1
|
Kurtulus B, Atilgan N, Yilmaz M, Dokuyucu R. Two Members of Vitamin-K-Dependent Proteins, Gla-Rich Protein (GRP) and Matrix Gla Protein (MGP), as Possible New Players in the Molecular Mechanism of Osteoarthritis. J Clin Med 2024; 13:5159. [PMID: 39274372 PMCID: PMC11396581 DOI: 10.3390/jcm13175159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Objectives: The pathophysiology of osteoarthritis is mainly unknown. Matrix Gla protein (MGP) and Gla-rich protein (GRP) are both vitamin-K-dependent mineralization inhibitors. In this study, we aimed to compare the levels of MGP and GRP in the synovial fluid of osteoarthritic (OA) and non-osteoarthritic (non-OA) knee joints. Materials and Methods: Two groups were formed, with one consisting of patients with OA and the other non-OA, serving as a control group. The non-OA group included individuals who had arthroscopic surgery for non-cartilage-related issues. In the OA group, all participants had undergone total knee arthroplasty because of grade 4 primary degenerative osteoarthritis. During the operation, at least 1 mL of knee synovial fluid was collected. The GRP and MGP levels in the synovial fluid were measured using an ELISA kit. Results: The mean age in the OA group (62.03 ± 11.53 years) was significantly higher than that in the non-OA group (47.70 ± 14.49 years; p = 0.0001). GRP levels were significantly higher in the OA group (419.61 ± 70.14 ng/mL) compared to the non-OA group (382.18 ± 62.34 ng/mL; p = 0.037). MGP levels were significantly higher in the OA group (67.76 ± 11.36 ng/mL) compared to the non-OA group (53.49 ± 18.28 ng/mL; p = 0.001). Calcium levels (Ca++) were also significantly higher in the OA group (12.89 ± 3.43 mg/dL) compared to the non-OA group (9.51 ± 2.15 mg/dL; p = 0.0001). There was a significantly positive correlation between MGP levels and age (p = 0.011, R = +0.335). Linear regression analysis was performed to determine the effect of age on MGP levels (p = 0.011, R-Square = 0.112). The dependent variable in this analysis was MGP (ng/mL), and age was the predictor. Conclusions: In conclusion, both GRP and MGP are potentially usable biomarkers in osteoarthritis. However, GRP seems to be more valuable because it is not associated with age. In the future, both proteins could provide important contributions to the diagnosis and treatment of osteoarthritis.
Collapse
Affiliation(s)
- Burhan Kurtulus
- Department of Orthopedics and Traumatology, Ankara Diskapi Yildirim Beyazit Education and Research Hospital, Ankara 06110, Turkey
| | - Numan Atilgan
- Department of Hand Surgery, Private Clinic, Gaziantep 27000, Turkey
| | - Mehmet Yilmaz
- Department of Orthopedic Surgery, Gaziantep City Hospital, Gaziantep 27060, Turkey
| | - Recep Dokuyucu
- Department of Physiology, Medical Specialization Training Center (TUSMER), Ankara 06420, Turkey
- Physioclinic Private Clinic, Gaziantep 27090, Turkey
| |
Collapse
|
2
|
Fragoso Vargas NA, Berthaume MA. Easy to gain but hard to lose: the evolution of the knee sesamoid bones in Primates-a systematic review and phylogenetic meta-analysis. Proc Biol Sci 2024; 291:20240774. [PMID: 39255841 PMCID: PMC11387069 DOI: 10.1098/rspb.2024.0774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/28/2024] [Accepted: 07/22/2024] [Indexed: 09/12/2024] Open
Abstract
Sesamoids are variably present skeletal elements found in tendons and ligaments near joints. Variability in sesamoid size, location and presence/absence is hypothesized to enable skeletal innovation, yet sesamoids are often ignored. Three knee sesamoids-the cyamella, medial fabella and lateral fabella-are present in primates, but we know little about how they evolved, if they are skeletal innovations, or why they are largely missing from Hominoidea. Our phylogenetic comparative analyses suggest that sesamoid presence/absence is highly phylogenetically structured and contains phylogenetic signal. Models suggest that it is easy to gain but difficult/impossible to lose knee sesamoids and that the fabellae may have similar developmental/evolutionary pathways that are distinct from the cyamella. Sesamoid presence/absence is uncorrelated to the mode of locomotion, suggesting that sesamoid biomechanical function may require information beyond sesamoid presence, such as size and location. Ancestral state reconstructions were largely uninformative but highlighted how reconstructions using parsimony can differ from those that are phylogenetically informed. Interestingly, there may be two ways to evolve fabellae, with humans evolving fabellae differently from most other primates. We hypothesize that the 're-emergence' of the lateral fabella in humans may be correlated with the evolution of a unique developmental pathway, potentially correlated with the evolution of straight-legged, bipedal locomotion.
Collapse
|
3
|
HOXC11 drives lung adenocarcinoma progression through transcriptional regulation of SPHK1. Cell Death Dis 2023; 14:153. [PMID: 36823149 PMCID: PMC9950477 DOI: 10.1038/s41419-023-05673-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/25/2023]
Abstract
Lung adenocarcinoma (LUAD) is a fatal threat to human health, while the mechanism remains unclear, and the therapy brings limited therapeutic effects. Transcription factor Homeobox C11 (HOXC11) was previously proved to be related to hind limbs and metanephric development during the embryonic phase, and its role in tumors has been gradually recognized. Our study found that HOXC11 overexpressed in LUAD and was associated with worse overall survival. Moreover, its expression in lung cancer was regulated by IκB kinase α (IKKα), a pivotal kinase in NF-κB signaling, which was related to the ubiquitination of HOXC11. We further proved that HOXC11 could enhance the ability of proliferation, migration, invasion, colony formation, and the progression of the cell cycle in LUAD cells. Meanwhile, it also accelerated the formation of subcutaneous and lung metastases tumors. In contrast, loss of HOXC11 in LUAD cells significantly inhibited these malignant phenotypes. At the same time, HOXC11 regulated the expression of sphingosine kinase 1 (SPHK1) by directly binding to its promoter region. Therefore, we conclude that HOXC11 impacts the development of LUAD and facilitates lung cancer progression by promoting the expression of SPHK1.
