1
|
Ji W, Gong G, Liu Y, Liu Y, Zhang J, Li Q. Icariin promotes osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) by activating PI3K-AKT-UTX/EZH2 signaling in steroid-induced femoral head osteonecrosis. J Orthop Surg Res 2025; 20:290. [PMID: 40098175 PMCID: PMC11917108 DOI: 10.1186/s13018-025-05697-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/08/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Differentiation of bone marrow mesenchymal stem cells (BMSCs) is pivotal in the pathogenesis of steroid-induced femoral head osteonecrosis. Icariin, an active ingredient in Epimedii herba, has the potential to regulate osteogenic differentiation of BMSCs. Nevertheless, the related mechanism is still unclear. The study aimed to explore whether icariin can affect osteogenic differentiation by activating PI3K/AKT signaling to alter UTX and EZH2 expression and thus regulating osteogenesis-related genes in BMSCs. METHODS BMSCs were collected from Sprague Dawley rats and identified by measuring the positive ratios of cell markers using flow cytometry. Cells were treated with 1 μmol/L dexamethasone (DEX) for 24 h with or without 0.1-10 μM of icariin treatment. Cell counting Kit-8 (CCK-8) assays and flow cytometry analyses were performed to measure cell viability and apoptosis. Western blotting was conducted for measurement of apoptotic markers, factors involved in the PI3K/AKT-UTX/EZH2 pathway, osteogenic markers, and adipogenesis-related factors. Alizarin red S staining and Oil-red O staining were performed to measure the effect of DEX, icariin, UTX overexpression, or EZH2 knockdown on osteogenic and adipogenic differentiation of BMSCs. RESULTS Icariin ameliorated DEX-induced rat BMSC injury. Icariin activated the PI3K/AKT signaling, thereby upregulating UTX and phosphorylated EZH2 levels while inhibiting EZH2 and H3K27me3 expression. Additionally, icariin promoted osteogenic differentiation and inhibited adipogenic differentiation of BMSCs. Importantly, overexpressing UTX or silencing EZH2 exerted similar effects on BMSC differentiation as icariin did. CONCLUSIONS Icariin promotes osteogenic differentiation of DEX-treated BMSCs by activating PI3K/AKT signaling to upregulate UTX and inhibit EZH2, finally inducing H3K27me3 depletion.
Collapse
Affiliation(s)
- Wei Ji
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, China
| | - Guoqing Gong
- Department of Otolaryngology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, 430060, China
| | - Yuanhang Liu
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, China
| | - Yan Liu
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, China
| | - Jie Zhang
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, China
| | - Qiang Li
- Department of Foot and Ankle, Nanchang Hongdu Hospital of Traditional Chinese Medicine, No.264 Minde Road, Donghu District, Nanchang, 330000, China.
| |
Collapse
|
2
|
Casey-Clyde T, Liu SJ, Serrano JAC, Teng C, Jang YG, Vasudevan HN, Bush JO, Raleigh DR. Eed controls craniofacial osteoblast differentiation and mesenchymal proliferation from the neural crest. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584903. [PMID: 38558995 PMCID: PMC10979956 DOI: 10.1101/2024.03.13.584903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The histone methyltransferase Polycomb repressive complex 2 (PRC2) is required for specification of the neural crest, and mis-regulation of neural crest development can cause severe congenital malformations. PRC2 is necessary for neural crest induction, but the embryonic, cellular, and molecular consequences of PRC2 activity after neural crest induction are incompletely understood. Here we show that Eed, a core subunit of PRC2, is required for craniofacial osteoblast differentiation and mesenchymal proliferation after induction of the neural crest. Integrating mouse genetics with single-cell RNA sequencing, our results reveal that conditional knockout of Eed after neural crest cell induction causes severe craniofacial hypoplasia, impaired craniofacial osteogenesis, and attenuated craniofacial mesenchymal cell proliferation that is first evident in post-migratory neural crest cell populations. We show that Eed drives mesenchymal differentiation and proliferation in vivo and in primary craniofacial cell cultures by regulating diverse transcription factor programs that are required for specification of post-migratory neural crest cells. These data enhance understanding of epigenetic mechanisms that underlie craniofacial development, and shed light on the embryonic, cellular, and molecular drivers of rare congenital syndromes in humans.
Collapse
Affiliation(s)
- Tim Casey-Clyde
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - S John Liu
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Juan Antonio Camara Serrano
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Camilla Teng
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
| | - Yoon-Gu Jang
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
| | - Harish N Vasudevan
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA, USA
| | - Jeffrey O Bush
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
| | - David R Raleigh
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
3
|
Avagliano L, Castiglioni S, Lettieri A, Parodi C, Di Fede E, Taci E, Grazioli P, Colombo EA, Gervasini C, Massa V. Intrauterine growth in chromatinopathies: A long road for better understanding and for improving clinical management. Birth Defects Res 2024; 116:e2383. [PMID: 38984779 DOI: 10.1002/bdr2.2383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/12/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Chromatinopathies are a heterogeneous group of genetic disorders caused by pathogenic variants in genes coding for chromatin state balance proteins. Remarkably, many of these syndromes present unbalanced postnatal growth, both under- and over-, although little has been described in the literature. Fetal growth measurements are common practice in pregnancy management and values within normal ranges indicate proper intrauterine growth progression; on the contrary, abnormalities in intrauterine fetal growth open the discussion of possible pathogenesis affecting growth even in the postnatal period. METHODS Among the numerous chromatinopathies, we have selected six of the most documented in the literature offering evidence about two fetal overgrowth (Sotos and Weaver syndrome) and four fetal undergrowth syndromes (Bohring Opitz, Cornelia de Lange, Floating-Harbor, and Meier Gorlin syndrome), describing their molecular characteristics, maternal biochemical results and early pregnancy findings, prenatal ultrasound findings, and postnatal characteristics. RESULTS/CONCLUSION To date, the scarce data in the literature on prenatal findings are few and inconclusive, even though these parameters may contribute to a more rapid and accurate diagnosis, calling for a better and more detailed description of pregnancy findings.
Collapse
Affiliation(s)
| | - Silvia Castiglioni
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Antonella Lettieri
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Chiara Parodi
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Elisabetta Di Fede
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
- Aldo Ravelli Center for Neurotechnology and Experimental Brain Therapeutics, Università Degli Studi di Milano, Milan, Italy
| | - Esi Taci
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
- Aldo Ravelli Center for Neurotechnology and Experimental Brain Therapeutics, Università Degli Studi di Milano, Milan, Italy
| | - Paolo Grazioli
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Elisa Adele Colombo
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Cristina Gervasini
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
- Aldo Ravelli Center for Neurotechnology and Experimental Brain Therapeutics, Università Degli Studi di Milano, Milan, Italy
| | - Valentina Massa
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
- Aldo Ravelli Center for Neurotechnology and Experimental Brain Therapeutics, Università Degli Studi di Milano, Milan, Italy
| |
Collapse
|
4
|
Dashti P, Lewallen EA, Gordon JAR, Montecino MA, Davie JR, Stein GS, van Leeuwen JPTM, van der Eerden BCJ, van Wijnen AJ. Epigenetic regulators controlling osteogenic lineage commitment and bone formation. Bone 2024; 181:117043. [PMID: 38341164 DOI: 10.1016/j.bone.2024.117043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/08/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Bone formation and homeostasis are controlled by environmental factors and endocrine regulatory cues that initiate intracellular signaling pathways capable of modulating gene expression in the nucleus. Bone-related gene expression is controlled by nucleosome-based chromatin architecture that limits the accessibility of lineage-specific gene regulatory DNA sequences and sequence-specific transcription factors. From a developmental perspective, bone-specific gene expression must be suppressed during the early stages of embryogenesis to prevent the premature mineralization of skeletal elements during fetal growth in utero. Hence, bone formation is initially inhibited by gene suppressive epigenetic regulators, while other epigenetic regulators actively support osteoblast differentiation. Prominent epigenetic regulators that stimulate or attenuate osteogenesis include lysine methyl transferases (e.g., EZH2, SMYD2, SUV420H2), lysine deacetylases (e.g., HDAC1, HDAC3, HDAC4, HDAC7, SIRT1, SIRT3), arginine methyl transferases (e.g., PRMT1, PRMT4/CARM1, PRMT5), dioxygenases (e.g., TET2), bromodomain proteins (e.g., BRD2, BRD4) and chromodomain proteins (e.g., CBX1, CBX2, CBX5). This narrative review provides a broad overview of the covalent modifications of DNA and histone proteins that involve hundreds of enzymes that add, read, or delete these epigenetic modifications that are relevant for self-renewal and differentiation of mesenchymal stem cells, skeletal stem cells and osteoblasts during osteogenesis.
Collapse
Affiliation(s)
- Parisa Dashti
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Eric A Lewallen
- Department of Biological Sciences, Hampton University, Hampton, VA, USA
| | | | - Martin A Montecino
- Institute of Biomedical Sciences, Faculty of Medicine, Universidad Andres Bello, Santiago, Chile; Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
| | - James R Davie
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada; CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, Manitoba R3E 0V9, Canada.
| | - Gary S Stein
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | | | - Bram C J van der Eerden
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands.
| | - Andre J van Wijnen
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands; Department of Biochemistry, University of Vermont, Burlington, VT, USA.
| |
Collapse
|
5
|
Tsimpos P, Desiderio S, Cabochette P, Poelvoorde P, Kricha S, Vanhamme L, Poulard C, Bellefroid EJ. Loss of G9a does not phenocopy the requirement for Prdm12 in the development of the nociceptive neuron lineage. Neural Dev 2024; 19:1. [PMID: 38167468 PMCID: PMC10759634 DOI: 10.1186/s13064-023-00179-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Prdm12 is an epigenetic regulator expressed in developing and mature nociceptive neurons, playing a key role in their specification during neurogenesis and modulating pain sensation at adulthood. In vitro studies suggested that Prdm12 recruits the methyltransferase G9a through its zinc finger domains to regulate target gene expression, but how Prdm12 interacts with G9a and whether G9a plays a role in Prdm12's functional properties in sensory ganglia remain unknown. Here we report that Prdm12-G9a interaction is likely direct and that it involves the SET domain of G9a. We show that both proteins are largely co-expressed in dorsal root ganglia during early murine development, opening the possibility that G9a plays a role in DRG and may act as a mediator of Prdm12's function in the development of nociceptive sensory neurons. To test this hypothesis, we conditionally inactivated G9a in neural crest using a Wnt1-Cre transgenic mouse line. We found that the specific loss of G9a in the neural crest lineage does not lead to dorsal root ganglia hypoplasia due to the loss of somatic nociceptive neurons nor to the ectopic expression of the visceral determinant Phox2b as observed upon Prdm12 ablation. These findings suggest that Prdm12 function in the initiation of the nociceptive lineage does not critically involves its interaction with G9a.
Collapse
Affiliation(s)
- Panagiotis Tsimpos
- ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Gosselies, B- 6041, Belgium
| | - Simon Desiderio
- ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Gosselies, B- 6041, Belgium
| | - Pauline Cabochette
- ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Gosselies, B- 6041, Belgium
| | - Philippe Poelvoorde
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Sadia Kricha
- ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Gosselies, B- 6041, Belgium
| | - Luc Vanhamme
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Coralie Poulard
- Cancer Research Cancer of Lyon, Université de Lyon, Lyon, F-69000, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, F-69000, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, F-69000, France
| | - Eric J Bellefroid
- ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Gosselies, B- 6041, Belgium.
| |
Collapse
|
6
|
Kondoh H. The Significance of Repressive Processes in Developmental Regulation. Results Probl Cell Differ 2024; 72:127-142. [PMID: 38509256 DOI: 10.1007/978-3-031-39027-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Encountering a developmental process confined to a limited time window or a restricted embryonic area, one may deem that the mechanism to activate the process occurs with such precision in temporal and spatial terms. However, in many instances, the activation mechanism is initiated in a broad time and space, but the mechanism is actuated only when repressive mechanisms are lifted. Thus, the operation of repressive processes is essential for precise developmental regulation. Repressive regulations occur at various levels. The following representative repressive regulations and their consequences at various levels will be discussed: intercellular signaling, epigenetic regulation, transcriptional regulation, and posttranscriptional regulation.
