1
|
Liao C, Walters BW, DiStasio M, Lesch BJ. Human-specific epigenomic states in spermatogenesis. Comput Struct Biotechnol J 2024; 23:577-588. [PMID: 38274996 PMCID: PMC10809009 DOI: 10.1016/j.csbj.2023.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/23/2023] [Accepted: 12/23/2023] [Indexed: 01/27/2024] Open
Abstract
Infertility is becoming increasingly common, affecting one in six people globally. Half of these cases can be attributed to male factors, many driven by abnormalities in the process of sperm development. Emerging evidence from genome-wide association studies, genetic screening of patient cohorts, and animal models highlights an important genetic contribution to spermatogenic defects, but comprehensive identification and characterization of the genes critical for male fertility remain lacking. High divergence of gene regulation in spermatogenic cells across species poses challenges for delineating the genetic pathways required for human spermatogenesis using common model organisms. In this study, we leveraged post-translational histone modification and gene transcription data for 15,491 genes in four mammalian species (human, rhesus macaque, mouse, and opossum), to identify human-specific patterns of gene regulation during spermatogenesis. We combined H3K27me3 ChIP-seq, H3K4me3 ChIP-seq, and RNA-seq data to define epigenetic states for each gene at two stages of spermatogenesis, pachytene spermatocytes and round spermatids, in each species. We identified 239 genes that are uniquely active, poised, or dynamically regulated in human spermatogenic cells distinct from the other three species. While some of these genes have been implicated in reproductive functions, many more have not yet been associated with human infertility and may be candidates for further molecular and epidemiologic studies. Our analysis offers an example of the opportunities provided by evolutionary and epigenomic data for broadly screening candidate genes implicated in reproduction, which might lead to discoveries of novel genetic targets for diagnosis and management of male infertility and male contraception.
Collapse
Affiliation(s)
- Caiyun Liao
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, 333 Cedar St., New Haven, CT 06510, USA
| | | | - Marcello DiStasio
- Department of Pathology, Yale School of Medicine, 333 Cedar St., New Haven, CT 06510, USA
- Department of Opthamology & Visual Sciences, Yale School of Medicine, 333 Cedar St., New Haven, CT 06510, USA
| | - Bluma J. Lesch
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, 333 Cedar St., New Haven, CT 06510, USA
- Department of Genetics, Yale School of Medicine, 333 Cedar St., New Haven, CT 06510, USA
- Yale Cancer Center, Yale School of Medicine, 333 Cedar St., New Haven, CT 06510, USA
| |
Collapse
|
2
|
Weymouth L, Smith AR, Lunnon K. DNA Methylation in Alzheimer's Disease. Curr Top Behav Neurosci 2024. [PMID: 39455499 DOI: 10.1007/7854_2024_530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
To date, DNA methylation is the best characterized epigenetic modification in Alzheimer's disease. Involving the addition of a methyl group to the fifth carbon of the cytosine pyrimidine base, DNA methylation is generally thought to be associated with the silencing of gene expression. It has been hypothesized that epigenetics may mediate the interaction between genes and the environment in the manifestation of Alzheimer's disease, and therefore studies investigating DNA methylation could elucidate novel disease mechanisms. This chapter comprehensively reviews epigenomic studies, undertaken in human brain tissue and purified brain cell types, focusing on global methylation levels, candidate genes, epigenome wide approaches, and recent meta-analyses. We discuss key differentially methylated genes and pathways that have been highlighted to date, with a discussion on how new technologies and the integration of multiomic data may further advance the field.
Collapse
Affiliation(s)
- Luke Weymouth
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Adam R Smith
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Katie Lunnon
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
3
|
Yu H, Lesch BJ. Functional Roles of H3K4 Methylation in Transcriptional Regulation. Mol Cell Biol 2024; 44:505-515. [PMID: 39155435 PMCID: PMC11529435 DOI: 10.1080/10985549.2024.2388254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024] Open
Abstract
Histone 3 lysine 4 methylation (H3K4me) is a highly evolutionary conserved chromatin modification associated with active transcription, and its three methylation states-mono, di, and trimethylation-mark distinct regulatory elements. However, whether H3K4me plays functional roles in transcriptional regulation or is merely a by-product of histone methyltransferases recruited to actively transcribed loci is still under debate. Here, we outline the studies that have addressed this question in yeast, Drosophila, and mammalian systems. We review evidence from histone residue mutation, histone modifier manipulation, and epigenetic editing, focusing on the relative roles of H3K4me1 and H3K4me3. We conclude that H3K4me1 and H3K4me3 may have convergent functions in establishing open chromatin and promoting transcriptional activation during cell differentiation.