Collapse
|
4
|
Murphy P, Rolfe RA. Building a Co-ordinated Musculoskeletal System: The Plasticity of the Developing Skeleton in Response to Muscle Contractions. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2023; 236:81-110. [PMID: 37955772 DOI: 10.1007/978-3-031-38215-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
The skeletal musculature and the cartilage, bone and other connective tissues of the skeleton are intimately co-ordinated. The shape, size and structure of each bone in the body is sculpted through dynamic physical stimuli generated by muscle contraction, from early development, with onset of the first embryo movements, and through repair and remodelling in later life. The importance of muscle movement during development is shown by congenital abnormalities where infants that experience reduced movement in the uterus present a sequence of skeletal issues including temporary brittle bones and joint dysplasia. A variety of animal models, utilising different immobilisation scenarios, have demonstrated the precise timing and events that are dependent on mechanical stimulation from movement. This chapter lays out the evidence for skeletal system dependence on muscle movement, gleaned largely from mouse and chick immobilised embryos, showing the many aspects of skeletal development affected. Effects are seen in joint development, ossification, the size and shape of skeletal rudiments and tendons, including compromised mechanical function. The enormous plasticity of the skeletal system in response to muscle contraction is a key factor in building a responsive, functional system. Insights from this work have implications for our understanding of morphological evolution, particularly the challenging concept of emergence of new structures. It is also providing insight for the potential of physical therapy for infants suffering the effects of reduced uterine movement and is enhancing our understanding of the cellular and molecular mechanisms involved in skeletal tissue differentiation, with potential for informing regenerative therapies.
Collapse
Affiliation(s)
- Paula Murphy
- School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| | - Rebecca A Rolfe
- School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| |
Collapse
|
5
|
Amador LI. Sesamoids and Morphological Variation: a Hypothesis on the Origin of Rod-like Skeletal Elements in Aerial Mammals. J MAMM EVOL 2021. [DOI: 10.1007/s10914-021-09571-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Rux D, Helbig K, Koyama E, Pacifici M. Hox11 expression characterizes developing zeugopod synovial joints and is coupled to postnatal articular cartilage morphogenesis into functional zones in mice. Dev Biol 2021; 477:49-63. [PMID: 34010606 DOI: 10.1016/j.ydbio.2021.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/07/2021] [Accepted: 05/10/2021] [Indexed: 11/26/2022]
Abstract
Previous studies on mouse embryo limbs have established that interzone mesenchymal progenitor cells emerging at each prescribed joint site give rise to joint tissues over fetal time. These incipient tissues undergo structural maturation and morphogenesis postnatally, but underlying mechanisms of regulation remain unknown. Hox11 genes dictate overall zeugopod musculoskeletal patterning and skeletal element identities during development. Here we asked where these master regulators are expressed in developing limb joints and whether they are maintained during postnatal zeugopod joint morphogenesis. We found that Hoxa11 was predominantly expressed and restricted to incipient wrist and ankle joints in E13.5 mouse embryos, and became apparent in medial and central regions of knees by E14.5, though remaining continuously dormant in elbow joints. Closer examination revealed that Hoxa11 initially characterized interzone and neighboring cells and was then restricted to nascent articular cartilage, intra joint ligaments and structures such as meniscal horns over prenatal time. Postnatally, articular cartilage progresses from a nondescript cell-rich, matrix-poor tissue to a highly structured, thick, zonal and mechanically competent tissue with chondrocyte columns over time, most evident at sites such as the tibial plateau. Indeed, Hox11 expression (primarily Hoxa11) was intimately coupled to such morphogenetic processes and, in particular, to the topographical rearrangement of chondrocytes into columns within the intermediate and deep zones of tibial plateau that normally endures maximal mechanical loads. Revealingly, these expression patterns were maintained even at 6 months of age. In sum, our data indicate that Hox11 genes remain engaged well beyond embryonic synovial joint patterning and are specifically tied to postnatal articular cartilage morphogenesis into a zonal and resilient tissue. The data demonstrate that Hox11 genes characterize adult, terminally differentiated, articular chondrocytes and maintain region-specificity established in the embryo.
