nervous System. We showed that Gogo is required to restrain the growth of ddaC dendrites toward the midline in the embryo. During larval stages, Gogo promotes dendritic branching of the complex classIV ddaC neurons. However, over-expression of Gogo restrained dendritic branch formation in ddaC neurons, and this phenotype was enhanced by co-over-expression with Flamingo (Fmi), a partner of Gogo in axon guidance. These results suggest Gogo plays important roles in maintaining homeostasis of dendritic branching. Like axons, the cytoplasmic part of Gogo is required for its function in dendritic tree formation, suggesting that Gogo conveys information from extracellular cues to intracellular molecules that control dendrite development.
Collapse
Affiliation(s)
- Satoko Hakeda
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, Martinsried, 82152, Germany; Tokyo Institute of Technology, Graduate School of Bioscience & Biotechnology, Nagatsuta 4259, Midoriku, Yokohama, 226-8501, Japan
| | | |
Collapse
|
29
|
Zhu F, Shen Z, Hou J, Zhang J, Geng T, Tang X, Xu L, Guo X. Identification of a protein interacting with the spore wall protein SWP26 of Nosema bombycis in a cultured BmN cell line of silkworm. INFECTION GENETICS AND EVOLUTION 2013; 17:38-45. [PMID: 23542093 DOI: 10.1016/j.meegid.2013.03.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 03/09/2013] [Accepted: 03/12/2013] [Indexed: 01/02/2023]
Abstract
Nosema bombycis is a silkworm parasite that causes severe economic damage to sericulture worldwide. It is the first microsporidia to be described in the literature, and to date, very little molecular information is available regarding microsporidian physiology and their relationships with their hosts. Therefore, the interaction between the microsporidia N. bombycis and its host silkworm, Bombyx mori, was analyzed in this study. The microsporidian spore wall proteins (SWPs) play a specific role in spore adherence to host cells and recognition by the host during invasion. In this study, SWP26 fused with enhanced green fluorescence protein (EGFP) was expressed in BmN cells by using a Bac-to-Bac expression system. Subsequently, the turtle-like protein of B. mori (BmTLP) was determined to interact with SWP26 via the use of anti-EGFP microbeads. This interaction was then confirmed by yeast two-hybrid analysis. The BmTLP cDNA encodes a polypeptide of 447 amino acids that includes a putative signal peptide of 27 amino acid residues. In addition, the BmTLP protein contains 2 immunoglobulin (IG) domains and 2 IGc2-type domains, which is the typical domain structure of IG proteins. The results of this study indicated that SWP26 interacts with the IG-like protein BmTLP, which contributes to the infectivity of N. bombycis to its host silkworm.
Collapse
Affiliation(s)
- Feng Zhu
- Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu Province, China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Hansen M, Walmod PS. IGSF9 family proteins. Neurochem Res 2013; 38:1236-51. [PMID: 23417431 DOI: 10.1007/s11064-013-0999-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 02/06/2013] [Accepted: 02/08/2013] [Indexed: 12/22/2022]
Abstract
The Drosophila protein Turtle and the vertebrate proteins immunoglobulin superfamily (IgSF), member 9 (IGSF9/Dasm1) and IGSF9B are members of an evolutionarily ancient protein family. A bioinformatics analysis of the protein family revealed that invertebrates contain only a single IGSF9 family gene, whereas vertebrates contain two to four genes. In cnidarians, the gene appears to encode a secreted protein, but transmembrane isoforms of the protein have also evolved, and in many species, alternative splicing facilitates the expression of both transmembrane and secreted isoforms. In most species, the longest isoforms of the proteins have the same general organization as the neural cell adhesion molecule family of cell adhesion molecule proteins, and like this family of proteins, IGSF9 family members are expressed in the nervous system. A review of the literature revealed that Drosophila Turtle facilitates homophilic cell adhesion. Moreover, IGSF9 family proteins have been implicated in the outgrowth and branching of neurites, axon guidance, synapse maturation, self-avoidance, and tiling. However, despite the few published studies on IGSF9 family proteins, reports on the functions of both Turtle and mammalian IGSF9 proteins are contradictory.