Collapse
Affiliation(s)
- Haoming Yu
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Bluma J. Lesch
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
4
|
Hu M, Yeh YH, Maezawa S, Nakagawa T, Yoshida S, Namekawa S. PRC1 directs PRC2-H3K27me3 deposition to shield adult spermatogonial stem cells from differentiation. Nucleic Acids Res 2024; 52:2306-2322. [PMID: 38142439 PMCID: PMC10954450 DOI: 10.1093/nar/gkad1203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/16/2023] [Accepted: 12/11/2023] [Indexed: 12/26/2023] Open
Abstract
Spermatogonial stem cells functionality reside in the slow-cycling and heterogeneous undifferentiated spermatogonia cell population. This pool of cells supports lifelong fertility in adult males by balancing self-renewal and differentiation to produce haploid gametes. However, the molecular mechanisms underpinning long-term stemness of undifferentiated spermatogonia during adulthood remain unclear. Here, we discover that an epigenetic regulator, Polycomb repressive complex 1 (PRC1), shields adult undifferentiated spermatogonia from differentiation, maintains slow cycling, and directs commitment to differentiation during steady-state spermatogenesis in adults. We show that PRC2-mediated H3K27me3 is an epigenetic hallmark of adult undifferentiated spermatogonia. Indeed, spermatogonial differentiation is accompanied by a global loss of H3K27me3. Disruption of PRC1 impairs global H3K27me3 deposition, leading to precocious spermatogonial differentiation. Therefore, PRC1 directs PRC2-H3K27me3 deposition to maintain the self-renewing state of undifferentiated spermatogonia. Importantly, in contrast to its role in other tissue stem cells, PRC1 negatively regulates the cell cycle to maintain slow cycling of undifferentiated spermatogonia. Our findings have implications for how epigenetic regulators can be tuned to regulate the stem cell potential, cell cycle and differentiation to ensure lifelong fertility in adult males.
Collapse
Affiliation(s)
- Mengwen Hu
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616, USA
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yu-Han Yeh
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616, USA
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - So Maezawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Faculty of Science and Technology, Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 281-8510, Japan
| | - Toshinori Nakagawa
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
- Course for Basic Biology, The Graduate Institute for Advanced Studies, SOKENDAI, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - Shosei Yoshida
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
- Course for Basic Biology, The Graduate Institute for Advanced Studies, SOKENDAI, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - Satoshi H Namekawa
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616, USA
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
5
|
Sakashita A, Ooga M, Otsuka K, Maezawa S, Takeuchi C, Wakayama S, Wakayama T, Namekawa S. Polycomb protein SCML2 mediates paternal epigenetic inheritance through sperm chromatin. Nucleic Acids Res 2023; 51:6668-6683. [PMID: 37283086 PMCID: PMC10359620 DOI: 10.1093/nar/gkad479] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/03/2023] [Accepted: 05/20/2023] [Indexed: 06/08/2023] Open
Abstract
Sperm chromatin retains small amounts of histones, and chromatin states of sperm mirror gene expression programs of the next generation. However, it remains largely unknown how paternal epigenetic information is transmitted through sperm chromatin. Here, we present a novel mouse model of paternal epigenetic inheritance, in which deposition of Polycomb repressive complex 2 (PRC2) mediated-repressive H3K27me3 is attenuated in the paternal germline. By applying modified methods of assisted reproductive technology using testicular sperm, we rescued infertility of mice missing Polycomb protein SCML2, which regulates germline gene expression by establishing H3K27me3 on bivalent promoters with other active marks H3K4me2/3. We profiled epigenomic states (H3K27me3 and H3K4me3) of testicular sperm and epididymal sperm, demonstrating that the epididymal pattern of the sperm epigenome is already established in testicular sperm and that SCML2 is required for this process. In F1 males of X-linked Scml2-knockout mice, which have a wild-type genotype, gene expression is dysregulated in the male germline during spermiogenesis. These dysregulated genes are targets of SCML2-mediated H3K27me3 in F0 sperm. Further, dysregulation of gene expression was observed in the mutant-derived wild-type F1 preimplantation embryos. Together, we present functional evidence that the classic epigenetic regulator Polycomb mediates paternal epigenetic inheritance through sperm chromatin.
Collapse
Affiliation(s)
- Akihiko Sakashita
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH45229, USA
- Department of Molecular Biology, Keio University School of Medicine, Tokyo160-8582, Japan
| | - Masatoshi Ooga
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu400-8510, Japan
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, CA95616, USA
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa252-5201, Japan
| | - Kai Otsuka
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, CA95616, USA
| | - So Maezawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH45229, USA
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa252-5201, Japan
- Faculty of Science and Technology, Department of Applied Biological Science, Tokyo University of Science, Chiba278-8510, Japan
| | - Chikara Takeuchi
- Department of Molecular Biology, Keio University School of Medicine, Tokyo160-8582, Japan
| | - Sayaka Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Kofu400-8510, Japan
| | - Teruhiko Wakayama
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu400-8510, Japan
- Advanced Biotechnology Center, University of Yamanashi, Kofu400-8510, Japan
| | - Satoshi H Namekawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH45229, USA
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, CA95616, USA
| |
Collapse
|
6
|
Zucchi A, Innocenzi E, Onorato A, Dolci S, Colopi A, Balistreri CR, Grimaldi P. PRENATAL EXPOSURE TO CB 2 RECEPTORS AGONIST DIFFERENTIALLY IMPACTS MALE AND FEMALE GERM CELLS VIA HISTONE MODIFICATION. Mech Ageing Dev 2023:111840. [PMID: 37385302 DOI: 10.1016/j.mad.2023.111840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/28/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Cannabis use during pregnancy is increasing in the last few years potentially because of decreased perception of the risk of harm. Regardless, recent evidence demonstrated that prenatal cannabis exposure is associated with adverse outcomes. To date there is limited evidence of the impact of cannabis exposure during pregnancy on the reproductive health of the offspring. The biological effects of cannabis are mediated by two cannabinoid receptors, CB1 and CB2. We previously demonstrated that CB2 is highly expressed in mouse male and female fetal germ cells. In this study, we investigated the effects of prenatal exposure to a selective CB2 agonist, JWH-133, on the long-term reproductive health of male and female offspring and on the involved molecular epigenetic mechanisms. Notably, we focused on epigenetic histone modifications that can silence or activate gene expression, playing a pivotal role in cell differentiation. We reported that prenatal activation of CB2 has a sex-specific impact on germ cell development of the offspring. In male it determines a delay of germ cell differentiation coinciding with an enrichment of H3K27me3, while in female it causes a reduction of the follicles number through an increased apoptotic process not linked to modified H3K27me3 level.