Collapse
Affiliation(s)
- Danielle Rux
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Kimberly Helbig
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Eiki Koyama
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Maurizio Pacifici
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
7
|
Binversie EE, Baker LA, Engelman CD, Hao Z, Moran JJ, Piazza AM, Sample SJ, Muir P. Analysis of copy number variation in dogs implicates genomic structural variation in the development of anterior cruciate ligament rupture. PLoS One 2020; 15:e0244075. [PMID: 33382735 PMCID: PMC7774950 DOI: 10.1371/journal.pone.0244075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 12/02/2020] [Indexed: 11/19/2022] Open
Abstract
Anterior cruciate ligament (ACL) rupture is an important condition of the human knee. Second ruptures are common and societal costs are substantial. Canine cranial cruciate ligament (CCL) rupture closely models the human disease. CCL rupture is common in the Labrador Retriever (5.79% prevalence), ~100-fold more prevalent than in humans. Labrador Retriever CCL rupture is a polygenic complex disease, based on genome-wide association study (GWAS) of single nucleotide polymorphism (SNP) markers. Dissection of genetic variation in complex traits can be enhanced by studying structural variation, including copy number variants (CNVs). Dogs are an ideal model for CNV research because of reduced genetic variability within breeds and extensive phenotypic diversity across breeds. We studied the genetic etiology of CCL rupture by association analysis of CNV regions (CNVRs) using 110 case and 164 control Labrador Retrievers. CNVs were called from SNPs using three different programs (PennCNV, CNVPartition, and QuantiSNP). After quality control, CNV calls were combined to create CNVRs using ParseCNV and an association analysis was performed. We found no strong effect CNVRs but found 46 small effect (max(T) permutation P<0.05) CCL rupture associated CNVRs in 22 autosomes; 25 were deletions and 21 were duplications. Of the 46 CCL rupture associated CNVRs, we identified 39 unique regions. Thirty four were identified by a single calling algorithm, 3 were identified by two calling algorithms, and 2 were identified by all three algorithms. For 42 of the associated CNVRs, frequency in the population was <10% while 4 occurred at a frequency in the population ranging from 10–25%. Average CNVR length was 198,872bp and CNVRs covered 0.11 to 0.15% of the genome. All CNVRs were associated with case status. CNVRs did not overlap previous canine CCL rupture risk loci identified by GWAS. Associated CNVRs contained 152 annotated genes; 12 CNVRs did not have genes mapped to CanFam3.1. Using pathway analysis, a cluster of 19 homeobox domain transcript regulator genes was associated with CCL rupture (P = 6.6E-13). This gene cluster influences cranial-caudal body pattern formation during embryonic limb development. Clustered genes were found in 3 CNVRs on chromosome 14 (HoxA), 28 (NKX6-2), and 36 (HoxD). When analysis was limited to deletion CNVRs, the association was strengthened (P = 8.7E-16). This study suggests a component of the polygenic risk of CCL rupture in Labrador Retrievers is associated with small effect CNVs and may include aspects of stifle morphology regulated by homeobox domain transcript regulator genes.
Collapse
Affiliation(s)
- Emily E. Binversie
- Comparative Orthopaedic and Genetics Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Lauren A. Baker
- Comparative Orthopaedic and Genetics Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Corinne D. Engelman
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Zhengling Hao
- Comparative Orthopaedic and Genetics Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - John J. Moran
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Alexander M. Piazza
- Comparative Orthopaedic and Genetics Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Susannah J. Sample
- Comparative Orthopaedic and Genetics Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Peter Muir
- Comparative Orthopaedic and Genetics Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
8
|
The Roles of Indian Hedgehog Signaling in TMJ Formation. Int J Mol Sci 2019; 20:ijms20246300. [PMID: 31847127 PMCID: PMC6941023 DOI: 10.3390/ijms20246300] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 12/10/2019] [Indexed: 01/15/2023] Open
Abstract
The temporomandibular joint (TMJ) is an intricate structure composed of the mandibular condyle, articular disc, and glenoid fossa in the temporal bone. Apical condylar cartilage is classified as a secondary cartilage, is fibrocartilaginous in nature, and is structurally distinct from growth plate and articular cartilage in long bones. Condylar cartilage is organized in distinct cellular layers that include a superficial layer that produces lubricants, a polymorphic/progenitor layer that contains stem/progenitor cells, and underlying layers of flattened and hypertrophic chondrocytes. Uniquely, progenitor cells reside near the articular surface, proliferate, undergo chondrogenesis, and mature into hypertrophic chondrocytes. During the past decades, there has been a growing interest in the molecular mechanisms by which the TMJ develops and acquires its unique structural and functional features. Indian hedgehog (Ihh), which regulates skeletal development including synovial joint formation, also plays pivotal roles in TMJ development and postnatal maintenance. This review provides a description of the many important recent advances in Hedgehog (Hh) signaling in TMJ biology. These include studies that used conventional approaches and those that analyzed the phenotype of tissue-specific mouse mutants lacking Ihh or associated molecules. The recent advances in understanding the molecular mechanism regulating TMJ development are impressive and these findings will have major implications for future translational medicine tools to repair and regenerate TMJ congenital anomalies and acquired diseases, such as degenerative damage in TMJ osteoarthritic conditions.
Collapse
|
9
|
Vail DJ, Somoza RA, Caplan AI, Khalil AM. Transcriptome dynamics of long noncoding RNAs and transcription factors demarcate human neonatal, adult, and human mesenchymal stem cell-derived engineered cartilage. J Tissue Eng Regen Med 2019; 14:29-44. [PMID: 31503387 DOI: 10.1002/term.2961] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 08/02/2019] [Accepted: 09/03/2019] [Indexed: 11/08/2022]
Abstract
The engineering of a native-like articular cartilage (AC) is a long-standing objective that could serve the clinical needs of millions of patients suffering from osteoarthritis and cartilage injury. An incomplete understanding of the developmental stages of AC has contributed to limited success in this endeavor. Using next generation RNA sequencing, we have transcriptionally characterized two critical stages of AC development in humans-that is, immature neonatal and mature adult, as well as tissue-engineered cartilage derived from culture expanded human mesenchymal stem cells. We identified key transcription factors (TFs) and long noncoding RNAs (lncRNAs) as candidate drivers of the distinct phenotypes of these tissues. AGTR2, SCGB3A1, TFCP2L1, RORC, and TBX4 stand out as key TFs, whose expression may be capable of reprogramming engineered cartilage into a more expandable and neonatal-like cartilage primed for maturation into biomechanically competent cartilage. We also identified that the transcriptional profiles of many annotated but poorly studied lncRNAs were dramatically different between these cartilages, indicating that lncRNAs may also be playing significant roles in cartilage biology. Key neonatal-specific lncRNAs identified include AC092818.1, AC099560.1, and KC877982. Collectively, our results suggest that tissue-engineered cartilage can be optimized for future clinical applications by the specific expression of TFs and lncRNAs.
