1
|
Lock MC, Ripley DM, Smith KLM, Mueller CA, Shiels HA, Crossley DA, Galli GLJ. Developmental plasticity of the cardiovascular system in oviparous vertebrates: effects of chronic hypoxia and interactive stressors in the context of climate change. J Exp Biol 2024; 227:jeb245530. [PMID: 39109475 PMCID: PMC11418206 DOI: 10.1242/jeb.245530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Animals at early life stages are generally more sensitive to environmental stress than adults. This is especially true of oviparous vertebrates that develop in variable environments with little or no parental care. These organisms regularly experience environmental fluctuations as part of their natural development, but climate change is increasing the frequency and intensity of these events. The developmental plasticity of oviparous vertebrates will therefore play a critical role in determining their future fitness and survival. In this Review, we discuss and compare the phenotypic consequences of chronic developmental hypoxia on the cardiovascular system of oviparous vertebrates. In particular, we focus on species-specific responses, critical windows, thresholds for responses and the interactive effects of other stressors, such as temperature and hypercapnia. Although important progress has been made, our Review identifies knowledge gaps that need to be addressed if we are to fully understand the impact of climate change on the developmental plasticity of the oviparous vertebrate cardiovascular system.
Collapse
Affiliation(s)
- Mitchell C. Lock
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
| | - Daniel M. Ripley
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
- Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Kerri L. M. Smith
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
| | - Casey A. Mueller
- Department of Biological Sciences, California State University, San Marcos, CA 92096, USA
| | - Holly A. Shiels
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
| | - Dane A. Crossley
- Department of Biological Sciences, University of North Texas, Denton, TX 76201, USA
| | - Gina L. J. Galli
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
| |
Collapse
|
2
|
Hayasaka O, Shibukawa M, Kamei H. Cellular Energy Sensor Sirt1 Augments Mapk Signaling to Promote Hypoxia/Reoxygenation-Induced Catch-up Growth in Zebrafish Embryo. Zoolog Sci 2024; 41:21-31. [PMID: 38587514 DOI: 10.2108/zs230059] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/23/2023] [Indexed: 04/09/2024]
Abstract
Animal growth is blunted in adverse environments where catabolic metabolism dominates; however, when the adversity disappears, stunted animals rapidly catch up to age-equivalent body size. This phenomenon is called catch-up growth, which we observe in various animals. Since growth retardation and catch-up growth are sequential processes, catabolism or stress response molecules may remain active, especially immediately after growth resumes. Sirtuins (Sirt1-7) deacetylate target proteins in a nicotinamide adenine dinucleotide-dependent manner, and these enzymes govern diverse alleys of cellular functions. Here, we investigated the roles of Sirt1 and its close paralog Sirt2 in the hypoxia/reoxygenation-induced catch-up growth model using zebrafish embryos. Temporal blockade of Sirt1/2 significantly reduced the growth rate of the embryos in reoxygenation, but it was not evident in constant normoxia. Subsequent gene knockdown and chemical inhibition experiments demonstrated that Sirt1, but not Sirt2, was required for the catchup growth. Inhibition of Sirt1 significantly reduced the activity of mitogen-activated kinase (Mapk) of embryos in the reoxygenation condition. In addition, co-inhibition of Sirt1- and Igf-signaling did not further reduce the body growth or Mapk activation compared to those of the Igf-signaling-alone-inhibited embryos. Furthermore, in the reoxygenation condition, Sirt1- or Igf-signaling inhibition similarly blunted Mapk activity, especially in anterior tissues and trunk muscle, where the sirt1 expression was evident in the catching-up embryos. These results suggest that the catch-up growth requires Sirt1 action to activate the somatotropic Mapk pathway, likely by modifying the Igf-signaling.
Collapse
Affiliation(s)
- Oki Hayasaka
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Mukaze Shibukawa
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- Ikedamohando Co., Ltd., Nakaniikawa-gun, Toyama 930-0365, Japan
| | - Hiroyasu Kamei
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan,
| |
Collapse
|
3
|
Liu L, Wen Y, Ni Q, Chen L, Wang H. Prenatal ethanol exposure and changes in fetal neuroendocrine metabolic programming. Biol Res 2023; 56:61. [PMID: 37978540 PMCID: PMC10656939 DOI: 10.1186/s40659-023-00473-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
Prenatal ethanol exposure (PEE) (mainly through maternal alcohol consumption) has become widespread. However, studies suggest that it can cause intrauterine growth retardation (IUGR) and multi-organ developmental toxicity in offspring, and susceptibility to various chronic diseases (such as neuropsychiatric diseases, metabolic syndrome, and related diseases) in adults. Through ethanol's direct effects and its indirect effects mediated by maternal-derived glucocorticoids, PEE alters epigenetic modifications and organ developmental programming during fetal development, which damages the offspring health and increases susceptibility to various chronic diseases after birth. Ethanol directly leads to the developmental toxicity of multiple tissues and organs in many ways. Regarding maternal-derived glucocorticoid-mediated IUGR, developmental programming, and susceptibility to multiple conditions after birth, ethanol induces programmed changes in the neuroendocrine axes of offspring, such as the hypothalamus-pituitary-adrenal (HPA) and glucocorticoid-insulin-like growth factor 1 (GC-IGF1) axes. In addition, the differences in ethanol metabolic enzymes, placental glucocorticoid barrier function, and the sensitivity to glucocorticoids in various tissues and organs mediate the severity and sex differences in the developmental toxicity of ethanol exposure during pregnancy. Offspring exposed to ethanol during pregnancy have a "thrifty phenotype" in the fetal period, and show "catch-up growth" in the case of abundant nutrition after birth; when encountering adverse environments, these offspring are more likely to develop diseases. Here, we review the developmental toxicity, functional alterations in multiple organs, and neuroendocrine metabolic programming mechanisms induced by PEE based on our research and that of other investigators. This should provide new perspectives for the effective prevention and treatment of ethanol developmental toxicity and the early prevention of related fetal-originated diseases.
Collapse
Affiliation(s)
- Liang Liu
- Department of Orthopedic Surgery, Joint Disease Research Center of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Yinxian Wen
- Department of Orthopedic Surgery, Joint Disease Research Center of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Qubo Ni
- Department of Orthopedic Surgery, Joint Disease Research Center of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Liaobin Chen
- Department of Orthopedic Surgery, Joint Disease Research Center of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| | - Hui Wang
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China.
| |
Collapse
|
4
|
Wang C, Li M, Gui W, Shi H, Wang P, Chen J, Fent K, Zhang K, Dai J, Li X, Zhao Y. Prednisolone Accelerates Embryonic Development of Zebrafish via Glucocorticoid Receptor Signaling at Low Concentrations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15794-15805. [PMID: 37812749 DOI: 10.1021/acs.est.3c02658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Synthetic glucocorticoids have been widely detected in aquatic ecosystems and may pose a toxicological risk to fish. In the present study, we described multiple end point responses of zebrafish to a commonly prescribed glucocorticoid, prednisolone (PREL), at concentrations between 0.001 and 9.26 μg/L. Of 23 end points monitored, 7 were affected significantly. Significant increases in the frequency of yolk extension formation, spontaneous contraction, heart rate, and ocular melanin density and significant decreases of ear-eye distance at PREL concentrations of 0.001 μg/L and above clearly pointed to the acceleration of embryonic development of zebrafish by PREL. Further confirmation came from the alterations in somite numbers, head-trunk angle, and yolk sac size, as well as outcomes obtained via RNA sequencing, in which signaling pathways involved in tissue/organ growth and development were highly enriched in embryos upon PREL exposure. In addition, the crucial role of glucocorticoid receptor (GR) for PREL-induced effects was confirmed by both, the coexposure to antagonist mifepristone (RU486) and GR-/- mutant zebrafish experiments. We further demonstrated similar accelerations of embryonic development of zebrafish upon exposure to 11 additional glucocorticoids, indicating generic adverse effect characteristics. Overall, our results revealed developmental alterations of PREL in fish embryos at low concentrations and thus provided novel insights into the understanding of the potential environmental risks of glucocorticoids.
Collapse
Affiliation(s)
- Congcong Wang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Meng Li
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wanying Gui
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Haochun Shi
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Peng Wang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jierong Chen
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Karl Fent
- Institute of Biogeochemistry and Pollution Dynamics, Department of Environmental Systems Science, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Kun Zhang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xi Li
- Center of Clinical Research, The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yanbin Zhao
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
5
|
Zhan Y, Ning B, Sun J, Chang Y. Living in a hypoxic world: A review of the impacts of hypoxia on aquaculture. MARINE POLLUTION BULLETIN 2023; 194:115207. [PMID: 37453286 DOI: 10.1016/j.marpolbul.2023.115207] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/12/2023] [Accepted: 06/18/2023] [Indexed: 07/18/2023]
Abstract
Hypoxia is a harmful result of anthropogenic climate change. With the expansion of global low-oxygen zones (LOZs), many organisms have faced unprecedented challenges affecting their survival and reproduction. Extensive research has indicated that oxygen limitation has drastic effects on aquatic animals, including on their development, morphology, behavior, reproduction, and physiological metabolism. In this review, the global distribution and formation of LOZs were analyzed, and the impacts of hypoxia on aquatic animals and the molecular responses of aquatic animals to hypoxia were then summarized. The commonalities and specificities of the response to hypoxia in aquatic animals in different LOZs were discussed lastly. In general, this review will deepen the knowledge of the impacts of hypoxia on aquaculture and provide more information and research directions for the development of fishery resource protection strategies.
Collapse
Affiliation(s)
- Yaoyao Zhan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, Liaoning, PR China
| | - Bingyu Ning
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, Liaoning, PR China
| | - Jingxian Sun
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, Liaoning, PR China; College of Life Science, Liaoning Normal University, Dalian 116029, Liaoning, PR China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, Liaoning, PR China; College of Life Science, Liaoning Normal University, Dalian 116029, Liaoning, PR China.
| |
Collapse
|
6
|
Oichi T, Kodama J, Wilson K, Tian H, Imamura Kawasawa Y, Usami Y, Oshima Y, Saito T, Tanaka S, Iwamoto M, Otsuru S, Enomoto-Iwamoto M. Nutrient-regulated dynamics of chondroprogenitors in the postnatal murine growth plate. Bone Res 2023; 11:20. [PMID: 37080994 PMCID: PMC10119120 DOI: 10.1038/s41413-023-00258-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 04/22/2023] Open
Abstract
Longitudinal bone growth relies on endochondral ossification in the cartilaginous growth plate, where chondrocytes accumulate and synthesize the matrix scaffold that is replaced by bone. The chondroprogenitors in the resting zone maintain the continuous turnover of chondrocytes in the growth plate. Malnutrition is a leading cause of growth retardation in children; however, after recovery from nutrient deprivation, bone growth is accelerated beyond the normal rate, a phenomenon termed catch-up growth. Although nutritional status is a known regulator of long bone growth, it is largely unknown whether and how chondroprogenitor cells respond to deviations in nutrient availability. Here, using fate-mapping analysis in Axin2CreERT2 mice, we showed that dietary restriction increased the number of Axin2+ chondroprogenitors in the resting zone and simultaneously inhibited their differentiation. Once nutrient deficiency was resolved, the accumulated chondroprogenitor cells immediately restarted differentiation and formed chondrocyte columns, contributing to accelerated growth. Furthermore, we showed that nutrient deprivation reduced the level of phosphorylated Akt in the resting zone and that exogenous IGF-1 restored the phosphorylated Akt level and stimulated differentiation of the pooled chondroprogenitors, decreasing their numbers. Our study of Axin2CreERT2 revealed that nutrient availability regulates the balance between accumulation and differentiation of chondroprogenitors in the growth plate and further demonstrated that IGF-1 partially mediates this regulation by promoting the committed differentiation of chondroprogenitor cells.
Collapse
Affiliation(s)
- Takeshi Oichi
- Department of Orthopedics, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA.
- Sensory & Motor System Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 1138655, Japan.