Collapse
Affiliation(s)
- Hisato Kondoh
- Osaka University, Suita, Osaka, Japan
- Biohistory Research Hall, Takatsuki, Osaka, Japan
| |
Collapse
|
7
|
Lomeli C. S, Kristin B. A. Epigenetic regulation of craniofacial development and disease. Birth Defects Res 2024; 116:e2271. [PMID: 37964651 PMCID: PMC10872612 DOI: 10.1002/bdr2.2271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND The formation of the craniofacial complex relies on proper neural crest development. The gene regulatory networks (GRNs) and signaling pathways orchestrating this process have been extensively studied. These GRNs and signaling cascades are tightly regulated as alterations to any stage of neural crest development can lead to common congenital birth defects, including multiple syndromes affecting facial morphology as well as nonsyndromic facial defects, such as cleft lip with or without cleft palate. Epigenetic factors add a hierarchy to the regulation of transcriptional networks and influence the spatiotemporal activation or repression of specific gene regulatory cascades; however less is known about their exact mechanisms in controlling precise gene regulation. AIMS In this review, we discuss the role of epigenetic factors during neural crest development, specifically during craniofacial development and how compromised activities of these regulators contribute to congenital defects that affect the craniofacial complex.
Collapse
Affiliation(s)
- Shull Lomeli C.
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Artinger Kristin B.
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN, USA
| |
Collapse
|
8
|
Sun B, Reynolds K, Saha SK, Zhang S, McMahon M, Zhou CJ. Ezh2-dependent methylation in oral epithelia promotes secondary palatogenesis. Birth Defects Res 2023; 115:1851-1865. [PMID: 37435868 PMCID: PMC10784412 DOI: 10.1002/bdr2.2216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 07/13/2023]
Abstract
BACKGROUND In addition to genomic risk variants and environmental influences, increasing evidence suggests epigenetic modifications are important for orofacial development and their alterations can contribute to orofacial clefts. Ezh2 encodes a core catalytic component of the Polycomb repressive complex responsible for addition of methyl marks to Histone H3 as a mechanism of repressing target genes. The role of Ezh2 in orofacial clefts remains unknown. AIMS To investigate the epithelial role of Ezh2-dependent methylation in secondary palatogenesis. METHODS We used conditional gene-targeting methods to ablate Ezh2 in the surface ectoderm-derived oral epithelium of mouse embryos. We then performed single-cell RNA sequencing combined with immunofluorescence and RT-qPCR to investigate gene expression in conditional mutant palate. We also employed double knockout analyses of Ezh1 and Ezh2 to address if they have synergistic roles in palatogenesis. RESULTS We found that conditional inactivation of Ezh2 in oral epithelia results in partially penetrant cleft palate. Double knockout analyses revealed that another family member Ezh1 is dispensable in orofacial development, and it does not have synergistic roles with Ezh2 in palatogenesis. Histochemistry and single-cell RNA-seq analyses revealed dysregulation of cell cycle regulators in the palatal epithelia of Ezh2 mutant mouse embryos disrupts palatogenesis. CONCLUSION Ezh2-dependent histone H3K27 methylation represses expression of cell cycle regulator Cdkn1a and promotes proliferation in the epithelium of the developing palatal shelves. Loss of this regulation may perturb movement of the palatal shelves, causing a delay in palate elevation which may result in failure of the secondary palate to close altogether.
Collapse
Affiliation(s)
| | | | - Subbroto Kuma Saha
- Institute for Pediatric Regenerative Medicine of Shriners Hospital for Children – Northern California & Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis, Sacramento, CA 95817, USA
| | - Shuwen Zhang
- Institute for Pediatric Regenerative Medicine of Shriners Hospital for Children – Northern California & Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis, Sacramento, CA 95817, USA
| | - Moira McMahon
- Institute for Pediatric Regenerative Medicine of Shriners Hospital for Children – Northern California & Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis, Sacramento, CA 95817, USA
| | - Chengji J Zhou
- Institute for Pediatric Regenerative Medicine of Shriners Hospital for Children – Northern California & Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis, Sacramento, CA 95817, USA
| |
Collapse
|
9
|
Kwartler CS, Pedroza AJ, Kaw A, Guan P, Ma S, Duan XY, Kernell C, Wang C, Pinelo JEE, Bowen MSB, Chen J, Zhong Y, Sinha S, Shen X, Fischbein MP, Milewicz DM. Nuclear Smooth Muscle α-actin Participates in Vascular Smooth Muscle Cell Differentiation. NATURE CARDIOVASCULAR RESEARCH 2023; 2:937-955. [PMID: 38919852 PMCID: PMC11198982 DOI: 10.1038/s44161-023-00337-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/23/2023] [Indexed: 06/27/2024]
Abstract
Missense variants throughout ACTA2, encoding smooth muscle α-actin (αSMA), predispose to adult-onset thoracic aortic disease, but variants disrupting arginine 179 (R179) lead to Smooth Muscle Dysfunction Syndrome (SMDS) characterized by diverse childhood-onset vascular diseases. Here we show that αSMA localizes to the nucleus in wildtype (WT) smooth muscle cells (SMCs), enriches in the nucleus with SMC differentiation, and associates with chromatin remodeling complexes and SMC contractile gene promotors. The ACTA2 p.R179 αSMA variant shows decreased nuclear localization. Primary SMCs from Acta2 SMC-R179C/+ mice are less differentiated than WT SMCs in vitro and in vivo and have global changes in chromatin accessibility. Induced pluripotent stem cells from patients with ACTA2 p.R179 variants fail to fully differentiate from neuroectodermal progenitor cells to SMCs, and single-cell transcriptomic analyses of an ACTA2 p.R179H patient's aortic tissue show increased SMC plasticity. Thus, nuclear αSMA participates in SMC differentiation, and loss of this nuclear activity occurs with ACTA2 p.R179 pathogenic variants.
Collapse
Affiliation(s)
- Callie S. Kwartler
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Albert J. Pedroza
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305
| | - Anita Kaw
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Pujun Guan
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Shuangtao Ma
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
- Current address: Department Medicine, Michigan State University, East Lansing, MI 48824
| | - Xue-yan Duan
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Caroline Kernell
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Charis Wang
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Jose Emiliano Esparza Pinelo
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Mikayla S. Borthwick Bowen
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Jiyuan Chen
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Yuan Zhong
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957
| | - Sanjay Sinha
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Xuetong Shen
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
| | | | - Dianna M. Milewicz
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
| |
Collapse
|
10
|
Selleri L, Rijli FM. Shaping faces: genetic and epigenetic control of craniofacial morphogenesis. Nat Rev Genet 2023; 24:610-626. [PMID: 37095271 DOI: 10.1038/s41576-023-00594-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2023] [Indexed: 04/26/2023]
Abstract
Major differences in facial morphology distinguish vertebrate species. Variation of facial traits underlies the uniqueness of human individuals, and abnormal craniofacial morphogenesis during development leads to birth defects that significantly affect quality of life. Studies during the past 40 years have advanced our understanding of the molecular mechanisms that establish facial form during development, highlighting the crucial roles in this process of a multipotent cell type known as the cranial neural crest cell. In this Review, we discuss recent advances in multi-omics and single-cell technologies that enable genes, transcriptional regulatory networks and epigenetic landscapes to be closely linked to the establishment of facial patterning and its variation, with an emphasis on normal and abnormal craniofacial morphogenesis. Advancing our knowledge of these processes will support important developments in tissue engineering, as well as the repair and reconstruction of the abnormal craniofacial complex.
Collapse
Affiliation(s)
- Licia Selleri
- Program in Craniofacial Biology, Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, CA, USA.
- Department of Anatomy, School of Medicine, University of California, San Francisco, CA, USA.
| | - Filippo M Rijli
- Laboratory of Developmental Neuroepigenetics, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
11
|
Carrasco ME, Thaler R, Nardocci G, Dudakovic A, van Wijnen AJ. Inhibition of Ezh2 redistributes bivalent domains within transcriptional regulators associated with WNT and Hedgehog pathways in osteoblasts. J Biol Chem 2023; 299:105155. [PMID: 37572850 PMCID: PMC10506106 DOI: 10.1016/j.jbc.2023.105155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/19/2023] [Accepted: 08/03/2023] [Indexed: 08/14/2023] Open
Abstract
Bivalent epigenomic regulatory domains containing both activating histone 3 lysine 4 (H3K4me3) and repressive lysine 27 (H3K27me3) trimethylation are associated with key developmental genes. These bivalent domains repress transcription in the absence of differentiation signals but maintain regulatory genes in a poised state to allow for timely activation. Previous studies demonstrated that enhancer of zeste homolog 2 (Ezh2), a histone 3 lysine 27 (H3K27) methyltransferase, suppresses osteogenic differentiation and that inhibition of Ezh2 enhances commitment of osteoblast progenitors in vitro and bone formation in vivo. Here, we examined the mechanistic effects of Tazemetostat (EPZ6438), an Food and Drug Administration approved Ezh2 inhibitor for epithelioid sarcoma treatment, because this drug could potentially be repurposed to stimulate osteogenesis for clinical indications. We find that Tazemetostat reduces H3K27me3 marks in bivalent domains in enhancers required for bone formation and stimulates maturation of MC3T3 preosteoblasts. Furthermore, Tazemetostat activates bivalent genes associated with the Wingless/integrated (WNT), adenylyl cyclase (cAMP), and Hedgehog (Hh) signaling pathways based on transcriptomic (RNA-seq) and epigenomic (chromatin immunoprecipitation [ChIP]-seq) data. Functional analyses using selective pathway inhibitors and silencing RNAs demonstrate that the WNT and Hh pathways modulate osteogenic differentiation after Ezh2 inhibition. Strikingly, we show that loss of the Hh-responsive transcriptional regulator Gli1, but not Gli2, synergizes with Tazemetostat to accelerate osteoblast differentiation. These studies establish epigenetic cooperativity of Ezh2, Hh-Gli1 signaling, and bivalent regulatory genes in suppressing osteogenesis. Our findings may have important translational ramifications for anabolic applications requiring bone mass accrual and/or reversal of bone loss.
Collapse
Affiliation(s)
| | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Gino Nardocci
- Program in Molecular Biology and Bioinformatics, Faculty of Medicine, Center for Biomedical Research and Innovation (CIIB), Universidad de los Andes, Santiago, Chile; IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA.
| | - Andre J van Wijnen
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA.
| |
Collapse
|
12
|
Fountain DM, Sauka-Spengler T. The SWI/SNF Complex in Neural Crest Cell Development and Disease. Annu Rev Genomics Hum Genet 2023; 24:203-223. [PMID: 37624665 DOI: 10.1146/annurev-genom-011723-082913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
While the neural crest cell population gives rise to an extraordinary array of derivatives, including elements of the craniofacial skeleton, skin pigmentation, and peripheral nervous system, it is today increasingly recognized that Schwann cell precursors are also multipotent. Two mammalian paralogs of the SWI/SNF (switch/sucrose nonfermentable) chromatin-remodeling complexes, BAF (Brg1-associated factors) and PBAF (polybromo-associated BAF), are critical for neural crest specification during normal mammalian development. There is increasing evidence that pathogenic variants in components of the BAF and PBAF complexes play central roles in the pathogenesis of neural crest-derived tumors. Transgenic mouse models demonstrate a temporal window early in development where pathogenic variants in Smarcb1 result in the formation of aggressive, poorly differentiated tumors, such as rhabdoid tumors. By contrast, later in development, homozygous inactivation of Smarcb1 requires additional pathogenic variants in tumor suppressor genes to drive the development of differentiated adult neoplasms derived from the neural crest, which have a comparatively good prognosis in humans.
