1
|
Sachan N, Sharma V, Mutsuddi M, Mukherjee A. Notch signalling: multifaceted role in development and disease. FEBS J 2024; 291:3030-3059. [PMID: 37166442 DOI: 10.1111/febs.16815] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 02/08/2023] [Accepted: 05/10/2023] [Indexed: 05/12/2023]
Abstract
Notch pathway is an evolutionarily conserved signalling system that operates to influence an astonishing array of cell fate decisions in different developmental contexts. Notch signalling plays important roles in many developmental processes, making it difficult to name a tissue or a developing organ that does not depend on Notch function at one stage or another. Thus, dysregulation of Notch signalling is associated with many developmental defects and various pathological conditions, including cancer. Although many recent advances have been made to reveal different aspects of the Notch signalling mechanism and its intricate regulation, there are still many unanswered questions related to how the Notch signalling pathway functions in so many developmental events. The same pathway can be deployed in numerous cellular contexts to play varied and critical roles in an organism's development and this is only possible because of the complex regulatory mechanisms of the pathway. In this review, we provide an overview of the mechanism and regulation of the Notch signalling pathway along with its multifaceted functions in different aspects of development and disease.
Collapse
Affiliation(s)
- Nalani Sachan
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY, USA
| | - Vartika Sharma
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Mousumi Mutsuddi
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ashim Mukherjee
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
2
|
Sibuea S, Ho JK, Pouton CW, Haynes JM. TGFβ3, dibutyryl cAMP and a notch inhibitor modulate phenotype late in stem cell-derived dopaminergic neuron maturation. Front Cell Dev Biol 2023; 11:1111705. [PMID: 36819101 PMCID: PMC9928866 DOI: 10.3389/fcell.2023.1111705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
The generation of midbrain dopaminergic neurons (mDAs) from pluripotent stem cells (hPSC) holds much promise for both disease modelling studies and as a cell therapy for Parkinson's disease (PD). Generally, dopaminergic neuron differentiation paradigms rely on inhibition of smad signalling for neural induction followed by hedgehog signalling and an elevation of β-catenin to drive dopaminergic differentiation. Post-patterning, differentiating dopaminergic neuron cultures are permitted time for maturation after which the success of these differentiation paradigms is usually defined by expression of tyrosine hydroxylase (TH), the rate limiting enzyme in the synthesis of dopamine. However, during maturation, culture media is often supplemented with additives to promote neuron survival and or promote cell differentiation. These additives include dibutyryl cyclic adenosine monophosphate (dbcAMP), transforming growth factor β3 (TGFβ3) and or the γ-secretase inhibitor (DAPT). While these factors are routinely added to cultures, their impact upon pluripotent stem cell-derived mDA phenotype is largely unclear. In this study, we differentiate pluripotent stem cells toward a dopaminergic phenotype and investigate how the omission of dbcAMP, TGFβ3 or DAPT, late in maturation, affects the regulation of multiple dopaminergic neuron phenotype markers. We now show that the removal of dbcAMP or TGFβ3 significantly and distinctly impacts multiple markers of the mDA phenotype (FOXA2, EN1, EN2, FOXA2, SOX6), while commonly increasing both MSX2 and NEUROD1 and reducing expression of both tyrosine hydroxylase and WNT5A. Removing DAPT significantly impacted MSX2, OTX2, EN1, and KCNJ6. In the absence of any stressful stimuli, we suggest that these culture additives should be viewed as mDA phenotype-modifying, rather than neuroprotective. We also suggest that their addition to cultures is likely to confound the interpretation of both transplantation and disease modelling studies.
Collapse
Affiliation(s)
- Shanti Sibuea
- Stem Cell Biology Group, Monash Institute of Pharmaceutical Sciences Monash University, Parkville, VIC, Australia,National Agency of Drug and Food Control, Jakarta, Indonesia
| | - Joan K. Ho
- Stem Cell Biology Group, Monash Institute of Pharmaceutical Sciences Monash University, Parkville, VIC, Australia
| | - Colin W. Pouton
- Stem Cell Biology Group, Monash Institute of Pharmaceutical Sciences Monash University, Parkville, VIC, Australia
| | - John M. Haynes
- Stem Cell Biology Group, Monash Institute of Pharmaceutical Sciences Monash University, Parkville, VIC, Australia,*Correspondence: John M. Haynes,
| |
Collapse
|
3
|
Chen J, Gao D, Sun L, Yang J. Kölliker’s organ-supporting cells and cochlear auditory development. Front Mol Neurosci 2022; 15:1031989. [PMID: 36304996 PMCID: PMC9592740 DOI: 10.3389/fnmol.2022.1031989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022] Open
Abstract
The Kölliker’s organ is a transient cellular cluster structure in the development of the mammalian cochlea. It gradually degenerates from embryonic columnar cells to cuboidal cells in the internal sulcus at postnatal day 12 (P12)–P14, with the cochlea maturing when the degeneration of supporting cells in the Kölliker’s organ is complete, which is distinct from humans because it disappears at birth already. The supporting cells in the Kölliker’s organ play a key role during this critical period of auditory development. Spontaneous release of ATP induces an increase in intracellular Ca2+ levels in inner hair cells in a paracrine form via intercellular gap junction protein hemichannels. The Ca2+ further induces the release of the neurotransmitter glutamate from the synaptic vesicles of the inner hair cells, which subsequently excite afferent nerve fibers. In this way, the supporting cells in the Kölliker’s organ transmit temporal and spatial information relevant to cochlear development to the hair cells, promoting fine-tuned connections at the synapses in the auditory pathway, thus facilitating cochlear maturation and auditory acquisition. The Kölliker’s organ plays a crucial role in such a scenario. In this article, we review the morphological changes, biological functions, degeneration, possible trans-differentiation of cochlear hair cells, and potential molecular mechanisms of supporting cells in the Kölliker’s organ during the auditory development in mammals, as well as future research perspectives.