- Department of Orthopedics, Teikyo University School of Medicine, Tokyo, 1738608, Japan.
| | - Joe Kodama
- Department of Orthopedics, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Kimberly Wilson
- Department of Orthopedics, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Hongying Tian
- Department of Orthopedics, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Yuka Imamura Kawasawa
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Yu Usami
- Department of Oral Pathology, Osaka University Graduate School of Dentistry, Suita, Osaka, 5650871, Japan
| | - Yasushi Oshima
- Sensory & Motor System Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 1138655, Japan
| | - Taku Saito
- Sensory & Motor System Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 1138655, Japan
| | - Sakae Tanaka
- Sensory & Motor System Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 1138655, Japan
| | - Masahiro Iwamoto
- Department of Orthopedics, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Satoru Otsuru
- Department of Orthopedics, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Motomi Enomoto-Iwamoto
- Department of Orthopedics, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA.
| |
Collapse
|
7
|
Oichi T, Kodama J, Wilson K, Tian H, Imamura Y, Usami Y, Oshima Y, Saito T, Tanaka S, Iwamoto M, Otsuru S, Iwamoto-Enomoto M. Nutrient-regulated dynamics of chondroprogenitors in the postnatal murine growth plate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524764. [PMID: 36711544 PMCID: PMC9882259 DOI: 10.1101/2023.01.20.524764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Longitudinal bone growth relies on endochondral ossification in the cartilaginous growth plate where chondrocytes accumulate and synthesize the matrix scaffold that is replaced by bone. The chondroprogenitors in the resting zone maintain the continuous turnover of chondrocytes in the growth plate. Malnutrition is a leading cause of growth retardation in children; however, after recovery from nutrient deprivation, bone growth is accelerated beyond the normal rate, a phenomenon termed catch-up growth. Though nutritional status is a known regulator of long bone growth, it is largely unknown if and how chondroprogenitor cells respond to deviations in nutrient availability. Here, using fate-mapping analysis in Axin2Cre ERT2 mice, we showed that dietary restriction increased the number of Axin2+ chondroprogenitors in the resting zone and simultaneously inhibited their differentiation. Once nutrient deficiency was resolved, the accumulated chondroprogenitor cells immediately restarted differentiation and formed chondrocyte columns, contributing to accelerated growth. Furthermore, we showed that nutrient deprivation reduced the level of phosphorylated Akt in the resting zone, and that exogenous IGF-1 canceled this reduction and stimulated differentiation of the pooled chondroprogenitors, decreasing their numbers. Our study of Axin2Cre ERT2 revealed that nutrient availability regulates the balance between accumulation and differentiation of chondroprogenitors in the growth plate, and further demonstrated that IGF-1 partially mediates this regulation by promoting the committed differentiation of the chondroprogenitor cells.
Collapse
|
8
|
Son JH, Gerenza AK, Bingener GM, Bonkowsky JL. Hypoplasia of dopaminergic neurons by hypoxia-induced neurotoxicity is associated with disrupted swimming development of larval zebrafish. Front Cell Neurosci 2022; 16:963037. [PMID: 36212692 PMCID: PMC9540391 DOI: 10.3389/fncel.2022.963037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Hypoxic injury to the developing brain increases the risk of permanent behavioral deficits, but the precise mechanisms of hypoxic injury to the developing nervous system are poorly understood. In this study, we characterized the effects of developmental hypoxia (1% pO2 from 24 to 48 h post-fertilization, hpf) on diencephalic dopaminergic (DA) neurons in larval zebrafish and the consequences on the development of swimming behavior. Hypoxia reduced the number of diencephalic DA neurons at 48 hpf. Returning zebrafish larvae to normoxia after the hypoxia (i.e., hypoxia-recovery, HR) induced reactive oxygen species (ROS) accumulation. Real-time qPCR results showed that HR caused upregulation of proapoptotic genes, including p53 and caspase3, suggesting the potential for ROS-induced cell death. With HR, we also found an increase in TUNEL-positive DA neurons, a persistent reduction in the number of diencephalic DA neurons, and disrupted swimming development and behavior. Interestingly, post-hypoxia (HR) with the antioxidant N-acetylcysteine partially restored the number of DA neurons and spontaneous swimming behavior, demonstrating potential recovery from hypoxic injury. The present study provides new insights for understanding the mechanisms responsible for motor disability due to developmental hypoxic injury.
Collapse
Affiliation(s)
- Jong-Hyun Son
- Department of Biology, Neuroscience Program, University of Scranton, Scranton, PA, United States
- *Correspondence: Jong-Hyun Son,
| | - Amanda K. Gerenza
- Department of Biology, Neuroscience Program, University of Scranton, Scranton, PA, United States
| | - Gabrielle M. Bingener
- Department of Biology, Neuroscience Program, University of Scranton, Scranton, PA, United States
| | - Joshua L. Bonkowsky
- Department of Pediatrics, School of Medicine, Brain and Spine Center, Primary Children’s Hospital, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
9
|
He B, Zhang Q, Guo Y, Ao Y, Tie K, Xiao H, Chen L, Xu D, Wang H. Prenatal smoke (Nicotine) exposure and offspring's metabolic disease susceptibility in adulthood. Food Chem Toxicol 2022; 168:113384. [PMID: 36041661 DOI: 10.1016/j.fct.2022.113384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 08/06/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022]
Abstract
Exposure to smoking (nicotine) during pregnancy not only directly affects fetal development, but also increases susceptibility to metabolic diseases in adulthood, but the mechanism of action remains unclear. Here, we review epidemiological and laboratory studies linking these relationships. In addition to the direct effect of nicotine on the fetus, intrauterine neuroendocrine-metabolic programming mediated by maternal glucocorticoid overexposure also plays an important role, involving glucocorticoid-insulin-like growth factor 1 (GC-IGF1) axis, hypothalamic-pituitary-adrenal (HPA) axis, renin-angiotensin system (RAS) and other endocrine systems. Epigenetics is involved in intrauterine neuroendocrine-metabolic programming, metabolic disease susceptibility and multigenerational inheritance. There are "two programming" and "two strikes" mechanisms for the occurrence of fetal-originated metabolic diseases in adulthood. These innovative research summaries and academic viewpoints provide experimental and theoretical basis for systematically elucidating the occurrence and development of fetal-originated metabolic diseases.
Collapse
Affiliation(s)
- Bo He
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China; School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Qi Zhang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Yu Guo
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Ying Ao
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Kai Tie
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Hao Xiao
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Liaobin Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Dan Xu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China; Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
10
|
Erman A, Hawkins LJ, Storey KB. MicroRNA, mRNA and protein responses to dehydration in skeletal muscle of the African-clawed frog, Xenopus laevis. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Zasu A, Hishima F, Thauvin M, Yoneyama Y, Kitani Y, Hakuno F, Volovitch M, Takahashi SI, Vriz S, Rampon C, Kamei H. NADPH-Oxidase Derived Hydrogen Peroxide and Irs2b Facilitate Re-oxygenation-Induced Catch-Up Growth in Zebrafish Embryo. Front Endocrinol (Lausanne) 2022; 13:929668. [PMID: 35846271 PMCID: PMC9283716 DOI: 10.3389/fendo.2022.929668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/31/2022] [Indexed: 11/30/2022] Open
Abstract
Oxygen deprivation induces multiple changes at the cellular and organismal levels, and its re-supply also brings another special physiological status. We have investigated the effects of hypoxia/re-oxygenation on embryonic growth using the zebrafish model: hypoxia slows embryonic growth, but re-oxygenation induces growth spurt or catch-up growth. The mitogen-activated kinase (MAPK)-pathway downstream insulin-like growth factor (IGF/Igf) has been revealed to positively regulate the re-oxygenation-induced catch-up growth, and the role of reactive oxygen species generated by environmental oxygen fluctuation is potentially involved in the phenomenon. Here, we report the role of NADPH-oxidase (Nox)-dependent hydrogen peroxide (H2O2) production in the MAPK-activation and catch-up growth. The inhibition of Nox significantly blunted catch-up growth and MAPK-activity. Amongst two zebrafish insulin receptor substrate 2 genes (irs2a and irs2b), the loss of irs2b, but not its paralog irs2a, resulted in blunted MAPK-activation and catch-up growth. Furthermore, irs2b forcedly expressed in mammalian cells allowed IGF-MAPK augmentation in the presence of H2O2, and the irs2b deficiency completely abolished the somatotropic action of Nox in re-oxygenation condition. These results indicate that redox signaling alters IGF/Igf signaling to facilitate hypoxia/re-oxygenation-induced embryonic growth compensation.
Collapse
Affiliation(s)
- Ayaka Zasu
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Noto, Japan
| | - Futa Hishima
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Noto, Japan
| | - Marion Thauvin
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Centre national de la recherche scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Sciences et Lettres (PSL) Research University, Paris, France
- Sorbonne Université, Ecole Doctorale 515-Complexité du Vivant, Paris, France
| | - Yosuke Yoneyama
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Institute of Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoichiro Kitani
- Noto Marine Laboratory, Division of Marine Environmental Studies, Institute of Nature and Environmental Technology, Kanazawa University, Noto, Japan
| | - Fumihiko Hakuno
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Michel Volovitch
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Centre national de la recherche scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Sciences et Lettres (PSL) Research University, Paris, France
- Department of Biology, École Normale Supérieure, Paris Sciences et Lettres (PSL) Research University, Paris, France
- Laboratoire des BioMolécules (LBM), Département de Chimie, Sorbonne Université, École Normale Supérieure, Paris Sciences et Lettres (PSL) University, Sorbonne Université, Centre national de la recherche scientifique (CNRS), Paris, France
| | - Shin-Ichiro Takahashi
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Sophie Vriz
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Centre national de la recherche scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Sciences et Lettres (PSL) Research University, Paris, France
- Laboratoire des BioMolécules (LBM), Département de Chimie, Sorbonne Université, École Normale Supérieure, Paris Sciences et Lettres (PSL) University, Sorbonne Université, Centre national de la recherche scientifique (CNRS), Paris, France
- Université Paris-Cité, Faculty of Sciences, Paris, France
| | - Christine Rampon
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Centre national de la recherche scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Sciences et Lettres (PSL) Research University, Paris, France
- Laboratoire des BioMolécules (LBM), Département de Chimie, Sorbonne Université, École Normale Supérieure, Paris Sciences et Lettres (PSL) University, Sorbonne Université, Centre national de la recherche scientifique (CNRS), Paris, France
- Université Paris-Cité, Faculty of Sciences, Paris, France
| | - Hiroyasu Kamei
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Noto, Japan
- *Correspondence: Hiroyasu Kamei,
| |
Collapse
|
12
|
Kamei H, Duan C. Alteration of organ size and allometric scaling by organ-specific targeting of IGF signaling. Gen Comp Endocrinol 2021; 314:113922. [PMID: 34606746 DOI: 10.1016/j.ygcen.2021.113922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/21/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022]
Abstract
The size of an organ is proportional to the other body parts or the whole body. This relationship is known as allometry. Understanding how allometry is determined is a fundamental question in biology. Here we tested the hypothesis that local insulin-like growth factor (Igf) signaling is critical in regulating organ size and its allometric scaling by organ-specific expression of Igf binding protein (Igfbp). Overexpression of Igfbp2a or 5b in the developing zebrafish eye, heart, and inner ear resulted in a disproportional reduction in their growth relative to the body. Stable transgenic zebrafish with lens-specific Igfbp5b expression selectively reduced adult eye size. The action is Igf-dependent because an Igf-binding deficient Igfbp5b mutant had no effect. Targeted expression of a dominant-negative Igf1 receptor (dnIgf1r) in the lens caused a similar reduction in relative eye growth. Furthermore, co-expression of IGF-1 with an Igfbp restored the eye size. Finally, co-expression of a constitutively active form of Akt with Igfbp or dnIgf1r restored the relative eye growth. These data suggest that local Igf availability and Igf signaling activity are critical determinants of organ size and allometric scaling in zebrafish.
Collapse
Affiliation(s)
- Hiroyasu Kamei
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University 11-4-1, Ossaka, Noto, Ishikawa 927-0552, Japan.
| | - Cunming Duan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, United States
| |
Collapse
|
13
|
Thind AS, Vitali V, Guarracino MR, Catania F. What's Genetic Variation Got to Do with It? Starvation-Induced Self-Fertilization Enhances Survival in Paramecium. Genome Biol Evol 2021; 12:626-638. [PMID: 32163147 PMCID: PMC7239694 DOI: 10.1093/gbe/evaa052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2020] [Indexed: 12/13/2022] Open
Abstract
The pervasiveness of sex despite its well-known costs is a long-standing puzzle in evolutionary biology. Current explanations for the success of sex in nature largely rely on the adaptive significance of the new or rare genotypes that sex may generate. Less explored is the possibility that sex-underlying molecular mechanisms can enhance fitness and convey benefits to the individuals that bear the immediate costs of sex. Here, we show that the molecular environment associated with self-fertilization can increase stress resistance in the ciliate Paramecium tetraurelia. This advantage is independent of new genetic variation, coupled with a reduced nutritional input, and offers fresh insights into the mechanistic origin of sex. In addition to providing evidence that the molecular underpinnings of sexual reproduction and the stress response are linked in P. tetraurelia, these findings supply an integrative explanation for the persistence of self-fertilization in this ciliate.
