1
|
Wiench L, Rizzo D, Sinay Z, Nacsa Z, Fuchs NV, König R. Role of PQBP1 in Pathogen Recognition-Impact on Innate Immunity. Viruses 2024; 16:1340. [PMID: 39205314 PMCID: PMC11360342 DOI: 10.3390/v16081340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
The intrinsically disordered polyglutamine-binding protein 1 (PQBP1) has been linked to various cellular processes including transcription, alternative splicing, translation and innate immunity. Mutations in PQBP1 are causative for neurodevelopmental conditions collectively termed as the Renpenning syndrome spectrum. Intriguingly, cells of Renpenning syndrome patients exhibit a reduced innate immune response against human immunodeficiency virus 1 (HIV-1). PQBP1 is responsible for the initiation of a two-step recognition process of HIV-1 reverse-transcribed DNA products, ensuring a type 1 interferon response. Recent investigations revealed that PQBP1 also binds to the p17 protein of avian reovirus (ARV) and is affected by the ORF52 of Kaposi's sarcoma-associated herpesvirus (KSHV), possibly also playing a role in the innate immune response towards these RNA- and DNA-viruses. Moreover, PQBP1-mediated microglia activation in the context of tauopathies has been reported, highlighting the role of PQBP1 in sensing exogenous pathogenic species and innate immune response in the central nervous system. Its unstructured nature, the promiscuous binding of various proteins and its presence in various tissues indicate the versatile roles of PQBP1 in cellular regulation. Here, we systematically review the available data on the structure of PQBP1 and its cellular functions and interactome, as well as possible implications for innate immune responses and neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - Renate König
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51–59, 63225 Langen, Germany
| |
Collapse
|
2
|
Huang X, Cheng S, Han J. Polyglutamine binding protein 1 regulates neurite outgrowth through recruiting N-WASP. J Biol Chem 2024; 300:107537. [PMID: 38971314 PMCID: PMC11339035 DOI: 10.1016/j.jbc.2024.107537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/08/2024] Open
Abstract
Neurite outgrowth is a critical step in neural development, leading to the generation of neurite branches that allow individual neurons to make contacts with multiple neurons within the target region. Polyglutamine-binding protein 1 (PQBP1) is a highly conserved protein with a key role in neural development. Our recent mass spectrometric analysis showed that PQBP1 associates with neural Wiskott-Aldrich syndrome protein (N-WASP), an important actin polymerization-promoting factor involved in neurite outgrowth. Here, we report that the WW domain of PQBP1 directly interacts with the proline-rich domain of N-WASP. The disruption of this interaction leads to impaired neurite outgrowth and growth cone size. Furthermore, we demonstrate that PQBP1/N-WASP interaction is critical for the recruitment of N-WASP to the growth cone, but does not affect N-WASP protein levels or N-WASP-induced actin polymerization. Our results indicated that PQBP1 regulates neurite outgrowth by recruiting N-WASP to the growth cone, thus representing an alternative molecular mechanism via which PQBP1-mediates neurite outgrowth.
Collapse
Affiliation(s)
- Xuejiao Huang
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Shanshan Cheng
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China.
| | - Junhai Han
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, China.
| |
Collapse
|
3
|
Wei Y, Chen Z, Li Y, Song K. The splicing factor WBP11 mediates MCM7 intron retention to promote the malignant progression of ovarian cancer. Oncogene 2024; 43:1565-1578. [PMID: 38561505 DOI: 10.1038/s41388-024-03015-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Accumulating studies suggest that splicing factors play important roles in many diseases including human cancers. Our study revealed that WBP11, a core splicing factor, is highly expressed in ovarian cancer (OC) tissues and associated with a poor prognosis. WBP11 inhibition significantly impaired the proliferation and mobility of ovarian cancer cells in vitro and in vivo. Furthermore, FOXM1 transcriptionally activated WBP11 expression by directly binding to its promoter in OC cells. Importantly, RNA-seq and alternative splicing event analysis revealed that WBP11 silencing decreased the expression of MCM7 by regulating intron 4 retention. MCM7 inhibition attenuated the increase in malignant behaviors of WBP11-overexpressing OC cells. Overall, WBP11 was identified as an oncogenic splicing factor that contributes to malignant progression by repressing intron 4 retention of MCM7 in OC cells. Thus, WBP11 is an oncogenic splicing factor with potential therapeutic and prognostic implications in OC.
Collapse
Affiliation(s)
- Yuan Wei
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Ji'nan, 250012, Shandong, China
| | - Zhongshao Chen
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Ji'nan, 250012, Shandong, China
| | - Yingwei Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Ji'nan, 250012, Shandong, China.
| | - Kun Song
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Ji'nan, 250012, Shandong, China.
| |
Collapse
|
4
|
Courraud J, Engel C, Quartier A, Drouot N, Houessou U, Plassard D, Sorlin A, Brischoux-Boucher E, Gouy E, Van Maldergem L, Rossi M, Lesca G, Edery P, Putoux A, Bilan F, Gilbert-Dussardier B, Atallah I, Kalscheuer VM, Mandel JL, Piton A. Molecular consequences of PQBP1 deficiency, involved in the X-linked Renpenning syndrome. Mol Psychiatry 2024; 29:287-296. [PMID: 38030819 DOI: 10.1038/s41380-023-02323-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 10/18/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023]
Abstract
Mutations in the PQBP1 gene (polyglutamine-binding protein-1) are responsible for a syndromic X-linked form of neurodevelopmental disorder (XL-NDD) with intellectual disability (ID), named Renpenning syndrome. PQBP1 encodes a protein involved in transcriptional and post-transcriptional regulation of gene expression. To investigate the consequences of PQBP1 loss, we used RNA interference to knock-down (KD) PQBP1 in human neural stem cells (hNSC). We observed a decrease of cell proliferation, as well as the deregulation of the expression of 58 genes, comprising genes encoding proteins associated with neurodegenerative diseases, playing a role in mRNA regulation or involved in innate immunity. We also observed an enrichment of genes involved in other forms of NDD (CELF2, APC2, etc). In particular, we identified an increase of a non-canonical isoform of another XL-NDD gene, UPF3B, an actor of nonsense mRNA mediated decay (NMD). This isoform encodes a shorter protein (UPF3B_S) deprived from the domains binding NMD effectors, however no notable change in NMD was observed after PQBP1-KD in fibroblasts containing a premature termination codon. We showed that short non-canonical and long canonical UPF3B isoforms have different interactomes, suggesting they could play distinct roles. The link between PQBP1 loss and increase of UPF3B_S expression was confirmed in mRNA obtained from patients with pathogenic variants in PQBP1, particularly pronounced for truncating variants and missense variants located in the C-terminal domain. We therefore used it as a molecular marker of Renpenning syndrome, to test the pathogenicity of variants of uncertain clinical significance identified in PQPB1 in individuals with NDD, using patient blood mRNA and HeLa cells expressing wild-type or mutant PQBP1 cDNA. We showed that these different approaches were efficient to prove a functional effect of variants in the C-terminal domain of the protein. In conclusion, our study provided information on the pathological mechanisms involved in Renpenning syndrome, but also allowed the identification of a biomarker of PQBP1 deficiency useful to test variant effect.