Collapse
Affiliation(s)
- Maria Hansen
- Protein Laboratory, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, Panum Institute, University of Copenhagen, Building 24.2, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | | |
Collapse
|
31
|
Zhou Y, Cameron S, Chang WT, Rao Y. Control of directional change after mechanical stimulation in Drosophila. Mol Brain 2012; 5:39. [PMID: 23107101 PMCID: PMC3514245 DOI: 10.1186/1756-6606-5-39] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 10/23/2012] [Indexed: 11/11/2022] Open
Abstract
Background Proper adjustment of moving direction after external mechanical stimulation is essential for animals to avoid danger (e.g. predators), and thus is vital for survival. This process involves sensory inputs, central processing and motor outputs. Recent studies have made considerable progress in identifying mechanosensitive neurons and mechanosensation receptor proteins. Our understandings of molecular and cellular mechanisms that link mechanosensation with the changes in moving direction, however, remain limited. Results In this study, we investigate the control of movement adjustment in Drosophila. In response to gentle touch at the anterior segments, Drosophila larvae reorient and select a new direction for forward movement. The extent of change in moving direction is correlated with the intensity of tactile stimuli. Sensation of gentle touch requires chordotonal organs and class IV da neurons. Genetic analysis indicates an important role for the evolutionarily conserved immunoglobulin (Ig) superfamily protein Turtle (Tutl) to regulate touch-initiated directional change. Tutl is required specifically in post-mitotic neurons at larval stage after the completion of embryonic development. Circuit breaking analysis identified a small subset of Tutl-positive neurons that are involved in the adjustment of moving direction. Conclusion We identify Tutl and a small subset of CNS neurons in modulating directional change in response to gentle touch. This study presents an excellent starting point for further dissection of molecular and cellular mechanisms controlling directional adjustment after mechanical stimulation.
Collapse
Affiliation(s)
- Yating Zhou
- McGill Centre for Research in Neuroscience, McGill University Health Centre, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
32
|
Fujishima K, Horie R, Mochizuki A, Kengaku M. Principles of branch dynamics governing shape characteristics of cerebellar Purkinje cell dendrites. Development 2012; 139:3442-55. [PMID: 22912417 PMCID: PMC3491647 DOI: 10.1242/dev.081315] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neurons develop dendritic arbors in cell type-specific patterns. Using growing Purkinje cells in culture as a model, we performed a long-term time-lapse observation of dendrite branch dynamics to understand the rules that govern the characteristic space-filling dendrites. We found that dendrite architecture was sculpted by a combination of reproducible dynamic processes, including constant tip elongation, stochastic terminal branching, and retraction triggered by contacts between growing dendrites. Inhibition of protein kinase C/protein kinase D signaling prevented branch retraction and significantly altered the characteristic morphology of long proximal segments. A computer simulation of dendrite branch dynamics using simple parameters from experimental measurements reproduced the time-dependent changes in the dendrite configuration in live Purkinje cells. Furthermore, perturbation analysis to parameters in silico validated the important contribution of dendritic retraction in the formation of the characteristic morphology. We present an approach using live imaging and computer simulations to clarify the fundamental mechanisms of dendrite patterning in the developing brain.