Collapse
Affiliation(s)
- Daniel M Fountain
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom; ,
| | - Tatjana Sauka-Spengler
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom; ,
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| |
Collapse
|
13
|
Zhang Y, Chen Q, Huang T, Zhu D, Lu Y. Bioinformatics-based screening of key genes for transformation of tyrosine kinase inhibitor-resistant lung adenocarcinoma to small cell lung cancer. Front Med (Lausanne) 2023; 10:1203461. [PMID: 37583423 PMCID: PMC10424445 DOI: 10.3389/fmed.2023.1203461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/17/2023] [Indexed: 08/17/2023] Open
Abstract
Purpose Lung adenocarcinoma (LUAD) is a common type of lung cancer. Cancer in a small number of patients with EGFR mutations will transform from LUAD to small cell lung cancer (SCLC) during epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) therapiesr. The purpose of the present study was to identify the core genes related to the transformation of LUAD into SCLC and to explore the associated molecular mechanisms. Methods GSE29016, GSE1037, GSE6044 and GSE40275 mRNA microarray datasets from Gene Expression Omnibus (GEO) were analyzed to obtain differentially expressed genes (DEGs) between LUAD and SCLC tissues, and the results were used for network analysis of protein-protein interactions (PPIs). After identifying the hub gene by STRING and Cytoscape platform, we explored the relationship between hub genes and the occurrence and development of SCLC. Finally, the obtained hub genes were validated in treated LUAD cells. Results A total of 41 DEGs were obtained, four hub genes (EZH2, NUSAP1, TTK and UBE2C) were identified, and related prognostic information was obtained. The coexpressed genes of the hub gene set were further screened, and the analysis identified many genes related to the cell cycle. Subsequently, LUAD cell models with TP53 and RB1 inactivation and overexpression of ASCL1 were constructed, and then the expression of hub genes was detected, the results showed that the four hub genes were all elevated in the established cell model. Conclusion EZH2, NUSAP1, TTK and UBE2C may affect the transformation of LUAD to SCLC and represent new candidate molecular markers for the occurrence and development of SCLC.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Oncology, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Qiang Chen
- Department of Oncology, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ting Huang
- Department of Clinical Pathology, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Di Zhu
- Department of Clinical Pathology, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yuanzhi Lu
- Department of Clinical Pathology, First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
14
|
Gopinathan G, Zhang X, Luan X, Diekwisch TGH. Changes in Hox Gene Chromatin Organization during Odontogenic Lineage Specification. Genes (Basel) 2023; 14:198. [PMID: 36672939 PMCID: PMC9859321 DOI: 10.3390/genes14010198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Craniofacial tissues comprise highly evolved organs characterized by a relative lack of expression in the HOX family transcription factors. In the present study, we sought to define the epigenetic events that limit HOX gene expression from undifferentiated neural crest cells to semi-differentiated odontogenic progenitors and to explore the effects of elevated levels of HOX. The ChIP-chip data demonstrated high levels of repressive H3K27me3 marks on the HOX gene promoters in ES and cranial neural crest cells when compared to the H3K4me3 marks, while the K4/K27 ratio was less repressive in the odontogenic progenitors, dental follicle, dental pulp, periodontal ligament fibroblasts, alveolar bone osteoblasts, and cementoblasts. The gene expression of multiple HOX genes, especially those from the HOXA and HOXB clusters, was significantly elevated and many times higher in alveolar bone cells than in the dental follicle cells. In addition, the HOX levels in the skeletal osteoblasts were many times higher in the trunk osteoblasts compared to the alveolar bone osteoblasts, and the repressive mark H3K27me3 promoter occupancy was substantially and significantly elevated in the alveolar bone osteoblasts when compared to the trunk osteoblasts. To explore the effect of elevated HOX levels in craniofacial neural crest cells, HOX expression was induced by transfecting cells with the Cdx4 transcription factor, resulting in a significant decrease in the mineralization markers, RUNX2, OSX, and OCN upon HOX elevation. Promoting HOX gene expression in developing teeth using the small molecule EZH2 inhibitor GSK126 resulted in an increased number of patterning events, supernumerary cusp formation, and increased Hoxa4 and Hoxb6 gene expression when compared to the controls. Together, these studies illustrate the profound effects of epigenetic regulatory events at all stages of the differentiation of craniofacial peripheral tissues from the neural crest, including lineage specification, tissue differentiation, and patterning.
Collapse
Affiliation(s)
- Gokul Gopinathan
- Center for Craniofacial Research and Diagnosis, Texas A&M University, Dallas, TX 75246, USA
| | - Xinmin Zhang
- Bioinforx Inc., 510 Charmany Dr#275a, Madison, WI 53719, USA
| | - Xianghong Luan
- Center for Craniofacial Research and Diagnosis, Texas A&M University, Dallas, TX 75246, USA
| | - Thomas G. H. Diekwisch
- Center for Craniofacial Research and Diagnosis, Texas A&M University, Dallas, TX 75246, USA
| |
Collapse
|
15
|
Ash2l, an obligatory component of H3K4 methylation complexes, regulates neural crest development. Dev Biol 2022; 492:14-24. [PMID: 36162552 DOI: 10.1016/j.ydbio.2022.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/29/2022] [Accepted: 09/20/2022] [Indexed: 02/05/2023]
Abstract
The vertebrate nervous system develops from embryonic neural plate and neural crest. Although genetic mechanisms governing vertebrate neural development have been investigated in depth, epigenetic regulation of this process remains less understood. Redundancy of epigenetic factors and early lethality of animals deficient in critical epigenetic components pose major challenges in characterization of epigenetic factors in vertebrate neural development. In this study, we use the amphibian model Xenopus laevis to investigate the roles of non-redundant, obligatory components of all histone H3K4 activating methylation complexes (COMPASS, also known as SET1/MLL complexes) in early neural development. The two genes that we focus on, Ash2l and Dpy30, regulate mesendodermal differentiation in mouse embryonic stem cells and cause early embryonic lethality when removed from mouse embryos. Using targeted knockdown of the genes in dorsal ectoderm of Xenopus that gives rise to future nervous system, we show here that ash2l and dpy30 are required for neural and neural crest marker expression in Xenopus late neurula embryos but are dispensable for early neural and neural plate border gene expression. Co-immunoprecipitation assays reveal that Dpy30 and Ash2L associate with the neural plate border transcription factors, such as Msx1 and Tfap2a. Chromatin immunoprecipitation (ChIP) assay further demonstrates that Ash2L and the H3K4me3 active histone mark accumulate at the promoter regions of the neural crest gene sox10 in a Tfap2a-dependent manner. Collectively, our data suggest that Ash2l and Dpy30 interact with specific transcription factors to recruit COMPASS complexes to the regulatory regions of neural crest specification genes to control their expression and influence development of the nervous system during vertebrate embryogenesis.
Collapse
|
16
|
Dudakovic A, Jerez S, Deosthale PJ, Denbeigh JM, Paradise CR, Gluscevic M, Zan P, Begun DL, Camilleri ET, Pichurin O, Khani F, Thaler R, Lian JB, Stein GS, Westendorf JJ, Plotkin LI, van Wijnen AJ. MicroRNA-101a enhances trabecular bone accrual in male mice. Sci Rep 2022; 12:13361. [PMID: 35922466 PMCID: PMC9349183 DOI: 10.1038/s41598-022-17579-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/27/2022] [Indexed: 11/09/2022] Open
Abstract
High-throughput microRNA sequencing was performed during differentiation of MC3T3-E1 osteoblasts to develop working hypotheses for specific microRNAs that control osteogenesis. The expression data show that miR-101a, which targets the mRNAs for the epigenetic enzyme Ezh2 and many other proteins, is highly upregulated during osteoblast differentiation and robustly expressed in mouse calvaria. Transient elevation of miR-101a suppresses Ezh2 levels, reduces tri-methylation of lysine 27 in histone 3 (H3K27me3; a heterochromatic mark catalyzed by Ezh2), and accelerates mineralization of MC3T3-E1 osteoblasts. We also examined skeletal phenotypes of an inducible miR-101a transgene under direct control of doxycycline administration. Experimental controls and mir-101a over-expressing mice were exposed to doxycycline in utero and postnatally (up to 8 weeks of age) to maximize penetrance of skeletal phenotypes. Male mice that over-express miR-101a have increased total body weight and longer femora. MicroCT analysis indicate that these mice have increased trabecular bone volume fraction, trabecular number and trabecular thickness with reduced trabecular spacing as compared to controls. Histomorphometric analysis demonstrates a significant reduction in osteoid volume to bone volume and osteoid surface to bone surface. Remarkably, while female mice also exhibit a significant increase in bone length, no significant changes were noted by microCT (trabecular bone parameters) and histomorphometry (osteoid parameters). Hence, miR-101a upregulation during osteoblast maturation and the concomitant reduction in Ezh2 mediated H3K27me3 levels may contribute to the enhanced trabecular bone parameters in male mice. However, the sex-specific effect of miR-101a indicates that more intricate epigenetic mechanisms mediate physiological control of bone formation and homeostasis.
Collapse
Affiliation(s)
- Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| | - Sofia Jerez
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Padmini J Deosthale
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Janet M Denbeigh
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Christopher R Paradise
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Martina Gluscevic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Pengfei Zan
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Orthopedic Surgery, School of Medicine, Second Affiliated Hospital of Zhejiang University, Hangzhou, China
- Department of Orthopedic Surgery, School of Medicine, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Dana L Begun
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Oksana Pichurin
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Farzaneh Khani
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Jane B Lian
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | - Gary S Stein
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | - Jennifer J Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Lilian I Plotkin
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA.
- Richard L Roudebush VA Medical Center, Indianapolis, IN, USA.
| | | |
Collapse
|
17
|
Liao J, Huang Y, Wang Q, Chen S, Zhang C, Wang D, Lv Z, Zhang X, Wu M, Chen G. Gene regulatory network from cranial neural crest cells to osteoblast differentiation and calvarial bone development. Cell Mol Life Sci 2022; 79:158. [PMID: 35220463 PMCID: PMC11072871 DOI: 10.1007/s00018-022-04208-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/02/2022] [Accepted: 02/14/2022] [Indexed: 11/03/2022]
Abstract
Calvarial bone is one of the most complex sequences of developmental events in embryology, featuring a uniquely transient, pluripotent stem cell-like population known as the cranial neural crest (CNC). The skull is formed through intramembranous ossification with distinct tissue lineages (e.g. neural crest derived frontal bone and mesoderm derived parietal bone). Due to CNC's vast cell fate potential, in response to a series of inductive secreted cues including BMP/TGF-β, Wnt, FGF, Notch, Hedgehog, Hippo and PDGF signaling, CNC enables generations of a diverse spectrum of differentiated cell types in vivo such as osteoblasts and chondrocytes at the craniofacial level. In recent years, since the studies from a genetic mouse model and single-cell sequencing, new discoveries are uncovered upon CNC patterning, differentiation, and the contribution to the development of cranial bones. In this review, we summarized the differences upon the potential gene regulatory network to regulate CNC derived osteogenic potential in mouse and human, and highlighted specific functions of genetic molecules from multiple signaling pathways and the crosstalk, transcription factors and epigenetic factors in orchestrating CNC commitment and differentiation into osteogenic mesenchyme and bone formation. Disorders in gene regulatory network in CNC patterning indicate highly close relevance to clinical birth defects and diseases, providing valuable transgenic mouse models for subsequent discoveries in delineating the underlying molecular mechanisms. We also emphasized the potential regenerative alternative through scientific discoveries from CNC patterning and genetic molecules in interfering with or alleviating clinical disorders or diseases, which will be beneficial for the molecular targets to be integrated for novel therapeutic strategies in the clinic.