Collapse
Affiliation(s)
- Jérémie Courraud
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, 67 400, Illkirch, France
| | - Camille Engel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, 67 400, Illkirch, France
| | - Angélique Quartier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, 67 400, Illkirch, France
| | - Nathalie Drouot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, 67 400, Illkirch, France
| | - Ursula Houessou
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, 67 400, Illkirch, France
| | - Damien Plassard
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, 67 400, Illkirch, France
| | - Arthur Sorlin
- National Center of Genetics, Laboratoire national de santé, Dudelange, Luxembourg
| | - Elise Brischoux-Boucher
- Centre de Génétique Humaine, CHU Besançon, Université de Franche-Comté, 25056, Besançon, France
| | - Evan Gouy
- Genetics Department, University Hospital of Lyon, Bron, 69500, France
| | - Lionel Van Maldergem
- Centre de Génétique Humaine, CHU Besançon, Université de Franche-Comté, 25056, Besançon, France
| | - Massimiliano Rossi
- Genetics Department, University Hospital of Lyon, Bron, 69500, France
- Equipe GENDEV, CRNL, Inserm U1028, CNRS UMR 5292, UCB Lyon1, Illkirch, France
| | - Gaetan Lesca
- Genetics Department, University Hospital of Lyon, Bron, 69500, France
- Equipe GENDEV, CRNL, Inserm U1028, CNRS UMR 5292, UCB Lyon1, Illkirch, France
| | - Patrick Edery
- Genetics Department, University Hospital of Lyon, Bron, 69500, France
- Equipe GENDEV, CRNL, Inserm U1028, CNRS UMR 5292, UCB Lyon1, Illkirch, France
| | - Audrey Putoux
- Genetics Department, University Hospital of Lyon, Bron, 69500, France
- Equipe GENDEV, CRNL, Inserm U1028, CNRS UMR 5292, UCB Lyon1, Illkirch, France
| | - Frederic Bilan
- Service de génétique médicale, CHU de Poitiers, 86 000, Poitiers, France
| | | | - Isis Atallah
- Department of Medical Genetics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | - Jean-Louis Mandel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, 67 400, Illkirch, France
| | - Amélie Piton
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.
- Université de Strasbourg, 67 400, Illkirch, France.
- Genetic diagnosis laboratory, Strasbourg University Hospital, 67 090, Strasbourg, France.
- Institut Universitaire de France, Paris, France.
| |
Collapse
|
5
|
Lasry R, Maoz N, Cheng AW, Yom Tov N, Kulenkampff E, Azagury M, Yang H, Ople C, Markoulaki S, Faddah DA, Makedonski K, Orzech D, Sabag O, Jaenisch R, Buganim Y. Complex haploinsufficiency in pluripotent cells yields somatic cells with DNA methylation abnormalities and pluripotency induction defects. Stem Cell Reports 2023; 18:2174-2189. [PMID: 37832543 PMCID: PMC10679652 DOI: 10.1016/j.stemcr.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
A complete knockout of a single key pluripotency gene may drastically affect embryonic stem cell function and epigenetic reprogramming. In contrast, elimination of only one allele of a single pluripotency gene is mostly considered harmless to the cell. To understand whether complex haploinsufficiency exists in pluripotent cells, we simultaneously eliminated a single allele in different combinations of two pluripotency genes (i.e., Nanog+/-;Sall4+/-, Nanog+/-;Utf1+/-, Nanog+/-;Esrrb+/- and Sox2+/-;Sall4+/-). Although these double heterozygous mutant lines similarly contribute to chimeras, fibroblasts derived from these systems show a significant decrease in their ability to induce pluripotency. Tracing the stochastic expression of Sall4 and Nanog at early phases of reprogramming could not explain the seen delay or blockage. Further exploration identifies abnormal methylation around pluripotent and developmental genes in the double heterozygous mutant fibroblasts, which could be rescued by hypomethylating agent or high OSKM levels. This study emphasizes the importance of maintaining two intact alleles for pluripotency induction.
Collapse
Affiliation(s)
- Rachel Lasry
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Noam Maoz
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Albert W Cheng
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nataly Yom Tov
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Elisabeth Kulenkampff
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Meir Azagury
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Hui Yang
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Cora Ople
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Styliani Markoulaki
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dina A Faddah
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kirill Makedonski
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Dana Orzech
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Ofra Sabag
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yosef Buganim
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| |
Collapse
|
6
|
Haghshenas S, Foroutan A, Bhai P, Levy MA, Relator R, Kerkhof J, McConkey H, Skinner CD, Caylor RC, Tedder ML, Stevenson RE, Sadikovic B, Schwartz CE. Identification of a DNA methylation signature for Renpenning syndrome (RENS1), a spliceopathy. Eur J Hum Genet 2023; 31:879-886. [PMID: 36797465 PMCID: PMC10400603 DOI: 10.1038/s41431-023-01313-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
The challenges and ambiguities in providing an accurate diagnosis for patients with neurodevelopmental disorders have led researchers to apply epigenetics as a technique to validate the diagnosis provided based on the clinical examination and genetic testing results. Genome-wide DNA methylation analysis has recently been adapted for clinical testing of patients with genetic neurodevelopmental disorders. In this paper, preliminary data demonstrating a DNA methylation signature for Renpenning syndrome (RENS1 - OMIM 309500), which is an X-linked recessive neurodevelopmental disorder caused by variants in polyglutamine-binding protein 1 (PQBP1) is reported. The identified episignature was then utilized to construct a highly sensitive and specific binary classification model. Besides providing evidence for the existence of a DNA methylation episignature for Renpenning syndrome, this study increases the knowledge of the molecular mechanisms related to the disease. Moreover, the availability of more subjects in future may facilitate the establishment of an episignature that can be utilized for diagnosis in a clinical setting and for reclassification of variants of unknown clinical significance.