Collapse
Affiliation(s)
- Kazuto Fujishima
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida Honmachi, Kyoto 606-8501, Japan.
| | | | | | | |
Collapse
|
33
|
Melanophore migration and survival during zebrafish adult pigment stripe development require the immunoglobulin superfamily adhesion molecule Igsf11. PLoS Genet 2012; 8:e1002899. [PMID: 22916035 PMCID: PMC3420941 DOI: 10.1371/journal.pgen.1002899] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 07/01/2012] [Indexed: 11/19/2022] Open
Abstract
The zebrafish adult pigment pattern has emerged as a useful model for understanding the development and evolution of adult form as well as pattern-forming mechanisms more generally. In this species, a series of horizontal melanophore stripes arises during the larval-to-adult transformation, but the genetic and cellular bases for stripe formation remain largely unknown. Here, we show that the seurat mutant phenotype, consisting of an irregular spotted pattern, arises from lesions in the gene encoding Immunoglobulin superfamily member 11 (Igsf11). We find that Igsf11 is expressed by melanophores and their precursors, and we demonstrate by cell transplantation and genetic rescue that igsf11 functions autonomously to this lineage in promoting adult stripe development. Further analyses of cell behaviors in vitro, in vivo, and in explant cultures ex vivo demonstrate that Igsf11 mediates adhesive interactions and that mutants for igsf11 exhibit defects in both the migration and survival of melanophores and their precursors. These findings identify the first in vivo requirements for igsf11 as well as the first instance of an immunoglobulin superfamily member functioning in pigment cell development and patterning. Our results provide new insights into adult pigment pattern morphogenesis and how cellular interactions mediate pattern formation. Vertebrate pigment patterns are stunningly diverse and have been an important model of pattern formation for more than a century. Nevertheless, we still know remarkably little about the genes and cell behaviors that underlie the generation of specific patterns. To elucidate such mechanisms, a large number of pigment pattern mutants have been isolated in the genetically tractable zebrafish. Instead of the normal horizontal stripe pattern, many of these mutants exhibit spots of varying sizes and degrees of organization. Here, we show that one such mutant, seurat, named for the 19th century pointillist, George Seurat, exhibits lesions in the gene encoding a classical cell adhesion molecule (CAM) of the immunoglobulin superfamily, Igsf11. We find that Igsf11 mediates cell adhesion and promotes the migration and survival of melanophores and their precursors during adult stripe formation. These results are exciting because they are the first time that a CAM has been implicated in pigment pattern formation, despite the long-standing expectation that such molecules might be required to regulate adhesive interactions during these events. These cellular phenotypes further represent the first known in vivo functions for Igsf11 and point to the potential for similar activities amongst the rich diversity of immunoglobulin superfamily members.
Collapse
|
34
|
Koper A, Schenck A, Prokop A. Analysis of adhesion molecules and basement membrane contributions to synaptic adhesion at the Drosophila embryonic NMJ. PLoS One 2012; 7:e36339. [PMID: 22558441 PMCID: PMC3340374 DOI: 10.1371/journal.pone.0036339] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 03/30/2012] [Indexed: 12/12/2022] Open
Abstract
Synapse formation and maintenance crucially underlie brain function in health and disease. Both processes are believed to depend on cell adhesion molecules (CAMs). Many different classes of CAMs localise to synapses, including cadherins, protocadherins, neuroligins, neurexins, integrins, and immunoglobulin adhesion proteins, and further contributions come from the extracellular matrix and its receptors. Most of these factors have been scrutinised by loss-of-function analyses in animal models. However, which adhesion factors establish the essential physical links across synaptic clefts and allow the assembly of synaptic machineries at the contact site in vivo is still unclear. To investigate these key questions, we have used the neuromuscular junction (NMJ) of Drosophila embryos as a genetically amenable model synapse. Our ultrastructural analyses of NMJs lacking different classes of CAMs revealed that loss of all neurexins, all classical cadherins or all glutamate receptors, as well as combinations between these or with a Laminin deficiency, failed to reveal structural phenotypes. These results are compatible with a view that these CAMs might have no structural role at this model synapse. However, we consider it far more likely that they operate in a redundant or well buffered context. We propose a model based on a multi-adaptor principle to explain this phenomenon. Furthermore, we report a new CAM-independent adhesion mechanism that involves the basement membranes (BM) covering neuromuscular terminals. Thus, motorneuronal terminals show strong partial detachment of the junction when BM-to-cell surface attachment is impaired by removing Laminin A, or when BMs lose their structural integrity upon loss of type IV collagens. We conclude that BMs are essential to tie embryonic motorneuronal terminals to the muscle surface, lending CAM-independent structural support to their adhesion. Therefore, future developmental studies of these synaptic junctions in Drosophila need to consider the important contribution made by BM-dependent mechanisms, in addition to CAM-dependent adhesion.