Collapse
Affiliation(s)
- Alice Zucchi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Elisa Innocenzi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Angelo Onorato
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Susanna Dolci
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Ambra Colopi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Carmela Rita Balistreri
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Paola Grimaldi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
7
|
Yu Y, Li X, Jiao R, Lu Y, Jiang X, Li X. H3K27me3-H3K4me1 transition at bivalent promoters instructs lineage specification in development. Cell Biosci 2023; 13:66. [PMID: 36991495 DOI: 10.1186/s13578-023-01017-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Bivalent genes, of which promoters are marked by both H3K4me3 (trimethylation of histone H3 on lysine 4) and H3K27me3 (trimethylation of histone H3 on lysine 27), play critical roles in development and tumorigenesis. Monomethylation on lysine 4 of histone H3 (H3K4me1) is commonly associated with enhancers, but H3K4me1 is also present at promoter regions as an active bimodal or a repressed unimodal pattern. Whether the co-occurrence of H3K4me1 and bivalent marks at promoters plays regulatory role in development is largely unknown. RESULTS We report that in the process of lineage differentiation, bivalent promoters undergo H3K27me3-H3K4me1 transition, the loss of H3K27me3 accompanies by bimodal pattern loss or unimodal pattern enrichment of H3K4me1. More importantly, this transition regulates tissue-specific gene expression to orchestrate the development. Furthermore, knockout of Eed (Embryonic Ectoderm Development) or Suz12 (Suppressor of Zeste 12) in mESCs (mouse embryonic stem cells), the core components of Polycomb repressive complex 2 (PRC2) which catalyzes H3K27 trimethylation, generates an artificial H3K27me3-H3K4me1 transition at partial bivalent promoters, which leads to up-regulation of meso-endoderm related genes and down-regulation of ectoderm related genes, thus could explain the observed neural ectoderm differentiation failure upon retinoic acid (RA) induction. Finally, we find that lysine-specific demethylase 1 (LSD1) interacts with PRC2 and contributes to the H3K27me3-H3K4me1 transition in mESCs. CONCLUSIONS These findings suggest that H3K27me3-H3K4me1 transition plays a key role in lineage differentiation by regulating the expression of tissue specific genes, and H3K4me1 pattern in bivalent promoters could be modulated by LSD1 via interacting with PRC2.
Collapse
Affiliation(s)
- Yue Yu
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Xinjie Li
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Rui Jiao
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yang Lu
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Xuan Jiang
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China.
| | - Xin Li
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China.
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
8
|
Simigdala N, Chalari A, Sklirou AD, Chavdoula E, Papafotiou G, Melissa P, Kafalidou A, Paschalidis N, Pateras IS, Athanasiadis E, Konstantopoulos D, Trougakos IP, Klinakis A. Loss of Kmt2c in vivo leads to EMT, mitochondrial dysfunction and improved response to lapatinib in breast cancer. Cell Mol Life Sci 2023; 80:100. [PMID: 36933062 PMCID: PMC10024673 DOI: 10.1007/s00018-023-04734-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 01/22/2023] [Accepted: 02/22/2023] [Indexed: 03/19/2023]
Abstract
Deep sequencing of human tumours has uncovered a previously unappreciated role for epigenetic regulators in tumorigenesis. H3K4 methyltransferase KMT2C/MLL3 is mutated in several solid malignancies, including more than 10% of breast tumours. To study the tumour suppressor role of KMT2C in breast cancer, we generated mouse models of Erbb2/Neu, Myc or PIK3CA-driven tumorigenesis, in which the Kmt2c locus is knocked out specifically in the luminal lineage of mouse mammary glands using the Cre recombinase. Kmt2c knock out mice develop tumours earlier, irrespective of the oncogene, assigning a bona fide tumour suppressor role for KMT2C in mammary tumorigenesis. Loss of Kmt2c induces extensive epigenetic and transcriptional changes, which lead to increased ERK1/2 activity, extracellular matrix re-organization, epithelial-to-mesenchymal transition and mitochondrial dysfunction, the latter associated with increased reactive oxygen species production. Loss of Kmt2c renders the Erbb2/Neu-driven tumours more responsive to lapatinib. Publicly available clinical datasets revealed an association of low Kmt2c gene expression and better long-term outcome. Collectively, our findings solidify the role of KMT2C as a tumour suppressor in breast cancer and identify dependencies that could be therapeutically amenable.