Collapse
Affiliation(s)
- Sadegheh Haghshenas
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 3K7, Canada
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Aidin Foroutan
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 3K7, Canada
| | - Pratibha Bhai
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Raissa Relator
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Haley McConkey
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 3K7, Canada
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | | | | | | | | | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 3K7, Canada.
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada.
| | - Charles E Schwartz
- Greenwood Genetic Center, Greenwood, SC, 29646, USA.
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
7
|
Olthof AM, White AK, Kanadia RN. The emerging significance of splicing in vertebrate development. Development 2022; 149:dev200373. [PMID: 36178052 PMCID: PMC9641660 DOI: 10.1242/dev.200373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Splicing is a crucial regulatory node of gene expression that has been leveraged to expand the proteome from a limited number of genes. Indeed, the vast increase in intron number that accompanied vertebrate emergence might have aided the evolution of developmental and organismal complexity. Here, we review how animal models for core spliceosome components have provided insights into the role of splicing in vertebrate development, with a specific focus on neuronal, neural crest and skeletal development. To this end, we also discuss relevant spliceosomopathies, which are developmental disorders linked to mutations in spliceosome subunits. Finally, we discuss potential mechanisms that could underlie the tissue-specific phenotypes often observed upon spliceosome inhibition and identify gaps in our knowledge that, we hope, will inspire further research.
Collapse
Affiliation(s)
- Anouk M. Olthof
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - Alisa K. White
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
| | - Rahul N. Kanadia
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
8
|
Lelong EIJ, Khelifi G, Adjibade P, Joncas FH, Grenier St-Sauveur V, Paquette V, Gris T, Zoubeidi A, Audet-Walsh E, Lambert JP, Toren P, Mazroui R, Hussein SMI. Prostate cancer resistance leads to a global deregulation of translation factors and unconventional translation. NAR Cancer 2022; 4:zcac034. [PMID: 36348939 PMCID: PMC9634437 DOI: 10.1093/narcan/zcac034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/29/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Emerging evidence associates translation factors and regulators to tumorigenesis. However, our understanding of translational changes in cancer resistance is still limited. Here, we generated an enzalutamide-resistant prostate cancer (PCa) model, which recapitulated key features of clinical enzalutamide-resistant PCa. Using this model and poly(ribo)some profiling, we investigated global translation changes that occur during acquisition of PCa resistance. We found that enzalutamide-resistant cells exhibit an overall decrease in mRNA translation with a specific deregulation in the abundance of proteins involved in mitochondrial processes and in translational regulation. However, several mRNAs escape this translational downregulation and are nonetheless bound to heavy polysomes in enzalutamide-resistant cells suggesting active translation. Moreover, expressing these corresponding genes in enzalutamide-sensitive cells promotes resistance to enzalutamide treatment. We also found increased association of long non-coding RNAs (lncRNAs) with heavy polysomes in enzalutamide-resistant cells, suggesting that some lncRNAs are actively translated during enzalutamide resistance. Consistent with these findings, expressing the predicted coding sequences of known lncRNAs JPX, CRNDE and LINC00467 in enzalutamide-sensitive cells drove resistance to enzalutamide. Taken together, this suggests that aberrant translation of specific mRNAs and lncRNAs is a strong indicator of PCa enzalutamide resistance, which points towards novel therapeutic avenues that may target enzalutamide-resistant PCa.
Collapse
Affiliation(s)
- Emeline I J Lelong
- Cancer Research Center, Université Laval , Quebec City, Québec G1R 3S3, Canada
- CHU of Québec-Université Laval Research Center, Oncology Division , Quebec City, Québec G1R 3S3, Canada
| | - Gabriel Khelifi
- Cancer Research Center, Université Laval , Quebec City, Québec G1R 3S3, Canada
- CHU of Québec-Université Laval Research Center, Oncology Division , Quebec City, Québec G1R 3S3, Canada
| | - Pauline Adjibade
- Cancer Research Center, Université Laval , Quebec City, Québec G1R 3S3, Canada
- CHU of Québec-Université Laval Research Center, Oncology Division , Quebec City, Québec G1R 3S3, Canada
| | - France-Hélène Joncas
- Cancer Research Center, Université Laval , Quebec City, Québec G1R 3S3, Canada
- CHU of Québec-Université Laval Research Center, Oncology Division , Quebec City, Québec G1R 3S3, Canada
| | - Valérie Grenier St-Sauveur
- Cancer Research Center, Université Laval , Quebec City, Québec G1R 3S3, Canada
- CHU of Québec-Université Laval Research Center, Oncology Division , Quebec City, Québec G1R 3S3, Canada
| | - Virginie Paquette
- Cancer Research Center, Université Laval , Quebec City, Québec G1R 3S3, Canada
- CHU of Québec-Université Laval Research Center, Endocrinology and Nephrology Division , Quebec City, Québec G1V 4G2, Canada
| | - Typhaine Gris
- Cancer Research Center, Université Laval , Quebec City, Québec G1R 3S3, Canada
- CHU of Québec-Université Laval Research Center, Oncology Division , Quebec City, Québec G1R 3S3, Canada
| | - Amina Zoubeidi
- Vancouver Prostate Centre, Department of Urologic Sciences, Faculty of Medicine, University of British Columbia , Vancouver, British Columbia V6H 3Z6, Canada
| | - Etienne Audet-Walsh
- Cancer Research Center, Université Laval , Quebec City, Québec G1R 3S3, Canada
- CHU of Québec-Université Laval Research Center, Endocrinology and Nephrology Division , Quebec City, Québec G1V 4G2, Canada
| | - Jean-Philippe Lambert
- Cancer Research Center, Université Laval , Quebec City, Québec G1R 3S3, Canada
- CHU of Québec-Université Laval Research Center, Endocrinology and Nephrology Division , Quebec City, Québec G1V 4G2, Canada
| | - Paul Toren
- Cancer Research Center, Université Laval , Quebec City, Québec G1R 3S3, Canada
- CHU of Québec-Université Laval Research Center, Oncology Division , Quebec City, Québec G1R 3S3, Canada
| | - Rachid Mazroui
- Cancer Research Center, Université Laval , Quebec City, Québec G1R 3S3, Canada