Collapse
Affiliation(s)
- Jianyong Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
| | - Dekun Gao
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
| | - Lianhua Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
- *Correspondence: Lianhua Sun Jun Yang
| | - Jun Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
- *Correspondence: Lianhua Sun Jun Yang
| |
Collapse
|
4
|
Hidalgo-Sánchez M, Andreu-Cervera A, Villa-Carballar S, Echevarria D. An Update on the Molecular Mechanism of the Vertebrate Isthmic Organizer Development in the Context of the Neuromeric Model. Front Neuroanat 2022; 16:826976. [PMID: 35401126 PMCID: PMC8987131 DOI: 10.3389/fnana.2022.826976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
A crucial event during the development of the central nervous system (CNS) is the early subdivision of the neural tube along its anterior-to-posterior axis to form neuromeres, morphogenetic units separated by transversal constrictions and programed for particular genetic cascades. The narrower portions observed in the developing neural tube are responsible for relevant cellular and molecular processes, such as clonal restrictions, expression of specific regulatory genes, and differential fate specification, as well as inductive activities. In this developmental context, the gradual formation of the midbrain-hindbrain (MH) constriction has been an excellent model to study the specification of two major subdivisions of the CNS containing the mesencephalic and isthmo-cerebellar primordia. This MH boundary is coincident with the common Otx2-(midbrain)/Gbx2-(hindbrain) expressing border. The early interactions between these two pre-specified areas confer positional identities and induce the generation of specific diffusible morphogenes at this interface, in particular FGF8 and WNT1. These signaling pathways are responsible for the gradual histogenetic specifications and cellular identity acquisitions with in the MH domain. This review is focused on the cellular and molecular mechanisms involved in the specification of the midbrain/hindbrain territory and the formation of the isthmic organizer. Emphasis will be placed on the chick/quail chimeric experiments leading to the acquisition of the first fate mapping and experimental data to, in this way, better understand pioneering morphological studies and innovative gain/loss-of-function analysis.
Collapse
Affiliation(s)
- Matías Hidalgo-Sánchez
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
- *Correspondence: Matías Hidalgo-Sánchez Diego Echevarria
| | - Abraham Andreu-Cervera
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Alicante, Spain
| | - Sergio Villa-Carballar
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Diego Echevarria
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Alicante, Spain
- *Correspondence: Matías Hidalgo-Sánchez Diego Echevarria
| |
Collapse
|
5
|
Kim S, Uroz M, Bays JL, Chen CS. Harnessing Mechanobiology for Tissue Engineering. Dev Cell 2021; 56:180-191. [PMID: 33453155 PMCID: PMC7855912 DOI: 10.1016/j.devcel.2020.12.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/10/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022]
Abstract
A primary challenge in tissue engineering is to recapitulate both the structural and functional features of whole tissues and organs. In vivo, patterning of the body plan and constituent tissues emerges from the carefully orchestrated interactions between the transcriptional programs that give rise to cell types and the mechanical forces that drive the bending, twisting, and extensions critical to morphogenesis. Substantial recent progress in mechanobiology-understanding how mechanics regulate cell behaviors and what cellular machineries are responsible-raises the possibility that one can begin to use these insights to help guide the strategy and design of functional engineered tissues. In this perspective, we review and propose the development of different approaches, from providing appropriate extracellular mechanical cues to interfering with cellular mechanosensing machinery, to aid in controlling cell and tissue structure and function.
Collapse
Affiliation(s)
- Sudong Kim
- Department of Biomedical Engineering and the Biological Design Center, Boston University, Boston, MA 02215, USA; The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Marina Uroz
- Department of Biomedical Engineering and the Biological Design Center, Boston University, Boston, MA 02215, USA; The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Jennifer L Bays
- Department of Biomedical Engineering and the Biological Design Center, Boston University, Boston, MA 02215, USA; The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Christopher S Chen
- Department of Biomedical Engineering and the Biological Design Center, Boston University, Boston, MA 02215, USA; The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
6
|
Alwin Prem Anand A, Alvarez-Bolado G, Wizenmann A. MiR-9 and the Midbrain-Hindbrain Boundary: A Showcase for the Limited Functional Conservation and Regulatory Complexity of MicroRNAs. Front Cell Dev Biol 2020; 8:586158. [PMID: 33330463 PMCID: PMC7719755 DOI: 10.3389/fcell.2020.586158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/23/2020] [Indexed: 11/15/2022] Open
Abstract
MicroRNAs regulate gene expression at post-transcriptional levels. Some of them appear to regulate brain development and are involved in neurodevelopmental disorders. This has led to the suggestion that the role of microRNAs in neuronal development and function may be more central than previously appreciated. Here, we review the data about miR-9 function to depict the subtlety, complexity, flexibility and limited functional conservation of this essential developmental regulatory system. On this basis we propose that species-specific actions of miR-9 could underlie to a large degree species differences in brain size, shape and function.