Collapse
Affiliation(s)
- Nikiana Simigdala
- Present Address: Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Anna Chalari
- Present Address: Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Aimilia D. Sklirou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelia Chavdoula
- Present Address: Biomedical Research Foundation Academy of Athens, Athens, Greece
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH USA
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH USA
| | - George Papafotiou
- Present Address: Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Pelagia Melissa
- Present Address: Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Aimilia Kafalidou
- Present Address: Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Nikolaos Paschalidis
- Present Address: Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Ioannis S. Pateras
- 2nd Department of Pathology, Medical School, “Attikon” University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Apostolos Klinakis
- Present Address: Biomedical Research Foundation Academy of Athens, Athens, Greece
| |
Collapse
|
9
|
Ruthig VA, Hatkevich T, Hardy J, Friedersdorf MB, Mayère C, Nef S, Keene JD, Capel B. The RNA binding protein DND1 is elevated in a subpopulation of pro-spermatogonia and targets chromatin modifiers and translational machinery during late gestation. PLoS Genet 2023; 19:e1010656. [PMID: 36857387 PMCID: PMC10010562 DOI: 10.1371/journal.pgen.1010656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 03/13/2023] [Accepted: 02/06/2023] [Indexed: 03/02/2023] Open
Abstract
DND1 is essential to maintain germ cell identity. Loss of Dnd1 function results in germ cell differentiation to teratomas in some inbred strains of mice or to somatic fates in zebrafish. Using our knock-in mouse line in which a functional fusion protein between DND1 and GFP is expressed from the endogenous locus (Dnd1GFP), we distinguished two male germ cell (MGC) populations during late gestation cell cycle arrest (G0), consistent with recent reports of heterogeneity among MGCs. Most MGCs express lower levels of DND1-GFP (DND1-GFP-lo), but some MGCs express elevated levels of DND1-GFP (DND1-GFP-hi). A RNA-seq time course confirmed high Dnd1 transcript levels in DND1-GFP-hi cells along with 5-10-fold higher levels for multiple epigenetic regulators. Using antibodies against DND1-GFP for RNA immunoprecipitation (RIP)-sequencing, we identified multiple epigenetic and translational regulators that are binding targets of DND1 during G0 including DNA methyltransferases (Dnmts), histone deacetylases (Hdacs), Tudor domain proteins (Tdrds), actin dependent regulators (Smarcs), and a group of ribosomal and Golgi proteins. These data suggest that in DND1-GFP-hi cells, DND1 hosts coordinating mRNA regulons that consist of functionally related and localized groups of epigenetic enzymes and translational components.
Collapse
Affiliation(s)
- Victor A. Ruthig
- Sexual Medicine Lab, Department of Urology, Weill Cornell Medicine, New York, New York, United States of America
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Talia Hatkevich
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Josiah Hardy
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Matthew B. Friedersdorf
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Chloé Mayère
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
- iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, Geneva, Switzerland
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
- iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, Geneva, Switzerland
| | - Jack D. Keene
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
10
|
Bele S, Wokasch AS, Gannon M. Epigenetic modulation of cell fate during pancreas development. TRENDS IN DEVELOPMENTAL BIOLOGY 2023; 16:1-27. [PMID: 38873037 PMCID: PMC11173269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Epigenetic modifications to DNA and its associated proteins affect cell plasticity and cell fate restrictions throughout embryonic development. Development of the vertebrate pancreas is characterized by initial is an over-lapping expression of a set of transcriptional regulators in a defined region of the posterior foregut endoderm that collectively promote pancreas progenitor specification and proliferation. As development progresses, these transcription factors segregate into distinct pancreatic lineages, with some being maintained in specific subsets of terminally differentiated pancreas cell types throughout adulthood. Here we describe the progressive stages and cell fate restrictions that occur during pancreas development and the relevant known epigenetic regulatory events that drive the dynamic expression patterns of transcription factors that regulate pancreas development. In addition, we highlight how changes in epigenetic marks can affect susceptibility to pancreas diseases (such as diabetes), adult pancreas cell plasticity, and the ability to derive replacement insulin-producing β cells for the treatment of diabetes.
Collapse
Affiliation(s)
- Shilpak Bele
- Department of Medicine, Vanderbilt University Medical Center, 2213 Garland Avenue, Nashville, TN, 37232, USA
| | - Anthony S. Wokasch
- Department of Cell and Developmental Biology, Vanderbilt University, 2213 Garland Avenue, Nashville, TN, 37232, USA
| | - Maureen Gannon
- Department of Medicine, Vanderbilt University Medical Center, 2213 Garland Avenue, Nashville, TN, 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, 2213 Garland Avenue, Nashville, TN, 37232, USA
- Department of Veterans Affairs Tennessee Valley Authority, Research Division, 1310 24 Avenue South, Nashville, TN, 37212, USA
- Department of Molecular Physiology and Biophysics, 2213 Garland Avenue, Nashville, TN, 37232, USA
| |
Collapse
|
11
|
Zhao J, Huai J. Role of primary aging hallmarks in Alzheimer´s disease. Theranostics 2023; 13:197-230. [PMID: 36593969 PMCID: PMC9800733 DOI: 10.7150/thno.79535] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, which severely threatens the health of the elderly and causes significant economic and social burdens. The causes of AD are complex and include heritable but mostly aging-related factors. The primary aging hallmarks include genomic instability, telomere wear, epigenetic changes, and loss of protein stability, which play a dominant role in the aging process. Although AD is closely associated with the aging process, the underlying mechanisms involved in AD pathogenesis have not been well characterized. This review summarizes the available literature about primary aging hallmarks and their roles in AD pathogenesis. By analyzing published literature, we attempted to uncover the possible mechanisms of aberrant epigenetic markers with related enzymes, transcription factors, and loss of proteostasis in AD. In particular, the importance of oxidative stress-induced DNA methylation and DNA methylation-directed histone modifications and proteostasis are highlighted. A molecular network of gene regulatory elements that undergoes a dynamic change with age may underlie age-dependent AD pathogenesis, and can be used as a new drug target to treat AD.