Collapse
Affiliation(s)
- Andre Koper
- Faculty of Life Sciences, Wellcome Trust Centre for Cell-Matrix Research, Manchester, United Kingdom
| | - Annette Schenck
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Andreas Prokop
- Faculty of Life Sciences, Wellcome Trust Centre for Cell-Matrix Research, Manchester, United Kingdom
| |
Collapse
|
35
|
Smith CJ, Watson JD, VanHoven MK, Colón-Ramos DA, Miller DM. Netrin (UNC-6) mediates dendritic self-avoidance. Nat Neurosci 2012; 15:731-7. [PMID: 22426253 PMCID: PMC3337961 DOI: 10.1038/nn.3065] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 02/10/2012] [Indexed: 12/13/2022]
Abstract
Dendrites from a single neuron may be highly branched but typically do not overlap. This self-avoidance behavior has been shown to depend on cell-specific membrane proteins that trigger mutual repulsion. Here we report the surprising discovery that a diffusible cue, the axon guidance protein UNC-6/Netrin, is required for self-avoidance of sister dendrites from the PVD nociceptive neuron in C. elegans. We used time lapse imaging to show that dendrites fail to withdraw upon mutual contact in the absence of UNC-6/Netrin signaling. We propose a model in which the UNC-40/DCC receptor captures UNC-6/Netrin at the tips of growing dendrites for interaction with UNC-5 on the apposing branch to induce mutual repulsion. UNC-40/DCC also responds to dendritic contact through an additional pathway that is independent of UNC-6/Netrin. Our findings offer a new model for how an evolutionarily conserved morphogenic cue and its cognate receptors can pattern a fundamental feature of dendritic architecture.
Collapse
Affiliation(s)
- Cody J Smith
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | | | |
Collapse
|
36
|
Control of dendritic morphogenesis by Trio in Drosophila melanogaster. PLoS One 2012; 7:e33737. [PMID: 22438988 PMCID: PMC3305316 DOI: 10.1371/journal.pone.0033737] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 02/16/2012] [Indexed: 11/19/2022] Open
Abstract
Abl tyrosine kinase and its effectors among the Rho family of GTPases each act to control dendritic morphogenesis in Drosophila. It has not been established, however, which of the many GTPase regulators in the cell link these signaling molecules in the dendrite. In axons, the bifunctional guanine exchange factor, Trio, is an essential link between the Abl tyrosine kinase signaling pathway and Rho GTPases, particularly Rac, allowing these systems to act coordinately to control actin organization. In dendritic morphogenesis, however, Abl and Rac have contrary rather than reinforcing effects, raising the question of whether Trio is involved, and if so, whether it acts through Rac, Rho or both. We now find that Trio is expressed in sensory neurons of the Drosophila embryo and regulates their dendritic arborization. trio mutants display a reduction in dendritic branching and increase in average branch length, whereas over-expression of trio has the opposite effect. We further show that it is the Rac GEF domain of Trio, and not its Rho GEF domain that is primarily responsible for the dendritic function of Trio. Thus, Trio shapes the complexity of dendritic arbors and does so in a way that mimics the effects of its target, Rac.