Collapse
Affiliation(s)
- Daniel J Vail
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Rodrigo A Somoza
- Skeletal Research Center, Department of Biology, Case Western Reserve University, Cleveland, OH
| | - Arnold I Caplan
- Skeletal Research Center, Department of Biology, Case Western Reserve University, Cleveland, OH
| | - Ahmad M Khalil
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
10
|
Abdala V, Vera MC, Amador LI, Fontanarrosa G, Fratani J, Ponssa ML. Sesamoids in tetrapods: the origin of new skeletal morphologies. Biol Rev Camb Philos Soc 2019; 94:2011-2032. [PMID: 31359608 DOI: 10.1111/brv.12546] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 02/06/2023]
Abstract
Along with supernumerary bones, sesamoids, defined as any organized intratendinous/intraligamentous structure, including those composed of fibrocartilage, adjacent to an articulation or joint, have been frequently considered as enigmatic structures associated with the joints of the skeletal system of vertebrates. This review allows us to propose a dynamic model to account for part of skeletal phenotypic diversity: during evolution, sesamoids can become displaced, attaching to and detaching from the long bone epiphyses and diaphysis. Epiphyses, apophyses and detached sesamoids are able to transform into each other, contributing to the phenotypic variability of the tetrapod skeleton. This dynamic model is a new paradigm to delineate the contribution of sesamoids to skeletal diversity. Herein, we first present a historical approach to the study of sesamoids, discussing the genetic versus epigenetic theories of their genesis and growth. Second, we construct a dynamic model. Third, we present a summary of literature on sesamoids of the main groups of tetrapods, including veterinary and human clinical contributions, which are the best-studied aspects of sesamoids in recent decades. Finally, we discuss the identity of certain structures that have been labelled as sesamoids despite insufficient formal testing of homology. We also propose a new definition to help the identification of sesamoids in general. This review is particularly timely, given the recent increasing interest and research activity into the developmental biology and mechanics of sesamoids. With this updated and integrative discussion, we hope to pave the way to improve the understanding of sesamoid biology and evolution.
Collapse
Affiliation(s)
- Virginia Abdala
- Cátedra de Biología General, Facultad de Ciencias Naturales e IML, UNT, Miguel Lillo 205, 4000, San Miguel de Tucumán, Argentina.,Instituto de Biodiversidad Neotropical, CONICET- UNT, Horco Molle s/n Yerba Buena, 4107, Tucumán, Argentina
| | - Miriam C Vera
- Instituto de Biología Subtropical (CONICET-UNaM), Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Félix de Azara 1552, CPA N3300LQF, Posadas, Argentina
| | - Lucila I Amador
- Unidad Ejecutora Lillo, FML-CONICET, Miguel Lillo 251, 4000, San Miguel de Tucumán, Argentina
| | - Gabriela Fontanarrosa
- Instituto de Biodiversidad Neotropical, CONICET- UNT, Horco Molle s/n Yerba Buena, 4107, Tucumán, Argentina
| | - Jessica Fratani
- Unidad Ejecutora Lillo, FML-CONICET, Miguel Lillo 251, 4000, San Miguel de Tucumán, Argentina
| | - María L Ponssa
- Unidad Ejecutora Lillo, FML-CONICET, Miguel Lillo 251, 4000, San Miguel de Tucumán, Argentina
| |
Collapse
|
11
|
Eyal S, Kult S, Rubin S, Krief S, Felsenthal N, Pineault KM, Leshkowitz D, Salame TM, Addadi Y, Wellik DM, Zelzer E. Bone morphology is regulated modularly by global and regional genetic programs. Development 2019; 146:dev.167882. [PMID: 31221640 DOI: 10.1242/dev.167882] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 06/13/2019] [Indexed: 01/09/2023]
Abstract
Bone protrusions provide stable anchoring sites for ligaments and tendons and define the unique morphology of each long bone. Despite their importance, the mechanism by which superstructures are patterned is unknown. Here, we identify components of the genetic program that control the patterning of Sox9 +/Scx + superstructure progenitors in mouse and show that this program includes both global and regional regulatory modules. Using light-sheet fluorescence microscopy combined with genetic lineage labeling, we mapped the broad contribution of the Sox9 +/Scx + progenitors to the formation of bone superstructures. Then, by combining literature-based evidence, comparative transcriptomic analysis and genetic mouse models, we identified Gli3 as a global regulator of superstructure patterning, whereas Pbx1, Pbx2, Hoxa11 and Hoxd11 act as proximal and distal regulators, respectively. Moreover, by demonstrating a dose-dependent pattern regulation in Gli3 and Pbx1 compound mutations, we show that the global and regional regulatory modules work in a coordinated manner. Collectively, our results provide strong evidence for genetic regulation of superstructure patterning, which further supports the notion that long bone development is a modular process.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Shai Eyal
- Weizmann Institute of Science, Department of Molecular Genetics, Rehovot 76100, Israel
| | - Shiri Kult
- Weizmann Institute of Science, Department of Molecular Genetics, Rehovot 76100, Israel
| | - Sarah Rubin
- Weizmann Institute of Science, Department of Molecular Genetics, Rehovot 76100, Israel
| | - Sharon Krief
- Weizmann Institute of Science, Department of Molecular Genetics, Rehovot 76100, Israel
| | - Neta Felsenthal
- Weizmann Institute of Science, Department of Molecular Genetics, Rehovot 76100, Israel
| | - Kyriel M Pineault
- University of Wisconsin-Madison, Department of Cell & Regenerative Biology, Madison, WI 53705, USA
| | - Dena Leshkowitz
- Weizmann Institute of Science, Department of Life Sciences Core Facilities, Rehovot 76100, Israel
| | - Tomer-Meir Salame
- Weizmann Institute of Science, Department of Life Sciences Core Facilities, Rehovot 76100, Israel
| | - Yoseph Addadi
- Weizmann Institute of Science, Department of Life Sciences Core Facilities, Rehovot 76100, Israel
| | - Deneen M Wellik
- University of Wisconsin-Madison, Department of Cell & Regenerative Biology, Madison, WI 53705, USA
| | - Elazar Zelzer
- Weizmann Institute of Science, Department of Molecular Genetics, Rehovot 76100, Israel
| |
Collapse
|
12
|
Eyal S, Rubin S, Krief S, Levin L, Zelzer E. Common cellular origin and diverging developmental programs for different sesamoid bones. Development 2019; 146:dev.167452. [PMID: 30745426 DOI: 10.1242/dev.167452] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 02/01/2019] [Indexed: 12/18/2022]
Abstract
Sesamoid bones are small auxiliary bones that form near joints and contribute to their stability and function. Thus far, providing a comprehensive developmental model or classification system for this highly diverse group of bones has been challenging. Here, we compare our previously reported mechanisms of patella development in the mouse with those of two anatomically different sesamoids, namely lateral fabella and digit sesamoids. We show that all three types of sesamoid bones originate from Sox9+ /Scx+ progenitors under the regulation of TGFβ and independently of mechanical stimuli from muscles. Whereas BMP2 regulates the growth of all examined sesamoids, the differentiation of lateral fabella or digit sesamoids is regulated redundantly by BMP4 and BMP2. Next, we show that whereas patella and digit sesamoids initially form in juxtaposition to long bones, lateral fabella forms independently and at a distance. Finally, our evidence suggests that, unlike the synovial joint that separates patella from femur, digit sesamoids detach from the phalanx by formation of a fibrocartilaginous joint. These findings highlight both common and divergent molecular and mechanical features of sesamoid bone development, which underscores their evolutionary plasticity.