Collapse
Affiliation(s)
- A Alwin Prem Anand
- Institute of Clinical Anatomy and Cell Analysis, University of Tuebingen, Tuebingen, Germany
| | | | - Andrea Wizenmann
- Institute of Clinical Anatomy and Cell Analysis, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
7
|
Kesavan G, Machate A, Hans S, Brand M. Cell-fate plasticity, adhesion and cell sorting complementarily establish a sharp midbrain-hindbrain boundary. Development 2020; 147:dev186882. [PMID: 32439756 DOI: 10.1242/dev.186882] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/30/2020] [Indexed: 01/22/2023]
Abstract
The formation and maintenance of sharp boundaries between groups of cells play a vital role during embryonic development as they serve to compartmentalize cells with similar fates. Some of these boundaries also act as organizers, with the ability to induce specific cell fates and morphogenesis in the surrounding cells. The midbrain-hindbrain boundary (MHB) is such an organizer: it acts as a lineage restriction boundary to prevent the intermingling of cells with different developmental fates. However, the mechanisms underlying the lineage restriction process remain unclear. Here, using novel fluorescent knock-in reporters, live imaging, Cre/lox-mediated lineage tracing, atomic force microscopy-based cell adhesion assays and mutant analysis, we analyze the process of lineage restriction at the MHB and provide mechanistic details. Specifically, we show that lineage restriction occurs by the end of gastrulation, and that the subsequent formation of sharp gene expression boundaries in the developing MHB occur through complementary mechanisms, i.e. cell-fate plasticity and cell sorting. Furthermore, we show that cell sorting at the MHB involves differential adhesion among midbrain and hindbrain cells that is mediated by N-cadherin and Eph-ephrin signaling.
Collapse
Affiliation(s)
- Gokul Kesavan
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität Dresden, Fetscherstr. 105, 01307 Dresden, Germany
| | - Anja Machate
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität Dresden, Fetscherstr. 105, 01307 Dresden, Germany
| | - Stefan Hans
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität Dresden, Fetscherstr. 105, 01307 Dresden, Germany
| | - Michael Brand
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität Dresden, Fetscherstr. 105, 01307 Dresden, Germany
| |
Collapse
|
8
|
|
9
|
Evolutionary emergence of the rac3b/ rfng/ sgca regulatory cluster refined mechanisms for hindbrain boundaries formation. Proc Natl Acad Sci U S A 2018; 115:E3731-E3740. [PMID: 29610331 DOI: 10.1073/pnas.1719885115] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Developmental programs often rely on parallel morphogenetic mechanisms that guarantee precise tissue architecture. While redundancy constitutes an obvious selective advantage, little is known on how novel morphogenetic mechanisms emerge during evolution. In zebrafish, rhombomeric boundaries behave as an elastic barrier, preventing cell intermingling between adjacent compartments. Here, we identify the fundamental role of the small-GTPase Rac3b in actomyosin cable assembly at hindbrain boundaries. We show that the novel rac3b/rfng/sgca regulatory cluster, which is specifically expressed at the boundaries, emerged in the Ostariophysi superorder by chromosomal rearrangement that generated new cis-regulatory interactions. By combining 4C-seq, ATAC-seq, transgenesis, and CRISPR-induced deletions, we characterized this regulatory domain, identifying hindbrain boundary-specific cis-regulatory elements. Our results suggest that the capacity of boundaries to act as an elastic mesh for segregating rhombomeric cells evolved by cooption of critical genes to a novel regulatory block, refining the mechanisms for hindbrain segmentation.
Collapse
|
10
|
Alwin Prem Anand A, Huber C, Asnet Mary J, Gallus N, Leucht C, Klafke R, Hirt B, Wizenmann A. Expression and function of microRNA-9 in the mid-hindbrain area of embryonic chick. BMC DEVELOPMENTAL BIOLOGY 2018; 18:3. [PMID: 29471810 PMCID: PMC5824543 DOI: 10.1186/s12861-017-0159-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 11/27/2017] [Indexed: 12/21/2022]
Abstract
Background MiR-9 is a small non-coding RNA that is highly conserved between species and primarily expressed in the central nervous system (CNS). It is known to influence proliferation and neuronal differentiation in the brain and spinal cord of different vertebrates. Different studies have pointed to regional and species-specific differences in the response of neural progenitors to miR-9. Methods In ovo and ex ovo electroporation was used to overexpress or reduce miR-9 followed by mRNA in situ hybridisation and immunofluorescent stainings to evaluate miR- expression and the effect of changed miR-9 expression. Results We have investigated the expression and function of miR-9 during early development of the mid-hindbrain region (MH) in chick. Our analysis reveals a closer relationship of chick miR-9 to mammalian miR-9 than to fish and a dynamic expression pattern in the chick neural tube. Early in development, miR-9 is diffusely expressed in the entire brain, bar the forebrain, and it becomes more restricted to specific areas of the CNS at later stages. MiR-9 overexpression at HH9–10 results in a reduction of FGF8 expression and premature neuronal differentiation in the mid-hindbrain boundary (MHB). Within the midbrain miR-9 does not cause premature neuronal differentiation it rather reduces proliferation in the midbrain. Conclusion Our findings indicate that miR-9 has regional specific effects in the developing mid-hindbrain region with a divergence of response of regional progenitors. Electronic supplementary material The online version of this article (10.1186/s12861-017-0159-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- A Alwin Prem Anand
- Institute of Clinical Anatomy and Cell Analysis, University of Tuebingen, Oesterbergstrasse 3, D-72074, Tuebingen, Germany
| | - Carola Huber
- Institute of Clinical Anatomy and Cell Analysis, University of Tuebingen, Oesterbergstrasse 3, D-72074, Tuebingen, Germany.,Robert-Bosch-Krankenhaus, Auerbachstraße 110, 70376, Stuttgart, Germany
| | - John Asnet Mary
- Department of Zoology, Fatima College, Madurai, Tamilnadu, 625018, India
| | - Nancy Gallus
- Institute of Clinical Anatomy and Cell Analysis, University of Tuebingen, Oesterbergstrasse 3, D-72074, Tuebingen, Germany.,Department of Neurobiology, McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Christoph Leucht
- Institute of Developmental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Ruth Klafke
- Institute of Developmental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Bernhard Hirt
- Institute of Clinical Anatomy and Cell Analysis, University of Tuebingen, Oesterbergstrasse 3, D-72074, Tuebingen, Germany
| | - Andrea Wizenmann
- Institute of Clinical Anatomy and Cell Analysis, University of Tuebingen, Oesterbergstrasse 3, D-72074, Tuebingen, Germany.