Collapse
|
12
|
Macrae TA, Fothergill-Robinson J, Ramalho-Santos M. Regulation, functions and transmission of bivalent chromatin during mammalian development. Nat Rev Mol Cell Biol 2023; 24:6-26. [PMID: 36028557 DOI: 10.1038/s41580-022-00518-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2022] [Indexed: 12/25/2022]
Abstract
Cells differentiate and progress through development guided by a dynamic chromatin landscape that mediates gene expression programmes. During development, mammalian cells display a paradoxical chromatin state: histone modifications associated with gene activation (trimethylated histone H3 Lys4 (H3K4me3)) and with gene repression (trimethylated H3 Lys27 (H3K27me3)) co-occur at promoters of developmental genes. This bivalent chromatin modification state is thought to poise important regulatory genes for expression or repression during cell-lineage specification. In this Review, we discuss recent work that has expanded our understanding of the molecular basis of bivalent chromatin and its contributions to mammalian development. We describe the factors that establish bivalency, especially histone-lysine N-methyltransferase 2B (KMT2B) and Polycomb repressive complex 2 (PRC2), and consider evidence indicating that PRC1 shapes bivalency and may contribute to its transmission between generations. We posit that bivalency is a key feature of germline and embryonic stem cells, as well as other types of stem and progenitor cells. Finally, we discuss the relevance of bivalent chromtin to human development and cancer, and outline avenues of future research.
Collapse
Affiliation(s)
- Trisha A Macrae
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA.
| | - Julie Fothergill-Robinson
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Miguel Ramalho-Santos
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.
| |
Collapse
|
13
|
Arévalo L, Esther Merges G, Schneider S, Schorle H. Protamines: lessons learned from mouse models. Reproduction 2022; 164:R57-R74. [PMID: 35900356 DOI: 10.1530/rep-22-0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/07/2022] [Indexed: 11/08/2022]
Abstract
In brief Protamines package and shield the paternal DNA in the sperm nucleus and have been studied in many mouse models over decades. This review recapitulates and updates our knowledge about protamines and reveals a surprising complexity in protamine function and their interactions with other sperm nuclear proteins. Abstract The packaging and safeguarding of paternal DNA in the sperm cell nucleus is a critical feature of proper sperm function. Histones cannot mediate the necessary hypercondensation and shielding of chromatin required for motility and transit through the reproductive tracts. Paternal chromatin is therefore reorganized and ultimately packaged by protamines. In most mammalian species, one protamine is present in mature sperm (PRM1). In rodents and primates among others, however, mature sperm contain a second protamine (PRM2). Unlike PRM1, PRM2 is cleaved at its N-terminal end. Although protamines have been studied for decades due to their role in chromatin hypercondensation and involvement in male infertility, key aspects of their function are still unclear. This review updates and integrates our knowledge of protamines and their function based on lessons learned from mouse models and starts to answer open questions. The combined insights from recent work reveal that indeed both protamines are crucial for the production of functional sperm and indicate that the two protamines perform distinct functions beyond simple DNA compaction. Loss of one allele of PRM1 leads to subfertility whereas heterozygous loss of PRM2 does not. Unprocessed PRM2 seems to play a distinct role related to the eviction of intermediate DNA-bound proteins and the incorporation of both protamines into chromatin. For PRM1, on the other hand, heterozygous loss leads to strongly reduced sperm motility as the main phenotype, indicating that PRM1 might be important for processes ensuring correct motility, apart from DNA compaction.
Collapse
Affiliation(s)
- Lena Arévalo
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Gina Esther Merges
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Simon Schneider
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany.,Bonn Technology Campus, Core Facility 'Gene-Editing', University Hospital Bonn, Bonn, Germany
| | - Hubert Schorle
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
14
|
Cardoso TF, Bruscadin JJ, Afonso J, Petrini J, Andrade BGN, de Oliveira PSN, Malheiros JM, Rocha MIP, Zerlotini A, Ferraz JBS, Mourão GB, Coutinho LL, Regitano LCA. EEF1A1 transcription cofactor gene polymorphism is associated with muscle gene expression and residual feed intake in Nelore cattle. Mamm Genome 2022; 33:619-628. [PMID: 35816191 DOI: 10.1007/s00335-022-09959-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 06/22/2022] [Indexed: 12/01/2022]
Abstract
Cis-acting effects of noncoding variants on gene expression and regulatory molecules constitute a significant factor for phenotypic variation in complex traits. To provide new insights into the impacts of single-nucleotide polymorphisms (SNPs) on transcription factors (TFs) and transcription cofactors (TcoF) coding genes, we carried out a multi-omic analysis to identify cis-regulatory effects of SNPs on these genes' expression in muscle and describe their association with feed efficiency-related traits in Nelore cattle. As a result, we identified one SNP, the rs137256008C > T, predicted to impact the EEF1A1 gene expression (β = 3.02; P-value = 3.51E-03) and the residual feed intake trait (β = - 3.47; P-value = 0.02). This SNP was predicted to modify transcription factor sites and overlaps with several QTL for feed efficiency traits. In addition, co-expression network analyses showed that animals containing the T allele of the rs137256008 SNP may be triggering changes in the gene network. Therefore, our analyses reinforce and contribute to a better understanding of the biological mechanisms underlying gene expression control of feed efficiency traits in bovines. The cis-regulatory SNP can be used as biomarker for feed efficiency in Nelore cattle.