Collapse
Affiliation(s)
- Amarinder Singh Thind
- Institute for High Performance Computing and Networking (ICAR), National Research Council (CNR), Naples, Italy
| | - Valerio Vitali
- Institute for Evolution and Biodiversity, Department of Biology, University of Münster, Germany
| | - Mario Rosario Guarracino
- Institute for High Performance Computing and Networking (ICAR), National Research Council (CNR), Naples, Italy
| | - Francesco Catania
- Institute for Evolution and Biodiversity, Department of Biology, University of Münster, Germany
| |
Collapse
|
14
|
Cochrane PV, Jonz MG, Wright PA. The development of the O 2-sensing system in an amphibious fish: consequences of variation in environmental O 2 levels. J Comp Physiol B 2021; 191:681-699. [PMID: 34023926 DOI: 10.1007/s00360-021-01379-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/04/2021] [Accepted: 05/07/2021] [Indexed: 11/25/2022]
Abstract
Proper development of the O2-sensing system is essential for survival. Here, we characterized the development of the O2-sensing system in the mangrove rivulus (Kryptolebias marmoratus), an amphibious fish that transitions between hypoxic aquatic environments and O2-rich terrestrial environments. We found that NECs formed in the gills and skin of K. marmoratus during embryonic development and that both NEC populations are retained from the embryonic stage to adulthood. We also found that the hyperventilatory response to acute hypoxia was present in embryonic K. marmoratus, indicating that functional O2-sensing pathways are formed during embryonic development. We then exposed embryos to aquatic normoxia, aquatic hyperoxia, aquatic hypoxia, or terrestrial conditions for the first 30 days of embryonic development and tested the hypothesis that environmental O2 availability during embryonic development modulates the development of the O2-sensing system in amphibious fishes. Surprisingly, we found that O2 availability during embryonic development had little impact on the density and morphology of NECs in the gills and skin of K. marmoratus. Collectively, our results demonstrate that, unlike the only other species of fish in which NEC development has been studied to date (i.e., zebrafish), NEC development in K. marmoratus is largely unaffected by environmental O2 levels during the embryonic stage, indicating that there is interspecies variation in O2-induced plasticity in the O2-sensing system of fishes.
Collapse
Affiliation(s)
- Paige V Cochrane
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Michael G Jonz
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Patricia A Wright
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
15
|
Li S, Liu C, Goldstein A, Xin Y, Ke C, Duan C. Calcium State-Dependent Regulation of Epithelial Cell Quiescence by Stanniocalcin 1a. Front Cell Dev Biol 2021; 9:662915. [PMID: 33898465 PMCID: PMC8063699 DOI: 10.3389/fcell.2021.662915] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/08/2021] [Indexed: 11/15/2022] Open
Abstract
The molecular mechanisms regulating cell quiescence-proliferation balance are not well defined. Using a zebrafish model, we report that Stc1a, a secreted glycoprotein, plays a key role in regulating the quiescence-proliferation balance of Ca2+ transporting epithelial cells (ionocytes). Zebrafish stc1a, but not the other stc genes, is expressed in a Ca2+ state-dependent manner. Genetic deletion of stc1a, but not stc2b, increased ionocyte proliferation, leading to elevated body Ca2+ levels, cardiac edema, body swelling, and premature death. The increased ionocyte proliferation was accompanied by an increase in the IGF1 receptor-mediated PI3 kinase-Akt-Tor signaling activity in ionocytes. Inhibition of the IGF1 receptor, PI3 kinase, Akt, and Tor signaling reduced ionocyte proliferation and rescued the edema and premature death in stc1a–/– fish, suggesting that Stc1a promotes ionocyte quiescence by suppressing local IGF signaling activity. Mechanistically, Stc1 acts by inhibiting Papp-aa, a zinc metalloproteinase degrading Igfbp5a. Inhibition of Papp-aa proteinase activity restored ionocyte quiescence-proliferation balance. Genetic deletion of papp-aa or its substrate igfbp5a in the stc1a–/– background reduced ionocyte proliferation and rescued the edema and premature death. These findings uncover a novel and Ca2+ state-dependent pathway regulating cell quiescence. Our findings also provide new insights into the importance of ionocyte quiescent-proliferation balance in organismal Ca2+ homeostasis and survival.
Collapse
Affiliation(s)
- Shuang Li
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.,College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Chengdong Liu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Allison Goldstein
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Yi Xin
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.,College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Cunming Duan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
16
|
Alassaf M, Halloran MC. Pregnancy-associated plasma protein-aa regulates endoplasmic reticulum-mitochondria associations. eLife 2021; 10:59687. [PMID: 33759764 PMCID: PMC8024009 DOI: 10.7554/elife.59687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 03/23/2021] [Indexed: 11/13/2022] Open
Abstract
Endoplasmic reticulum (ER) and mitochondria form close physical associations to facilitate calcium transfer, thereby regulating mitochondrial function. Neurons with high metabolic demands, such as sensory hair cells, are especially dependent on precisely regulated ER-mitochondria associations. We previously showed that the secreted metalloprotease pregnancy-associated plasma protein-aa (Pappaa) regulates mitochondrial function in zebrafish lateral line hair cells (Alassaf et al., 2019). Here, we show that pappaa mutant hair cells exhibit excessive and abnormally close ER-mitochondria associations, suggesting increased ER-mitochondria calcium transfer. pappaa mutant hair cells are more vulnerable to pharmacological induction of ER-calcium transfer. Additionally, pappaa mutant hair cells display ER stress and dysfunctional downstream processes of the ER-mitochondria axis including altered mitochondrial morphology and reduced autophagy. We further show that Pappaa influences ER-calcium transfer and autophagy via its ability to stimulate insulin-like growth factor-1 bioavailability. Together our results identify Pappaa as a novel regulator of the ER-mitochondria axis.
Collapse
Affiliation(s)
- Mroj Alassaf
- Department of Integrative Biology, University of Wisconsin, Madison, United States.,Department of Neuroscience, University of Wisconsin, Madison, United States.,Neuroscience Training Program, University of Wisconsin, Madison, United States
| | - Mary C Halloran
- Department of Integrative Biology, University of Wisconsin, Madison, United States.,Department of Neuroscience, University of Wisconsin, Madison, United States.,Neuroscience Training Program, University of Wisconsin, Madison, United States
| |
Collapse
|
17
|
Hou ZS, Xin YR, Zeng C, Zhao HK, Tian Y, Li JF, Wen HS. GHRH-SST-GH-IGF axis regulates crosstalk between growth and immunity in rainbow trout (Oncorhynchus mykiss) infected with Vibrio anguillarum. FISH & SHELLFISH IMMUNOLOGY 2020; 106:887-897. [PMID: 32866610 DOI: 10.1016/j.fsi.2020.08.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/15/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
An energy trade-off is existed between immunological competence and growth. The axis of growth hormone releasing hormone, somatostatin, growth hormone, insulin-like growth factor (GHRH-SST-GH-IGF axis) regulates growth performances and immune competences in rainbow trout (Oncorhynchus mykiss). The salmonid-specific whole genome duplication event is known to result in duplicated copies of several key genes in GHRH-SST-GH-IGF axis. In this study, we evaluated the physiological functions of GHRH-SST-GH-IGF axis in regulating crosstalk between growth and immunity. Based on principal components analysis (PCA), we observed the overall expression profiles of GHRH-SST-GH-IGF axis were significantly altered by Vibrio anguillarum infection. Trout challenged with Vibrio anguillarum showed down-regulated igf1s subtypes and up-regulated igfbp1a1. The brain sst genes (sst1a, sst1b, sst3b and sst5) and igfpbs genes (igfbp4s and igfbp5b2) were significantly affected by V. anguillarum infection, while the igfbp4s, igfbp5s, igfbp6s and igf2bps genes showed significant changes in peripheral immune tissues in response to V. anguillarum infection. Gene enrichment analyses showed functional and signaling pathways associated with apoptosis (such as p53, HIF-1 or FoxO signaling) were activated. We further proposed a possible model that describes the IGF and IGFBPs-regulated interaction between cell growth and programmed death. Our study provided new insights into the physiological functions and potentially regulatory mechanisms of the GHRH-SST-GH-IGF axis, indicating the pleiotropic effects of GHRH-SST-GH-IGF axis in regulating crosstalk between growth and immunity in trout.
Collapse
Affiliation(s)
- Zhi-Shuai Hou
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education (KLMME), Qingdao, China.
| | - Yuan-Ru Xin
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education (KLMME), Qingdao, China
| | - Chu Zeng
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education (KLMME), Qingdao, China
| | - Hong-Kui Zhao
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education (KLMME), Qingdao, China
| | - Yuan Tian
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education (KLMME), Qingdao, China
| | - Ji-Fang Li
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education (KLMME), Qingdao, China
| | - Hai-Shen Wen
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education (KLMME), Qingdao, China.
| |
Collapse
|
18
|
Kamei H. Oxygen and embryonic growth: the role of insulin-like growth factor signaling. Gen Comp Endocrinol 2020; 294:113473. [PMID: 32247621 DOI: 10.1016/j.ygcen.2020.113473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/05/2020] [Accepted: 03/28/2020] [Indexed: 01/03/2023]
Abstract
Oxygen is indispensable for the efficient release of chemical energy from nutrient molecules in cells. Therefore, the local oxygen tension is one of the most critical factors affecting physiological processes. In most viviparous species, many pathological conditions result in abnormal oxygen tension in the uterus, which modifies the growth and development of the fetus. Insulin-like growth factor (IGF/Igf) is one of the most important hormones for the regulation of somatic growth in animals. Changes in oxygen levels modulate the activity of the IGF/Igf signaling system, which in turn regulates the embryonic growth rate. In general, there are serious difficulties associated with monitoring and studying rodent embryos in utero. The zebrafish is a convenient experimental model to study the relationship between embryonic growth and environmental conditions. Most importantly, the fish model makes it possible to rapidly evaluate embryonic growth and development under entirely controlled environments without interfering with the mother organism. In this review, firstly an overview is given of the fluctuation of environmental oxygen, the IGF-system, and the advantages of the zebrafish model for studying embryonic growth. Then, the relationships of dynamic environmental oxygen and embryonic growth rate are outlined with a specific focus on the changes in the IGF/Igf-system in the zebrafish model. This review will shed light on the fine-tuning mechanisms of the embryonic IGF/Igf-system under different oxygen levels, including constant normoxia, hypoxia, and re-oxygenation.
Collapse
Affiliation(s)
- Hiroyasu Kamei
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, 11-4-1, Ossaka, Noto, Ishikawa 927-0552, Japan.
| |
Collapse
|
19
|
Hu W, Yuan C, Luo H, Hu S, Shen L, Chen L, Xu D, Wang H. Glucocorticoid-insulin-like growth factor 1 (GC-IGF1) axis programming mediated hepatic lipid-metabolic in offspring caused by prenatal ethanol exposure. Toxicol Lett 2020; 331:167-177. [PMID: 32535229 DOI: 10.1016/j.toxlet.2020.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 04/24/2020] [Accepted: 06/07/2020] [Indexed: 12/29/2022]
Abstract
Prenatal ethanol exposure (PEE) could increase offspring's susceptibility to adult liver lipid-metabolism diseases. This study aimed to confirm intrauterine programming mechanism of glucocorticoid-insulin-like growth factor 1 (GC-IGF1) axis for liver dysfunction in offspring rats induced by PEE. The results showed that levels of hepatic IGF1, lipid metabolism-related enzymes (e.g. FASN and HMGCR) and serum phenotype (TG, TCH, HDL-C, and LDL-C) were low in fetal rats of PEE but high in adult offspring except for HDL-C, meanwhile, hepatic H3K9ac and expression levels of IGF1 were low in fetal rats but high in adult offspring. Furthermore, levels of serum corticosterone and hepatic glucocorticoid-activation system (mainly including expression of 11β-HSD1, GR, and C/EBPα as well as 11β-HSD1/11β-HSD2 ratio) were high in fetal rats of PEE but low or unchanged in adult offspring. The adult F2 generation of PEE maintained the same GC-IGF1 axis programming alteration as the F1 generation despite gender differences. In vitro, cortisol was proved to activate hepatocyte glucocorticoid-activation system and decrease H3K9ac and expression levels of IGF1 by GR. Therefore, PEE has a long-term effect on the offspring's liver functional development, which may be mainly related to the epigenetic programming alteration of the GC-IGF1 axis mediated by the glucocorticoid-activation system.