Collapse
Affiliation(s)
- Shai Eyal
- Weizmann Institute of Science, Department of Molecular Genetics, PO Box 26, Rehovot 76100, Israel
| | - Sarah Rubin
- Weizmann Institute of Science, Department of Molecular Genetics, PO Box 26, Rehovot 76100, Israel
| | - Sharon Krief
- Weizmann Institute of Science, Department of Molecular Genetics, PO Box 26, Rehovot 76100, Israel
| | - Lihi Levin
- Weizmann Institute of Science, Department of Molecular Genetics, PO Box 26, Rehovot 76100, Israel
| | - Elazar Zelzer
- Weizmann Institute of Science, Department of Molecular Genetics, PO Box 26, Rehovot 76100, Israel
| |
Collapse
|
13
|
Samuels ME, Campeau PM. Genetics of the patella. Eur J Hum Genet 2019; 27:671-680. [PMID: 30664715 DOI: 10.1038/s41431-018-0329-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 11/22/2018] [Accepted: 11/27/2018] [Indexed: 11/09/2022] Open
Abstract
We review genetic diseases with identified molecular bases that include abnormal, reduced (hypoplasia), or absent (aplasia) patellae as a significant aspect of the phenotype. The known causal genes can be broadly organized according to three major developmental and cellular processes, although some genes may act in more than one of these: limb specification and pattern formation; DNA replication and chromatin structure; bone development and differentiation. There are also several genes whose phenotypes in mice indicate relevance to patellar development, for which human equivalent syndromes have not been reported. Developmental studies in mouse and chick embryos, as well as patellar involvement in human diseases with decreased mobility, document the additional importance of local environmental factors in patellar ontogenesis. Patellar anomalies found in humans can be an important clue to a clinical genetic diagnosis, and a better knowledge of the genetics of patellar anomalies will improve our understanding of limb development.
Collapse
Affiliation(s)
- Mark E Samuels
- Département de médicine, Université de Montréal, Montreal, Canada. .,Centre de Recherche du CHU Ste-Justine, Montreal, Canada.
| | - Philippe M Campeau
- Department of Pediatrics, Centre de Recherche du CHU Ste-Justine, Montreal, Canada
| |
Collapse
|
14
|
Rux D, Decker RS, Koyama E, Pacifici M. Joints in the appendicular skeleton: Developmental mechanisms and evolutionary influences. Curr Top Dev Biol 2018; 133:119-151. [PMID: 30902250 PMCID: PMC6988388 DOI: 10.1016/bs.ctdb.2018.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The joints are a diverse group of skeletal structures, and their genesis, morphogenesis, and acquisition of specialized tissues have intrigued biologists for decades. Here we review past and recent studies on important aspects of joint development, including the roles of the interzone and morphogenesis of articular cartilage. Studies have documented the requirement of interzone cells in limb joint initiation and formation of most, if not all, joint tissues. We highlight these studies and also report more detailed interzone dissection experiments in chick embryos. Articular cartilage has always received special attention owing to its complex architecture and phenotype and its importance in long-term joint function. We pay particular attention to mechanisms by which neonatal articular cartilage grows and thickens over time and eventually acquires its multi-zone structure and becomes mechanically fit in adults. These and other studies are placed in the context of evolutionary biology, specifically regarding the dramatic changes in limb joint organization during transition from aquatic to land life. We describe previous studies, and include new data, on the knee joints of aquatic axolotls that unlike those in higher vertebrates, are not cavitated, are filled with rigid fibrous tissues and resemble amphiarthroses. We show that when axolotls metamorph to life on land, their intra-knee fibrous tissue becomes sparse and seemingly more flexible and the articular cartilage becomes distinct and acquires a tidemark. In sum, there have been considerable advances toward a better understanding of limb joint development, biological responsiveness, and evolutionary influences, though much remains unclear. Future progress in these fields should also lead to creation of new developmental biology-based tools to repair and regenerate joint tissues in acute and chronic conditions.