Collapse
Affiliation(s)
- Junguang Liao
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yuping Huang
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Qiang Wang
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Sisi Chen
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Chenyang Zhang
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Dan Wang
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zhengbing Lv
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xingen Zhang
- Department of Orthopedics, Jiaxing Key Laboratory for Minimally Invasive Surgery in Orthopaedics & Skeletal Regenerative Medicine, Zhejiang Rongjun Hospital, Jiaxing, 314001, China
| | - Mengrui Wu
- Institute of Genetics, College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Guiqian Chen
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
- Institute of Genetics, College of Life Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
18
|
Guo T, Han X, He J, Feng J, Jing J, Janečková E, Lei J, Ho TV, Xu J, Chai Y. KDM6B interacts with TFDP1 to activate P53 signalling in regulating mouse palatogenesis. eLife 2022; 11:74595. [PMID: 35212626 PMCID: PMC9007587 DOI: 10.7554/elife.74595] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Epigenetic regulation plays extensive roles in diseases and development. Disruption of epigenetic regulation not only increases the risk of cancer, but can also cause various developmental defects. However, the question of how epigenetic changes lead to tissue-specific responses during neural crest fate determination and differentiation remains understudied. Using palatogenesis as a model, we reveal the functional significance of Kdm6b, an H3K27me3 demethylase, in regulating mouse embryonic development. Our study shows that Kdm6b plays an essential role in cranial neural crest development, and loss of Kdm6b disturbs P53 pathway-mediated activity, leading to complete cleft palate along with cell proliferation and differentiation defects in mice. Furthermore, activity of H3K27me3 on the promoter of Trp53 is antagonistically controlled by Kdm6b, and Ezh2 in cranial neural crest cells. More importantly, without Kdm6b, the transcription factor TFDP1, which normally binds to the promoter of Trp53, cannot activate Trp53 expression in palatal mesenchymal cells. Furthermore, the function of Kdm6b in activating Trp53 in these cells cannot be compensated for by the closely related histone demethylase Kdm6a. Collectively, our results highlight the important role of the epigenetic regulator KDM6B and how it specifically interacts with TFDP1 to achieve its functional specificity in regulating Trp53 expression, and further provide mechanistic insights into the epigenetic regulatory network during organogenesis.
Collapse
Affiliation(s)
- Tingwei Guo
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, United States
| | - Xia Han
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, United States
| | - Jinzhi He
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, United States
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, United States
| | - Junjun Jing
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, United States
| | - Eva Janečková
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, United States
| | - Jie Lei
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, United States
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, United States
| | - Jian Xu
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, United States
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, United States
| |
Collapse
|
19
|
Paradise CR, De La Vega RE, Galvan ML, Carrasco ME, Thaler R, van Wijnen AJ, Dudakovic A. Brd4 Inactivation Increases Adenoviral Delivery of BMP2 for Paracrine Stimulation of Osteogenic Differentiation as a Gene Therapeutic Concept to Enhance Bone Healing. JBMR Plus 2021; 5:e10520. [PMID: 34693189 PMCID: PMC8520065 DOI: 10.1002/jbm4.10520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/19/2021] [Accepted: 06/03/2021] [Indexed: 11/13/2022] Open
Abstract
Bromodomain (BRD) proteins are histone code interpreters that recognize acetylated lysines and link the dynamic state of chromatin with the transcriptional machinery. Here, we demonstrate that ablation of the Brd4 gene in primary mouse bone marrow–derived mesenchymal stem cells via a conditional Brd4fl/fl allele suppresses osteogenic lineage commitment. Remarkably, loss of Brd4 function also enhances expression of genes in engineered adenoviral vectors, including Cre recombinase and green fluorescent protein (GFP). Similarly, vector‐based expression of BMP2 mRNA and protein levels are enhanced upon Brd4 depletion in cells transduced with an adenoviral vector that expresses BMP2 (Ad‐BMP2). Importantly, Brd4 depletion in MC3T3‐E1 and human adipose‐derived mesenchymal stem cells (AMSCs) transduced with Ad‐BMP2 enhances osteogenic differentiation of naïve MC3T3‐E1 cells via paracrine mechanisms based on transwell and conditioned medium studies. Our studies indicate that Brd4 depletion enhances adenoviral transgene expression in mammalian cells, which can be leveraged as a therapeutic strategy to improve viral vector‐based gene therapies. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Christopher R Paradise
- Department of Orthopedic Surgery Mayo Clinic Rochester MN USA.,Center for Regenerative Medicine Mayo Clinic Rochester MN USA
| | - Rodolfo E De La Vega
- Musculosketal Gene Therapy Research Laboratory, Rehabilitation Medicine Research Center Mayo Clinic Rochester MN USA.,Department cBITE, MERLN Institute for Technology-Inspired Regenerative Medicine Maastricht University Maastricht The Netherlands.,Department IBE, MERLN Institute for Technology-Inspired Regenerative Medicine Maastricht University Maastricht The Netherlands
| | - M Lizeth Galvan
- Department of Orthopedic Surgery Mayo Clinic Rochester MN USA
| | | | - Roman Thaler
- Department of Orthopedic Surgery Mayo Clinic Rochester MN USA
| | - Andre J van Wijnen
- Department of Orthopedic Surgery Mayo Clinic Rochester MN USA.,Center for Regenerative Medicine Mayo Clinic Rochester MN USA.,Department of Biochemistry and Molecular Biology Mayo Clinic Rochester MN USA
| | - Amel Dudakovic
- Department of Orthopedic Surgery Mayo Clinic Rochester MN USA.,Department of Biochemistry and Molecular Biology Mayo Clinic Rochester MN USA
| |
Collapse
|
20
|
Thulabandu V, Nehila T, Ferguson JW, Atit RP. Dermal EZH2 orchestrates dermal differentiation and epidermal proliferation during murine skin development. Dev Biol 2021; 478:25-40. [PMID: 34166654 PMCID: PMC8384472 DOI: 10.1016/j.ydbio.2021.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/28/2021] [Accepted: 06/18/2021] [Indexed: 10/21/2022]
Abstract
Skin development and patterning is dependent on factors that regulate the stepwise differentiation of dermal fibroblasts concomitant with dermal-epidermal reciprocal signaling, two processes that are poorly understood. Here we show that dermal EZH2, the methyltransferase enzyme of the epigenetic Polycomb Repressive Complex 2 (PRC2), is a new coordinator of both these processes. Dermal EZH2 activity is present during dermal fibroblast differentiation and is required for spatially restricting Wnt/β-catenin signaling to reinforce dermal fibroblast cell fate. Later in development, dermal EZH2 regulates the expression of reticular dermal markers and initiation of secondary hair follicles. Embryos lacking dermal Ezh2 have elevated epidermal proliferation and differentiation that can be rescued by small molecule inhibition of retinoic acid (RA) signaling. Together, our study reveals that dermal EZH2 is acting like a rheostat to control the levels of Wnt/β-catenin and RA signaling to impact fibroblast differentiation cell autonomously and epidermal keratinocyte development non-cell autonomously, respectively.
Collapse
Affiliation(s)
| | - Timothy Nehila
- Dept. of Biology, Case Western Reserve University, Cleveland, OH, USA
| | - James W Ferguson
- Dept. of Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Radhika P Atit
- Dept. of Biology, Case Western Reserve University, Cleveland, OH, USA; Dept. of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA; Dept. of Dermatology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
21
|
Roffers-Agarwal J, Lidberg KA, Gammill LS. The lysine methyltransferase SETD2 is a dynamically expressed regulator of early neural crest development. Genesis 2021; 59:e23448. [PMID: 34498354 DOI: 10.1002/dvg.23448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 07/31/2021] [Accepted: 08/13/2021] [Indexed: 11/11/2022]
Abstract
SETD2 is a histone H3 lysine 36 (H3K36) tri-methylase that is upregulated in response to neural crest induction. Because the H3K36 di-methylase NSD3 and cytoplasmic non-histone protein methylation are necessary for neural crest development, we investigated the expression and requirement for SETD2 in the neural crest. SetD2 is expressed throughout the chick blastoderm beginning at gastrulation. Subsequently, SetD2 mRNA becomes restricted to the neural plate, where it is strongly and dynamically expressed as neural tissue is regionalized and cell fate decisions are made. This includes expression in premigratory neural crest cells, which is downregulated prior to migration. Likely due to the early onset of its expression, SETD2 morpholino knockdown does not significantly alter premigratory Sox10 expression or neural crest migration; however, both are disrupted by a methyltransferase mutant SETD2 construct. These results suggest that SETD2 activity is essential for early neural crest development, further demonstrating that lysine methylation is an important mechanism regulating the neural crest.
Collapse
Affiliation(s)
- Julaine Roffers-Agarwal
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA.,Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kevin A Lidberg
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA.,Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Laura S Gammill
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA.,Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
22
|
Galvan ML, Paradise CR, Kubrova E, Jerez S, Khani F, Thaler R, Dudakovic A, van Wijnen AJ. Multiple pharmacological inhibitors targeting the epigenetic suppressor enhancer of zeste homolog 2 (Ezh2) accelerate osteoblast differentiation. Bone 2021; 150:115993. [PMID: 33940225 PMCID: PMC8217219 DOI: 10.1016/j.bone.2021.115993] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/06/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023]
Abstract
Skeletal development and bone formation are regulated by epigenetic mechanisms that either repress or enhance osteogenic commitment of mesenchymal stromal/stem cells and osteoblasts. The transcriptional suppressive trimethylation of histone 3 lysine 27 (H3K27me3) hinders differentiation of pre-committed osteoblasts. Osteoblast maturation can be stimulated by genetic loss of the H3K27 methyltransferase Ezh2 which can also be mimicked pharmacologically using the classical Ezh2 inhibitor GSK126. Identification of other Ezh2 inhibitors (iEzh2) that enhance osteogenic potential would increase chemical options for developing new bone stimulatory compounds. In this study, we examined a panel of iEzh2s and show that all eight inhibitors we tested are capable of accelerating osteoblast differentiation to different degrees at concentrations that are well below cytotoxic concentrations. Inhibition of Ezh2 is commensurate with loss of cellular H3K27me3 levels while forced expression of Ezh2 reverses the effect of Ezh2 suppression. Reduced Ezh2 function by siRNA depletion of Ezh2 mRNA and protein levels also stimulates osteoblastogenesis, consistent with the specificity of iEzh2 to target the active site of Ezh2. Diminished Ezh2 levels preempt the effects of iEzh2s on H3K27me3. GSK126, EPZ-6438 and siRNA depletion of Ezh2 each are effective in reducing H3K27me3 levels. However, EPZ-6438 is more potent than GSK126 in stimulating osteoblastogenesis, as reflected by increased extracellular matrix mineralization. Collectively, our data indicate that Ezh2 inhibitors properly target Ezh2 consistent with their biochemical affinities. The range of compounds capable of promoting osteogenesis presented in this study offers the opportunity to develop diverse bone anabolic strategies for distinct clinical scenarios, including spine fusion, non-union of bone and dental implant enhancement.
Collapse
Affiliation(s)
- M Lizeth Galvan
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.
| | - Christopher R Paradise
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Eva Kubrova
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.
| | - Sofia Jerez
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.
| | - Farzaneh Khani
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
23
|
Golson ML. Islet Epigenetic Impacts on β-Cell Identity and Function. Compr Physiol 2021; 11:1961-1978. [PMID: 34061978 DOI: 10.1002/cphy.c200004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The development and maintenance of differentiation is vital to the function of mature cells. Terminal differentiation is achieved by locking in the expression of genes essential for the function of those cells. Gene expression and its memory through generations of cell division is controlled by transcription factors and a host of epigenetic marks. In type 2 diabetes, β cells have altered gene expression compared to controls, accompanied by altered chromatin marks. Mutations, diet, and environment can all disrupt the implementation and preservation of the distinctive β-cell transcriptional signature. Understanding of the full complement of genomic control in β cells is still nascent. This article describes the known effects of histone marks and variants, DNA methylation, how they are regulated in the β cell, and how they affect cell-fate specification, maintenance, and lineage propagation. © 2021 American Physiological Society. Compr Physiol 11:1-18, 2021.