Collapse
Affiliation(s)
- Wen Hu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Chao Yuan
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Hanwen Luo
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Shuwei Hu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Lang Shen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Liaobin Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Dan Xu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
20
|
Duan C, Allard J. Gonadotropin-releasing hormone neuron development in vertebrates. Gen Comp Endocrinol 2020; 292:113465. [PMID: 32184073 DOI: 10.1016/j.ygcen.2020.113465] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/26/2020] [Accepted: 03/12/2020] [Indexed: 11/21/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) neurons are master regulators of the reproductive axis in vertebrates. During early mammalian embryogenesis, GnRH1 neurons emerge in the nasal/olfactory placode. These neurons undertake a long-distance migration, moving from the nose to the preoptic area and hypothalamus. While significant advances have been made in understanding the functional importance of the GnRH1 neurons in reproduction, where GnRH1 neurons come from and how are they specified during early development is still under debate. In addition to the GnRH1 gene, most vertebrate species including humans have one or two additional GnRH genes. Compared to the GnRH1 neurons, much less is known about the development and regulation of GnRH2 neuron and GnRH3 neurons. The objective of this article is to review what is currently known about GnRH neuron development. We will survey various cell autonomous and non-autonomous factors implicated in the regulation of GnRH neuron development. Finally, we will discuss emerging tools and new approaches to resolve open questions pertaining to GnRH neuron development.
Collapse
Affiliation(s)
- Cunming Duan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States.
| | - John Allard
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| |
Collapse
|
21
|
Liu C, Li S, Noer PR, Kjaer-Sorensen K, Juhl AK, Goldstein A, Ke C, Oxvig C, Duan C. The metalloproteinase Papp-aa controls epithelial cell quiescence-proliferation transition. eLife 2020; 9:e52322. [PMID: 32293560 PMCID: PMC7185994 DOI: 10.7554/elife.52322] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 04/11/2020] [Indexed: 02/06/2023] Open
Abstract
Human patients carrying PAPP-A2 inactivating mutations have low bone mineral density. The underlying mechanisms for this reduced calcification are poorly understood. Using a zebrafish model, we report that Papp-aa regulates bone calcification by promoting Ca2+-transporting epithelial cell (ionocyte) quiescence-proliferation transition. Ionocytes, which are normally quiescent, re-enter the cell cycle under low [Ca2+] stress. Genetic deletion of Papp-aa, but not the closely related Papp-ab, abolished ionocyte proliferation and reduced calcified bone mass. Loss of Papp-aa expression or activity resulted in diminished IGF1 receptor-Akt-Tor signaling in ionocytes. Under low Ca2+ stress, Papp-aa cleaved Igfbp5a. Under normal conditions, however, Papp-aa proteinase activity was suppressed and IGFs were sequestered in the IGF/Igfbp complex. Pharmacological disruption of the IGF/Igfbp complex or adding free IGF1 activated IGF signaling and promoted ionocyte proliferation. These findings suggest that Papp-aa-mediated local Igfbp5a cleavage functions as a [Ca2+]-regulated molecular switch linking IGF signaling to bone calcification by stimulating epithelial cell quiescence-proliferation transition under low Ca2+ stress.
Collapse
Affiliation(s)
- Chengdong Liu
- Department of Molecular, Cellular, and Developmental Biology, University of MichiganAnn ArborUnited States
| | - Shuang Li
- Department of Molecular, Cellular, and Developmental Biology, University of MichiganAnn ArborUnited States
- College of Ocean and Earth Sciences, Xiamen UniversityXiamenChina
| | | | | | - Anna Karina Juhl
- Department of Molecular Biology and Genetics, Aarhus UniversityAarhusDenmark
| | - Allison Goldstein
- Department of Molecular, Cellular, and Developmental Biology, University of MichiganAnn ArborUnited States
| | - Caihuan Ke
- College of Ocean and Earth Sciences, Xiamen UniversityXiamenChina
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus UniversityAarhusDenmark
| | - Cunming Duan
- Department of Molecular, Cellular, and Developmental Biology, University of MichiganAnn ArborUnited States
| |
Collapse
|
22
|
Gauthier PT, Vijayan MM. Municipal wastewater effluent exposure disrupts early development, larval behavior, and stress response in zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113757. [PMID: 31896476 DOI: 10.1016/j.envpol.2019.113757] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/25/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
While wastewater treatment standards have been progressively increasing, emerging contaminants such as pharmaceuticals can nonetheless pass through treatment and end up in our watersheds. Pharmaceuticals in the parts-per-billion range can impact fish behavior, survival, and recruitment in the wild. However, the ecological risk posed by whole municipal wastewater effluents (MWWE), a complex mixture, is not clear. This knowledge gap is particularly evident for early lifestages (ELS) of fish, and because effluent discharge events are typically short, the effects of short-term MWWE exposures to ELS fish are particularly important from an environmental perspective. Here we tested the effects of rapid 30-min exposures, and short-term 24- and 72-h exposures to MWWE on development, behaviors, and stress response in zebrafish (Danio rerio) embryos, larvae, and juveniles. We obtained 24-h composite samples of tertiary-treated MWWE that contained a mixture of chemicals with affinities for serotonergic, adrenergic, dopaminergic, and ion-channel receptors. Embryos exposed to 5%, 10%, and 50% MWWE experienced developmental delays in somitogenesis and hatching rate, although there was no effect on survival. Embryonic photomotor responses were affected following 30-min and 24-h exposures to 10% and 50% MWWE, and larval visual motor responses were reduced from 24-h exposure to 10% MWWE. Exposure to 10% MWWE dulled the juvenile cortisol and lactate response following an acute air-exposure. Compromised behavioral and stress performances demonstrate the capacity of MWWE to impact phenotypes critical to the survival of fish in the environment. Taken together, we found that zebrafish were sensitive to toxic effects of MWWE at multiple life-stages.
Collapse
Affiliation(s)
- Patrick T Gauthier
- University of Calgary, Department of Biological Sciences, 2500 University Drive N.W., Calgary, T2N 1N4, Alberta, Canada
| | - Mathilakath M Vijayan
- University of Calgary, Department of Biological Sciences, 2500 University Drive N.W., Calgary, T2N 1N4, Alberta, Canada.
| |
Collapse
|
23
|
Hou ZS, Wen HS, Li JF, He F, Li Y, Qi X. Environmental hypoxia causes growth retardation, osteoclast differentiation and calcium dyshomeostasis in juvenile rainbow trout (Oncorhynchus mykiss). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135272. [PMID: 31841926 DOI: 10.1016/j.scitotenv.2019.135272] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/08/2019] [Accepted: 10/27/2019] [Indexed: 06/10/2023]
Abstract
Hypoxia generally refers to a dissolved oxygen (DO) level that is less than 2-3 mg/L. With ongoing global warming and environment pollution, environmental or geological studies showed hypoxia frequently occurs in global aquatic systems including ocean, river, estuaries and coasts. A preliminary study was performed to evaluate hypoxia tolerant of rainbow trout (Oncorhynchus mykiss) with parameters of mortality, behavior, endocrine and metabolite, identifying three DO levels including normoxia (Ctrl, 7.0 mg/L), non-lethal hypoxia (NH, 4.5 mg/L) and lethal hypoxia (LH, 3.0 mg/L). Furthermore, trout was treated by Ctrl, NH and LH for six hours to mimic the acute hypoxia in wild and/or farming conditions. A significantly higher mortality was observed in LH group. Trout of NH and LH showed stressful responses with unnormal swimming, increased serum cortisol and up-regulated gill hif1α transcription. Despite trout of NH and LH increased the oxygen delivery abilities by increasing the serum hemoglobin levels, the anerobic metabolism were inevitably observed with increased lactate. This study also showed a prolonged influence of NH and LH on growth after 30-days' recovery. Based on RNA-Seq data, different expression genes (DEGs) associated with stress, apoptosis, antioxidant, chaperone, growth, calcium and vitamin D metabolism were identified. Enrichment analysis showed DEGs were clustered in osteoclast differentiation, apoptosis and intracellular signaling transduction pathways. Results further showed NH and LH significantly decreased bone calcium content and disrupted the growth hormone-insulin-like growth factor (GH-IGF) axis. Our study might contribute to a better understanding of the effects of hypoxia on rainbow trout.
Collapse
Affiliation(s)
- Zhi-Shuai Hou
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, PR China
| | - Hai-Shen Wen
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, PR China.
| | - Ji-Fang Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, PR China
| | - Feng He
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, PR China
| | - Yun Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, PR China
| | - Xin Qi
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, PR China
| |
Collapse
|
24
|
Wang YJ, Wong HSC, Wu CC, Chiang YH, Chiu WT, Chen KY, Chang WC. The functional roles of IGF-1 variants in the susceptibility and clinical outcomes of mild traumatic brain injury. J Biomed Sci 2019; 26:94. [PMID: 31787098 PMCID: PMC6886173 DOI: 10.1186/s12929-019-0587-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/24/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Insulin-like growth factor 1 (IGF-1) is an important pleiotropic hormone that exerts neuroprotective and neuroreparative effects after a brain injury. However, the roles of IGF-1 variants in mild traumatic brain injury (mTBI) are not yet fully understood. This study attempted to elucidate the effects of IGF-1 variants on the risk and neuropsychiatric outcomes of mTBI. METHODS Based on 176 recruited mTBI patients and 1517 control subjects from the Taiwan Biobank project, we first compared the genotypic distributions of IGF-1 variants between the two groups. Then, we analyzed associations of IGF-1 variants with neuropsychiatric symptoms after mTBI, including anxiety, depression, dizziness, and sleep disturbances. Functional annotation of IGF-1 variants was also performed through bioinformatics databases. RESULTS The minor allele of rs7136446 was over-represented in mTBI patients compared to community-based control subjects. Patients carrying minor alleles of rs7136446 and rs972936 showed more dizziness and multiple neuropsychiatric symptoms after brain injury. CONCLUSIONS IGF-1 variants were associated with the risk and neuropsychiatric symptoms of mTBI. The findings highlight the important role of IGF-1 in the susceptibility and clinical outcomes of mTBI.
Collapse
Affiliation(s)
- Yu-Jia Wang
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan
| | - Henry Sung-Ching Wong
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Chung-Che Wu
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yung-Hsiao Chiang
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei, Taiwan
| | - Wen-Ta Chiu
- Institute of Injury Prevention and Control, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Kai-Yun Chen
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan
| | - Wei-Chiao Chang
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Department of Pharmacy, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Pain Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
25
|
Alassaf M, Daykin EC, Mathiaparanam J, Wolman MA. Pregnancy-associated plasma protein-aa supports hair cell survival by regulating mitochondrial function. eLife 2019; 8:47061. [PMID: 31205004 PMCID: PMC6594750 DOI: 10.7554/elife.47061] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/14/2019] [Indexed: 12/18/2022] Open
Abstract
To support cell survival, mitochondria must balance energy production with oxidative stress. Inner ear hair cells are particularly vulnerable to oxidative stress; thus require tight mitochondrial regulation. We identified a novel molecular regulator of the hair cells’ mitochondria and survival: Pregnancy-associated plasma protein-aa (Pappaa). Hair cells in zebrafish pappaa mutants exhibit mitochondrial defects, including elevated mitochondrial calcium, transmembrane potential, and reactive oxygen species (ROS) production and reduced antioxidant expression. In pappaa mutants, hair cell death is enhanced by stimulation of mitochondrial calcium or ROS production and suppressed by a mitochondrial ROS scavenger. As a secreted metalloprotease, Pappaa stimulates extracellular insulin-like growth factor 1 (IGF1) bioavailability. We found that the pappaa mutants’ enhanced hair cell loss can be suppressed by stimulation of IGF1 availability and that Pappaa-IGF1 signaling acts post-developmentally to support hair cell survival. These results reveal Pappaa as an extracellular regulator of hair cell survival and essential mitochondrial function.