Collapse
Affiliation(s)
- Danielle Rux
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA, United States.
| | - Rebekah S Decker
- Genomics Institute of the Novartis Research Foundation, San Diego, CA, United States
| | - Eiki Koyama
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Maurizio Pacifici
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| |
Collapse
|
15
|
Amador LI, Giannini NP, Simmons NB, Abdala V. Morphology and Evolution of Sesamoid Elements in Bats (Mammalia: Chiroptera). AMERICAN MUSEUM NOVITATES 2018. [DOI: 10.1206/3905.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Lucila Inés Amador
- Unidad Ejecutora Lillo: Fundación Miguel Lillo – CONICET, Tucumán, Argentina
| | - Norberto Pedro Giannini
- Unidad Ejecutora Lillo: Fundación Miguel Lillo – CONICET, Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Tucumán, Argentina
- Division of Vertebrate Zoology (Mammalogy), American Museum of Natural History
| | - Nancy B. Simmons
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Virginia Abdala
- Instituto de Biodiversidad Neotropical: Universidad Nacional de Tucumán – CONICET, Tucumán, Argentina
| |
Collapse
|
16
|
Cordero GA, Liu H, Wimalanathan K, Weber R, Quinteros K, Janzen FJ. Gene network variation and alternative paths to convergent evolution in turtles. Evol Dev 2018; 20:172-185. [DOI: 10.1111/ede.12264] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Gerardo A. Cordero
- Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesIowa
| | - Haibo Liu
- Program in Bioinformatics and Computational BiologyIowa State UniversityAmesIowa
| | | | - Rachel Weber
- Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesIowa
| | - Kevin Quinteros
- Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesIowa
| | - Fredric J. Janzen
- Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesIowa
| |
Collapse
|
17
|
Tsutsumi R, Tran MP, Cooper KL. Changing While Staying the Same: Preservation of Structural Continuity During Limb Evolution by Developmental Integration. Integr Comp Biol 2018; 57:1269-1280. [PMID: 28992070 DOI: 10.1093/icb/icx092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
More than 150 years since Charles Darwin published "On the Origin of Species", gradual evolution by natural selection is still not fully reconciled with the apparent sudden appearance of complex structures, such as the bat wing, with highly derived functions. This is in part because developmental genetics has not yet identified the number and types of mutations that accumulated to drive complex morphological evolution. Here, we consider the experimental manipulations in laboratory model systems that suggest tissue interdependence and mechanical responsiveness during limb development conceptually reduce the genetic complexity required to reshape the structure as a whole. It is an exciting time in the field of evolutionary developmental biology as emerging technical approaches in a variety of non-traditional laboratory species are on the verge of filling the gaps between theory and evidence to resolve this sesquicentennial debate.
Collapse
Affiliation(s)
- Rio Tsutsumi
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0380, USA
| | - Mai P Tran
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0380, USA
| | - Kimberly L Cooper
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0380, USA
| |
Collapse
|
18
|
Brimacombe CS. The enigmatic relationship between epiphyseal fusion and bone development in primates. Evol Anthropol 2017; 26:325-335. [PMID: 29265660 DOI: 10.1002/evan.21559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2017] [Indexed: 11/07/2022]
Abstract
Epiphyseal fusion in primates is a process that occurs in a regular sequence spanning a period of years and thus provides biological anthropologists with a useful marker of maturity that can be used to assess age and stage of development. Despite the many studies that have catalogued fusion timing and sequence pattern, comparatively little research has been devoted to understanding why these sequences exist in the first place. Answering this question is not necessarily intuitive; indeed, given that neither taxonomic affinities nor recent adaptations have been clearly defined, it is a challenge to explain this process in evolutionary terms. In all mammals, there is a tendency for the fusion of epiphyses at joints to occur close in sequence, and this has been proposed to relate to locomotor adaptations. Further consideration of the evidence suggests that linking locomotor behavior to sequence data alone is difficult to prove and may require a different type of evidence. Epiphyseal fusion should be considered in the context of other parameters that affect the developing skeleton, including how joint morphology relates to growth in length, as well as other possible morphological constraints. In recent years, developmental biology has been providing a better understanding of the molecular regulators of epiphyseal fusion. At some point in the near future, we may be able to link our understanding of the genetics of fusion timing to the possible selective mechanisms that are responsible for these sequences.
Collapse
Affiliation(s)
- Conrad Stephen Brimacombe
- Human Evolutionary Studies Program and Department of Archaeology, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
19
|
Putnam MD, Christophersen CM, Adams JE. Pilot report: non-operative treatment of Mayo Type II olecranon fractures in any-age adult patient. Shoulder Elbow 2017; 9:285-291. [PMID: 28932286 PMCID: PMC5598825 DOI: 10.1177/1758573217711889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/21/2017] [Accepted: 04/29/2017] [Indexed: 11/17/2022]
Abstract
BACKGROUND We report on the non-operative treatment of Mayo Type II olecranon fractures. METHODS Fourteen isolated Mayo Type II olecranon fractures were treated non-operatively, followed to discharge, and retrospectively reviewed. Treatment was splinting in extension followed by protected active motion beginning 3 weeks to 4 weeks post-injury. Mayo Elbow Performance Index (MEPI) and Shortened Disabilities of the Arm, Shoulder and Hand (QuickDASH) scores were available in 86% and 64% of cases, respectively. Follow-up radiographs were obtained. RESULTS At discharge, the mean (SD) MEPI score was 95 (5). The mean (SD) elbow motion arc was 121° (21°). One patient re-fractured his elbow after discharge by falling on the ice. He recovered after open reduction and internal fixation. One patient (documented Marfan syndrome) developed an asymptomatic non-union. Excepting the patient who fell, no patient received additional care. CONCLUSIONS In this pilot report, Mayo Type II olecranon fractures were treated non-operatively to discharge. Good to excellent results were obtained in all patients according to the MEPI. Supportive care of these fractures should be comparatively studied. A downside risk to providing supportive care for these fractures was not identified.