| |
Collapse
|
11
|
Ventrella R, Kaplan N, Getsios S. Asymmetry at cell-cell interfaces direct cell sorting, boundary formation, and tissue morphogenesis. Exp Cell Res 2017; 358:58-64. [PMID: 28322822 PMCID: PMC5544567 DOI: 10.1016/j.yexcr.2017.03.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/13/2017] [Indexed: 01/22/2023]
Abstract
During development, cells of seemingly homogenous character sort themselves out into distinct compartments in order to generate cell types with specialized features that support tissue morphogenesis and function. This process is often driven by receptors at the cell membrane that probe the extracellular microenvironment for specific ligands and alter downstream signaling pathways impacting transcription, cytoskeletal organization, and cell adhesion to regulate cell sorting and subsequent boundary formation. This review will focus on two of these receptor families, Eph and Notch, both of which are intrinsically non-adhesive and are activated by a unique set of ligands that are asymmetrically distributed from their receptor on neighboring cells. Understanding the requirement of asymmetric ligand-receptor signaling at the membrane under homeostatic conditions gives insight into how misregulation of these pathways contributes to boundary disruption in diseases like cancer.
Collapse
Affiliation(s)
- Rosa Ventrella
- Department of Dermatology, Northwestern University, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Nihal Kaplan
- Department of Dermatology, Northwestern University, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Spiro Getsios
- Department of Dermatology, Northwestern University, 303 E. Chicago Ave, Chicago, IL 60611, USA.
| |
Collapse
|
12
|
Gibbs HC, Chang-Gonzalez A, Hwang W, Yeh AT, Lekven AC. Midbrain-Hindbrain Boundary Morphogenesis: At the Intersection of Wnt and Fgf Signaling. Front Neuroanat 2017; 11:64. [PMID: 28824384 PMCID: PMC5541008 DOI: 10.3389/fnana.2017.00064] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/17/2017] [Indexed: 01/09/2023] Open
Abstract
A constriction in the neural tube at the junction of the midbrain and hindbrain is a conserved feature of vertebrate embryos. The constriction is a defining feature of the midbrain-hindbrain boundary (MHB), a signaling center that patterns the adjacent midbrain and rostral hindbrain and forms at the junction of two gene expression domains in the early neural plate: an anterior otx2/wnt1 positive domain and a posterior gbx/fgf8 positive domain. otx2 and gbx genes encode mutually repressive transcription factors that create a lineage restriction boundary at their expression interface. Wnt and Fgf genes form a mutually dependent feedback system that maintains their expression domains on the otx2 or gbx side of the boundary, respectively. Constriction morphogenesis occurs after these conserved gene expression domains are established and while their mutual interactions maintain their expression pattern; consequently, mutant studies in zebrafish have led to the suggestion that constriction morphogenesis should be considered a unique phase of MHB development. We analyzed MHB morphogenesis in fgf8 loss of function zebrafish embryos using a reporter driven by the conserved wnt1 enhancer to visualize anterior boundary cells. We found that fgf8 loss of function results in a re-activation of wnt1 reporter expression posterior to the boundary simultaneous with an inactivation of the wnt1 reporter in the anterior boundary cells, and that these events correlate with relaxation of the boundary constriction. In consideration of other results that correlate the boundary constriction with Wnt and Fgf expression, we propose that the maintenance of an active Wnt-Fgf feedback loop is a key factor in driving the morphogenesis of the MHB constriction.
Collapse
Affiliation(s)
- Holly C Gibbs
- Department of Biomedical Engineering, Texas A&M UniversityCollege Station, TX, United States
| | - Ana Chang-Gonzalez
- Department of Biomedical Engineering, Texas A&M UniversityCollege Station, TX, United States
| | - Wonmuk Hwang
- Department of Biomedical Engineering, Texas A&M UniversityCollege Station, TX, United States.,Department of Materials Science and Engineering, Texas A&M UniversityCollege Station, TX, United States.,School of Computational Sciences, Korea Institute for Advanced StudySeoul, South Korea
| | - Alvin T Yeh
- Department of Biomedical Engineering, Texas A&M UniversityCollege Station, TX, United States
| | - Arne C Lekven
- Department of Biology, Texas A&M UniversityCollege Station, TX, United States
| |
Collapse
|
13
|
Kesavan G, Chekuru A, Machate A, Brand M. CRISPR/Cas9-Mediated Zebrafish Knock-in as a Novel Strategy to Study Midbrain-Hindbrain Boundary Development. Front Neuroanat 2017; 11:52. [PMID: 28713249 PMCID: PMC5492657 DOI: 10.3389/fnana.2017.00052] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/19/2017] [Indexed: 11/13/2022] Open
Abstract
The midbrain-hindbrain boundary (MHB) acts as an organizer and controls the fate of neighboring cells to develop into either mesencephalic (midbrain) or metencephalic (hindbrain) cells by secreting signaling molecules like Wnt1 and Fgf8. The zebrafish is an excellent vertebrate model for studying MHB development due to the ease of gene manipulation and the possibility of following cellular dynamics and morphogenetic processes using live imaging. Currently, only very few reporter and/or Cre-driver lines are available to study gene expression at the MHB, hampering the understanding of MHB development, and traditional transgenic technologies using promoter/enhancer fragments or bacterial artificial chromosome (BAC)-mediated transgenesis often do not faithfully recapitulate endogenous expression patterns. In contrast, CRISPR/Cas9-mediated genome editing technology now provides a great opportunity to efficiently knock-in or knock-out genes. We have generated four CRISPR/Cas9-based knock-in fluorescent reporter lines for two crucial genes involved in MHB development, namely otx2 and pax2a. The coding sequences of the reporters were knocked-in upstream of the corresponding ATG and are, thus, under the control of the endogenous promoter/enhancer elements. Interestingly, this strategy does not disturb endogenous gene expression. Using the fast maturing fluorescent protein reporter, Venus, enabled us to follow MHB development using cell tracking and live imaging. In addition, we show that these reporter lines label various neuronal and glial cell types in the adult zebrafish brain, making them highly suitable for investigating embryonic and adult midbrain, hindbrain, and MHB development.