Collapse
Affiliation(s)
- Mroj Alassaf
- Department of Integrative Biology, University of Wisconsin, Madison, United States.,Neuroscience Training Program, University of Wisconsin, Madison, United States
| | - Emily C Daykin
- Department of Integrative Biology, University of Wisconsin, Madison, United States
| | - Jaffna Mathiaparanam
- Department of Integrative Biology, University of Wisconsin, Madison, United States
| | - Marc A Wolman
- Department of Integrative Biology, University of Wisconsin, Madison, United States
| |
Collapse
|
26
|
Mortola JP. Prenatal catch-up growth: A study in avian embryos. Mech Dev 2019; 156:32-40. [PMID: 30936002 DOI: 10.1016/j.mod.2019.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/09/2019] [Accepted: 03/27/2019] [Indexed: 10/27/2022]
Abstract
Whether the growth of embryos after a period of stunt becomes accelerated (Catch-Up Growth, CUGr), as it occurs postnatally, has rarely been examined experimentally in any class of animals. Here, hypoxia or cold of different degrees and durations caused growth retardation in chicken embryos during the first or second week of incubation. On average, on the day of removal of the growth-inhibition, the weight of the experimental groups was 73% (wet) and 61% (dry) of control embryos, while near end-incubation (embryonic day E18) their weight averaged significantly more, respectively, 80% and 84% of controls (P < 0.001). When compared as function of developmental time, the post-intervention growth of experimental embryos was faster than that of controls. The faster growth was fully accounted for by their smaller weight at end-intervention, because embryonic growth is higher the smaller the weight. Hence, their growth was appropriate for their weight, rather than for their age. In fact, out of eight different models of growth based on age and weight (wet or dry) in various combination, the model based on embryonic wet weight at end-intervention, and weight alone, was the best predictor of the embryo's post-intervention growth. The oxygen consumption of the experimental embryos during CUGr was appropriate for their weight. In conclusion, in this experimental model of CUGr, the embryo's weight at the end of a stunt could fully predict and explain the rate of growth during the post-intervention recovery period.
Collapse
Affiliation(s)
- Jacopo P Mortola
- Dept. Physiology, McGill Univ., room 1121, 3655 Sir William Osler promenade, Montreal, QC H3G 1Y6, Canada.
| |
Collapse
|
27
|
Louro B, Martins RS, Pinto PI, Reinhardt R, de Koning DJ, Canario AV, Power DM. SuperSAGE digital expression analysis of differential growth rate in a European sea bass population. AQUACULTURE AND FISHERIES 2019. [DOI: 10.1016/j.aaf.2018.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Liu C, Xin Y, Bai Y, Lewin G, He G, Mai K, Duan C. Ca 2+ concentration-dependent premature death of igfbp5a-/- fish reveals a critical role of IGF signaling in adaptive epithelial growth. Sci Signal 2018; 11:11/548/eaat2231. [PMID: 30228225 DOI: 10.1126/scisignal.aat2231] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The phenotype gap is a challenge for genetically dissecting redundant endocrine signaling pathways, such as the six isoforms in the insulin-like growth factor binding protein (IGFBP) family. Although overexpressed IGFBPs can inhibit or potentiate IGF actions or have IGF-independent actions, mutant mice lacking IGFBP-encoding genes do not exhibit major phenotypes. We found that although zebrafish deficient in igfbp5a did not show overt phenotypes when raised in Ca2+-rich solutions, they died prematurely in low Ca2+ conditions. A group of epithelial cells expressing igfbp5a take up Ca2+ and proliferate under low Ca2+ conditions because of activation of IGF signaling. Deletion of igfbp5a blunted low Ca2+ stress-induced IGF signaling and impaired adaptive proliferation. Reintroducing zebrafish Igfbp5a, but not its ligand binding-deficient mutant, restored adaptive proliferation. Similarly, adaptive proliferation was restored in zebrafish lacking igfbp5a by expression of human IGFBP5, but not two cancer-associated IGFBP5 mutants. Knockdown of IGFBP5 in human colon carcinoma cells resulted in reduced IGF-stimulated cell proliferation. These results reveal a conserved mechanism by which a locally expressed Igfbp regulates organismal Ca2+ homeostasis and survival by activating IGF signaling in epithelial cells and promoting their proliferation in Ca2+-deficient states. These findings underscore the importance of physiological context when analyzing loss-of-function phenotypes of endocrine factors.
Collapse
Affiliation(s)
- Chengdong Liu
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.,The Key Laboratory of Mariculture, Education Ministry of China and College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Yi Xin
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yan Bai
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Grant Lewin
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gen He
- The Key Laboratory of Mariculture, Education Ministry of China and College of Fisheries, Ocean University of China, Qingdao 266003, China.,Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Kangsen Mai
- The Key Laboratory of Mariculture, Education Ministry of China and College of Fisheries, Ocean University of China, Qingdao 266003, China.,Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Cunming Duan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
29
|
Wang G, He B, Hu W, Liu K, Gong X, Kou H, Guo Y, Wang H. Low-expressional IGF1 mediated methimazole-induced liver developmental toxicity in fetal mice. Toxicology 2018; 408:70-79. [PMID: 29990518 DOI: 10.1016/j.tox.2018.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/03/2018] [Accepted: 07/05/2018] [Indexed: 11/24/2022]
Abstract
Anti-thyroid drugs (ATDs) therapy is necessary for pregnant women with hyperthyroidism. However, there is a lack of studies on developmental toxicity of ATDs. In this study, we observed the developmental toxicity of fetal liver induced by prenatal methimazole exposure (PME) in mice, and explored the potential mechanism. Pregnant Kunming mice were administered intragastrically with 4.5 or 18 mg/kg·d methimazole from gestational day (GD) 9∼18. After PME, the birth weights of the offspring mice were decreased, and the liver morphology, development indexes and metabolic function were all altered in different degree in the PME fetuses. Meanwhile, PME decreased the levels of serum and hepatic insulin-like growth factor 1 (IGF1), and reduced the gene expression of IGF1 downstream signaling pathway. Furthermore, the protein levels of phosphorylated-extracellular regulated protein kinases (p-ERK) and serine-threonine protein kinase (p-Akt) were also reduced. Furthermore, methimazole disturb hepatocyte differentiation, maturation and metabolic function through suppressing IGF1 signaling pathway in HepG2 cells. These results demonstrated that PME could induce fetal liver developmental toxicity, and the underlying mechanism was related to low-expression of hepatic IGF1 caused by methimazole, which mediated abnormal liver morphology and metabolic function.
Collapse
Affiliation(s)
- Guihua Wang
- Department of Pharmacology, Basic Medical College of Wuhan University, Wuhan, 430071, China
| | - Bo He
- Department of Pharmacology, Basic Medical College of Wuhan University, Wuhan, 430071, China
| | - Wen Hu
- Department of Pharmacology, Basic Medical College of Wuhan University, Wuhan, 430071, China
| | - Kexin Liu
- Department of Pharmacology, Basic Medical College of Wuhan University, Wuhan, 430071, China
| | - Xiaohan Gong
- Department of Pharmacology, Basic Medical College of Wuhan University, Wuhan, 430071, China
| | - Hao Kou
- Department of Pharmacology, Basic Medical College of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Yu Guo
- Department of Pharmacology, Basic Medical College of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| | - Hui Wang
- Department of Pharmacology, Basic Medical College of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
30
|
Pregnancy-Associated Plasma Protein-aa Regulates Photoreceptor Synaptic Development to Mediate Visually Guided Behavior. J Neurosci 2018; 38:5220-5236. [PMID: 29739870 DOI: 10.1523/jneurosci.0061-18.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/04/2018] [Accepted: 04/30/2018] [Indexed: 02/08/2023] Open
Abstract
To guide behavior, sensory systems detect the onset and offset of stimuli and process these distinct inputs via parallel pathways. In the retina, this strategy is implemented by splitting neural signals for light onset and offset via synapses connecting photoreceptors to ON and OFF bipolar cells, respectively. It remains poorly understood which molecular cues establish the architecture of this synaptic configuration to split light-onset and light-offset signals. A mutant with reduced synapses between photoreceptors and one bipolar cell type, but not the other, could reveal a critical cue. From this approach, we report a novel synaptic role for pregnancy-associated plasma protein aa (pappaa) in promoting the structure and function of cone synapses that transmit light-offset information. Electrophysiological and behavioral analyses indicated pappaa mutant zebrafish have dysfunctional cone-to-OFF bipolar cell synapses and impaired responses to light offset, but intact cone-to-ON bipolar cell synapses and light-onset responses. Ultrastructural analyses of pappaa mutant cones showed a lack of presynaptic domains at synapses with OFF bipolar cells. pappaa is expressed postsynaptically to the cones during retinal synaptogenesis and encodes a secreted metalloprotease known to stimulate insulin-like growth factor 1 (IGF1) signaling. Induction of dominant-negative IGF1 receptor expression during synaptogenesis reduced light-offset responses. Conversely, stimulating IGF1 signaling at this time improved pappaa mutants' light-offset responses and cone presynaptic structures. Together, our results indicate Pappaa-regulated IGF1 signaling as a novel pathway that establishes how cone synapses convey light-offset signals to guide behavior.SIGNIFICANCE STATEMENT Distinct sensory inputs, like stimulus onset and offset, are often split at distinct synapses into parallel circuits for processing. In the retina, photoreceptors and ON and OFF bipolar cells form discrete synapses to split neural signals coding light onset and offset, respectively. The molecular cues that establish this synaptic configuration to specifically convey light onset or offset remain unclear. Our work reveals a novel cue: pregnancy-associated plasma protein aa (pappaa), which regulates photoreceptor synaptic structure and function to specifically transmit light-offset information. Pappaa is a metalloprotease that stimulates local insulin-like growth factor 1 (IGF1) signaling. IGF1 promotes various aspects of synaptic development and function and is broadly expressed, thus requiring local regulators, like Pappaa, to govern its specificity.
Collapse
|
31
|
Kamei H, Yoneyama Y, Hakuno F, Sawada R, Shimizu T, Duan C, Takahashi SI. Catch-Up Growth in Zebrafish Embryo Requires Neural Crest Cells Sustained by Irs1 Signaling. Endocrinology 2018; 159:1547-1560. [PMID: 29390112 DOI: 10.1210/en.2017-00847] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/22/2018] [Indexed: 11/19/2022]
Abstract
Most animals display retarded growth in adverse conditions; however, upon the removal of unfavorable factors, they often show quick growth restoration, which is known as "catch-up" growth. In zebrafish embryos, hypoxia causes growth arrest, but subsequent reoxygenation induces catch-up growth. Here, we report the role of insulin receptor substrate (Irs)1-mediated insulin/insulinlike growth factor signaling (IIS) and the involvement of stem cells in catch-up growth in reoxygenated zebrafish embryos. Disturbed irs1 expression attenuated IIS, resulting in greater inhibition in catch-up growth than in normal growth and forced IIS activation‒restored catch-up growth. The irs1 knockdown induced noticeable cell death in neural crest cells (NCCs; multipotent stem cells) under hypoxia, and the pharmacological/genetic ablation of NCCs hindered catch-up growth. Furthermore, inhibition of the apoptotic pathway by pan-caspase inhibition or forced activation of Akt signaling in irs1 knocked-down embryos blocked NCC cell death and rescued catch-up growth. Our data indicate that this multipotent stem cell is indispensable for embryonic catch-up growth and that Irs1-mediated IIS is a prerequisite for its survival under severe adverse environments such as prolonged hypoxia.