Collapse
Affiliation(s)
- Matthew D. Putnam
- Department of Orthopaedic Surgery, University of Minnesota, Minneapolis, MN, USA,Matthew D. Putnam, Department of Orthopaedic Surgery, University of Minnesota, 2450 Riverside Avenue South, Suite R200, Minneapolis, MN 55454, USA.
| | | | - Julie E. Adams
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
20
|
Prenatal exposure to environmental factors and congenital limb defects. ACTA ACUST UNITED AC 2016; 108:243-273. [DOI: 10.1002/bdrc.21140] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/29/2016] [Indexed: 12/26/2022]
|
21
|
Eyal S, Blitz E, Shwartz Y, Akiyama H, Schweitzer R, Zelzer E. On the development of the patella. Development 2015; 142:1831-9. [PMID: 25926361 DOI: 10.1242/dev.121970] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/25/2015] [Indexed: 11/20/2022]
Abstract
The current view of skeletal patterning fails to explain the formation of sesamoid bones. These small bones, which facilitate musculoskeletal function, are exceptionally embedded within tendons. Although their structural design has long puzzled researchers, only a limited model for sesamoid bone development has emerged. To date, sesamoids are thought to develop inside tendons in response to mechanical signals from the attaching muscles. However, this widely accepted model has lacked substantiation. Here, we show that, contrary to the current view, in the mouse embryo the patella initially develops as a bony process at the anteriodistal surface of the femur. Later, the patella is separated from the femur by a joint formation process that is regulated by mechanical load. Concurrently, the patella becomes superficially embedded within the quadriceps tendon. At the cellular level, we show that, similar to bone eminences, the patella is formed secondarily by a distinct pool of Sox9- and Scx-positive progenitor cells. Finally, we show that TGFβ signaling is necessary for the specification of patella progenitors, whereas the BMP4 pathway is required for their differentiation. These findings establish an alternative model for patella development and provide the mechanical and molecular mechanisms that underlie this process. More broadly, our finding that activation of a joint formation program can be used to switch between the formation of bony processes and of new auxiliary bones provides a new perspective on plasticity during skeletal patterning and evolution.
Collapse
Affiliation(s)
- Shai Eyal
- Weizmann Institute of Science, Department of Molecular Genetics, PO Box 26, Rehovot 76100, Israel
| | - Einat Blitz
- Weizmann Institute of Science, Department of Molecular Genetics, PO Box 26, Rehovot 76100, Israel
| | - Yulia Shwartz
- Weizmann Institute of Science, Department of Molecular Genetics, PO Box 26, Rehovot 76100, Israel
| | - Haruhiko Akiyama
- Gifu University, Department of Orthopedics, Gifu City 501-1194, Japan
| | - Ronen Schweitzer
- Research Division, Shriners Hospital for Children, Portland, OR 97201, USA
| | - Elazar Zelzer
- Weizmann Institute of Science, Department of Molecular Genetics, PO Box 26, Rehovot 76100, Israel
| |
Collapse
|
22
|
Tsutsumi R, Inoue T, Yamada S, Agata K. Reintegration of the regenerated and the remaining tissues during joint regeneration in the newt Cynops pyrrhogaster. ACTA ACUST UNITED AC 2015; 2:26-36. [PMID: 27499865 PMCID: PMC4895332 DOI: 10.1002/reg2.28] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 01/09/2015] [Accepted: 01/09/2015] [Indexed: 02/05/2023]
Abstract
Urodele amphibians, such as newts, can regenerate a functional limb, including joints, after amputation at any level along the proximal−distal axis of the limb. The blastema can regenerate the limb morphology largely independently of the stump after proximal−distal identity has been established, but the remaining and regenerated tissues must be structurally reintegrated (matched in size and shape). Here we used newt joint regeneration as a model to investigate reintegration, because a functionally interlocking joint requires structural integration between its opposing skeletal elements. After forelimbs were amputated at the elbow joint, the joint was regenerated between the remaining and regenerated skeletal elements. The regenerated cartilage was thick around the amputated joint to make a reciprocally interlocking joint structure with the remaining bone. Furthermore, during regeneration, the extracellular matrix of the remaining tissues was lost, suggesting that the remaining tissues might contribute to the morphogenesis of regenerating cartilage. Our results showed that the area of the regenerated cartilage matched the area of the apposed remaining cartilage, thus contributing to formation of a functional structure.
Collapse
Affiliation(s)
- Rio Tsutsumi
- Department of Biophysics Graduate School of Science Kyoto University Kyoto Japan
| | - Takeshi Inoue
- Department of Biophysics Graduate School of Science Kyoto University Kyoto Japan
| | - Shigehito Yamada
- Human Health Science Graduate School of Medicine Kyoto University Kyoto Japan; Congenital Anomaly Research Center Graduate School of Medicine Kyoto University Kyoto Japan
| | - Kiyokazu Agata
- Department of Biophysics Graduate School of Science Kyoto University Kyoto Japan
| |
Collapse
|
23
|
Castanhinha R, Araújo R, Júnior LC, Angielczyk KD, Martins GG, Martins RMS, Chaouiya C, Beckmann F, Wilde F. Bringing dicynodonts back to life: paleobiology and anatomy of a new emydopoid genus from the Upper Permian of Mozambique. PLoS One 2013; 8:e80974. [PMID: 24324653 PMCID: PMC3852158 DOI: 10.1371/journal.pone.0080974] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 10/04/2013] [Indexed: 11/19/2022] Open
Abstract
Dicynodontia represent the most diverse tetrapod group during the Late Permian. They survived the Permo-Triassic extinction and are central to understanding Permo-Triassic terrestrial ecosystems. Although extensively studied, several aspects of dicynodont paleobiology such as, neuroanatomy, inner ear morphology and internal cranial anatomy remain obscure. Here we describe a new dicynodont (Therapsida, Anomodontia) from northern Mozambique: Niassodon mfumukasi gen. et sp. nov. The holotype ML1620 was collected from the Late Permian K5 formation, Metangula Graben, Niassa Province northern Mozambique, an almost completely unexplored basin and country for vertebrate paleontology. Synchrotron radiation based micro-computed tomography (SRµCT), combined with a phylogenetic analysis, demonstrates a set of characters shared with Emydopoidea. All individual bones were digitally segmented allowing a 3D visualization of each element. In addition, we reconstructed the osseous labyrinth, endocast, cranial nerves and vasculature. The brain is narrow and the cerebellum is broader than the forebrain, resembling the conservative, "reptilian-grade" morphology of other non-mammalian therapsids, but the enlarged paraflocculi occupy the same relative volume as in birds. The orientation of the horizontal semicircular canals indicates a slightly more dorsally tilted head posture than previously assumed in other dicynodonts. In addition, synchrotron data shows a secondary center of ossification in the femur. Thus ML1620 represents, to our knowledge, the oldest fossil evidence of a secondary center of ossification, pushing back the evolutionary origins of this feature. The fact that the specimen represents a new species indicates that the Late Permian tetrapod fauna of east Africa is still incompletely known.