Collapse
Affiliation(s)
- Gokul Kesavan
- Biotechnology Center and DFG-Research Center for Regenerative Therapies Dresden, Technische Universität DresdenDresden, Germany
| | - Avinash Chekuru
- Biotechnology Center and DFG-Research Center for Regenerative Therapies Dresden, Technische Universität DresdenDresden, Germany
| | - Anja Machate
- Biotechnology Center and DFG-Research Center for Regenerative Therapies Dresden, Technische Universität DresdenDresden, Germany
| | - Michael Brand
- Biotechnology Center and DFG-Research Center for Regenerative Therapies Dresden, Technische Universität DresdenDresden, Germany
| |
Collapse
|
14
|
Sena E, Feistel K, Durand BC. An Evolutionarily Conserved Network Mediates Development of the zona limitans intrathalamica, a Sonic Hedgehog-Secreting Caudal Forebrain Signaling Center. J Dev Biol 2016; 4:jdb4040031. [PMID: 29615594 PMCID: PMC5831802 DOI: 10.3390/jdb4040031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 09/29/2016] [Accepted: 10/13/2016] [Indexed: 12/16/2022] Open
Abstract
Recent studies revealed new insights into the development of a unique caudal forebrain-signaling center: the zona limitans intrathalamica (zli). The zli is the last brain signaling center to form and the first forebrain compartment to be established. It is the only part of the dorsal neural tube expressing the morphogen Sonic Hedgehog (Shh) whose activity participates in the survival, growth and patterning of neuronal progenitor subpopulations within the thalamic complex. Here, we review the gene regulatory network of transcription factors and cis-regulatory elements that underlies formation of a shh-expressing delimitated domain in the anterior brain. We discuss evidence that this network predates the origin of chordates. We highlight the contribution of Shh, Wnt and Notch signaling to zli development and discuss implications for the fact that the morphogen Shh relies on primary cilia for signal transduction. The network that underlies zli development also contributes to thalamus induction, and to its patterning once the zli has been set up. We present an overview of the brain malformations possibly associated with developmental defects in this gene regulatory network (GRN).
Collapse
Affiliation(s)
- Elena Sena
- Institut Curie, Université Paris Sud, INSERM U1021, CNRS UMR3347, Centre Universitaire, Bâtiment 110, F-91405 Orsay Cedex, France.
| | - Kerstin Feistel
- Institute of Zoology, University of Hohenheim, Garbenstr. 30, 70593 Stuttgart, Germany.
| | - Béatrice C Durand
- Institut Curie, Université Paris Sud, INSERM U1021, CNRS UMR3347, Centre Universitaire, Bâtiment 110, F-91405 Orsay Cedex, France.
| |
Collapse
|
15
|
Gonzalez-Nunez V. Role of gabra2, GABA A receptor alpha-2 subunit, in CNS development. Biochem Biophys Rep 2015; 3:190-201. [PMID: 29124181 PMCID: PMC5668850 DOI: 10.1016/j.bbrep.2015.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/30/2015] [Accepted: 08/05/2015] [Indexed: 12/02/2022] Open
Abstract
gabra2 gene codes for the alpha-2 subunit of the GABAA receptor, one of the ionotropic receptors which has been related to anxiety, depression and other behavioural disorders, including drug dependence and schizophrenia. GABAergic signalling also plays a role during development, by promoting neural stem cell maintenance and renewal. To investigate the role of gabra2 in CNS development, gabra2 deficient zebrafish were generated. The pattern of proliferation during the embryonic development was disrupted in morphant embryos, which also displayed an increase in the number of apoptotic nuclei mainly at the mid- and hindbrain regions. The expression of several genes (notch1, pax2, fgf8 and wnt1) known to contribute to the development of the central nervous system was also affected in gabra2 morpholino-injected embryos, although no changes were found for pax6a and shh a expression. The transcriptional activity of neuroD (a proneural gene involved in early neuronal determination) was down-regulated in gabra2 deficient embryos, and the expression pattern of gad1b (GABA-synthesising enzyme GAD67) was clearly reduced in injected fish. I propose that gabra2 might be interacting with those signalling pathways that regulate proliferation, differentiation and neurogenesis during the embryonic development; thus, gabra2 might be playing a role in the differentiation of the mesencephalon and cerebellum. Given that changes in GABAergic circuits during development have been related to several psychiatric disorders, such as autism and schizophrenia, this work might be helpful to understand the role of neurotransmitter systems during CNS development and to assess the developmental effects of several GABAergic drugs. gabra2 might have a role in the regulation of proliferation during CNS development. The expression of notch1, pax2a, fgf8 and wnt1 is altered in gabra2 deficient fish. neuro D expression, is down-regulated in the absence of a functional Gabra2. The generation of GABAergic neurons might be reduced in gabra2 morphants. gabra2 may interact with several signalling pathways that harness CNS development.