Collapse
Affiliation(s)
- Hiroyasu Kamei
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Faculty of Natural System, Institute of Science and Engineering, Kanazawa University, Noto Marine Laboratory, Noto, Japan
| | - Yosuke Yoneyama
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Fumihiko Hakuno
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Rie Sawada
- Juntendo University Graduate School of Medicine, Tokyo, Japan
| | | | - Cunming Duan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Shin-Ichiro Takahashi
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
32
|
Saera-Vila A, Louie KW, Sha C, Kelly RM, Kish PE, Kahana A. Extraocular muscle regeneration in zebrafish requires late signals from Insulin-like growth factors. PLoS One 2018; 13:e0192214. [PMID: 29415074 PMCID: PMC5802911 DOI: 10.1371/journal.pone.0192214] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 01/19/2018] [Indexed: 12/22/2022] Open
Abstract
Insulin-like growth factors (Igfs) are key regulators of key biological processes such as embryonic development, growth, and tissue repair and regeneration. The role of Igf in myogenesis is well documented and, in zebrafish, promotes fin and heart regeneration. However, the mechanism of action of Igf in muscle repair and regeneration is not well understood. Using adult zebrafish extraocular muscle (EOM) regeneration as an experimental model, we show that Igf1 receptor blockage using either chemical inhibitors (BMS754807 and NVP-AEW541) or translation-blocking morpholino oligonucleotides (MOs) reduced EOM regeneration. Zebrafish EOMs regeneration depends on myocyte dedifferentiation, which is driven by early epigenetic reprogramming and requires autophagy activation and cell cycle reentry. Inhibition of Igf signaling had no effect on either autophagy activation or cell proliferation, indicating that Igf signaling was not involved in the early reprogramming steps of regeneration. Instead, blocking Igf signaling produced hypercellularity of regenerating EOMs and diminished myosin expression, resulting in lack of mature differentiated muscle fibers even many days after injury, indicating that Igf was involved in late re-differentiation steps. Although it is considered the main mediator of myogenic Igf actions, Akt activation decreased in regenerating EOMs, suggesting that alternative signaling pathways mediate Igf activity in muscle regeneration. In conclusion, Igf signaling is critical for re-differentiation of reprogrammed myoblasts during late steps of zebrafish EOM regeneration, suggesting a regulatory mechanism for determining regenerated muscle size and timing of differentiation, and a potential target for regenerative therapy.
Collapse
Affiliation(s)
- Alfonso Saera-Vila
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ke’ale W. Louie
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Cuilee Sha
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ryan M. Kelly
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Phillip E. Kish
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Alon Kahana
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
33
|
Abstract
Zebrafish has emerged as an informative animal model to study the biological impact and molecular mechanisms of hypoxia. Here we describe a simple method to induce hypoxia in zebrafish embryos and larvae. This protocol is easy and reproducible and does not require expensive equipment or specialized devices. It can be adapted in large, medium, and small scales. This protocol is also well-suited for experiments requiring chemical drug treatment and can be applied to other fish and amphibian species.
Collapse
Affiliation(s)
- Hiroyasu Kamei
- Noto Marine Laboratory, Faculty of Natural System, Institute of Science and Engineering, Kanazawa University, Noto, Ishikawa, Japan
| | - Cunming Duan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
34
|
Woll SC, Podrabsky JE. Insulin-like growth factor signaling regulates developmental trajectory associated with diapause in embryos of the annual killifish Austrofundulus limnaeus. ACTA ACUST UNITED AC 2017; 220:2777-2786. [PMID: 28515235 DOI: 10.1242/jeb.151373] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 05/10/2017] [Indexed: 01/12/2023]
Abstract
Annual killifishes exhibit a number of unique life history characters including the occurrence of embryonic diapause, unique cell movements associated with dispersion and subsequent reaggregation of the embryonic blastomeres, and a short post-embryonic life span. Insulin-like growth factor (IGF) signaling is known to play a role in the regulation of metabolic dormancy in a number of animals but has not been explored in annual killifishes. The abundance of IGF proteins during development and the developmental effects of blocking IGF signaling by pharmacological inhibition of the insulin-like growth factor I receptor (IGF1R) were explored in embryos of the annual killifish Austrofundulus limnaeus Blocking of IGF signaling in embryos that would normally escape entrance into diapause resulted in a phenotype that was remarkably similar to that of embryos entering diapause. IGF-I protein abundance spikes during early development in embryos that will not enter diapause. In contrast, IGF-I levels remain low during early development in embryos that will enter diapause II. IGF-II protein is packaged at higher levels in escape-bound embryos compared with diapause-bound embryos. However, IGF-II levels quickly decrease and remain low during early development and only increase substantially during late development in both developmental trajectories. Developmental patterns of IGF-I and IGF-II protein abundance under conditions that would either induce or bypass entrance into diapause are consistent with a role for IGF signaling in the regulation of developmental trajectory and entrance into diapause in this species. We propose that IGF signaling may be a unifying regulatory pathway that explains the larger suite of characters that are associated with the complex life history of annual killifishes.
Collapse
Affiliation(s)
- S Cody Woll
- Department of Biology, Portland State University, PO Box 751, Portland, OR 97207, USA
| | - Jason E Podrabsky
- Department of Biology, Portland State University, PO Box 751, Portland, OR 97207, USA
| |
Collapse
|
35
|
Development of a Whole Organism Platform for Phenotype-Based Analysis of IGF1R-PI3K-Akt-Tor Action. Sci Rep 2017; 7:1994. [PMID: 28515443 PMCID: PMC5435685 DOI: 10.1038/s41598-017-01687-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 04/03/2017] [Indexed: 12/02/2022] Open
Abstract
Aberrant regulation of the insulin-like growth factor (IGF)/insulin (IIS)-PI3K-AKT-TOR signaling pathway is linked to major human diseases, and key components of this pathway are targets for therapeutic intervention. Current assays are molecular target- or cell culture-based platforms. Due to the great in vivo complexities inherited in this pathway, there is an unmet need for whole organism based assays. Here we report the development of a zebrafish transgenic line, Tg(igfbp5a:GFP), which faithfully reports the mitotic action of IGF1R-PI3K-Akt-Tor signaling in epithelial cells in real-time. This platform is well suited for high-throughput assays and real-time cell cycle analysis. Using this platform, the dynamics of epithelial cell proliferation in response to low [Ca2+] stress and the distinct roles of Torc1 and Torc2 were elucidated. The availability of Tg(igfbp5a:GFP) line provides a whole organism platform for phenotype-based discovery of novel players and inhibitors in the IIS-PI3K-Akt-Tor signaling pathway.
Collapse
|
36
|
Wilson KS, Tucker CS, Al-Dujaili EAS, Holmes MC, Hadoke PWF, Kenyon CJ, Denvir MA. Early-life glucocorticoids programme behaviour and metabolism in adulthood in zebrafish. J Endocrinol 2016; 230:125-42. [PMID: 27390302 PMCID: PMC5064771 DOI: 10.1530/joe-15-0376] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 05/04/2016] [Indexed: 11/16/2022]
Abstract
Glucocorticoids (GCs) in utero influence embryonic development with consequent programmed effects on adult physiology and pathophysiology and altered susceptibility to cardiovascular disease. However, in viviparous species, studies of these processes are compromised by secondary maternal influences. The zebrafish, being fertilised externally, avoids this problem and has been used here to investigate the effects of transient alterations in GC activity during early development. Embryonic fish were treated either with dexamethasone (a synthetic GC), an antisense GC receptor (GR) morpholino (GR Mo), or hypoxia for the first 120h post fertilisation (hpf); responses were measured during embryonic treatment or later, post treatment, in adults. All treatments reduced cortisol levels in embryonic fish to similar levels. However, morpholino- and hypoxia-treated embryos showed delayed physical development (slower hatching and straightening of head-trunk angle, shorter body length), less locomotor activity, reduced tactile responses and anxiogenic activity. In contrast, dexamethasone-treated embryos showed advanced development and thigmotaxis but no change in locomotor activity or tactile responses. Gene expression changes were consistent with increased (dexamethasone) and decreased (hypoxia, GR Mo) GC activity. In adults, stressed cortisol values were increased with dexamethasone and decreased by GR Mo and hypoxia pre-treatments. Other responses were similarly differentially affected. In three separate tests of behaviour, dexamethasone-programmed fish appeared 'bolder' than matched controls, whereas Mo and hypoxia pre-treated fish were unaffected or more reserved. Similarly, the dexamethasone group but not the Mo or hypoxia groups were heavier, longer and had a greater girth than controls. Hyperglycaemia and expression of GC responsive gene (pepck) were also increased in the dexamethasone group. We conclude that GC activity controls many aspects of early-life growth and development in the zebrafish and that, like other species, manipulating GC status pharmacologically, physiologically or genetically in early life leads to programmable metabolic and behavioural traits in adulthood.
Collapse
Affiliation(s)
- K S Wilson
- The University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - C S Tucker
- The University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - E A S Al-Dujaili
- The University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - M C Holmes
- The University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - P W F Hadoke
- The University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - C J Kenyon
- The University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - M A Denvir
- The University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| |
Collapse
|
37
|
Duan C. Hypoxia-inducible factor 3 biology: complexities and emerging themes. Am J Physiol Cell Physiol 2016; 310:C260-9. [DOI: 10.1152/ajpcell.00315.2015] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The hypoxia-inducible factor (HIF) family has three distinct members in most vertebrates. All three HIFs consist of a unique and oxygen-labile α-subunit and a common and stable β-subunit. While HIF-1 and HIF-2 function as master regulators of the transcriptional response to hypoxia, much less is known about HIF-3. The HIF-3α gene gives rise to multiple HIF-3α variants due to the utilization of different promoters, different transcription initiation sites, and alternative splicing. These HIF-3α variants are expressed in different tissues, at different developmental stages, and are differentially regulated by hypoxia and other factors. Recent studies suggest that different HIF-3α variants have different and even opposite functions. There is strong evidence that full-length HIF-3α protein functions as an oxygen-regulated transcription activator and that it activates a unique transcriptional program in response to hypoxia. Many HIF-3α target genes have been identified. While some short HIF-3α variants act as dominant-negative regulators of HIF-1/2α actions, other HIF-3α variants can inhibit HIF-1/2α actions by competing for the common HIF-β. There are also a number of HIF-3α variants yet to be explored. Future studies of these naturally occurring HIF-3α variants will provide new and important insights into HIF biology and may lead to the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Cunming Duan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
38
|
Abstract
The regulation of organ size is essential to human health and has fascinated biologists for centuries. Key to the growth process is the ability of most organs to integrate organ-extrinsic cues (eg, nutritional status, inflammatory processes) with organ-intrinsic information (eg, genetic programs, local signals) into a growth response that adapts to changing environmental conditions and ensures that the size of an organ is coordinated with the rest of the body. Paired organs such as the vertebrate limbs and the long bones within them are excellent models for studying this type of regulation because it is possible to manipulate one member of the pair and leave the other as an internal control. During development, growth plates at the end of each long bone produce a transient cartilage model that is progressively replaced by bone. Here, we review how proliferation and differentiation of cells within each growth plate are tightly controlled mainly by growth plate-intrinsic mechanisms that are additionally modulated by extrinsic signals. We also discuss the involvement of several signaling hubs in the integration and modulation of growth-related signals and how they could confer remarkable plasticity to the growth plate. Indeed, long bones have a significant ability for "catch-up growth" to attain normal size after a transient growth delay. We propose that the characterization of catch-up growth, in light of recent advances in physiology and cell biology, will provide long sought clues into the molecular mechanisms that underlie organ growth regulation. Importantly, catch-up growth early in life is commonly associated with metabolic disorders in adulthood, and this association is not completely understood. Further elucidation of the molecules and cellular interactions that influence organ size coordination should allow development of novel therapies for human growth disorders that are noninvasive and have minimal side effects.
Collapse
Affiliation(s)
- Alberto Roselló-Díez
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065
| | - Alexandra L Joyner
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065
| |
Collapse
|
39
|
Bulaeva E, Lanctôt C, Reynolds L, Trudeau VL, Navarro-Martín L. Sodium perchlorate disrupts development and affects metamorphosis- and growth-related gene expression in tadpoles of the wood frog (Lithobates sylvaticus). Gen Comp Endocrinol 2015; 222:33-43. [PMID: 25623150 DOI: 10.1016/j.ygcen.2015.01.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 12/19/2014] [Accepted: 01/16/2015] [Indexed: 11/20/2022]
Abstract
Numerous endocrine disrupting chemicals can affect the growth and development of amphibians. We investigated the effects of a targeted disruption of the endocrine axes modulating development and somatic growth. Wood frog (Lithobates sylvaticus) tadpoles were exposed for 2weeks (from developmental Gosner stage (Gs) 25 to Gs30) to sodium perchlorate (SP, thyroid inhibitor, 14mg/L), estradiol (E2, known to alter growth and development, 200nM) and a reduced feeding regime (RF, to affect growth and development in a chemically-independent manner). All treatments experienced developmental delay, and animals exposed to SP or subjected to RF respectively reached metamorphic climax (Gs42) approximately 11(±3) and 17(±3) days later than controls. At Gs42, only SP-treated animals showed increased weight and snout-vent length (P<0.05) relative to controls. Tadpoles treated with SP had 10-times higher levels of liver igf1 mRNA after 4days of exposure (Gs28) compared to controls. Tadpoles in the RF treatment expressed 6-times lower levels of liver igf1 mRNA and 2-times higher liver igf1r mRNA (P<0.05) at Gs30. Tadpoles treated with E2 exhibited similar developmental and growth patterns as controls, but had increased liver igf1 mRNA levels at Gs28, and tail igf1r at Gs42. Effects on tail trβ mRNA levels were detected in SP-treated tadpoles at Gs42, 40days post-exposure, suggesting that the chemical inhibition of thyroid hormone production early in development can have long-lasting effects. The growth effects observed in the SP-exposed animals suggest a relationship between TH-dependent development and somatic growth in L. sylvaticus tadpoles.