Collapse
Affiliation(s)
- Maria L Golson
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
24
|
Pal D, Riester SM, Hasan B, Tufa SF, Dudakovic A, Keene DR, van Wijnen AJ, Schweitzer R. Ezh2 Is Essential for Patterning of Multiple Musculoskeletal Tissues but Dispensable for Tendon Differentiation. Stem Cells Dev 2021; 30:601-609. [PMID: 33757300 DOI: 10.1089/scd.2020.0209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
An efficient musculoskeletal system depends on the precise assembly and coordinated growth and function of muscles, skeleton, and tendons. However, the mechanisms that drive integrated musculoskeletal development and coordinated growth and differentiation of each of these tissues are still being uncovered. Epigenetic modifiers have emerged as critical regulators of cell fate differentiation, but so far almost nothing is known about their roles in tendon biology. Previous studies have shown that epigenetic modifications driven by Enhancer of zeste homolog 2 (EZH2), a major histone methyltransferase, have significant roles in vertebrate development including skeletal patterning and bone formation. We now find that targeting Ezh2 through the limb mesenchyme also has significant effects on tendon and muscle patterning, likely reflecting the essential roles of early mesenchymal cues mediated by Ezh2 for coordinated patterning and development of all tissues of the musculoskeletal system. Conversely, loss of Ezh2 in the tendon cells did not disrupt overall tendon structure or collagen organization suggesting that tendon differentiation and maturation are independent of Ezh2 signaling.
Collapse
Affiliation(s)
- Deepanwita Pal
- Research Division, Shriners Hospital for Children, Portland, Oregon, USA
| | - Scott M Riester
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Bashar Hasan
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Sara F Tufa
- Research Division, Shriners Hospital for Children, Portland, Oregon, USA
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Douglas R Keene
- Research Division, Shriners Hospital for Children, Portland, Oregon, USA.,Department of Orthopedics, Oregon Health & Science University, Portland, USA
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Ronen Schweitzer
- Research Division, Shriners Hospital for Children, Portland, Oregon, USA.,Department of Orthopedics, Oregon Health & Science University, Portland, USA
| |
Collapse
|
25
|
Wan C, Zhang F, Yao H, Li H, Tuan RS. Histone Modifications and Chondrocyte Fate: Regulation and Therapeutic Implications. Front Cell Dev Biol 2021; 9:626708. [PMID: 33937229 PMCID: PMC8085601 DOI: 10.3389/fcell.2021.626708] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
The involvement of histone modifications in cartilage development, pathology and regeneration is becoming increasingly evident. Understanding the molecular mechanisms and consequences of histone modification enzymes in cartilage development, homeostasis and pathology provides fundamental and precise perspectives to interpret the biological behavior of chondrocytes during skeletal development and the pathogenesis of various cartilage related diseases. Candidate molecules or drugs that target histone modifying proteins have shown promising therapeutic potential in the treatment of cartilage lesions associated with joint degeneration and other chondropathies. In this review, we summarized the advances in the understanding of histone modifications in the regulation of chondrocyte fate, cartilage development and pathology, particularly the molecular writers, erasers and readers involved. In addition, we have highlighted recent studies on the use of small molecules and drugs to manipulate histone signals to regulate chondrocyte functions or treat cartilage lesions, in particular osteoarthritis (OA), and discussed their potential therapeutic benefits and limitations in preventing articular cartilage degeneration or promoting its repair or regeneration.
Collapse
Affiliation(s)
- Chao Wan
- MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,MOE Key Laboratory for Regenerative Medicine (Shenzhen Base), School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Fengjie Zhang
- MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,MOE Key Laboratory for Regenerative Medicine (Shenzhen Base), School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Hanyu Yao
- MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,MOE Key Laboratory for Regenerative Medicine (Shenzhen Base), School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Haitao Li
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Rocky S Tuan
- MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,MOE Key Laboratory for Regenerative Medicine (Shenzhen Base), School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
26
|
Cao Y, Li L, Fan Z. The role and mechanisms of polycomb repressive complex 2 on the regulation of osteogenic and neurogenic differentiation of stem cells. Cell Prolif 2021; 54:e13032. [PMID: 33759287 PMCID: PMC8088470 DOI: 10.1111/cpr.13032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/25/2021] [Accepted: 03/11/2021] [Indexed: 12/25/2022] Open
Abstract
The stem cells differentiate into osteoblasts or neurocytes is the key process for treatment of bone‐ or neural tissue‐related diseases which is caused by ageing, fracture, injury, inflammation, etc Polycomb group complexes (PcGs), especially the polycomb repressive complex 2 (PRC2), act as pivotal epigenetic regulators by modifying key developmental regulatory genes during stem cells differentiation. In this review, we summarize the core subunits, the variants and the potential functions of PRC2. We also highlight the underlying mechanisms of PRC2 associated with the osteogenic and neurogenic differentiation of stem cells, including its interaction with non‐coding RNAs, histone acetyltransferases, histone demethylase, DNA methyltransferase and polycomb repressive complex 1. This review provided a substantial information of epigenetic regulation mediated by PRC2 which leads to the osteogenic and neurogenic differentiation of stem cells.
Collapse
Affiliation(s)
- Yangyang Cao
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Le Li
- Tsinghua University Hospital, Stomatological Disease Prevention and Control Center, Tsinghua University, Beijing, China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.,Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
27
|
Cheng M, Zhou Q. Targeting EZH2 Ameliorates the LPS-Inhibited PDLSC Osteogenesis via Wnt/β-Catenin Pathway. Cells Tissues Organs 2021; 209:227-235. [PMID: 33461200 DOI: 10.1159/000511702] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/21/2020] [Indexed: 11/19/2022] Open
Abstract
As a histone methyltransferase, enhancer of zeste homolog 2 (EZH2), suppresses osteoblast maturation and is involved in inflammation. However, the role of EZH2 in human periodontal ligament stem cells (PDLSCs) under inflammation still needs to be further investigated. This study aimed to identify the underlying mechanisms and explore the function of EZH2 in PDLSC osteogenesis under inflammation. PDLSCs were treated with sh-EZH2, DZNep or DKK1 under inflammation. The alkaline phosphatase (ALP) activity, alizarin red staining, and osteogenesis-related protein levels were analyzed. Lipopolysaccharide (LPS)-induced inflammation restrained osteogenic differentiation. Under inflammation, the upregulation of EZH2 suppressed the expression of osteogenic markers, including osteocalcin, runt-related transcription factor 2, and bone morphogenetic protein-2, the activity of ALP, and the accumulation of mineralization through the Wnt/β-catenin pathway. EZH2 knockdown inhibited the levels of proinflammatory cytokines such as interleukin-6 and tumor necrosis factor-α. These results suggested that LPS-induced overexpression of EZH2 suppressed PDLSC osteogenesis under inflammatory conditions through the Wnt/β-catenin pathway. These findings give new insights into the physiological differentiation and pathological inflammation of PDLSC osteogenesis, and provide an underlying therapeutic target for periodontitis.
Collapse
Affiliation(s)
- Mosha Cheng
- Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, China,
| | - Qing Zhou
- Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
28
|
Diener J, Sommer L. Reemergence of neural crest stem cell-like states in melanoma during disease progression and treatment. Stem Cells Transl Med 2020; 10:522-533. [PMID: 33258291 PMCID: PMC7980219 DOI: 10.1002/sctm.20-0351] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/28/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022] Open
Abstract
Melanoma is the deadliest of all skin cancers due to its high metastatic potential. In recent years, advances in targeted therapy and immunotherapy have contributed to a remarkable progress in the treatment of metastatic disease. However, intrinsic or acquired resistance to such therapies remains a major obstacle in melanoma treatment. Melanoma disease progression, beginning from tumor initiation and growth to acquisition of invasive phenotypes and metastatic spread and acquisition of treatment resistance, has been associated with cellular dedifferentiation and the hijacking of gene regulatory networks reminiscent of the neural crest (NC)—the developmental structure which gives rise to melanocytes and hence melanoma. This review summarizes the experimental evidence for the involvement of NC stem cell (NCSC)‐like cell states during melanoma progression and addresses novel approaches to combat the emergence of stemness characteristics that have shown to be linked with aggressive disease outcome and drug resistance.
Collapse
Affiliation(s)
- Johanna Diener
- University of Zurich, Institute of Anatomy, Zürich, Switzerland
| | - Lukas Sommer
- University of Zurich, Institute of Anatomy, Zürich, Switzerland
| |
Collapse
|
29
|
Siismets EM, Hatch NE. Cranial Neural Crest Cells and Their Role in the Pathogenesis of Craniofacial Anomalies and Coronal Craniosynostosis. J Dev Biol 2020; 8:jdb8030018. [PMID: 32916911 PMCID: PMC7558351 DOI: 10.3390/jdb8030018] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 12/29/2022] Open
Abstract
Craniofacial anomalies are among the most common of birth defects. The pathogenesis of craniofacial anomalies frequently involves defects in the migration, proliferation, and fate of neural crest cells destined for the craniofacial skeleton. Genetic mutations causing deficient cranial neural crest migration and proliferation can result in Treacher Collins syndrome, Pierre Robin sequence, and cleft palate. Defects in post-migratory neural crest cells can result in pre- or post-ossification defects in the developing craniofacial skeleton and craniosynostosis (premature fusion of cranial bones/cranial sutures). The coronal suture is the most frequently fused suture in craniosynostosis syndromes. It exists as a biological boundary between the neural crest-derived frontal bone and paraxial mesoderm-derived parietal bone. The objective of this review is to frame our current understanding of neural crest cells in craniofacial development, craniofacial anomalies, and the pathogenesis of coronal craniosynostosis. We will also discuss novel approaches for advancing our knowledge and developing prevention and/or treatment strategies for craniofacial tissue regeneration and craniosynostosis.
Collapse
Affiliation(s)
- Erica M. Siismets
- Oral Health Sciences PhD Program, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA;
| | - Nan E. Hatch
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA
- Correspondence: ; Tel.: +1-734-647-6567
| |
Collapse
|
30
|
Nehila T, Ferguson JW, Atit RP. Polycomb Repressive Complex 2: a Dimmer Switch of Gene Regulation in Calvarial Bone Development. Curr Osteoporos Rep 2020; 18:378-387. [PMID: 32748325 PMCID: PMC7467536 DOI: 10.1007/s11914-020-00603-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Epigenetic regulation is a distinct mechanism of gene regulation that functions by modulating chromatin structure and accessibility. Polycomb Repressive Complex 2 (PRC2) is a conserved chromatin regulator that is required in the developing embryo to control the expression of key developmental genes. An emerging feature of PRC2 is that it not only allows for binary ON/OFF states of gene expression but can also modulate gene expression in feed-forward loops to change the outcome of gene regulatory networks. This striking feature of epigenetic modulation has improved our understanding of musculoskeletal development. RECENT FINDINGS Recent advances in mouse embryos unravel a range of phenotypes that demonstrate the tissue-specific, temporal, and spatial role of PRC2 during organogenesis and cell fate decisions in vivo. Here, we take a detailed view of how PRC2 functions during the development of calvarial bone and skin. Based on the emerging evidence, we propose that PRC2 serves as a "dimmer switch" to modulate gene expression of target genes by altering the expression of activators and inhibitors. This review highlights the findings from contemporary research that allow us to investigate the unique developmental potential of intramembranous calvarial bones.
Collapse
Affiliation(s)
- Timothy Nehila
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| | - James W Ferguson
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Radhika P Atit
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA.
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA.