Collapse
Key Words
- CNS, central nervous system
- Central nervous system
- Development
- Differentiation
- GABA
- GABA, γ-aminobutyric acid
- GABAA, gamma-aminobutyric acid (GABA) A receptor
- Gabra2
- ISH, in situ hybridisation
- KCC2, neuron-specific potassium/chloride cotransporter 2
- MHB, mid-hindbrain boundary
- ORF, open reading frame
- Proliferation
- fgf8, fibroblast growth factor 8
- gabra2, gamma-aminobutyric acid receptor subunit alpha-2
- gad1b, glutamate decarboxylase
- hpf, hours post-fertilisation
- neuroD, neurogenic differentiation
- notch1a, notch homologue 1a
- pax2a, paired box gene 2a
- pax6a, paired box gene 2a
- shh a, sonic hedgehog
- wnt1, wingless-type MMTV integration site family, member 1
Collapse
Affiliation(s)
- Veronica Gonzalez-Nunez
- Department of Biochemistry and Molecular Biology, University of Salamanca, Spain.,Faculty of Medicine, Instituto de Neurociencias de Castilla y León (INCyL), University of Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Spain
| |
Collapse
|
16
|
Defourny J, Mateo Sánchez S, Schoonaert L, Robberecht W, Davy A, Nguyen L, Malgrange B. Cochlear supporting cell transdifferentiation and integration into hair cell layers by inhibition of ephrin-B2 signalling. Nat Commun 2015; 6:7017. [DOI: 10.1038/ncomms8017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 03/25/2015] [Indexed: 01/08/2023] Open
|
17
|
Yavropoulou MP, Maladaki A, Yovos JG. The role of Notch and Hedgehog signaling pathways in pituitary development and pathogenesis of pituitary adenomas. Hormones (Athens) 2015; 14:5-18. [PMID: 25885100 DOI: 10.1007/bf03401377] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pituitary adenomas are usually benign tumors that cause symptoms by compression of surrounding structures or impaired hormone secretion. Treatment, whether surgical or medical depends, on the tumor subtype and degree of compression; however, a significant proportion of patients do not achieve optimal control of mass effects or hormonal hypersecretion. Unraveling the pathogenesis of pituitary adenomas is a critical step in the quest for new subcellular treatment targets that will decrease morbidity and mortality related to these tumors. A large diversity of pathogenetic mechanisms has been described so far including deregulation of cell cycle, molecular pathways and angiogenesis. Major signaling pathways such as Notch, Wnt and Hedgehog, which are mainly active in the early phase of pituitary organogenesis and are essential for the development of somatotrophs, lactotrophs thyrotrophs and corticotrophs, have been implicated in the pathogenesis of pituitary adenomas. In this review we present novel data regarding the role of Notch and Hedgehog regulatory networks in pituitary development and pathogenesis of pituitary adenomas.
Collapse
Affiliation(s)
- Maria P Yavropoulou
- Laboratory of Clinical and Molecular Endocrinology, 1st Department of Internal Medicine, ΑHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anna Maladaki
- Laboratory of Clinical and Molecular Endocrinology, 1st Department of Internal Medicine, ΑHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - John G Yovos
- Laboratory of Clinical and Molecular Endocrinology, 1st Department of Internal Medicine, ΑHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
18
|
Butts T, Green MJ, Wingate RJT. Development of the cerebellum: simple steps to make a 'little brain'. Development 2014; 141:4031-41. [PMID: 25336734 DOI: 10.1242/dev.106559] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cerebellum is a pre-eminent model for the study of neurogenesis and circuit assembly. Increasing interest in the cerebellum as a participant in higher cognitive processes and as a locus for a range of disorders and diseases make this simple yet elusive structure an important model in a number of fields. In recent years, our understanding of some of the more familiar aspects of cerebellar growth, such as its territorial allocation and the origin of its various cell types, has undergone major recalibration. Furthermore, owing to its stereotyped circuitry across a range of species, insights from a variety of species have contributed to an increasingly rich picture of how this system develops. Here, we review these recent advances and explore three distinct aspects of cerebellar development - allocation of the cerebellar anlage, the significance of transit amplification and the generation of neuronal diversity - each defined by distinct regulatory mechanisms and each with special significance for health and disease.
Collapse
Affiliation(s)
- Thomas Butts
- MRC Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK School of Biological and Chemical Sciences, Queen Mary, University of London, London E1 4NS, UK
| | - Mary J Green
- National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Richard J T Wingate
- MRC Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK
| |
Collapse
|
19
|
Dworkin S, Jane SM. Novel mechanisms that pattern and shape the midbrain-hindbrain boundary. Cell Mol Life Sci 2013; 70:3365-74. [PMID: 23307071 PMCID: PMC11113640 DOI: 10.1007/s00018-012-1240-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/18/2012] [Accepted: 12/10/2012] [Indexed: 12/27/2022]
Abstract
The midbrain-hindbrain boundary (MHB) is a highly conserved vertebrate signalling centre, acting to pattern and establish neural identities within the brain. While the core signalling pathways regulating MHB formation have been well defined, novel genetic and mechanistic processes that interact with these core components are being uncovered, helping to further elucidate the complicated networks governing MHB specification, patterning and shaping. Although formation of the MHB organiser is traditionally thought of as comprising three stages, namely positioning, induction and maintenance, we propose that a fourth stage, morphogenesis, should be considered as an additional stage in MHB formation. This review will examine evidence for novel factors regulating the first three stages of MHB development and will explore the evidence for regulation of MHB morphogenesis by non-classical MHB-patterning genes.