- CHU of Québec-Université Laval Research Center, Oncology Division , Quebec City, Québec G1R 3S3, Canada
| | - Samer M I Hussein
- Cancer Research Center, Université Laval , Quebec City, Québec G1R 3S3, Canada
- CHU of Québec-Université Laval Research Center, Oncology Division , Quebec City, Québec G1R 3S3, Canada
| |
Collapse
|
9
|
Yoh SM, Mamede JI, Lau D, Ahn N, Sánchez-Aparicio MT, Temple J, Tuckwell A, Fuchs NV, Cianci GC, Riva L, Curry H, Yin X, Gambut S, Simons LM, Hultquist JF, König R, Xiong Y, García-Sastre A, Böcking T, Hope TJ, Chanda SK. Recognition of HIV-1 capsid by PQBP1 licenses an innate immune sensing of nascent HIV-1 DNA. Mol Cell 2022; 82:2871-2884.e6. [PMID: 35809572 PMCID: PMC9552964 DOI: 10.1016/j.molcel.2022.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 03/22/2022] [Accepted: 06/07/2022] [Indexed: 12/21/2022]
Abstract
We have previously described polyglutamine-binding protein 1 (PQBP1) as an adapter required for the cyclic GMP-AMP synthase (cGAS)-mediated innate response to the human immunodeficiency virus 1 (HIV-1) and other lentiviruses. Cytoplasmic HIV-1 DNA is a transient and low-abundance pathogen-associated molecular pattern (PAMP), and the mechanism for its detection and verification is not fully understood. Here, we show a two-factor authentication strategy by the innate surveillance machinery to selectively respond to the low concentration of HIV-1 DNA, while distinguishing these species from extranuclear DNA molecules. We find that, upon HIV-1 infection, PQBP1 decorates the intact viral capsid, and this serves as a primary verification step for the viral nucleic acid cargo. As reverse transcription and capsid disassembly initiate, cGAS is recruited to the capsid in a PQBP1-dependent manner. This positions cGAS at the site of PAMP generation and sanctions its response to a low-abundance DNA PAMP.
Collapse
Affiliation(s)
- Sunnie M Yoh
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA.
| | - João I Mamede
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
| | - Derrick Lau
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Narae Ahn
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Maria T Sánchez-Aparicio
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joshua Temple
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Andrew Tuckwell
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Nina V Fuchs
- Host-Pathogen Interaction, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Gianguido C Cianci
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Laura Riva
- Calibr, a Division of The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Heather Curry
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Xin Yin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, P.R. China
| | - Stéphanie Gambut
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
| | - Lacy M Simons
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pathogen Genomics and Microbial Evolution, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Judd F Hultquist
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pathogen Genomics and Microbial Evolution, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Renate König
- Host-Pathogen Interaction, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Till Böcking
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Thomas J Hope
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Sumit K Chanda
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA.
| |
Collapse
|
10
|
Tau activates microglia via the PQBP1-cGAS-STING pathway to promote brain inflammation. Nat Commun 2021; 12:6565. [PMID: 34782623 PMCID: PMC8592984 DOI: 10.1038/s41467-021-26851-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 10/23/2021] [Indexed: 12/15/2022] Open
Abstract
Brain inflammation generally accompanies and accelerates neurodegeneration. Here we report a microglial mechanism in which polyglutamine binding protein 1 (PQBP1) senses extrinsic tau 3R/4R proteins by direct interaction and triggers an innate immune response by activating a cyclic GMP-AMP synthase (cGAS)-Stimulator of interferon genes (STING) pathway. Tamoxifen-inducible and microglia-specific depletion of PQBP1 in primary culture in vitro and mouse brain in vivo shows that PQBP1 is essential for sensing-tau to induce nuclear translocation of nuclear factor κB (NFκB), NFκB-dependent transcription of inflammation genes, brain inflammation in vivo, and eventually mouse cognitive impairment. Collectively, PQBP1 is an intracellular receptor in the cGAS-STING pathway not only for cDNA of human immunodeficiency virus (HIV) but also for the transmissible neurodegenerative disease protein tau. This study characterises a mechanism of brain inflammation that is common to virus infection and neurodegenerative disorders.
Collapse
|
11
|
Lopez-Martín S, Albert J, Peña Vila-Belda MDM, Liu X, Zhang ZC, Han J, Jiménez de Domingo A, Fernández-Mayoralas DM, Fernández-Perrone AL, Calleja-Pérez B, Álvarez S, Fernández-Jaén A. A mild clinical and neuropsychological phenotype of Renpenning syndrome: A new case report with a maternally inherited PQBP1 missense mutation. APPLIED NEUROPSYCHOLOGY-CHILD 2021; 11:921-927. [PMID: 34470565 DOI: 10.1080/21622965.2021.1970551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Mutations in the PQBP1 gene are associated with Renpenning syndrome (RENS1, MIM# 309500). Most cases are characterized by intellectual disability, but a detailed neuropsychological profile has not yet been established. The present case study of a 8.5 years-old male child with a missense novel mutation in the PQBP1 gene expands existing understanding of this syndrome by presenting a milder clinical and neuropsychological phenotype. Whole exome trio analysis sequencing revealed a maternally inherited PQBP1 missense mutation in chromosome X [NM_001032383.1, c.727C > T (p.Arg243Trp)]. Variant functional studies demonstrated a significant reduction in the interaction between PQBP1 and the component of the nuclear pre-mRNA splicing machinery, U5-15KD. A comprehensive neuropsychological assessment revealed marked deficits in processing speed, attention and executive functioning (including planning, inhibitory control and working memory) without intellectual disability. Several components of language processing were also impaired. These results support that this mutation partially disrupts the function of this gene, which is known to play critical roles in embryonic and neural development. As most of the genomic PQBP1 abnormalities associated with intellectual disability have been found to be loss-of-function mutations, we hypothesize that a partial loss-of-function of this variant is associated with a mild behavioral and neuropsychological phenotype.