- Department of Dermatology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
31
|
Dudakovic A, Samsonraj RM, Paradise CR, Galeano-Garces C, Mol MO, Galeano-Garces D, Zan P, Galvan ML, Hevesi M, Pichurin O, Thaler R, Begun DL, Kloen P, Karperien M, Larson AN, Westendorf JJ, Cool SM, van Wijnen AJ. Inhibition of the epigenetic suppressor EZH2 primes osteogenic differentiation mediated by BMP2. J Biol Chem 2020; 295:7877-7893. [PMID: 32332097 DOI: 10.1074/jbc.ra119.011685] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/22/2020] [Indexed: 12/17/2022] Open
Abstract
Bone-stimulatory therapeutics include bone morphogenetic proteins (e.g. BMP2), parathyroid hormone, and antibody-based suppression of WNT antagonists. Inhibition of the epigenetic enzyme enhancer of zeste homolog 2 (EZH2) is both bone anabolic and osteoprotective. EZH2 inhibition stimulates key components of bone-stimulatory signaling pathways, including the BMP2 signaling cascade. Because of high costs and adverse effects associated with BMP2 use, here we investigated whether BMP2 dosing can be reduced by co-treatment with EZH2 inhibitors. Co-administration of BMP2 with the EZH2 inhibitor GSK126 enhanced differentiation of murine (MC3T3) osteoblasts, reflected by increased alkaline phosphatase activity, Alizarin Red staining, and expression of bone-related marker genes (e.g. Bglap and Phospho1). Strikingly, co-treatment with BMP2 (10 ng/ml) and GSK126 (5 μm) was synergistic and was as effective as 50 ng/ml BMP2 at inducing MC3T3 osteoblastogenesis. Similarly, the BMP2-GSK126 co-treatment stimulated osteogenic differentiation of human bone marrow-derived mesenchymal stem/stromal cells, reflected by induction of key osteogenic markers (e.g. Osterix/SP7 and IBSP). A combination of BMP2 (300 ng local) and GSK126 (5 μg local and 5 days of 50 mg/kg systemic) yielded more consistent bone healing than single treatments with either compound in a mouse calvarial critical-sized defect model according to results from μCT, histomorphometry, and surgical grading of qualitative X-rays. We conclude that EZH2 inhibition facilitates BMP2-mediated induction of osteogenic differentiation of progenitor cells and maturation of committed osteoblasts. We propose that epigenetic priming, coupled with bone anabolic agents, enhances osteogenesis and could be leveraged in therapeutic strategies to improve bone mass.
Collapse
Affiliation(s)
- Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA.,Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Christopher R Paradise
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota, USA.,Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Merel O Mol
- Department of Orthopedic Surgery, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | | | - Pengfei Zan
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA.,Department of Orthopedic Surgery, School of Medicine, Second Affiliated Hospital of Zhejiang University, Hangzhou, China.,Department of Orthopedic Surgery, School of Medicine, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - M Lizeth Galvan
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Mario Hevesi
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Oksana Pichurin
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Dana L Begun
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Peter Kloen
- Department of Orthopedic Surgery, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Marcel Karperien
- Department of Developmental BioEngineering, University of Twente, Enschede, The Netherlands
| | - A Noelle Larson
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Jennifer J Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA.,Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Simon M Cool
- Glycotherapeutics Group, Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA .,Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
32
|
Duman M, Martinez-Moreno M, Jacob C, Tapinos N. Functions of histone modifications and histone modifiers in Schwann cells. Glia 2020; 68:1584-1595. [PMID: 32034929 DOI: 10.1002/glia.23795] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 01/25/2023]
Abstract
Schwann cells (SCs) are the main glial cells present in the peripheral nervous system (PNS). Their primary functions are to insulate peripheral axons to protect them from the environment and to enable fast conduction of electric signals along big caliber axons by enwrapping them in a thick myelin sheath rich in lipids. In addition, SCs have the peculiar ability to foster axonal regrowth after a lesion by demyelinating and converting into repair cells that secrete neurotrophic factors and guide axons back to their former target to finally remyelinate regenerated axons. The different steps of SC development and their role in the maintenance of PNS integrity and regeneration after lesion are controlled by various factors among which transcription factors and chromatin-remodeling enzymes hold major functions. In this review, we discussed how histone modifications and histone-modifying enzymes control SC development, maintenance of PNS integrity and response to injury. The functions of histone modifiers as part of chromatin-remodeling complexes are discussed in another review published in the same issue of Glia.
Collapse
Affiliation(s)
- Mert Duman
- Faculty of Biology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Margot Martinez-Moreno
- Department of Neurosurgery, Molecular Neuroscience & Neuro-Oncology Laboratory, Brown University, Providence, Rhode Island
| | - Claire Jacob
- Faculty of Biology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Nikos Tapinos
- Department of Neurosurgery, Molecular Neuroscience & Neuro-Oncology Laboratory, Brown University, Providence, Rhode Island
| |
Collapse
|
33
|
Draut H, Liebenstein T, Begemann G. New Insights into the Control of Cell Fate Choices and Differentiation by Retinoic Acid in Cranial, Axial and Caudal Structures. Biomolecules 2019; 9:E860. [PMID: 31835881 PMCID: PMC6995509 DOI: 10.3390/biom9120860] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022] Open
Abstract
Retinoic acid (RA) signaling is an important regulator of chordate development. RA binds to nuclear RA receptors that control the transcriptional activity of target genes. Controlled local degradation of RA by enzymes of the Cyp26a gene family contributes to the establishment of transient RA signaling gradients that control patterning, cell fate decisions and differentiation. Several steps in the lineage leading to the induction and differentiation of neuromesodermal progenitors and bone-producing osteogenic cells are controlled by RA. Changes to RA signaling activity have effects on the formation of the bones of the skull, the vertebrae and the development of teeth and regeneration of fin rays in fish. This review focuses on recent advances in these areas, with predominant emphasis on zebrafish, and highlights previously unknown roles for RA signaling in developmental processes.
Collapse
|
34
|
Cyrus S, Burkardt D, Weaver DD, Gibson WT. PRC2-complex related dysfunction in overgrowth syndromes: A review of EZH2, EED, and SUZ12 and their syndromic phenotypes. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 181:519-531. [PMID: 31724824 DOI: 10.1002/ajmg.c.31754] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 12/31/2022]
Abstract
The EZH2, EED, and SUZ12 genes encode proteins that comprise core components of the polycomb repressive complex 2 (PRC2), an epigenetic "writer" with H3K27 methyltransferase activity, catalyzing the addition of up to three methyl groups on histone 3 at lysine residue 27 (H3K27). Partial loss-of-function variants in genes encoding the EZH2 and EED subunits of the complex lead to overgrowth, macrocephaly, advanced bone age, variable intellectual disability, and distinctive facial features. EZH2-associated overgrowth, caused by constitutional heterozygous mutations within Enhancer of Zeste homologue 2 (EZH2), has a phenotypic spectrum ranging from tall stature without obvious intellectual disability or dysmorphic features to classical Weaver syndrome (OMIM #277590). EED-associated overgrowth (Cohen-Gibson syndrome; OMIM #617561) is caused by germline heterozygous mutations in Embryonic Ectoderm Development (EED), and manifests overgrowth and intellectual disability (OGID), along with other features similar to Weaver syndrome. Most recently, rare coding variants in SUZ12 have also been described that present with clinical characteristics similar to the previous two syndromes. Here we review the PRC2 complex and clinical syndromes of OGID associated with core components EZH2, EED, and SUZ12.
Collapse
Affiliation(s)
- Sharri Cyrus
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Deepika Burkardt
- Center for Human Genetics, University Hospitals Rainbow Babies and Children/Department of Genetics, Case Western Reserve University, Cleveland, Ohio
| | - David D Weaver
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - William T Gibson
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
35
|
Metalloprotease-Dependent Attenuation of BMP Signaling Restricts Cardiac Neural Crest Cell Fate. Cell Rep 2019; 29:603-616.e5. [DOI: 10.1016/j.celrep.2019.09.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/12/2019] [Accepted: 09/05/2019] [Indexed: 02/07/2023] Open
|
36
|
Zhao F, Zhou CG, Xu G, Ma TD, Xia RP, Li BX. [Effect of enhancer of zeste homolog 2 on the expression of glial cell line-derived neurotrophic factor family receptor α-1 in the colon tissue of children with Hirschsprung's disease]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2019; 21:1033-1037. [PMID: 31642440 PMCID: PMC7389725 DOI: 10.7499/j.issn.1008-8830.2019.10.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVE To study the expression levels of glial cell line-derived neurotrophic factor family receptor α-1 (GFRα1) and enhancer of zeste homolog 2 (EZH2) in the intestinal tissue of children with Hirschsprung's disease (HSCR), as well as the role of EZH2 in the regulation of GFRα1 gene expression and the pathogenesis of HSCR. METHODS The samples of colon tissue with spasm from 24 children with HSCR after radical treatment of HSCR were selected as the experimental group, and the samples of necrotized colon tissue from 18 children with neonatal necrotizing enterocolitis after surgical resection were selected as the control group. Real-time PCR and Western blot were used to measure the expression levels of GFRα1 and EZH2 in colon tissue in both groups. Human neuroblastoma SH-SY5Y cells were divided into an EZH2 over-expression group and a negative control group. The cells in the EZH2 over-expression group were transfected with pCMV6-EZH2 plasmid, and those in the negative control group were transfected with pCMV6 plasmid. The expression levels of EZH2 and GFRα1 were measured after transfection. RESULTS Compared with the control group, the experimental group had significant reductions in the mRNA and protein expression levels of GFRα1 and EZH2 in colon tissue (P<0.05), and the protein expression of EZH2 was positively correlated with that of GFRα1 (r=0.606, P=0.002). Compared with the negative control group, the EZH2 over-expression group had significant increases in the expression levels of EZH2 and GFRα1 after SH-SY5Y cells were transfected with EZH2 over-expression plasmid (P<0.05). CONCLUSIONS Low expression of EZH2 in the colon tissue of children with HSCR may be one of the causes of inadequate expression of GFRα1 and onset of HSCR.
Collapse
Affiliation(s)
- Fan Zhao
- Department of Neonatal Surgery, Hunan Children's Hospital, Changsha 410007, China.
| | | | | | | | | | | |
Collapse
|
37
|
Seelan RS, Pisano M, Greene RM. Nucleic acid methylation and orofacial morphogenesis. Birth Defects Res 2019; 111:1593-1610. [PMID: 31385455 DOI: 10.1002/bdr2.1564] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 12/19/2022]
Abstract
In this review, we highlight the current state of knowledge of the diverse roles nucleic acid methylation plays in the embryonic development of the orofacial region and how aberrant methylation may contribute to orofacial clefts. We also consider the role of methylation in the regulation of neural crest cell function as it pertains to orofacial ontogeny. Changes in DNA methylation, as a consequence of environmental effects, have been observed in the regulatory regions of several genes, potentially identifying new candidate genes for orofacial clefting and opening promising new avenues for further research. While the focus of this review is primarily on the nonsyndromic forms of orofacial clefting, syndromic forms are briefly discussed in the context of aberrant nucleic acid methylation.