Collapse
Affiliation(s)
- Sebastian Dworkin
- Department of Medicine, Monash University Central Clinical School, Melbourne, VIC, 3004, Australia.
| | | |
Collapse
|
20
|
Annenkov A. Receptor tyrosine kinase (RTK) signalling in the control of neural stem and progenitor cell (NSPC) development. Mol Neurobiol 2013; 49:440-71. [PMID: 23982746 DOI: 10.1007/s12035-013-8532-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 08/09/2013] [Indexed: 01/04/2023]
Abstract
Important developmental responses are elicited in neural stem and progenitor cells (NSPC) by activation of the receptor tyrosine kinases (RTK), including the fibroblast growth factor receptors, epidermal growth factor receptor, platelet-derived growth factor receptors and insulin-like growth factor receptor (IGF1R). Signalling through these RTK is necessary and sufficient for driving a number of developmental processes in the central nervous system. Within each of the four RTK families discussed here, receptors are activated by sets of ligands that do not cross-activate receptors of the other three families, and therefore, their activation can be independently regulated by ligand availability. These RTK pathways converge on a conserved core of signalling molecules, but differences between the receptors in utilisation of signalling molecules and molecular adaptors for intracellular signal propagation become increasingly apparent. Intracellular inhibitors of RTK signalling are widely involved in the regulation of developmental signalling in NSPC and often determine developmental outcomes of RTK activation. In addition, cellular responses of NSPC to the activation of a given RTK may be significantly modulated by signal strength. Cellular propensity to respond also plays a role in developmental outcomes of RTK signalling. In combination, these mechanisms regulate the balance between NSPC maintenance and differentiation during development and in adulthood. Attribution of particular developmental responses of NSPC to specific pathways of RTK signalling becomes increasingly elucidated. Co-activation of several RTK in developing NSPC is common, and analysis of co-operation between their signalling pathways may advance knowledge of RTK role in NSPC development.
Collapse
Affiliation(s)
- Alexander Annenkov
- Bone and Joint Research Unit, William Harvey Research Institute, Bart's and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK,
| |
Collapse
|
21
|
Wnt signal specifies the intrathalamic limit and its organizer properties by regulating Shh induction in the alar plate. J Neurosci 2013; 33:3967-80. [PMID: 23447606 DOI: 10.1523/jneurosci.0726-12.2013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The structural complexity of the brain depends on precise molecular and cellular regulatory mechanisms orchestrated by regional morphogenetic organizers. The thalamic organizer is the zona limitans intrathalamica (ZLI), a transverse linear neuroepithelial domain in the alar plate of the diencephalon. Because of its production of Sonic hedgehog, ZLI acts as a morphogenetic signaling center. Shh is expressed early on in the prosencephalic basal plate and is then gradually activated dorsally within the ZLI. The anteroposterior positioning and the mechanism inducing Shh expression in ZLI cells are still partly unknown, being a subject of controversial interpretations. For instance, separate experimental results have suggested that juxtaposition of prechordal (rostral) and epichordal (caudal) neuroepithelium, anteroposterior encroachment of alar lunatic fringe (L-fng) expression, and/or basal Shh signaling is required for ZLI specification. Here we investigated a key role of Wnt signaling in the molecular regulation of ZLI positioning and Shh expression, using experimental embryology in ovo in the chick. Early Wnt expression in the ZLI regulates Gli3 and L-fng to generate a permissive territory in which Shh is progressively induced by planar signals of the basal plate.
Collapse
|
22
|
Dworkin S, Jane SM. Novel mechanisms that pattern and shape the midbrain-hindbrain boundary. CELLULAR AND MOLECULAR LIFE SCIENCES : CMLS 2013. [PMID: 23307071 DOI: 10.1007/s00018‐012‐1240‐x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The midbrain-hindbrain boundary (MHB) is a highly conserved vertebrate signalling centre, acting to pattern and establish neural identities within the brain. While the core signalling pathways regulating MHB formation have been well defined, novel genetic and mechanistic processes that interact with these core components are being uncovered, helping to further elucidate the complicated networks governing MHB specification, patterning and shaping. Although formation of the MHB organiser is traditionally thought of as comprising three stages, namely positioning, induction and maintenance, we propose that a fourth stage, morphogenesis, should be considered as an additional stage in MHB formation. This review will examine evidence for novel factors regulating the first three stages of MHB development and will explore the evidence for regulation of MHB morphogenesis by non-classical MHB-patterning genes.
Collapse
Affiliation(s)
- Sebastian Dworkin
- Department of Medicine, Monash University Central Clinical School, Melbourne, VIC, 3004, Australia.
| | | |
Collapse
|
23
|
Filas BA, Oltean A, Majidi S, Bayly PV, Beebe DC, Taber LA. Regional differences in actomyosin contraction shape the primary vesicles in the embryonic chicken brain. Phys Biol 2012; 9:066007. [PMID: 23160445 PMCID: PMC3535267 DOI: 10.1088/1478-3975/9/6/066007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the early embryo, the brain initially forms as a relatively straight, cylindrical epithelial tube composed of neural stem cells. The brain tube then divides into three primary vesicles (forebrain, midbrain, hindbrain), as well as a series of bulges (rhombomeres) in the hindbrain. The boundaries between these subdivisions have been well studied as regions of differential gene expression, but the morphogenetic mechanisms that generate these constrictions are not well understood. Here, we show that regional variations in actomyosin-based contractility play a major role in vesicle formation in the embryonic chicken brain. In particular, boundaries did not form in brains exposed to the nonmuscle myosin II inhibitor blebbistatin, whereas increasing contractile force using calyculin or ATP deepened boundaries considerably. Tissue staining showed that contraction likely occurs at the inner part of the wall, as F-actin and phosphorylated myosin are concentrated at the apical side. However, relatively little actin and myosin was found in rhombomere boundaries. To determine the specific physical mechanisms that drive vesicle formation, we developed a finite-element model for the brain tube. Regional apical contraction was simulated in the model, with contractile anisotropy and strength estimated from contractile protein distributions and measurements of cell shapes. The model shows that a combination of circumferential contraction in the boundary regions and relatively isotropic contraction between boundaries can generate realistic morphologies for the primary vesicles. In contrast, rhombomere formation likely involves longitudinal contraction between boundaries. Further simulations suggest that these different mechanisms are dictated by regional differences in initial morphology and the need to withstand cerebrospinal fluid pressure. This study provides a new understanding of early brain morphogenesis.