Collapse
Affiliation(s)
- Sara Lopez-Martín
- Faculty of Psychology, Universidad Autónoma de Madrid, Madrid, Spain.,Neuromottiva, Madrid, Spain
| | - Jacobo Albert
- Faculty of Psychology, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Xian Liu
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Zi-Chao Zhang
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Junhai Han
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | | | | | | | | | - Sara Álvarez
- Genomics and Medicine, NIMGenetics, Madrid, Spain
| | - Alberto Fernández-Jaén
- Department of Pediatric Neurology, Hospital Universitario Quirónsalud, Madrid, Spain.,School of Medicine, Universidad Europea, Madrid, Spain
| |
Collapse
|
12
|
Martin EMMA, Enriquez A, Sparrow DB, Humphreys DT, McInerney-Leo AM, Leo PJ, Duncan EL, Iyer KR, Greasby JA, Ip E, Giannoulatou E, Sheng D, Wohler E, Dimartino C, Amiel J, Capri Y, Lehalle D, Mory A, Wilnai Y, Lebenthal Y, Gharavi AG, Krzemień GG, Miklaszewska M, Steiner RD, Raggio C, Blank R, Baris Feldman H, Milo Rasouly H, Sobreira NLM, Jobling R, Gordon CT, Giampietro PF, Dunwoodie SL, Chapman G. Heterozygous loss of WBP11 function causes multiple congenital defects in humans and mice. Hum Mol Genet 2021; 29:3662-3678. [PMID: 33276377 DOI: 10.1093/hmg/ddaa258] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/09/2020] [Accepted: 11/25/2020] [Indexed: 12/31/2022] Open
Abstract
The genetic causes of multiple congenital anomalies are incompletely understood. Here, we report novel heterozygous predicted loss-of-function (LoF) and predicted damaging missense variants in the WW domain binding protein 11 (WBP11) gene in seven unrelated families with a variety of overlapping congenital malformations, including cardiac, vertebral, tracheo-esophageal, renal and limb defects. WBP11 encodes a component of the spliceosome with the ability to activate pre-messenger RNA splicing. We generated a Wbp11 null allele in mouse using CRISPR-Cas9 targeting. Wbp11 homozygous null embryos die prior to E8.5, indicating that Wbp11 is essential for development. Fewer Wbp11 heterozygous null mice are found than expected due to embryonic and postnatal death. Importantly, Wbp11 heterozygous null mice are small and exhibit defects in axial skeleton, kidneys and esophagus, similar to the affected individuals, supporting the role of WBP11 haploinsufficiency in the development of congenital malformations in humans. LoF WBP11 variants should be considered as a possible cause of VACTERL association as well as isolated Klippel-Feil syndrome, renal agenesis or esophageal atresia.
Collapse
Affiliation(s)
- Ella M M A Martin
- Development & Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Sydney 2010, Australia
| | - Annabelle Enriquez
- Development & Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Sydney 2010, Australia.,Faculty of Medicine, UNSW, Sydney 2052, Australia
| | - Duncan B Sparrow
- Development & Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Sydney 2010, Australia.,Faculty of Science, UNSW, Sydney 2052, Australia.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - David T Humphreys
- Faculty of Medicine, UNSW, Sydney 2052, Australia.,Molecular, Structural and Computational Biology Division, Victor Chang Cardiac Research Institute, Sydney 2010, Australia
| | - Aideen M McInerney-Leo
- Dermatology Research Centre, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane 4072, Australia
| | - Paul J Leo
- Translational Genomics Group, Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Princess Alexandra Hospital, Woolloongabba 4102, Australia
| | - Emma L Duncan
- Translational Genomics Group, Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Princess Alexandra Hospital, Woolloongabba 4102, Australia.,Department of Twin Research & Genetic Epidemiology, Faculty of Life Sciences and Medicine, School of Life Course Sciences, King's College London, London SE1 7EH, UK.,Faculty of Medicine, University of Queensland, Herston 4006, Australia
| | - Kavitha R Iyer
- Development & Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Sydney 2010, Australia
| | - Joelene A Greasby
- Development & Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Sydney 2010, Australia
| | - Eddie Ip
- Faculty of Medicine, UNSW, Sydney 2052, Australia.,Computational Genomics Laboratory, Victor Chang Cardiac Research Institute, Sydney 2010, Australia
| | - Eleni Giannoulatou
- Faculty of Medicine, UNSW, Sydney 2052, Australia.,Computational Genomics Laboratory, Victor Chang Cardiac Research Institute, Sydney 2010, Australia
| | - Delicia Sheng
- Development & Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Sydney 2010, Australia
| | - Elizabeth Wohler
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore 21287, USA
| | - Clémantine Dimartino
- Laboratory of Embryology and Genetics of Human Malformations, Institute National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Institut Imagine, Paris 75015, France.,Paris Descartes-Sorbonne Paris Cité Université, Institut Imagine, Paris 75015, France
| | - Jeanne Amiel
- Laboratory of Embryology and Genetics of Human Malformations, Institute National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Institut Imagine, Paris 75015, France.,Paris Descartes-Sorbonne Paris Cité Université, Institut Imagine, Paris 75015, France.,Département de Génétique, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris 75015, France
| | - Yline Capri
- Département de Génétique, Hôpital Robert Debré, Assistance Publique Hôpitaux de Paris, Paris 75019, France
| | - Daphné Lehalle
- Centre Hospitalier Intercommunal Créteil, Créteil 94000, France
| | - Adi Mory
- The Genetics Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Yael Wilnai
- The Genetics Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Yael Lebenthal
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.,Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Pediatric Endocrinology and Diabetes Unit, Tel Aviv 6423906, Israel