Collapse
Affiliation(s)
- Elizabeth Bulaeva
- Centre for Advanced Research in Environmental Genomics, Biology Department, University of Ottawa, Ontario K1N 6N5, Canada
| | - Chantal Lanctôt
- Centre for Advanced Research in Environmental Genomics, Biology Department, University of Ottawa, Ontario K1N 6N5, Canada
| | - Leslie Reynolds
- Centre for Advanced Research in Environmental Genomics, Biology Department, University of Ottawa, Ontario K1N 6N5, Canada
| | - Vance L Trudeau
- Centre for Advanced Research in Environmental Genomics, Biology Department, University of Ottawa, Ontario K1N 6N5, Canada
| | - Laia Navarro-Martín
- Centre for Advanced Research in Environmental Genomics, Biology Department, University of Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
40
|
Schall KA, Holoyda KA, Grant CN, Levin DE, Torres ER, Maxwell A, Pollack HA, Moats RA, Frey MR, Darehzereshki A, Al Alam D, Lien C, Grikscheit TC. Adult zebrafish intestine resection: a novel model of short bowel syndrome, adaptation, and intestinal stem cell regeneration. Am J Physiol Gastrointest Liver Physiol 2015; 309:G135-45. [PMID: 26089336 PMCID: PMC4525108 DOI: 10.1152/ajpgi.00311.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 05/28/2015] [Indexed: 01/31/2023]
Abstract
Loss of significant intestinal length from congenital anomaly or disease may lead to short bowel syndrome (SBS); intestinal failure may be partially offset by a gain in epithelial surface area, termed adaptation. Current in vivo models of SBS are costly and technically challenging. Operative times and survival rates have slowed extension to transgenic models. We created a new reproducible in vivo model of SBS in zebrafish, a tractable vertebrate model, to facilitate investigation of the mechanisms of intestinal adaptation. Proximal intestinal diversion at segment 1 (S1, equivalent to jejunum) was performed in adult male zebrafish. SBS fish emptied distal intestinal contents via stoma as in the human disease. After 2 wk, S1 was dilated compared with controls and villus ridges had increased complexity, contributing to greater villus epithelial perimeter. The number of intervillus pockets, the intestinal stem cell zone of the zebrafish increased and contained a higher number of bromodeoxyuridine (BrdU)-labeled cells after 2 wk of SBS. Egf receptor and a subset of its ligands, also drivers of adaptation, were upregulated in SBS fish. Igf has been reported as a driver of intestinal adaptation in other animal models, and SBS fish exposed to a pharmacological inhibitor of the Igf receptor failed to demonstrate signs of intestinal adaptation, such as increased inner epithelial perimeter and BrdU incorporation. We describe a technically feasible model of human SBS in the zebrafish, a faster and less expensive tool to investigate intestinal stem cell plasticity as well as the mechanisms that drive intestinal adaptation.
Collapse
Affiliation(s)
- K. A. Schall
- 1Division of Pediatric Surgery, Children's Hospital Los Angeles, Keck School of Medicine at University of Southern California, Los Angeles, California;
| | - K. A. Holoyda
- 1Division of Pediatric Surgery, Children's Hospital Los Angeles, Keck School of Medicine at University of Southern California, Los Angeles, California;
| | - C. N. Grant
- 1Division of Pediatric Surgery, Children's Hospital Los Angeles, Keck School of Medicine at University of Southern California, Los Angeles, California;
| | - D. E. Levin
- 1Division of Pediatric Surgery, Children's Hospital Los Angeles, Keck School of Medicine at University of Southern California, Los Angeles, California;
| | - E. R. Torres
- 1Division of Pediatric Surgery, Children's Hospital Los Angeles, Keck School of Medicine at University of Southern California, Los Angeles, California;
| | - A. Maxwell
- 2Developmental Biology and Regenerative Medicine Program, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine at University of Southern California, Los Angeles, California;
| | - H. A. Pollack
- 3Department of Radiology, Children's Hospital Los Angeles, Keck School of Medicine at University of Southern California, Los Angeles, California;
| | - R. A. Moats
- 3Department of Radiology, Children's Hospital Los Angeles, Keck School of Medicine at University of Southern California, Los Angeles, California;
| | - M. R. Frey
- 2Developmental Biology and Regenerative Medicine Program, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine at University of Southern California, Los Angeles, California; ,4Department of Pediatrics and Department of Biochemistry and Molecular Biology, Keck School of Medicine at University of Southern California, Los Angeles, California; and
| | - A. Darehzereshki
- 2Developmental Biology and Regenerative Medicine Program, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine at University of Southern California, Los Angeles, California;
| | - D. Al Alam
- 1Division of Pediatric Surgery, Children's Hospital Los Angeles, Keck School of Medicine at University of Southern California, Los Angeles, California;
| | - C. Lien
- 2Developmental Biology and Regenerative Medicine Program, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine at University of Southern California, Los Angeles, California; ,5Department of Cardiothoracic Surgery, Children's Hospital Los Angeles, Keck School of Medicine at University of Southern California, Los Angeles, California
| | - T. C. Grikscheit
- 1Division of Pediatric Surgery, Children's Hospital Los Angeles, Keck School of Medicine at University of Southern California, Los Angeles, California; ,2Developmental Biology and Regenerative Medicine Program, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine at University of Southern California, Los Angeles, California;
| |
Collapse
|
41
|
IUGR prevents IGF-1 upregulation in juvenile male mice by perturbing postnatal IGF-1 chromatin remodeling. Pediatr Res 2015; 78:14-23. [PMID: 25826117 DOI: 10.1038/pr.2015.70] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/09/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Intrauterine growth restriction (IUGR) offspring with rapid catch-up growth are at increased risk for early obesity especially in males. Persistent insulin-like growth factor-1 (IGF-1) reduction is an important risk factor. Using a mouse model of maternal hypertension-induced IUGR, we examined IGF-1 levels, promoter DNA methylation, and histone H3 covalent modifications at birth (D1). We additionally investigated whether prenatal perturbations could reset at preadolescence (D21). METHODS IUGR was induced via maternal thromboxane A2-analog infusion in mice. RESULTS IUGR uniformly decreased D1 IGF-1 mRNA and protein levels with reduced promoter 1 (P1) transcription and increased P1 DNA methylation. IUGR males also had increased H3K4ac at exon 5 and 3' distal UTR. At D21, IUGR males continued to have decreased IGF-1 levels, originating from both P1 and P2 with reduced 1A variant. IUGR males also had decreased activation mark of H3K4me3 at P1 compared with sham males. In contrast, D21 IUGR females normalized their IGF-1 levels, in association with an increased activation mark of H3K4me3 at P1 compared with sham females. CONCLUSION IUGR uniformly affected D1 hepatic IGF-1 epigenetic modifications in both sexes. However, at preadolescence, IUGR males are unable to correct for the prenatal reduction possibly due to a more perturbed IGF-1 chromatin structure.
Collapse
|
42
|
Wolman MA, Jain RA, Marsden KC, Bell H, Skinner J, Hayer KE, Hogenesch JB, Granato M. A genome-wide screen identifies PAPP-AA-mediated IGFR signaling as a novel regulator of habituation learning. Neuron 2015; 85:1200-11. [PMID: 25754827 DOI: 10.1016/j.neuron.2015.02.025] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/06/2015] [Accepted: 02/12/2015] [Indexed: 01/15/2023]
Abstract
Habituation represents a fundamental form of learning, yet the underlying molecular genetic mechanisms are not well defined. Here we report on a genome-wide genetic screen, coupled with whole-genome sequencing, that identified 14 zebrafish startle habituation mutants including mutants of the vertebrate-specific gene pregnancy-associated plasma protein-aa (pappaa). PAPP-AA encodes an extracellular metalloprotease known to increase IGF bioavailability, thereby enhancing IGF receptor signaling. We find that pappaa is expressed by startle circuit neurons, and expression of wild-type but not a metalloprotease-inactive version of pappaa restores habituation in pappaa mutants. Furthermore, acutely inhibiting IGF1R function in wild-type reduces habituation, while activation of IGF1R downstream effectors in pappaa mutants restores habituation, demonstrating that pappaa promotes learning by acutely and locally increasing IGF bioavailability. In sum, our results define the first functional gene set for habituation learning in a vertebrate and identify PAPPAA-regulated IGF signaling as a novel mechanism regulating habituation learning.
Collapse
Affiliation(s)
- Marc A Wolman
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, 1157 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104, USA; Department of Zoology, University of Wisconsin; 213 Zoology Research Building, 1117 West Johnson Street, Madison, WI 53706, USA
| | - Roshan A Jain
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, 1157 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Kurt C Marsden
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, 1157 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Hannah Bell
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, 1157 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Julianne Skinner
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, 1157 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Katharina E Hayer
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, 829 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - John B Hogenesch
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, 829 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Michael Granato
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, 1157 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
43
|
Yao K, Ge W. Differential regulation of kit ligand A (kitlga) expression in the zebrafish ovarian follicle cells--evidence for the existence of a cyclic adenosine 3', 5' monophosphate-mediated binary regulatory system during folliculogenesis. Mol Cell Endocrinol 2015; 402:21-31. [PMID: 25542847 DOI: 10.1016/j.mce.2014.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 12/07/2014] [Accepted: 12/09/2014] [Indexed: 01/29/2023]
Abstract
Kit ligand (Kitl) is an important paracrine factor involved in the activation of primordial follicles from the quiescent pool and in the maintenance of meiotic arrest before germinal vesicle breakdown (GVBD). It has been reported that follicle-stimulating hormone (FSH) stimulates but luteinizing hormone (LH) suppresses the expression of Kitl in the granulosa cells in mammals. Considering that both gonadotropins signal in the follicle cells mainly by activating cyclic adenosine 3', 5'-monophosphate (cAMP) pathway, we are intrigued by how cAMP differentially regulates Kitl expression. In the present study, we demonstrated that both human chorionic gonadotropin (hCG) and pituitary adenylate cyclase activating polypeptide (PACAP) inhibited insulin-like growth factor I (IGF-I)-induced Akt phosphorylation and kitlga expression in the zebrafish follicle cells. Further experiments showed that cAMP was involved in regulating the expression of kitlga. However, two cAMP-activated effectors, protein kinase A (PKA) and exchange protein directly activated by cAMP (Epac), had converse effects. PKA promoted whereas Epac inhibited the expression of kitlga, as demonstrated by the respective activators. Interestingly, cAMP also appeared to exert differential effects on kitlga expression at different stages of follicle development during folliculogenesis, significantly stimulating kitlga expression at the early growth stage but suppressing it at the full-grown stage before final oocyte maturation, implying a potential mechanism for differential effects of the same pathway at different stages. The inhibitory effect of forskolin (activator of adenylate cyclase) and H89 (inhibitor of PKA) on IGF-I-induced expression of kitlga suggested cross-talk between the cAMP and IGF-I-activated PI3K-Akt pathways. This study, together with our previous findings on IGF-I regulation of kitlga expression, provides important clues to the underlying mechanism that regulates Kit ligand expression during folliculogenesis in the ovary.