Collapse
Affiliation(s)
- Ratnam S Seelan
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, University of Louisville School of Dentistry, Louisville, Kentucky
| | - Michele Pisano
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, University of Louisville School of Dentistry, Louisville, Kentucky
| | - Robert M Greene
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, University of Louisville School of Dentistry, Louisville, Kentucky
| |
Collapse
|
38
|
Li J, Yang G, Liu S, Wang L, Liang Z, Zhang H. Suv39h1 promotes facet joint chondrocyte proliferation by targeting miR-15a/Bcl2 in idiopathic scoliosis patients. Clin Epigenetics 2019; 11:107. [PMID: 31337422 PMCID: PMC6651996 DOI: 10.1186/s13148-019-0706-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/15/2019] [Indexed: 01/07/2023] Open
Abstract
Background Idiopathic scoliosis (IS) is a complex disease with an unclear etiology, and the worldwide prevalence is approximately 2–3%. As an important link between environmental factors and phenotypic differences, epigenetic changes, such as lncRNA, miRNA, and DNA methylation, have recently been reported to be associated with the development of IS. However, the correlation between histone methylation, another classical epigenetic mechanism, and IS has not been determined. In this study, we investigated the morphological changes, alterations in the levels of histone methylation, and cell proliferation-related pathway in inferior facet joint cartilage in 11 IS patients and 10 comparable controls. Results Compared with the control group, narrowed facet joint cartilage but increased proliferative chondrocytes and upregulated collagen type II (COL2A1) and B-cell lymphoma-2 (Bcl2) were observed in IS patients. Additionally, tri-methylation levels of H3K9 (H3K9me3) rather than other lysine sites were significantly increased in IS patients, coinciding with the upregulation of its specific enzyme, suppressor of variegation 3-9, drosophila homolog of 1 (SUV39H1). In addition, Bcl2-targeted miR-15a was downregulated in IS patients, and the level of H3K9me3 in the promoter region of the miR-15a host gene was remarkably increased in IS patients compared with the control group. Moreover, overexpressing SUV39H1 in ATDC5 cells with increased H3K9me3 levels led to similar changes, with increased expression of COL2A1 and Bcl2, decreased expression of miR-15a, and increased cell proliferation. Conclusions Thus, our study suggests that increased chondrocyte proliferation occurs in the facet joint cartilage of IS patients compared with the control group and may be promoted by the elevated levels of H3K9me3 and SUV39H1, which regulate the miR-15a/Bcl2 pathway. This dysregulation of chondrocyte proliferation could result in abnormal spinal growth and may additionally participate in the development and progression of IS. Electronic supplementary material The online version of this article (10.1186/s13148-019-0706-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiong Li
- Department of Spine Surgery, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, 410008, China
| | - Guanteng Yang
- Department of Spine Surgery, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, 410008, China
| | - Shaohua Liu
- Department of Spine Surgery, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, 410008, China
| | - Longjie Wang
- Department of Spine Surgery, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, 410008, China
| | - Zhuotao Liang
- Department of Spine Surgery, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, 410008, China
| | - Hongqi Zhang
- Department of Spine Surgery, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, 410008, China.
| |
Collapse
|
39
|
Roles and regulation of histone methylation in animal development. Nat Rev Mol Cell Biol 2019; 20:625-641. [PMID: 31267065 DOI: 10.1038/s41580-019-0151-1] [Citation(s) in RCA: 349] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2019] [Indexed: 12/26/2022]
Abstract
Histone methylation can occur at various sites in histone proteins, primarily on lysine and arginine residues, and it can be governed by multiple positive and negative regulators, even at a single site, to either activate or repress transcription. It is now apparent that histone methylation is critical for almost all stages of development, and its proper regulation is essential for ensuring the coordinated expression of gene networks that govern pluripotency, body patterning and differentiation along appropriate lineages and organogenesis. Notably, developmental histone methylation is highly dynamic. Early embryonic systems display unique histone methylation patterns, prominently including the presence of bivalent (both gene-activating and gene-repressive) marks at lineage-specific genes that resolve to monovalent marks during differentiation, which ensures that appropriate genes are expressed in each tissue type. Studies of the effects of methylation on embryonic stem cell pluripotency and differentiation have helped to elucidate the developmental roles of histone methylation. It has been revealed that methylation and demethylation of both activating and repressive marks are essential for establishing embryonic and extra-embryonic lineages, for ensuring gene dosage compensation via genomic imprinting and for establishing body patterning via HOX gene regulation. Not surprisingly, aberrant methylation during embryogenesis can lead to defects in body patterning and in the development of specific organs. Human genetic disorders arising from mutations in histone methylation regulators have revealed their important roles in the developing skeletal and nervous systems, and they highlight the overlapping and unique roles of different patterns of methylation in ensuring proper development.
Collapse
|
40
|
Jing J, Feng J, Li J, Han X, He J, Ho TV, Du J, Zhou X, Urata M, Chai Y. Antagonistic interaction between Ezh2 and Arid1a coordinates root patterning and development via Cdkn2a in mouse molars. eLife 2019; 8:46426. [PMID: 31259687 PMCID: PMC6602580 DOI: 10.7554/elife.46426] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/05/2019] [Indexed: 02/05/2023] Open
Abstract
Patterning is a critical step during organogenesis and is closely associated with the physiological function of organs. Tooth root shapes are finely tuned to provide precise occlusal support to facilitate the function of each tooth type. However, the mechanism regulating tooth root patterning and development is largely unknown. In this study, we provide the first in vivo evidence demonstrating that Ezh2 in the dental mesenchyme determines patterning and furcation formation during dental root development in mouse molars. Mechanistically, an antagonistic interaction between epigenetic regulators Ezh2 and Arid1a controls Cdkn2a expression in the dental mesenchyme to regulate dental root patterning and development. These findings indicate the importance of balanced epigenetic regulation in determining the tooth root pattern and the integration of roots with the jaw bones to achieve physiological function. Collectively, our study provides important clues about the regulation of organogenesis and has general implications for tooth regeneration in the future.
Collapse
Affiliation(s)
- Junjun Jing
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, United States.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, United States
| | - Jingyuan Li
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, United States
| | - Xia Han
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, United States
| | - Jinzhi He
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, United States.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, United States
| | - Jiahui Du
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, United States
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mark Urata
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, United States
| | - Yang Chai
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, United States
| |
Collapse
|
41
|
Wijnen AJ, Westendorf JJ. Epigenetics as a New Frontier in Orthopedic Regenerative Medicine and Oncology. J Orthop Res 2019; 37:1465-1474. [PMID: 30977555 PMCID: PMC6588446 DOI: 10.1002/jor.24305] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/24/2019] [Accepted: 03/27/2019] [Indexed: 02/04/2023]
Abstract
Skeletal regenerative medicine aims to repair or regenerate skeletal tissues using pharmacotherapies, cell-based treatments, and/or surgical interventions. The field is guided by biological principles active during development, wound healing, aging, and carcinogenesis. Skeletal development and tissue maintenance in adults represent highly intricate biological processes that require continuous adjustments in the expression of cell type-specific genes that generate, remodel, and repair the skeletal extracellular matrix. Errors in these processes can facilitate musculoskeletal disease including cancers or injury. The fundamental molecular mechanisms by which cell type-specific patterns in gene expression are established and retained during successive mitotic divisions require epigenetic control, which we review here. We focus on epigenetic regulatory proteins that control the mammalian epigenome at the level of chromatin with emphasis on proteins that are amenable to drug intervention to mitigate skeletal tissue degeneration (e.g., osteoarthritis and osteoporosis). We highlight recent findings on a number of druggable epigenetic regulators, including DNA methyltransferases (e.g., DNMT1, DNMT3A, and DNMT3B) and hydroxylases (e.g., TET1, TET2, and TET3), histone methyltransferases (e.g., EZH1, EZH2, and DOT1L) as well as histone deacetylases (e.g., HDAC3, HDAC4, and HDAC7) and histone acetyl readers (e.g., BRD4) in relation to the development of bone or cartilage regenerative drug therapies. We also review how histone mutations lead to epigenomic catastrophe and cause musculoskeletal tumors. The combined body of molecular and genetic studies focusing on epigenetic regulators indicates that these proteins are critical for normal skeletogenesis and viable candidate drug targets for short-term local pharmacological strategies to mitigate musculoskeletal tissue degeneration. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1465-1474, 2019.
Collapse
Affiliation(s)
- Andre J. Wijnen
- Department of Orthopedic SurgeryMayo Clinic200 First Street SW Rochester Minnesota
| | | |
Collapse
|
42
|
Torroglosa A, Villalba-Benito L, Luzón-Toro B, Fernández RM, Antiñolo G, Borrego S. Epigenetic Mechanisms in Hirschsprung Disease. Int J Mol Sci 2019; 20:ijms20133123. [PMID: 31247956 PMCID: PMC6650840 DOI: 10.3390/ijms20133123] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 02/07/2023] Open
Abstract
Hirschsprung disease (HSCR, OMIM 142623) is due to a failure of enteric precursor cells derived from neural crest (EPCs) to proliferate, migrate, survive or differentiate during Enteric Nervous System (ENS) formation. This is a complex process which requires a strict regulation that results in an ENS specific gene expression pattern. Alterations at this level lead to the onset of neurocristopathies such as HSCR. Gene expression is regulated by different mechanisms, such as DNA modifications (at the epigenetic level), transcriptional mechanisms (transcription factors, silencers, enhancers and repressors), postranscriptional mechanisms (3′UTR and ncRNA) and regulation of translation. All these mechanisms are finally implicated in cell signaling to determine the migration, proliferation, differentiation and survival processes for correct ENS development. In this review, we have performed an overview on the role of epigenetic mechanisms at transcriptional and posttranscriptional levels on these cellular events in neural crest cells (NCCs), ENS development, as well as in HSCR.
Collapse
Affiliation(s)
- Ana Torroglosa
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain.
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain.
| | - Leticia Villalba-Benito
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain.
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain.
| | - Berta Luzón-Toro
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain.
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain.
| | - Raquel María Fernández
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain.
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain.
| | - Guillermo Antiñolo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain.
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain.
| | - Salud Borrego
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain.
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain.
| |
Collapse
|
43
|
Adamik J, Roodman GD, Galson DL. Epigenetic-Based Mechanisms of Osteoblast Suppression in Multiple Myeloma Bone Disease. JBMR Plus 2019; 3:e10183. [PMID: 30918921 PMCID: PMC6419609 DOI: 10.1002/jbm4.10183] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/29/2018] [Accepted: 02/03/2019] [Indexed: 12/18/2022] Open
Abstract
Multiple myeloma (MM) bone disease is characterized by the development of osteolytic lesions, which cause severe complications affecting the morbidity, mortality, and treatment of myeloma patients. Myeloma tumors seeded within the bone microenvironment promote hyperactivation of osteoclasts and suppression of osteoblast differentiation. Because of this prolonged suppression of bone marrow stromal cells’ (BMSCs) differentiation into functioning osteoblasts, bone lesions in patients persist even in the absence of active disease. Current antiresorptive therapy provides insufficient bone anabolic effects to reliably repair MM lesions. It has become widely accepted that myeloma‐exposed BMSCs have an altered phenotype with pro‐inflammatory, immune‐modulatory, anti‐osteogenic, and pro‐adipogenic properties. In this review, we focus on the role of epigenetic‐based modalities in the establishment and maintenance of myeloma‐induced suppression of osteogenic commitment of BMSCs. We will focus on recent studies demonstrating the involvement of chromatin‐modifying enzymes in transcriptional repression of osteogenic genes in MM‐BMSCs. We will further address the epigenetic plasticity in the differentiation commitment of osteoprogenitor cells and assess the involvement of chromatin modifiers in MSC‐lineage switching from osteogenic to adipogenic in the context of the inflammatory myeloma microenvironment. Lastly, we will discuss the potential of employing small molecule epigenetic inhibitors currently used in the MM research as therapeutics and bone anabolic agents in the prevention or repair of osteolytic lesions in MM. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Juraj Adamik
- Department of Medicine Division of Hematology/Oncology, UPMC Hillman Cancer Center, The McGowan Institute for Regenerative Medicine University of Pittsburgh Pittsburgh PA USA
| | - G David Roodman
- Department of Medicine Division of Hematology-Oncology Indiana University Indianapolis IN USA.,Richard L Roudebush VA Medical Center Indianapolis IN USA
| | - Deborah L Galson
- Department of Medicine Division of Hematology/Oncology, UPMC Hillman Cancer Center, The McGowan Institute for Regenerative Medicine University of Pittsburgh Pittsburgh PA USA
| |
Collapse
|
44
|
Katoh-Fukui Y, Baba T, Sato T, Otake H, Nagakui-Noguchi Y, Shindo M, Suyama M, Ohkawa Y, Tsumura H, Morohashi KI, Fukami M. Mouse polycomb group gene Cbx2 promotes osteoblastic but suppresses adipogenic differentiation in postnatal long bones. Bone 2019; 120:219-231. [PMID: 30389610 DOI: 10.1016/j.bone.2018.10.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 12/29/2022]
Abstract
A set of key developmental genes is essential for skeletal growth from multipotent progenitor cells at weaning. Polycomb group proteins, which regulate such genes contributes to the cell lineage commitment and subsequent differentiation via epigenetic chromatin modification and remodeling. However, it is unclear which cell lineage and gene sets are targeted by polycomb proteins during skeletal growth. We now report that mice deficient in a polycomb group gene Cbx2cterm/cterm exhibited skeletal hypoplasia in the tibia, femur, and cranium. Long bone cavities in these mice contained fewer multipotent mesenchymal stromal cells. RNA-sequencing of bone marrow cells showed downregulation and upregulation of osteoblastic and adipogenic genes, respectively. Furthermore, the expression levels of genes specifically expressed in B-cell precursors were decreased. Forced expression of Cbx2 in Cbx2cterm/cterm bone marrow stromal cell recovered fibroblastic colony formation and suppressed adipogenic differentiation. Collectively, our results suggest that Cbx2 controls the maintenance and adipogenic differentiation of mesenchymal stromal cells in the bone marrow.