| | - Ali G Gharavi
- Department of Medicine, Division of Nephrology, Columbia University, New York, NY 10032, USA
| | - Grażyna G Krzemień
- Department of Pediatrics and Nephrology, Warsaw Medical University, Warsaw 02-091, Poland
| | - Monika Miklaszewska
- Department of Pediatric Nephrology and Hypertension, Jagiellonian University Medical College, Kraków 30-663, Poland
| | - Robert D Steiner
- Marshfield Clinic Health System, Marshfield, WI 54449, USA.,University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Cathy Raggio
- Hospital for Special Surgery, Pediatrics Orthopedic Surgery, New York, NY 10021, USA
| | - Robert Blank
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Hagit Baris Feldman
- The Genetics Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Hila Milo Rasouly
- Department of Medicine, Division of Nephrology, Columbia University, New York, NY 10032, USA
| | - Nara L M Sobreira
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore 21287, USA
| | - Rebekah Jobling
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON M5G1X3, Canada
| | - Christopher T Gordon
- Laboratory of Embryology and Genetics of Human Malformations, Institute National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Institut Imagine, Paris 75015, France.,Paris Descartes-Sorbonne Paris Cité Université, Institut Imagine, Paris 75015, France
| | - Philip F Giampietro
- Department of Pediatrics, University of Illinois-Chicago, Chicago, IL 60607, USA
| | - Sally L Dunwoodie
- Development & Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Sydney 2010, Australia.,Faculty of Medicine, UNSW, Sydney 2052, Australia.,Faculty of Science, UNSW, Sydney 2052, Australia
| | - Gavin Chapman
- Development & Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Sydney 2010, Australia.,Faculty of Medicine, UNSW, Sydney 2052, Australia
| |
Collapse
|
13
|
DeJong CS, Dichmann DS, Exner CRT, Xu Y, Harland RM. The atypical RNA-binding protein Taf15 regulates dorsoanterior neural development through diverse mechanisms in Xenopus tropicalis. Development 2021; 148:271175. [PMID: 34345915 DOI: 10.1242/dev.191619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/08/2021] [Indexed: 11/20/2022]
Abstract
The FET family of atypical RNA-binding proteins includes Fused in sarcoma (FUS), Ewing's sarcoma (EWS) and the TATA-binding protein-associate factor 15 (TAF15). FET proteins are highly conserved, suggesting specialized requirements for each protein. Fus regulates splicing of transcripts required for mesoderm differentiation and cell adhesion in Xenopus, but the roles of Ews and Taf15 remain unknown. Here, we analyze the roles of maternally deposited and zygotically transcribed Taf15, which is essential for the correct development of dorsoanterior neural tissues. By measuring changes in exon usage and transcript abundance from Taf15-depleted embryos, we found that Taf15 may regulate dorsoanterior neural development through fgfr4 and ventx2.1. Taf15 uses distinct mechanisms to downregulate Fgfr4 expression, namely retention of a single intron within fgfr4 when maternal and zygotic Taf15 is depleted, and reduction in the total fgfr4 transcript when zygotic Taf15 alone is depleted. The two mechanisms of gene regulation (post-transcriptional versus transcriptional) suggest that Taf15-mediated gene regulation is target and co-factor dependent, contingent on the milieu of factors that are present at different stages of development.
Collapse
Affiliation(s)
- Caitlin S DeJong
- Molecular and Cell Biology Department, Genetics, Genomics and Development Division, University of California, Berkeley, CA 94720, USA
| | - Darwin S Dichmann
- Molecular and Cell Biology Department, Genetics, Genomics and Development Division, University of California, Berkeley, CA 94720, USA
| | - Cameron R T Exner
- Department of Psychiatry, Weill Institute for Neurosciences, Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94143, USA
| | - Yuxiao Xu
- Department of Psychiatry, Weill Institute for Neurosciences, Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94143, USA
| | - Richard M Harland
- Molecular and Cell Biology Department, Genetics, Genomics and Development Division, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
14
|
Shen Y, Zhang ZC, Cheng S, Liu A, Zuo J, Xia S, Liu X, Liu W, Jia Z, Xie W, Han J. PQBP1 promotes translational elongation and regulates hippocampal mGluR-LTD by suppressing eEF2 phosphorylation. Mol Cell 2021; 81:1425-1438.e10. [PMID: 33662272 DOI: 10.1016/j.molcel.2021.01.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 12/07/2020] [Accepted: 01/21/2021] [Indexed: 10/22/2022]
Abstract
Eukaryotic elongation factor 2 (eEF2) mediates translocation of peptidyl-tRNA from the ribosomal A site to the P site to promote translational elongation. Its phosphorylation on Thr56 by its single known kinase eEF2K inactivates it and inhibits translational elongation. Extensive studies have revealed that different signal cascades modulate eEF2K activity, but whether additional factors regulate phosphorylation of eEF2 remains unclear. Here, we find that the X chromosome-linked intellectual disability protein polyglutamine-binding protein 1 (PQBP1) specifically binds to non-phosphorylated eEF2 and suppresses eEF2K-mediated phosphorylation at Thr56. Loss of PQBP1 significantly reduces general protein synthesis by suppressing translational elongation. Moreover, we show that PQBP1 regulates hippocampal metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD) and mGluR-LTD-associated behaviors by suppressing eEF2K-mediated phosphorylation. Our results identify PQBP1 as a novel regulator in translational elongation and mGluR-LTD, and this newly revealed regulator in the eEF2K/eEF2 pathway is also an excellent therapeutic target for various disease conditions, such as neural diseases, virus infection, and cancer.