Collapse
|
37
|
Kim ME, Shrestha BR, Blazeski R, Mason CA, Grueber WB. Integrins establish dendrite-substrate relationships that promote dendritic self-avoidance and patterning in drosophila sensory neurons. Neuron 2012; 73:79-91. [PMID: 22243748 DOI: 10.1016/j.neuron.2011.10.033] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2011] [Indexed: 10/14/2022]
Abstract
Dendrites achieve characteristic spacing patterns during development to ensure appropriate coverage of territories. Mechanisms of dendrite positioning via repulsive dendrite-dendrite interactions are beginning to be elucidated, but the control, and importance, of dendrite positioning relative to their substrate is poorly understood. We found that dendritic branches of Drosophila dendritic arborization sensory neurons can be positioned either at the basal surface of epidermal cells, or enclosed within epidermal invaginations. We show that integrins control dendrite positioning on or within the epidermis in a cell autonomous manner by promoting dendritic retention on the basal surface. Loss of integrin function in neurons resulted in excessive self-crossing and dendrite maintenance defects, the former indicating a role for substrate interactions in self-avoidance. In contrast to a contact-mediated mechanism, we find that integrins prevent crossings that are noncontacting between dendrites in different three-dimensional positions, revealing a requirement for combined dendrite-dendrite and dendrite-substrate interactions in self-avoidance.
Collapse
Affiliation(s)
- Michelle E Kim
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, 630 W. 168th St. P&S 12-403, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
38
|
Han C, Wang D, Soba P, Zhu S, Lin X, Jan LY, Jan YN. Integrins regulate repulsion-mediated dendritic patterning of drosophila sensory neurons by restricting dendrites in a 2D space. Neuron 2012; 73:64-78. [PMID: 22243747 DOI: 10.1016/j.neuron.2011.10.036] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2011] [Indexed: 11/19/2022]
Abstract
Dendrites of the same neuron usually avoid each other. Some neurons also repel similar neurons through dendrite-dendrite interaction to tile the receptive field. Nonoverlapping coverage based on such contact-dependent repulsion requires dendrites to compete for limited space. Here we show that Drosophila class IV dendritic arborization (da) neurons, which tile the larval body wall, grow their dendrites mainly in a 2D space on the extracellular matrix (ECM) secreted by the epidermis. Removing neuronal integrins or blocking epidermal laminin production causes dendrites to grow into the epidermis, suggesting that integrin-laminin interaction attaches dendrites to the ECM. We further show that some of the previously identified tiling mutants fail to confine dendrites in a 2D plane. Expansion of these mutant dendrites in three dimensions results in overlap of dendritic fields. Moreover, overexpression of integrins in these mutant neurons effectively reduces dendritic crossing and restores tiling, revealing an additional mechanism for tiling.
Collapse
Affiliation(s)
- Chun Han
- Howard Hughes Medical Institute, Departments of Physiology, Biochemistry, and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Development of sensory neural circuits requires concurrent specification of neuron modality, position, and topographic projections. However, little is understood about how controls over these distinct parameters can unify in a single developmental sequence. To address this question, we have used the nociceptive class IV dendritic arborization neurons in the Drosophila larval body wall as an excellent model that allows precise spatiotemporal dissection of developmental-genetic control over sensory neuron positioning and wiring, and subsequent analysis of its functional significance for sensorimotor behavior. The class IV neurogenetic program is intrinsic to the anterior domain of the embryonic parasegment epithelium. Along the ventrolateral axis of this domain, nociceptive neuron induction requirements depend upon location. Near the ventral midline, both Hedgehog and Epithelial growth factor receptor signaling are required for class IV neurogenesis. In addition, close to the ventral midline, class IV neurogenesis is preceded by expression of the Iroquois factor Mirror that promotes local nociceptive neuron differentiation. Remarkably, Mirror is also required for the proper routing of class IV topographic axonal projections across the midline of the CNS. Manipulation of Mirror activity in class IV neurons retargeted axonal projections and caused concordant changes in larval nociceptive escape behavior. These findings indicate that convergent sensory neuron specification, local differentiation, and topographic wiring are mediated by Mirror, and they suggest an integrated paradigm for position-sensitive neural development.