Collapse
Affiliation(s)
- T F Cardoso
- Embrapa Southeast Livestock, São Carlos, SP, Brazil
| | - J J Bruscadin
- Program on Evolutionary Genetics and Molecular Biology, Federal University of São Carlos, São Carlos, SP, Brazil
| | - J Afonso
- Embrapa Southeast Livestock, São Carlos, SP, Brazil
| | - J Petrini
- Department of Animal Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo/ESALQ, Piracicaba, SP, Brazil
| | - B G N Andrade
- Computer Science Department, Munster Technological University, MTU/ADAPT, Cork, Ireland
| | - P S N de Oliveira
- Program on Evolutionary Genetics and Molecular Biology, Federal University of São Carlos, São Carlos, SP, Brazil
| | - J M Malheiros
- Federal University of Latin American Integration, Foz do Iguaçu, Paraná, Brazil
| | - M I P Rocha
- Program on Evolutionary Genetics and Molecular Biology, Federal University of São Carlos, São Carlos, SP, Brazil
| | - A Zerlotini
- Embrapa Agricultural Informatics, Campinas, SP, Brazil
| | - J B S Ferraz
- Department of Veterinary Medicine, University of São Paulo/FZEA, Pirassununga, Brazil
| | - G B Mourão
- Department of Animal Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo/ESALQ, Piracicaba, SP, Brazil
| | - L L Coutinho
- Department of Animal Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo/ESALQ, Piracicaba, SP, Brazil
| | | |
Collapse
|
15
|
Barriocanal M, Prats-Mari L, Razquin N, Prior C, Unfried JP, Fortes P. ISR8/IRF1-AS1 Is Relevant for IFNα and NF-κB Responses. Front Immunol 2022; 13:829335. [PMID: 35860270 PMCID: PMC9289242 DOI: 10.3389/fimmu.2022.829335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 05/06/2022] [Indexed: 12/21/2022] Open
Abstract
The study of the interferon (IFN) α-induced cell transcriptome has shown altered expression of several long non-coding RNAs (lncRNAs). ISR8/IRF1-AS1 (IFN stimulated RNA 8), located close to IFN regulatory factor 1 (IRF1) coding gene, transcribes a lncRNA induced at early times after IFNα treatment or IRF1 or NF-κB activation. Depletion or overexpression of ISR8 RNA does not lead to detected deregulation of the IFN response. Surprisingly, disruption of ISR8 locus with CRISPR-Cas9 genome editing results in cells that fail to induce several key ISGs and pro-inflammatory cytokines after a trigger with IFNα or overexpression of IRF1 or the NF-κB subunit RELA. This suggests that the ISR8 locus may play a relevant role in IFNα and NF-κB pathways. Interestingly, IFNα, IRFs and NF-κB-responding luciferase reporters are normally induced in ISR8-disrupted cells when expressed from a plasmid but not when integrated into the genome. Therefore, IFNα and NF-κB pathways are functional to induce the expression of exogenous episomic transcripts but fail to activate transcription from genomic promoters. Transcription from these promoters is not restored with silencing inhibitors, by decreasing the levels of several negative regulators or by overexpression of inducers. Transcriptome analyses indicate that ISR8-disrupted cells have a drastic increase in the levels of negative regulators such as XIST and Zinc finger proteins. Our results agree with ISR8 loci being an enhancer region that is fundamental for proper antiviral and proinflammatory responses. These results are relevant because several SNPs located in the ISR8 region are associated with chronic inflammatory and autoimmune diseases including Crohn’s disease, inflammatory bowel disease, ulcerative colitis or asthma.
Collapse
Affiliation(s)
- Marina Barriocanal
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), Pamplona, Spain
| | - Laura Prats-Mari
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), Pamplona, Spain
| | - Nerea Razquin
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), Pamplona, Spain
| | - Celia Prior
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), Pamplona, Spain
| | - Juan Pablo Unfried
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), Pamplona, Spain
| | - Puri Fortes
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Liver and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Madrid, Spain
- Spanish Network for Advanced Therapies (TERAV ISCIII), Madrid, Spain
- *Correspondence: Puri Fortes,
| |
Collapse
|
16
|
Munden A, Benton ML, Capra JA, Nordman JT. R-loop mapping and characterization during Drosophila embryogenesis reveals developmental plasticity in R-loop signatures. J Mol Biol 2022; 434:167645. [PMID: 35609632 PMCID: PMC9254486 DOI: 10.1016/j.jmb.2022.167645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 11/26/2022]
Abstract
R-loops are involved in transcriptional regulation, DNA and histone post-translational modifications, genome replication and genome stability. To what extent R-loop abundance and genome-wide localization is actively regulated during metazoan embryogenesis is unknown. Drosophila embryogenesis provides a powerful system to address these questions due to its well-characterized developmental program, the sudden onset of zygotic transcription and available genome-wide data sets. Here, we measure the overall abundance and genome localization of R-loops in early and late-stage embryos relative to Drosophila cultured cells. We demonstrate that absolute R-loop levels change during embryogenesis and that RNaseH1 catalytic activity is critical for embryonic development. R-loop mapping by strand-specific DRIP-seq reveals that R-loop localization is plastic across development, both in the genes which form R-loops and where they localize relative to gene bodies. Importantly, these changes are not driven by changes in the transcriptional program. Negative GC skew and absolute changes in AT skew are associated with R-loop formation in Drosophila. Furthermore, we demonstrate that while some chromatin binding proteins and histone modifications such as H3K27me3 are associated with R-loops throughout development, other chromatin factors associated with R-loops in a developmental specific manner. Our findings highlight the importance and developmental plasticity of R-loops during Drosophila embryogenesis.