Collapse
Affiliation(s)
- Rui Castanhinha
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Museu da Lourinhã, Lourinhã, Portugal
| | - Ricardo Araújo
- Museu da Lourinhã, Lourinhã, Portugal
- Huffington Department of Earth Sciences, Southern Methodist University, Dallas, Texas, United States of America
| | | | - Kenneth D. Angielczyk
- Integrative Research Center, Field Museum of Natural History, Chicago, Illinois, United States of America
| | - Gabriel G. Martins
- Centro de Biologia Ambiental, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Rui M. S. Martins
- Museu da Lourinhã, Lourinhã, Portugal
- Campus Tecnológico e Nuclear, Instituto Superior Técnico, Bobadela, Portugal
- Centro de Investigação em Materiais, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
- Centro de Física Nuclear da Universidade de Lisboa, Lisboa, Portugal
| | | | | | - Fabian Wilde
- Helmholtz-Zentrum Geesthacht, Geesthacht, Germany
| |
Collapse
|
24
|
Lambi AG, Pankratz TL, Mundy C, Gannon M, Barbe MF, Richtsmeier JT, Popoff SN. The skeletal site-specific role of connective tissue growth factor in prenatal osteogenesis. Dev Dyn 2012; 241:1944-59. [PMID: 23073844 PMCID: PMC3752831 DOI: 10.1002/dvdy.23888] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2012] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Connective tissue growth factor (CTGF/CCN2) is a matricellular protein that is highly expressed during bone development. Mice with global CTGF ablation (knockout, KO) have multiple skeletal dysmorphisms and perinatal lethality. A quantitative analysis of the bone phenotype has not been conducted. RESULTS We demonstrated skeletal site-specific changes in growth plate organization, bone microarchitecture, and shape and gene expression levels in CTGF KO compared with wild-type mice. Growth plate malformations included reduced proliferation zone and increased hypertrophic zone lengths. Appendicular skeletal sites demonstrated decreased metaphyseal trabecular bone, while having increased mid-diaphyseal bone and osteogenic expression markers. Axial skeletal analysis showed decreased bone in caudal vertebral bodies, mandibles, and parietal bones in CTGF KO mice, with decreased expression of osteogenic markers. Analysis of skull phenotypes demonstrated global and regional differences in CTGF KO skull shape resulting from allometric (size-based) and nonallometric shape changes. Localized differences in skull morphology included increased skull width and decreased skull length. Dysregulation of the transforming growth factor-β-CTGF axis coupled with unique morphologic traits provides a potential mechanistic explanation for the skull phenotype. CONCLUSIONS We present novel data on a skeletal phenotype in CTGF KO mice, in which ablation of CTGF causes site-specific aberrations in bone formation.
Collapse
Affiliation(s)
- Alex G. Lambi
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Talia L. Pankratz
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania
| | - Christina Mundy
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Maureen Gannon
- Department of Molecular Physiology and Biophysics, Division of Diabetes, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mary F. Barbe
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Joan T. Richtsmeier
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania
| | - Steven N. Popoff
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania
- Department of Orthopaedic Surgery, Temple University School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
25
|
Abstract
A novel γ-carboxyglutamate (Gla)-containing protein, named Gla-rich protein (GRP) after its high content in Gla residues or upper zone of growth plate and cartilage matrix associated protein after its preferential expression by cartilage chondrocyte, was recently identified in sturgeon, mice, and humans through independent studies. GRP is the most densely γ-carboxylated protein identified to date and its structure has been remarkably conserved throughout vertebrate evolution but is apparently absent from bird genomes. Several transcript and genomic variants affecting key protein features or regulatory elements were described and 2 paralogs were identified in the teleost fish genome. In the skeleton, most relevant levels of GRP gene expression were observed in cartilaginous tissues and associated with chondrocytes, suggesting a role in chondrogenesis. But GRP expression was also detected in bone cells, indicative of a more widespread role for the protein throughout skeletal formation. Although the molecular function of GRP is yet unknown, the high content of Gla residues and its accumulation at sites of pathological calcification in different human pathologies affecting skin or the vascular system and in breast cancer tumors suggest that GRP may function as a modulator of calcium availability. Because of its association with fibrillar collagens, GRP could also be involved in the organization and/or stabilization of cartilage matrix. Although transgenic mice did not reveal obvious phenotypic alterations in skeletal development or structure, zebrafish morphants lack craniofacial cartilage and exhibit limited calcification, suggesting a role for GRP during skeletal development, but additional functional data are required to understand its function.
Collapse
|