Collapse
Affiliation(s)
- Yuqian Shen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Zi Chao Zhang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China.
| | - Shanshan Cheng
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - An Liu
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Jian Zuo
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Shuting Xia
- Institute of Neuroscience, Soochow University, Suzhou 215000, China
| | - Xian Liu
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Wenhua Liu
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Zhengping Jia
- Neurosciences and Mental Health Program, Hospital for Sick Children, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Wei Xie
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Junhai Han
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China; Department of Neurology, Affiliated ZhongDa Hospital, Institute of Neuropsychiatry, Southeast University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
15
|
PQBP1, an intellectual disability causative gene, affects bone development and growth. Biochem Biophys Res Commun 2020; 523:894-899. [DOI: 10.1016/j.bbrc.2019.12.097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 12/18/2019] [Indexed: 11/18/2022]
|
16
|
Cho RY, Peñaherrera MS, Du Souich C, Huang L, Mwenifumbo J, Nelson TN, Elliott AM, Adam S, Eydoux P, Yang GX, Chijiwa C, Van Allen MI, Friedman JM, Robinson WP, Lehman A. Renpenning syndrome in a female. Am J Med Genet A 2019; 182:498-503. [PMID: 31840929 DOI: 10.1002/ajmg.a.61451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 10/26/2019] [Accepted: 10/29/2019] [Indexed: 01/03/2023]
Abstract
Renpenning syndrome (OMIM: 309500) is a rare X-linked disorder that causes intellectual disability, microcephaly, short stature, a variety of eye anomalies, and characteristic craniofacial features. This condition results from pathogenic variation of PQBP1, a polyglutamine-binding protein involved in transcription and pre-mRNA splicing. Renpenning syndrome has only been reported in affected males. Carrier females do not usually have clinical features, and in reported families with Renpenning syndrome, most female carriers exhibit favorable skewing of X-chromosome inactivation. We describe a female with syndromic features typical of Renpenning syndrome. She was identified by exome sequencing to have a de novo heterozygous c.459_462delAGAG mutation in PQBP1 (Xp11.23), affecting the AG hexamer in exon 4, which is the most common causative mutation in this syndrome. Streaky hypopigmentation of the skin was observed, supporting a hypothesized presence of an actively expressed, PQBP1 mutation-bearing X-chromosome in some cells. X-inactivation studies on peripheral blood cells demonstrated complete skewing in both the proband and her mother with preferential inactivation of the maternal X chromosome in the child. We demonstrated expression of the PQBP1 mutant transcript in leukocytes of the affected girl. Therefore, it is highly likely that the PQBP1 mutation arose from the paternal X chromosome.
Collapse
Affiliation(s)
- Raymond Y Cho
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Maria S Peñaherrera
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Christele Du Souich
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Lijia Huang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jill Mwenifumbo
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tanya N Nelson
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Alison M Elliott
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shelin Adam
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | -
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Patrice Eydoux
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Gui X Yang
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chieko Chijiwa
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Margot I Van Allen
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Jan M Friedman
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Wendy P Robinson
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Anna Lehman
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
17
|
Rahman SK, Okazawa H, Chen YW. Frameshift PQBP-1 mutants K192S fs*7 and R153S fs*41 implicated in X-linked intellectual disability form stable dimers. J Struct Biol 2019; 206:305-313. [PMID: 30951824 DOI: 10.1016/j.jsb.2019.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/30/2019] [Accepted: 04/01/2019] [Indexed: 11/19/2022]
Abstract
Polyglutamine tract-binding protein-1 (PQBP-1) is a nuclear intrinsically disordered protein playing important roles in transcriptional regulation and RNA splicing during embryonic and postembryonic development. In human, its mutations lead to severe cognitive impairment known as the Renpenning syndrome, a form of X-linked intellectual disability (XLID). Here, we report a combined biophysical study of two PQBP-1 frameshift mutants, K192Sfs*7 and R153Sfs*41. Both mutants are dimeric in solution, in contrast to the monomeric wild-type protein. These mutants contain more folded contents and have increased thermal stabilities. Using small-angle X-ray scattering data, we generated three-dimensional envelopes which revealed their overall flat shapes. We also described each mutant using an ensemble model based on a native-like initial pool with a dimeric structural core. PQBP-1 is known to repress transcription by way of interacting with the C-terminal domain of RNA polymerase II, which consists of 52 repeats of a consensus heptapeptide sequence YSPTSPS. We studied the binding of PQBP-1 variants to the labelled peptide which is phosphorylated at positions 2 and 5 (YpSPTpSPS) and found that this interaction is significantly weakened in the two mutants.
Collapse
Affiliation(s)
- Shah Kamranur Rahman
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London SE1 1UL, United Kingdom.
| | - Hitoshi Okazawa
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Yu Wai Chen
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London SE1 1UL, United Kingdom.
| |
Collapse
|
18
|
Speer KF, Sommer A, Tajer B, Mullins MC, Klein PS, Lemmon MA. Non-acylated Wnts Can Promote Signaling. Cell Rep 2019; 26:875-883.e5. [PMID: 30673610 PMCID: PMC6429962 DOI: 10.1016/j.celrep.2018.12.104] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 10/27/2018] [Accepted: 12/26/2018] [Indexed: 12/14/2022] Open
Abstract
Wnts are a family of 19 extracellular ligands that regulate cell fate, proliferation, and migration during metazoan embryogenesis and throughout adulthood. Wnts are acylated post-translationally at a conserved serine and bind the extracellular cysteine-rich domain (CRD) of Frizzled (FZD) seven-pass transmembrane receptors. Although crystal structures suggest that acylation is essential for Wnt binding to FZDs, we show here that several Wnts can promote signaling in Xenopus laevis and Danio rerio embryos, as well as in an in vitro cell culture model, without acylation. The non-acylated Wnts are expressed at levels similar to wild-type counterparts and retain CRD binding. By contrast, we find that certain other Wnts do require acylation for biological activity in Xenopus embryos, although not necessarily for FZD binding. Our data argue that acylation dependence of Wnt activity is context specific. They further suggest that acylation may underlie aspects of ligand-receptor selectivity and/or control other aspects of Wnt function.