Collapse
Affiliation(s)
- Alexander Munden
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37212, USA
| | | | - John A Capra
- Bakar Computational Health Sciences Institute and Department of Epidemiology and Biostatistics, University of California, San Francisco, CA 94103, USA
| | - Jared T Nordman
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37212, USA.
| |
Collapse
|
17
|
Chakraborty P, Magnuson T. INO80 requires a polycomb subunit to regulate the establishment of poised chromatin in murine spermatocytes. Development 2022; 149:273926. [PMID: 35006254 PMCID: PMC8881737 DOI: 10.1242/dev.200089] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/23/2021] [Indexed: 01/12/2023]
Abstract
INO80 is the catalytic subunit of the INO80-chromatin remodeling complex that is involved in DNA replication, repair and transcription regulation. Ino80 deficiency in murine spermatocytes (Ino80cKO) results in pachytene arrest of spermatocytes due to incomplete synapsis and aberrant DNA double-strand break repair, which leads to apoptosis. RNA-seq on Ino80cKO spermatocytes revealed major changes in transcription, indicating that an aberrant transcription program arises upon INO80 depletion. In Ino80WT spermatocytes, genome-wide analysis showed that INO80-binding sites were mostly promoter proximal and necessary for the regulation of spermatogenic gene expression, primarily of premeiotic and meiotic genes. Furthermore, most of the genes poised for activity, as well as those genes that are active, shared INO80 binding. In Ino80cKO spermatocytes, most poised genes demonstrated de-repression due to reduced H3K27me3 enrichment and, in turn, showed increased expression levels. INO80 interacts with the core PRC2 complex member SUZ12 and promotes its recruitment. Furthermore, INO80 mediates H2A.Z incorporation at the poised promoters, which was reduced in Ino80cKO spermatocytes. Taken together, INO80 is emerging as a major regulator of the meiotic transcription program by mediating poised chromatin establishment through SUZ12 binding.
Collapse
Affiliation(s)
- Prabuddha Chakraborty
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7264, USA
| | - Terry Magnuson
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7264, USA,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7264, USA,Author for correspondence ()
| |
Collapse
|
18
|
Whiteley S, McCuaig RD, Holleley CE, Rao S, Georges A. Dynamics of epigenetic modifiers and environmentally sensitive proteins in a reptile with temperature induced sex reversal. Biol Reprod 2021; 106:132-144. [PMID: 34849582 DOI: 10.1093/biolre/ioab217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/25/2021] [Indexed: 12/23/2022] Open
Abstract
The mechanisms by which sex is determined, and how a sexual phenotype is stably maintained during adulthood, has been the focus of vigorous scientific inquiry. Resources common to the biomedical field (automated staining and imaging platforms) were leveraged to provide the first immunofluorescent data for a reptile species with temperature induced sex reversal. Two four-plex immunofluorescent panels were explored across three sex classes (sex reversed ZZf females, normal ZWf females, and normal ZZm males). One panel was stained for chromatin remodelling genes JARID2 and KDM6B, and methylation marks H3K27me3, and H3K4me3 (Jumonji Panel). The other CaRe panel stained for environmental response genes CIRBP and RelA, and H3K27me3 and H3K4me3. Our study characterised tissue specific expression and cellular localisation patterns of these proteins and histone marks, providing new insights to the molecular characteristics of adult gonads in a dragon lizard Pogona vitticeps. The confirmation that mammalian antibodies cross react in P. vitticeps paves the way for experiments that can take advantage of this new immunohistochemical resource to gain a new understanding of the role of these proteins during embryonic development, and most importantly for P. vitticeps, the molecular underpinnings of sex reversal.
Collapse
Affiliation(s)
- Sarah Whiteley
- Institute for Applied Ecology, University of Canberra, Australia.,Australian National Wildlife Collection CSIRO National Research Collections Australia, Canberra, Australia
| | - Robert D McCuaig
- Gene Regulation and Translational Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Clare E Holleley
- Australian National Wildlife Collection CSIRO National Research Collections Australia, Canberra, Australia
| | - Sudha Rao
- Gene Regulation and Translational Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Arthur Georges
- Institute for Applied Ecology, University of Canberra, Australia
| |
Collapse
|
19
|
Starks RR, Kaur H, Tuteja G. Mapping cis-regulatory elements in the midgestation mouse placenta. Sci Rep 2021; 11:22331. [PMID: 34785717 PMCID: PMC8595355 DOI: 10.1038/s41598-021-01664-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/01/2021] [Indexed: 12/22/2022] Open
Abstract
The placenta is a temporary organ that provides the developing fetus with nutrients, oxygen, and protection in utero. Defects in its development, which may be caused by misregulated gene expression, can lead to devastating outcomes for the mother and fetus. In mouse, placental defects during midgestation commonly lead to embryonic lethality. However, the regulatory mechanisms controlling expression of genes during this period have not been thoroughly investigated. Therefore, we generated and analyzed ChIP-seq data for multiple histone modifications known to mark cis-regulatory regions. We annotated active and poised promoters and enhancers, as well as regions generally associated with repressed gene expression. We found that poised promoters were associated with neuronal development genes, while active promoters were largely associated with housekeeping genes. Active and poised enhancers were associated with placental development genes, though only active enhancers were associated with genes that have placenta-specific expression. Motif analysis within active enhancers identified a large network of transcription factors, including those that have not been previously studied in the placenta and are candidates for future studies. The data generated and genomic regions annotated provide researchers with a foundation for future studies, aimed at understanding how specific genes in the midgestation mouse placenta are regulated.