Collapse
Affiliation(s)
- Benjamen A Filas
- Department of Biomedical Engineering, Washington University, St Louis, MO 63130, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Broom ER, Gilthorpe JD, Butts T, Campo-Paysaa F, Wingate RJT. The roof plate boundary is a bi-directional organiser of dorsal neural tube and choroid plexus development. Development 2012; 139:4261-70. [PMID: 23052907 DOI: 10.1242/dev.082255] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The roof plate is a signalling centre positioned at the dorsal midline of the central nervous system and generates dorsalising morphogenic signals along the length of the neuraxis. Within cranial ventricles, the roof plate gives rise to choroid plexus, which regulates the internal environment of the developing and adult brain and spinal cord via the secretion of cerebrospinal fluid. Using the fourth ventricle as our model, we show that the organiser properties of the roof plate are determined by its boundaries with the adjacent neuroepithelium. Through a combination of in ovo transplantation, co-culture and electroporation techniques in chick embryos between embryonic days 3 and 6, we demonstrate that organiser properties are maintained by interactions between the non-neural roof plate and the neural rhombic lip. At the molecular level, this interaction is mediated by Delta-Notch signalling and upregulation of the chick homologue of Hes1: chairy2. Gain- and loss-of-function approaches reveal that cdelta1 is both necessary and sufficient for organiser function. Our results also demonstrate that while chairy2 is specifically required for the maintenance of the organiser, its ectopic expression is not sufficient to recapitulate organiser properties. Expression of atonal1 in the rhombic lip adjacent at the roof plate boundary is acutely dependent on both boundary cell interactions and Delta-Notch signalling. Correspondingly, the roof plate boundary organiser also signals to the roof plate itself to specify the expression of early choroid plexus markers. Thus, the roof plate boundary organiser signals bi-directionally to acutely coordinate the development of adjacent neural and non-neural tissues.
Collapse
Affiliation(s)
- Emma R Broom
- MRC Centre for Developmental Neurobiology, King's College London, London, UK
| | | | | | | | | |
Collapse
|
25
|
Affiliation(s)
- Clemens Kiecker
- Medical Research Council (MRC) Center for Developmental Neurobiology, King's College, London SE1 1UL, United Kingdom; ,
| | - Andrew Lumsden
- Medical Research Council (MRC) Center for Developmental Neurobiology, King's College, London SE1 1UL, United Kingdom; ,
| |
Collapse
|
26
|
Chatterjee M, Li JYH. Patterning and compartment formation in the diencephalon. Front Neurosci 2012; 6:66. [PMID: 22593732 PMCID: PMC3349951 DOI: 10.3389/fnins.2012.00066] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 04/17/2012] [Indexed: 01/03/2023] Open
Abstract
The diencephalon gives rise to structures that play an important role in connecting the anterior forebrain with the rest of the central nervous system. The thalamus is the major diencephalic derivative that functions as a relay station between the cortex and other lower order sensory systems. Almost two decades ago, neuromeric/prosomeric models were proposed describing the subdivision and potential segmentation of the diencephalon. Unlike the laminar structure of the cortex, the diencephalon is progressively divided into distinct functional compartments consisting principally of thalamus, epithalamus, pretectum, and hypothalamus. Neurons generated within these domains further aggregate to form clusters called nuclei, which form specific structural and functional units. We review the recent advances in understanding the genetic mechanisms that are involved in the patterning and compartment formation of the diencephalon.
Collapse
Affiliation(s)
- Mallika Chatterjee
- Department of Genetics and Developmental Biology, University of Connecticut Health Center Farmington, CT, USA
| | | |
Collapse
|
27
|
White JJ, Sillitoe RV. Development of the cerebellum: from gene expression patterns to circuit maps. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:149-64. [DOI: 10.1002/wdev.65] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
28
|
Vulto-van Silfhout A, de Brouwer A, de Leeuw N, Obihara C, Brunner H, de Vries B. A 380-kb Duplication in 7p22.3 Encompassing the LFNG Gene in a Boy with Asperger Syndrome. Mol Syndromol 2012; 2:245-250. [PMID: 22822384 PMCID: PMC3362183 DOI: 10.1159/000336191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2011] [Indexed: 12/23/2022] Open
Abstract
De novo genomic aberrations are considered an important cause of autism spectrum disorders. We describe a de novo 380-kb gain in band p22.3 of chromosome 7 in a patient with Asperger syndrome. This duplicated region contains 9 genes including the LNFG gene that is an important regulator of NOTCH signaling. We suggest that this copy number variation has been a contributive factor to the occurrence of Asperger syndrome in this patient.
Collapse
Affiliation(s)
- A.T. Vulto-van Silfhout
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - A.F.M. de Brouwer
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - N. de Leeuw
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - C.C. Obihara
- Department of Paediatrics, St. Elisabeth Hospital, Tilburg, The Netherlands
| | - H.G. Brunner
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - B.B.A. de Vries
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|