Collapse
Affiliation(s)
- Yuko Katoh-Fukui
- Department of Molecular Endocrinology, National Research Institute of Child Health and Development, Tokyo 157-8535, Japan.
| | - Takashi Baba
- Department of Molecular Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuya Sato
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan; Division of Bioinformatics, Kyushu University, Fukuoka, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Fukuoka, Japan
| | - Hiroyuki Otake
- Department of Molecular Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Miyuki Shindo
- Department of Experimental Animals, National Research Institute of Child Health and Development, Tokyo, Japan
| | - Mikita Suyama
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan; Division of Bioinformatics, Kyushu University, Fukuoka, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Fukuoka, Japan
| | - Yasuyuki Ohkawa
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Fukuoka, Japan; Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hideki Tsumura
- Department of Experimental Animals, National Research Institute of Child Health and Development, Tokyo, Japan
| | - Ken-Ichirou Morohashi
- Department of Molecular Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute of Child Health and Development, Tokyo 157-8535, Japan
| |
Collapse
|
45
|
Allas L, Boumédiene K, Baugé C. Epigenetic dynamic during endochondral ossification and articular cartilage development. Bone 2019; 120:523-532. [PMID: 30296494 DOI: 10.1016/j.bone.2018.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 12/23/2022]
Abstract
Within the last decade epigenetics has emerged as fundamental regulator of numerous cellular processes, including those orchestrating embryonic and fetal development. As such, epigenetic factors play especially crucial roles in endochondral ossification, the process by which bone tissue is created, as well during articular cartilage formation. In this review, we summarize the recent discoveries that characterize how DNA methylation, histone post-translational modifications and non-coding RNA (e.g., miRNA and lcnRNA) epigenetically regulate endochondral ossification and chondrogenesis.
Collapse
Affiliation(s)
- Lyess Allas
- Normandie Univ, UNICAEN, EA7451 BioConnecT, Caen, France
| | | | | |
Collapse
|
46
|
San B, Rougeot J, Voeltzke K, van Vegchel G, Aben M, Andralojc KM, Flik G, Kamminga LM. The ezh2(sa1199) mutant zebrafish display no distinct phenotype. PLoS One 2019; 14:e0210217. [PMID: 30677064 PMCID: PMC6345456 DOI: 10.1371/journal.pone.0210217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/18/2018] [Indexed: 12/27/2022] Open
Abstract
Polycomb group (PcG) proteins are essential regulators of epigenetic gene silencing and development. The PcG protein enhancer of zeste homolog 2 (Ezh2) is a key component of the Polycomb Repressive Complex 2 and is responsible for placing the histone H3 lysine 27 trimethylation (H3K27me3) repressive mark on the genome through its methyltransferase domain. Ezh2 is highly conserved in vertebrates. We studied the role of ezh2 during development of zebrafish with the use of a mutant allele (ezh2(sa1199), R18STOP), which has a stop mutation in the second exon of the ezh2 gene. Two versions of the same line were used during this study. The first and original version of zygotic ezh2(sa1199) mutants unexpectedly retained ezh2 expression in brain, gut, branchial arches, and eyes at 3 days post-fertilization (dpf), as revealed by in-situ hybridization. Moreover, the expression pattern in homozygous mutants was identical to that of wild types, indicating that mutant ezh2 mRNA is not subject to nonsense mediated decay (NMD) as predicted. Both wild type and ezh2 mutant embryos presented edemas at 2 and 3 dpf. The line was renewed by selective breeding to counter select the non-specific phenotypes and survival was assessed. In contrast to earlier studies on ezh2 mutant zebrafish, ezh2(sa1199) mutants survived until adulthood. Interestingly, the ezh2 mRNA and Ezh2 protein were present during adulthood (70 dpf) in both wild type and ezh2(sa1199) mutant zebrafish. We conclude that the ezh2(sa1199) allele does not exhibit an ezh2 loss-of-function phenotype.
Collapse
Affiliation(s)
- Bilge San
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Julien Rougeot
- Radboud University, Faculty of Science, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Kai Voeltzke
- Radboud University, Faculty of Science, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Gertie van Vegchel
- Radboud University, Faculty of Science, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Marco Aben
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
- Radboud University, Faculty of Science, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Karolina M. Andralojc
- Radboud University, Faculty of Science, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Gert Flik
- Department of Animal Ecology and Physiology, Radboud University, Nijmegen, The Netherlands
| | - Leonie M. Kamminga
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
- Radboud University, Faculty of Science, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| |
Collapse
|
47
|
Ferguson J, Atit RP. A tale of two cities: The genetic mechanisms governing calvarial bone development. Genesis 2019; 57:e23248. [PMID: 30155972 PMCID: PMC7433025 DOI: 10.1002/dvg.23248] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 12/25/2022]
Abstract
The skull bones must grow in a coordinated, three-dimensional manner to coalesce and form the head and face. Mammalian skull bones have a dual embryonic origin from cranial neural crest cells (CNCC) and paraxial mesoderm (PM) and ossify through intramembranous ossification. The calvarial bones, the bones of the cranium which cover the brain, are derived from the supraorbital arch (SOA) region mesenchyme. The SOA is the site of frontal and parietal bone morphogenesis and primary center of ossification. The objective of this review is to frame our current in vivo understanding of the morphogenesis of the calvarial bones and the gene networks regulating calvarial bone initiation in the SOA mesenchyme.
Collapse
Affiliation(s)
- James Ferguson
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106
- Department of Genetics, Case Western Reserve University, Cleveland OH 44106
- Department of Dermatology, Case Western Reserve University, Cleveland OH 44106
| | - Radhika P. Atit
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106
- Department of Genetics, Case Western Reserve University, Cleveland OH 44106
- Department of Dermatology, Case Western Reserve University, Cleveland OH 44106
| |
Collapse
|
48
|
Camilleri ET, Dudakovic A, Riester SM, Galeano-Garces C, Paradise CR, Bradley EW, McGee-Lawrence ME, Im HJ, Karperien M, Krych AJ, Westendorf JJ, Larson AN, van Wijnen AJ. Loss of histone methyltransferase Ezh2 stimulates an osteogenic transcriptional program in chondrocytes but does not affect cartilage development. J Biol Chem 2018; 293:19001-19011. [PMID: 30327434 PMCID: PMC6295726 DOI: 10.1074/jbc.ra118.003909] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/12/2018] [Indexed: 01/09/2023] Open
Abstract
Ezh2 is a histone methyltransferase that suppresses osteoblast maturation and skeletal development. We evaluated the role of Ezh2 in chondrocyte lineage differentiation and endochondral ossification. Ezh2 was genetically inactivated in the mesenchymal, osteoblastic, and chondrocytic lineages in mice using the Prrx1-Cre, Osx1-Cre, and Col2a1-Cre drivers, respectively. WT and conditional knockout mice were phenotypically assessed by gross morphology, histology, and micro-CT imaging. Ezh2-deficient chondrocytes in micromass culture models were evaluated using RNA-Seq, histologic evaluation, and Western blotting. Aged mice with Ezh2 deficiency were also evaluated for premature development of osteoarthritis using radiographic analysis. Ezh2 deficiency in murine chondrocytes reduced bone density at 4 weeks of age but caused no other gross developmental effects. Knockdown of Ezh2 in chondrocyte micromass cultures resulted in a global reduction in trimethylation of histone 3 lysine 27 (H3K27me3) and altered differentiation in vitro RNA-Seq analysis revealed enrichment of an osteogenic gene expression profile in Ezh2-deficient chondrocytes. Joint development proceeded normally in the absence of Ezh2 in chondrocytes without inducing excessive hypertrophy or premature osteoarthritis in vivo In summary, loss of Ezh2 reduced H3K27me3 levels, increased the expression of osteogenic genes in chondrocytes, and resulted in a transient post-natal bone phenotype. Remarkably, Ezh2 activity is dispensable for normal chondrocyte maturation and endochondral ossification in vivo, even though it appears to have a critical role during early stages of mesenchymal lineage commitment.
Collapse
Affiliation(s)
| | | | | | | | - Christopher R Paradise
- From the Departments of Orthopedic Surgery
- Molecular Pharmacology and Experimental Therapeutics, and
| | | | - Meghan E McGee-Lawrence
- the Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | - Hee-Jeong Im
- the Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612, and
| | - Marcel Karperien
- the Department of Developmental BioEngineering, University of Twente, 7522 NB Enschede, The Netherlands
| | | | - Jennifer J Westendorf
- From the Departments of Orthopedic Surgery
- Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55901
| | | | - Andre J van Wijnen
- From the Departments of Orthopedic Surgery,
- Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55901
| |
Collapse
|
49
|
Dupin E, Calloni GW, Coelho-Aguiar JM, Le Douarin NM. The issue of the multipotency of the neural crest cells. Dev Biol 2018; 444 Suppl 1:S47-S59. [DOI: 10.1016/j.ydbio.2018.03.024] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 12/25/2022]
|
50
|
Ferguson JW, Devarajan M, Atit RP. Stage-specific roles of Ezh2 and Retinoic acid signaling ensure calvarial bone lineage commitment. Dev Biol 2018; 443:173-187. [PMID: 30222957 PMCID: PMC6217976 DOI: 10.1016/j.ydbio.2018.09.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/07/2018] [Accepted: 09/13/2018] [Indexed: 01/10/2023]
Abstract
Development of the skull bones requires the coordination of two stem progenitor populations, the cranial neural crest cells (CNCC) and head paraxial mesoderm (PM), to ensure cell fate selection and morphogenesis. The epigenetic methyltransferase, Ezh2, plays a role in skull bone formation, but the spatiotemporal function of Ezh2 between the CNCC- and PM-derived bone formation in vivo remains undefined. Here, using a temporally-inducible conditional deletion of Ezh2 in both the CNCC- and PM- derived cranial mesenchyme between E8.5 and E9.5, we find a reduction of the CNCC-derived calvarial bones and a near complete loss of the PM-derived calvarial bones due to an arrest in calvarial bone fate commitment. In contrast, deletion of Ezh2 after E9.5 permits PM-derived skull bone development, suggesting that Ezh2 is required early to guide calvarial bone progenitor commitment. Furthermore, exposure to all-trans Retinoic acid at E10.0 can mimic the Ezh2 mutant calvarial phenotype, and administration of the pan retinoic acid receptor (RAR) antagonist, BMS-453, to Ezh2 mutants partially restores the commitment to the calvarial bone lineage and PM-derived bone development in vivo. Exogenous RA signaling activation in the Ezh2 mutants leads to synergistic activation of the anti-osteogenic factors in the cranial mesenchyme in vivo. Thus, RA signaling and EZH2 can function in parallel to guide calvarial bone progenitor commitment by balancing the suppression of anti-osteogenic factors.
Collapse
Affiliation(s)
- James W Ferguson
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Mahima Devarajan
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Radhika P Atit
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, United States; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, United States; Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, United States.
| |
Collapse
|