Collapse
|
40
|
The transmembrane LRR protein DMA-1 promotes dendrite branching and growth in C. elegans. Nat Neurosci 2011; 15:57-63. [PMID: 22138642 PMCID: PMC3848871 DOI: 10.1038/nn.2978] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 10/07/2011] [Indexed: 02/07/2023]
Abstract
Dendrites often adopt complex branched structures. The development and organization of these arbors fundamentally determine the potential input and connectivity of a given neuron. The cell-surface receptors that control dendritic branching remain poorly understood. Here, we show that in Caenorhabditis elegans, a previously uncharacterized transmembrane protein containing extracellular leucine-rich repeat (LRR) domains, which we name DMA-1 (Dendrite-Morphogenesis-Abnormal), promotes dendrite branching and growth. Sustained expression of dma-1 is found only in the elaborately branched sensory neurons PVD and FLP. Genetic analysis showed that loss of dma-1 causes much reduced dendritic arbors while overexpression of dma-1 results in excessive branching. Forced expression of dma-1 in neurons with simple dendrites was sufficient to promote ectopic branching. Animals lacking dma-1 are defective in sensing harsh touch. DMA-1 is the first transmembrane LRR protein to be implicated in dendritic branching and expands the breadth of roles played by LRR receptors in nervous system development.
Collapse
|
41
|
Matsubara D, Horiuchi SY, Shimono K, Usui T, Uemura T. The seven-pass transmembrane cadherin Flamingo controls dendritic self-avoidance via its binding to a LIM domain protein, Espinas, in Drosophila sensory neurons. Genes Dev 2011; 25:1982-96. [PMID: 21937715 DOI: 10.1101/gad.16531611] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Members of the Flamingo cadherin family are required in a number of different in vivo contexts of neural development. Even so, molecular identities downstream from the family have been poorly understood. Here we show that a LIM domain protein, Espinas (Esn), binds to an intracellular juxtamembrane domain of Flamingo (Fmi), and that this Fmi-Esn interplay elicits repulsion between dendritic branches of Drosophila sensory neurons. In wild-type larvae, branches of the same class IV dendritic arborization neuron achieve efficient coverage of its two-dimensional receptive field with minimum overlap with each other. However, this self-avoidance was disrupted in a fmi hypomorphic mutant, in an esn knockout homozygote, and in the fmi/esn trans-heterozygote. A functional fusion protein, Fmi:3eGFP, was localized at most of the branch tips, and in a heterologous system, assembly of Esn at cell contact sites required its LIM domain and Fmi. We further show that genes controlling epithelial planar cell polarity (PCP), such as Van Gogh (Vang) and RhoA, are also necessary for the self-avoidance, and that fmi genetically interacts with these loci. On the basis of these and other results, we propose that the Fmi-Esn complex, together with the PCP regulators and the Tricornered (Trc) signaling pathway, executes the repulsive interaction between isoneuronal dendritic branches.