Collapse
Affiliation(s)
- Kelsey F Speer
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6059, USA; Department of Medicine (Hematology-Oncology), University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-5157, USA
| | - Anselm Sommer
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Benjamin Tajer
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6059, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6059, USA
| | - Mary C Mullins
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6059, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6059, USA
| | - Peter S Klein
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6059, USA; Department of Medicine (Hematology-Oncology), University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-5157, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6059, USA.
| | - Mark A Lemmon
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6059, USA; Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
19
|
The miR-29c-KIAA1199 axis regulates gastric cancer migration by binding with WBP11 and PTP4A3. Oncogene 2019; 38:3134-3150. [PMID: 30626935 DOI: 10.1038/s41388-018-0642-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 11/13/2018] [Accepted: 11/29/2018] [Indexed: 12/20/2022]
Abstract
Gastric cancer (GC) is the second leading cause of death among patients with cancer in China. The primary reason of GC treatment failure is metastasis. Therefore, identifying metastatic biomarkers and clarifying the regulatory mechanisms involved in the GC metastatic process are important. Here, we found that KIAA1199, a cell migration-inducing protein, was significantly overexpressed in GC and correlated with lymph node metastasis and poorer patient survival. Additionally, the introduction of KIAA1199 dramatically promoted GC cell proliferation and migration in vitro and in vivo, and the inhibition of KIAA1199 suppressed GC cell growth and migration and induced GC cell apoptosis. Cell migration is a functional consequence of the epithelial-mesenchymal transition (EMT). In this study, we found that KIAA1199 inhibition or overexpression regulated the expression of E-cadherin and N-cadherin through KIAA1199 binding to WW domain binding protein 11 (WBP11) and protein tyrosine phosphatase type IVA, member 3 (PTP4A3) and through the subsequent activation of the FGFR4/Wnt/β-catenin and EGFR signaling pathways. More importantly, ectopic expression of WBP11 or PTP4A3 blocked the stimulatory effects of KIAA1199 on GC cell proliferation and migration. Meanwhile, we illustrated that KIAA1199 was a target gene of miR-29c-3p and that miR-29c-3p overexpression led to decreased migration of GC cells in vitro and in vivo by suppressing the expression of KIAA1199 and several key proteins in the Wnt/β-catenin and EGFR signaling pathways (e.g., WBP11, FGFR4, and PTP4A3). Taken together, these data demonstrate that KIAA1199 promotes GC metastasis by activating EMT-related signaling pathways and that miR-29c-3p regulates GC cell migration in vitro and in vivo by regulating KIAA1199 expression and activating the FGFR4/Wnt/β-catenin and EGFR signaling pathways. These findings provide a new understanding of GC development and progression and may provide novel therapeutic strategies for GC.
Collapse
|
20
|
Tandon P, Conlon F, Furlow JD, Horb ME. Expanding the genetic toolkit in Xenopus: Approaches and opportunities for human disease modeling. Dev Biol 2017; 426:325-335. [PMID: 27109192 PMCID: PMC5074924 DOI: 10.1016/j.ydbio.2016.04.009] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/23/2016] [Accepted: 04/12/2016] [Indexed: 11/29/2022]
Abstract
The amphibian model Xenopus, has been used extensively over the past century to study multiple aspects of cell and developmental biology. Xenopus offers advantages of a non-mammalian system, including high fecundity, external development, and simple housing requirements, with additional advantages of large embryos, highly conserved developmental processes, and close evolutionary relationship to higher vertebrates. There are two main species of Xenopus used in biomedical research, Xenopus laevis and Xenopus tropicalis; the common perception is that both species are excellent models for embryological and cell biological studies, but only Xenopus tropicalis is useful as a genetic model. The recent completion of the Xenopus laevis genome sequence combined with implementation of genome editing tools, such as TALENs (transcription activator-like effector nucleases) and CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR associated nucleases), greatly facilitates the use of both Xenopus laevis and Xenopus tropicalis for understanding gene function in development and disease. In this paper, we review recent advances made in Xenopus laevis and Xenopus tropicalis with TALENs and CRISPR-Cas and discuss the various approaches that have been used to generate knockout and knock-in animals in both species. These advances show that both Xenopus species are useful for genetic approaches and in particular counters the notion that Xenopus laevis is not amenable to genetic manipulations.
Collapse
Affiliation(s)
- Panna Tandon
- University of North Carolina McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, United States.
| | - Frank Conlon
- University of North Carolina McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, United States
| | - J David Furlow
- Deparment of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616, United States
| | - Marko E Horb
- National Xenopus Resource and Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543, United States.
| |
Collapse
|
21
|
Pearl E, Morrow S, Noble A, Lerebours A, Horb M, Guille M. An optimized method for cryogenic storage of Xenopus sperm to maximise the effectiveness of research using genetically altered frogs. Theriogenology 2017; 92:149-155. [PMID: 28237331 PMCID: PMC5340284 DOI: 10.1016/j.theriogenology.2017.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/26/2016] [Accepted: 01/04/2017] [Indexed: 02/06/2023]
Abstract
Cryogenic storage of sperm from genetically altered Xenopus improves cost effectiveness and animal welfare associated with their use in research; currently it is routine for X. tropicalis but not reliable for X. laevis. Here we compare directly the three published protocols for Xenopus sperm freeze-thaw and determine whether sperm storage temperature, method of testes maceration and delays in the freezing protocols affect successful fertilisation and embryo development in X. laevis. We conclude that the protocol is robust and that the variability observed in fertilisation rates is due to differences between individuals. We show that the embryos made from the frozen-thawed sperm are normal and that the adults they develop into are reproductively indistinguishable from others in the colony. This opens the way for using cryopreserved sperm to distribute dominant genetically altered (GA) lines, potentially saving travel-induced stress to the male frogs, reducing their numbers used and making Xenopus experiments more cost effective. Xenopus cryopreservation is robust using an optimized method. Success is dependent on the quality of animals from which the sperm are taken. Frozen sperm may now be used to distribute lines and wild-type male gametes around the world.
Collapse
Affiliation(s)
- Esther Pearl
- National Xenopus Resource, 7 MBL Street, Woods Hole, MA, 02543, USA
| | - Sean Morrow
- European Xenopus Resource Centre, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DT, UK
| | - Anna Noble
- European Xenopus Resource Centre, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DT, UK
| | - Adelaide Lerebours
- School of Biological Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK
| | - Marko Horb
- National Xenopus Resource, 7 MBL Street, Woods Hole, MA, 02543, USA
| | - Matthew Guille
- European Xenopus Resource Centre, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DT, UK; School of Biological Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK.
| |
Collapse
|
22
|
Wan D, Zhang ZC, Zhang X, Li Q, Han J. X chromosome-linked intellectual disability protein PQBP1 associates with and regulates the translation of specific mRNAs. Hum Mol Genet 2015; 24:4599-614. [DOI: 10.1093/hmg/ddv191] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/19/2015] [Indexed: 01/08/2023] Open
|