Collapse
Affiliation(s)
- Kai Yao
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Wei Ge
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| |
Collapse
|
44
|
Nilsson GE, Vaage J, Stensløkken KO. Oxygen- and temperature-dependent expression of survival protein kinases in crucian carp (Carassius carassius) heart and brain. Am J Physiol Regul Integr Comp Physiol 2015; 308:R50-61. [PMID: 25377478 DOI: 10.1152/ajpregu.00094.2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Living without oxygen is limited to very few vertebrates, one species being the fresh water fish crucian carp (Carassius carassius), which can survive months of anoxia at low temperatures. Mammalian heart and brain are particularly intolerant to oxygen deprivation, yet these organs can be conditioned to display increased resistance, possibly due to activation of several protein kinases. We hypothesized increased phosphorylation status of these kinases in hypoxic and anoxic crucian carp heart and brain. Moreover, we wanted to investigate whether the kinases showing the strongest phosphorylation during hypoxia/anoxia, ERK 1/2, p38-MAPK, JNK, PKCε, and PKCδ, also had increased expression and phosphorylation at cold temperatures, to better cope with the anoxic periods during winter. We found small differences in the phosphorylation status of ERK 1/2, p38-MAPK, JNK, PKCε, and PKCδ during 10 days of severe hypoxia in both heart and brain (0.3 mg O₂/l) and varying responses to reoxygenation. In contrast, 7 days of anoxia (<0.01 mg O₂/l) markedly increased phosphorylation of ERK 1/2, p38-MAPK, JNK in the heart, and p38-MAPK and PKCε in the brain. Similarly, varying acclimation temperature between 4, 10 and 20°C induced large changes in phosphorylation status. Total protein expression in heart and brain neither changed during different oxygen regimes nor with different acclimation temperatures, except for ERK 1/2, which slightly decreased in the heart at 4°C compared with 20°C. A phylogenetic analysis confirmed that these protein kinases are evolutionarily conserved across a wide range of vertebrate species. Our findings indicate important roles of several protein kinases during oxygen deprivation.
Collapse
Affiliation(s)
- Göran E Nilsson
- Section for Physiology and Cell Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jarle Vaage
- Department of Emergency Medicine and Intensive Care, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo Hospital, Oslo, Norway; and
| | | |
Collapse
|
45
|
Harrod CS, Fingerlin TE, Chasan-Taber L, Reynolds RM, Glueck DH, Dabelea D. Exposure to prenatal smoking and early-life body composition: the healthy start study. Obesity (Silver Spring) 2015; 23:234-41. [PMID: 25385660 PMCID: PMC4276469 DOI: 10.1002/oby.20924] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 09/17/2014] [Indexed: 11/23/2022]
Abstract
OBJECTIVES To examine associations between exposure to prenatal smoking and early-life changes in fat mass (FM), fat-free mass (FFM), and anthropometrics. METHODS About 670 mother-offspring pairs were analyzed in the longitudinal Healthy Start study. Maternal smoking data were collected during prenatal research visits. Offspring body composition and size were measured by air displacement plethysmography at delivery and postnatal follow-up (5 months) visits. RESULTS Comparing exposed and unexposed offspring, exposure to prenatal smoking was significantly associated with reduced neonatal FM (P = 0.007) and FFM (P = 0.02). In contrast, at 5 months, exposed offspring had comparable FM (P = 0.61) and FFM (P = 0.41). After subsequent adjustment for birth weight, offspring exposed to prenatal smoking had significantly greater FFM (154.7 g, 0.5, 309.0; P = 0.049) and sum of skinfolds (2.7 mm, 0.06, 5.3; P = 0.04). From delivery to follow-up, exposed offspring had significantly greater increases in FFM (156.4 g, 2.8, 310.1; P = 0.046) and sum of skinfolds (2.7 mm, 0.06, 5.3; P = 0.04), even after adjustment for respective delivery measures. CONCLUSIONS Exposure to prenatal smoking was significantly associated with rapid postnatal growth, which may increase the offspring's risk of metabolic diseases.
Collapse
Affiliation(s)
- Curtis S Harrod
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO
| | - Tasha E Fingerlin
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO
| | - Lisa Chasan-Taber
- Department of Epidemiology, University of Massachusetts, Amherst, MA
| | - Regina M Reynolds
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO
- Department of Neonatology, Children’s Hospital, Aurora, CO
| | - Deborah H Glueck
- Department of Biostatistics, Colorado School of Public Health, Aurora, CO
| | - Dana Dabelea
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO
| |
Collapse
|
46
|
Sawada R, Kamei H, Hakuno F, Takahashi SI, Shimizu T. In vivo loss of function study reveals theshort stature homeobox-containing(shox) gene plays indispensable roles in early embryonic growth and bone formation in zebrafish. Dev Dyn 2014; 244:146-56. [DOI: 10.1002/dvdy.24239] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 11/11/2014] [Accepted: 12/02/2014] [Indexed: 12/19/2022] Open
Affiliation(s)
- Rie Sawada
- Juntendo University Graduate School of Medicine; Tokyo Japan
- Departments of Animal Sciences and Applied Biological Chemistry; Graduate School of Agriculture and Life Sciences, The University of Tokyo; Tokyo Japan
| | - Hiroyasu Kamei
- Departments of Animal Sciences and Applied Biological Chemistry; Graduate School of Agriculture and Life Sciences, The University of Tokyo; Tokyo Japan
| | - Fumihiko Hakuno
- Departments of Animal Sciences and Applied Biological Chemistry; Graduate School of Agriculture and Life Sciences, The University of Tokyo; Tokyo Japan
| | - Shin-Ichiro Takahashi
- Departments of Animal Sciences and Applied Biological Chemistry; Graduate School of Agriculture and Life Sciences, The University of Tokyo; Tokyo Japan
| | | |
Collapse
|
47
|
C De B, Meena DK, Behera BK, Das P, Das Mohapatra PK, Sharma AP. Probiotics in fish and shellfish culture: immunomodulatory and ecophysiological responses. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:921-971. [PMID: 24419543 DOI: 10.1007/s10695-013-9897-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 12/06/2013] [Indexed: 06/03/2023]
Abstract
Aquaculture is emerging as one of the most viable and promising enterprises for keeping pace with the surging need for animal protein, providing nutritional and food security to humans, particularly those residing in regions where livestock is relatively scarce. With every step toward intensification of aquaculture practices, there is an increase in the stress level in the animal as well as the environment. Hence, disease outbreak is being increasingly recognized as one of the most important constraints to aquaculture production in many countries, including India. Conventionally, the disease control in aquaculture has relied on the use of chemical compounds and antibiotics. The development of non-antibiotic and environmentally friendly agents is one of the key factors for health management in aquaculture. Consequently, with the emerging need for environmentally friendly aquaculture, the use of alternatives to antibiotic growth promoters in fish nutrition is now widely accepted. In recent years, probiotics have taken center stage and are being used as an unconventional approach that has numerous beneficial effects in fish and shellfish culture: improved activity of gastrointestinal microbiota and enhanced immune status, disease resistance, survival, feed utilization and growth performance. As natural products, probiotics have much potential to increase the efficiency and sustainability of aquaculture production. Therefore, comprehensive research to fully characterize the intestinal microbiota of prominent fish species, mechanisms of action of probiotics and their effects on the intestinal ecosystem, immunity, fish health and performance is reasonable. This review highlights the classifications and applications of probiotics in aquaculture. The review also summarizes the advancement and research highlights of the probiotic status and mode of action, which are of great significance from an ecofriendly, sustainable, intensive aquaculture point of view.
Collapse
Affiliation(s)
- Bidhan C De
- Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
OPINION STATEMENT Myocardial infarction is the most common cause of cardiac injury in humans and results in acute loss of large numbers of myocardial cells. Unfortunately, the mammalian heart is unable to replenish the cells that are lost following a myocardial infarction and an eventual progression to heart failure can often occur as a result. Regenerative medicine based approaches are actively being developed; however, a complete blueprint on how mammalian hearts can regenerate is still missing. Knowledge gained from studying animal models, such as zebrafish, newt, and neonatal mice, that can naturally regenerate their hearts after injury have provided an understanding of the molecular mechanisms involved in heart repair and regeneration. This research offers novel strategies to overcome the limited regenerative response observed in human patients.
Collapse
|
49
|
Liu C, Luan J, Bai Y, Li Y, Lu L, Liu Y, Hakuno F, Takahashi SI, Duan C, Zhou J. Aspp2 negatively regulates body growth but not developmental timing by modulating IRS signaling in zebrafish embryos. Gen Comp Endocrinol 2014; 197:82-91. [PMID: 24362258 DOI: 10.1016/j.ygcen.2013.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 10/22/2013] [Accepted: 12/10/2013] [Indexed: 10/25/2022]
Abstract
The growth and developmental rate of developing embryos and fetus are tightly controlled and coordinated to maintain proper body shape and size. The insulin receptor substrate (IRS) proteins, key intracellular transducers of insulin and insulin-like growth factor signaling, play essential roles in the regulation of growth and development. A short isoform of apoptosis-stimulating protein of p53 2 (ASPP2) was recently identified as a binding partner of IRS-1 and IRS-2 in mammalian cells in vitro. However, it is unclear whether ASPP2 plays any role in vertebrate embryonic growth and development. Here, we show that zebrafish Aspp2a and Aspp2b negatively regulate embryonic growth without affecting developmental rate. Human ASPP2 had similar effects on body growth in zebrafish embryos. Aspp2a and 2b inhibit Akt signaling. This inhibition was reversed by coinjection of myr-Akt1, a constitutively active form of Akt1. Zebrafish Aspp2a and Aspp2b physically bound with Irs-1, and the growth inhibitory effects of ASPP2/Aspp2 depend on the presence of their ankyrin repeats and SH3 domains. These findings uncover a novel role of Aspp2 in regulating vertebrate embryonic growth.
Collapse
Affiliation(s)
- Chengdong Liu
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jing Luan
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yan Bai
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yun Li
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Ling Lu
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yunzhang Liu
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Fumihiko Hakuno
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shin-Ichiro Takahashi
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Cunming Duan
- Department of Molecular, Cellular, and Developmental Biology (C.D.), University of Michigan, Ann Arbor, MI 48109, USA
| | - Jianfeng Zhou
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
50
|
Kocmarek AL, Ferguson MM, Danzmann RG. Differential gene expression in small and large rainbow trout derived from two seasonal spawning groups. BMC Genomics 2014; 15:57. [PMID: 24450799 PMCID: PMC3931318 DOI: 10.1186/1471-2164-15-57] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 01/17/2014] [Indexed: 12/24/2022] Open
Abstract
Background Growth in fishes is regulated via many environmental and physiological factors and is shaped by the genetic background of each individual. Previous microarray studies of salmonid growth have examined fish experiencing either muscle wastage or accelerated growth patterns following refeeding, or the influence of growth hormone and transgenesis. This study determines the gene expression profiles of genetically unmanipulated large and small fish from a domesticated salmonid strain reared on a typical feeding regime. Gene expression profiles of white muscle and liver from rainbow trout (Oncorhynchus mykiss) from two seasonal spawning groups (September and December lots) within a single strain were examined when the fish were 15 months of age to assess the influence of season (late fall vs. onset of spring) and body size (large vs. small). Results Although IGFBP1 gene expression was up-regulated in the livers of small fish in both seasonal lots, few expression differences were detected in the liver overall. Faster growing Dec. fish showed a greater number of differences in white muscle expression compared to Sept. fish. Significant differences in the GO Generic Level 3 categories ‘response to external stimulus’, ‘establishment of localization’, and ‘response to stress’ were detected in white muscle tissue between large and small fish. Larger fish showed up-regulation of cytoskeletal component genes while many genes related to myofibril components of muscle tissue were up-regulated in small fish. Most of the genes up-regulated in large fish within the ‘response to stress’ category are involved in immunity while in small fish most of these gene functions are related to apoptosis. Conclusions A higher proportion of genes in white muscle compared to liver showed similar patterns of up- or down-regulation within the same size class across seasons supporting their utility as biomarkers for growth in rainbow trout. Differences between large and small Sept. fish in the ‘response to stress’ and ‘response to external stimulus’ categories for white muscle tissue, suggests that smaller fish have a greater inability to handle stress compared to the large fish. Sampling season had a significant impact on the expression of genes related to the growth process in rainbow trout.
Collapse
Affiliation(s)
- Andrea L Kocmarek
- Department of Integrative Biology, University of Guelph, 50 Stone Rd, East, Guelph, Ontario N1G 2W1, Canada.
| | | | | |
Collapse
|