Collapse
|
42
|
Turtle functions downstream of Cut in differentially regulating class specific dendrite morphogenesis in Drosophila. PLoS One 2011; 6:e22611. [PMID: 21811639 PMCID: PMC3141077 DOI: 10.1371/journal.pone.0022611] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 06/29/2011] [Indexed: 11/23/2022] Open
Abstract
Background Dendritic morphology largely determines patterns of synaptic connectivity and electrochemical properties of a neuron. Neurons display a myriad diversity of dendritic geometries which serve as a basis for functional classification. Several types of molecules have recently been identified which regulate dendrite morphology by acting at the levels of transcriptional regulation, direct interactions with the cytoskeleton and organelles, and cell surface interactions. Although there has been substantial progress in understanding the molecular mechanisms of dendrite morphogenesis, the specification of class-specific dendritic arbors remains largely unexplained. Furthermore, the presence of numerous regulators suggests that they must work in concert. However, presently, few genetic pathways regulating dendrite development have been defined. Methodology/Principal Findings The Drosophila gene turtle belongs to an evolutionarily conserved class of immunoglobulin superfamily members found in the nervous systems of diverse organisms. We demonstrate that Turtle is differentially expressed in Drosophila da neurons. Moreover, MARCM analyses reveal Turtle acts cell autonomously to exert class specific effects on dendritic growth and/or branching in da neuron subclasses. Using transgenic overexpression of different Turtle isoforms, we find context-dependent, isoform-specific effects on mediating dendritic branching in class II, III and IV da neurons. Finally, we demonstrate via chromatin immunoprecipitation, qPCR, and immunohistochemistry analyses that Turtle expression is positively regulated by the Cut homeodomain transcription factor and via genetic interaction studies that Turtle is downstream effector of Cut-mediated regulation of da neuron dendrite morphology. Conclusions/Significance Our findings reveal that Turtle proteins differentially regulate the acquisition of class-specific dendrite morphologies. In addition, we have established a transcriptional regulatory interaction between Cut and Turtle, representing a novel pathway for mediating class specific dendrite development.
Collapse
|
43
|
Cameron S, Rao Y. Molecular mechanisms of tiling and self-avoidance in neural development. Mol Brain 2010; 3:28. [PMID: 20937126 PMCID: PMC2959082 DOI: 10.1186/1756-6606-3-28] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 10/11/2010] [Indexed: 11/10/2022] Open
Abstract
Recent studies have begun to unravel the molecular basis of tiling and self-avoidance, two important cellular mechanisms that shape neuronal circuitry during development in both invertebrates and vertebrates. Dscams and Turtle (Tutl), two Ig superfamily proteins, have been shown to mediate contact-dependent homotypic interactions in tiling and self-avoidance. By contrast, the Activin pathway regulates axonal tiling in a contact-independent manner. These cell surface signals may directly or indirectly regulate the activity of the Tricornered kinase pathway and/or other intracellular signaling pathways to prevent the overlap between same-type neuronal arbors in the sensory or synaptic input field.
Collapse
Affiliation(s)
- Scott Cameron
- McGill Centre for Research in Neuroscience, McGill University Health Centre, 1650 Cedar Avenue, Montreal, Quebec H3G 1A4, Canada
| | | |
Collapse
|
44
|
Grueber WB, Sagasti A. Self-avoidance and tiling: Mechanisms of dendrite and axon spacing. Cold Spring Harb Perspect Biol 2010; 2:a001750. [PMID: 20573716 DOI: 10.1101/cshperspect.a001750] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The spatial pattern of branches within axonal or dendritic arbors and the relative arrangement of neighboring arbors with respect to one another impact a neuron's potential connectivity. Although arbors can adopt diverse branching patterns to suit their functions, evenly spread branches that avoid clumping or overlap are a common feature of many axonal and dendritic arbors. The degree of overlap between neighboring arbors innervating a surface is also characteristic within particular neuron types. The arbors of some populations of neurons innervate a target with a comprehensive and nonoverlapping "tiled" arrangement, whereas those of others show substantial territory overlap. This review focuses on cellular and molecular studies that have provided insight into the regulation of spatial arrangements of neurite branches within and between arbors. These studies have revealed principles that govern arbor arrangements in dendrites and axons in both vertebrates and invertebrates. Diverse molecular mechanisms controlling the spatial patterning of sister branches and neighboring arbors have begun to be elucidated.
Collapse
Affiliation(s)
- Wesley B Grueber
- Department of Physiology and Cellular Biophysics, Department of Neuroscience, Columbia University Medical Center, New York, New York 10032, USA.
| | | |
Collapse
|
45
|
Smith CJ, Watson JD, Spencer WC, O'Brien T, Cha B, Albeg A, Treinin M, Miller DM. Time-lapse imaging and cell-specific expression profiling reveal dynamic branching and molecular determinants of a multi-dendritic nociceptor in C. elegans. Dev Biol 2010; 345:18-33. [PMID: 20537990 DOI: 10.1016/j.ydbio.2010.05.502] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 05/19/2010] [Accepted: 05/19/2010] [Indexed: 10/19/2022]
Abstract
Nociceptive neurons innervate the skin with complex dendritic arbors that respond to pain-evoking stimuli such as harsh mechanical force or extreme temperatures. Here we describe the structure and development of a model nociceptor, the PVD neuron of C. elegans, and identify transcription factors that control morphogenesis of the PVD dendritic arbor. The two PVD neuron cell bodies occupy positions on either the right (PVDR) or left (PVDL) sides of the animal in posterior-lateral locations. Imaging with a GFP reporter revealed a single axon projecting from the PVD soma to the ventral cord and an elaborate, highly branched arbor of dendritic processes that envelop the animal with a web-like array directly beneath the skin. Dendritic branches emerge in a step-wise fashion during larval development and may use an existing network of peripheral nerve cords as guideposts for key branching decisions. Time-lapse imaging revealed that branching is highly dynamic with active extension and withdrawal and that PVD branch overlap is prevented by a contact-dependent self-avoidance, a mechanism that is also employed by sensory neurons in other organisms. With the goal of identifying genes that regulate dendritic morphogenesis, we used the mRNA-tagging method to produce a gene expression profile of PVD during late larval development. This microarray experiment identified>2,000 genes that are 1.5X elevated relative to all larval cells. The enriched transcripts encode a wide range of proteins with potential roles in PVD function (e.g., DEG/ENaC and Trp channels) or development (e.g., UNC-5 and LIN-17/frizzled receptors). We used RNAi and genetic tests to screen 86 transcription factors from this list and identified eleven genes that specify PVD dendritic structure. These transcription factors appear to control discrete steps in PVD morphogenesis and may either promote or limit PVD branching at specific developmental stages. For example, time-lapse imaging revealed that MEC-3 (LIM homeodomain) is required for branch initiation in early larval development whereas EGL-44 (TEAD domain) prevents ectopic PVD branching in the adult. A comparison of PVD-enriched transcripts to a microarray profile of mammalian nociceptors revealed homologous genes with potentially shared nociceptive functions. We conclude that PVD neurons display striking structural, functional and molecular similarities to nociceptive neurons from more complex organisms and can thus provide a useful model system in which to identify evolutionarily conserved determinants of nociceptor fate.
Collapse
Affiliation(s)
- Cody J Smith
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232-8240, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Astigarraga S, Hofmeyer K, Treisman JE. Missed connections: photoreceptor axon seeks target neuron for synaptogenesis. Curr Opin Genet Dev 2010; 20:400-7. [PMID: 20434326 DOI: 10.1016/j.gde.2010.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Revised: 03/31/2010] [Accepted: 04/02/2010] [Indexed: 02/06/2023]
Abstract
Extending axons must choose the appropriate synaptic target cells in order to assemble functional neural circuitry. The axons of the Drosophila color-sensitive photoreceptors R7 and R8 project as a single fascicle from each ommatidium, but their terminals are segregated into distinct layers within their target region. Recent studies have begun to reveal the molecular mechanisms that establish this projection pattern. Both homophilic adhesion molecules and specific ligand-receptor interactions make important contributions to stabilizing R7 and R8 terminals in the appropriate target layers. These cell recognition molecules are regulated by the same transcription factors that control R7 and R8 cell fates. Autocrine and repulsive signaling mechanisms prevent photoreceptor terminals from encroaching on their neighbors, preserving the spatial resolution of visual information.
Collapse
Affiliation(s)
- Sergio Astigarraga
- Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | | | | |
Collapse
|