Collapse
Affiliation(s)
- Rebekah R Starks
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA.,Bioinformatics and Computational Biology, Iowa State University, Ames, IA, 50011, USA
| | - Haninder Kaur
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Geetu Tuteja
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA. .,Bioinformatics and Computational Biology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
20
|
Altundag Ö, Çelebi-Saltik B. From Embryo to Adult: One Carbon Metabolism in Stem Cells. Curr Stem Cell Res Ther 2021; 16:175-188. [PMID: 32652922 DOI: 10.2174/1574888x15666200712191308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/16/2020] [Accepted: 04/23/2020] [Indexed: 11/22/2022]
Abstract
Stem cells are undifferentiated cells with self-renewal property and varying differentiation potential that allow the regeneration of tissue cells of an organism throughout adult life beginning from embryonic development. Through the asymmetric cell divisions, each stem cell replicates itself and produces an offspring identical with the mother cell, and a daughter cell that possesses the characteristics of a progenitor cell and commits to a specific lineage to differentiate into tissue cells to maintain homeostasis. To maintain a pool of stem cells to ensure tissue regeneration and homeostasis, it is important to regulate the metabolic functioning of stem cells, progenitor cells and adult tissue stem cells that will meet their internal and external needs. Upon fertilization, the zygote transforms metabolic reprogramming while implantation, embryonic development, organogenesis processes and after birth through adult life. Metabolism in stem cells is a concept that is relatively new to be enlightened. There are no adequate and comprehensive in vitro studies on the comparative analysis of the effects of one-carbon (1-C) metabolism on fetal and adult stem cells compared to embryonic and cancer stem cells' studies that have been reported recently. Since 1-C metabolism is linking parental environmental/ dietary factors and fetal development, investigating the epigenetic, genetic, metabolic and developmental effects on adult period is necessary. Several mutations and abnormalities in 1-C metabolism have been noted in disease changing from diabetes, cancer, pregnancy-related outcomes such as pre-eclampsia, spontaneous abortion, placental abruption, premature delivery, and cardiovascular diseases. In this review, the effects of 1-C metabolism, mainly the methionine and folate metabolism, in stem cells that exist in different developmental stages will be discussed.
Collapse
Affiliation(s)
- Özlem Altundag
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100, Sihhiye, Ankara, Turkey
| | - Betül Çelebi-Saltik
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100, Sihhiye, Ankara, Turkey
| |
Collapse
|
21
|
Lukinović V, Casanova AG, Roth GS, Chuffart F, Reynoird N. Lysine Methyltransferases Signaling: Histones are Just the Tip of the Iceberg. Curr Protein Pept Sci 2021; 21:655-674. [PMID: 31894745 DOI: 10.2174/1871527319666200102101608] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/15/2019] [Accepted: 11/27/2019] [Indexed: 12/28/2022]
Abstract
Protein lysine methylation is a functionally diverse post-translational modification involved in various major cellular processes. Lysine methylation can modulate proteins activity, stability, localization, and/or interaction, resulting in specific downstream signaling and biological outcomes. Lysine methylation is a dynamic and fine-tuned process, deregulation of which often leads to human pathologies. In particular, the lysine methylome and its associated signaling network can be linked to carcinogenesis and cancer progression. Histone modifications and chromatin regulation is a major aspect of lysine methylation importance, but increasing evidence suggests that a high relevance and impact of non-histone lysine methylation signaling has emerged in recent years. In this review, we draw an updated picture of the current scientific knowledge regarding non-histone lysine methylation signaling and its implication in physiological and pathological processes. We aim to demonstrate the significance of lysine methylation as a major and yet underestimated posttranslational modification, and to raise the importance of this modification in both epigenetic and cellular signaling by focusing on the observed activities of SET- and 7β-strandcontaining human lysine methyltransferases. Recent evidence suggests that what has been observed so far regarding lysine methylation's implication in human pathologies is only the tip of the iceberg. Therefore, the exploration of the "methylome network" raises the possibility to use these enzymes and their substrates as promising new therapeutic targets for the development of future epigenetic and methyllysine signaling cancer treatments.
Collapse
Affiliation(s)
- Valentina Lukinović
- Institute for Advanced Biosciences, INSERM U1209 - CNRS UMR5309 - Universite Grenoble Alpes, Grenoble Cedex, France
| | - Alexandre G Casanova
- Institute for Advanced Biosciences, INSERM U1209 - CNRS UMR5309 - Universite Grenoble Alpes, Grenoble Cedex, France
| | - Gael S Roth
- Institute for Advanced Biosciences, INSERM U1209 - CNRS UMR5309 - Universite Grenoble Alpes, Grenoble Cedex, France
| | - Florent Chuffart
- Institute for Advanced Biosciences, INSERM U1209 - CNRS UMR5309 - Universite Grenoble Alpes, Grenoble Cedex, France
| | - Nicolas Reynoird
- Institute for Advanced Biosciences, INSERM U1209 - CNRS UMR5309 - Universite Grenoble Alpes, Grenoble Cedex, France
| |
Collapse
|
22
|
Gerrard DT, Berry AA, Jennings RE, Birket MJ, Zarrineh P, Garstang MG, Withey SL, Short P, Jiménez-Gancedo S, Firbas PN, Donaldson I, Sharrocks AD, Hanley KP, Hurles ME, Gomez-Skarmeta JL, Bobola N, Hanley NA. Dynamic changes in the epigenomic landscape regulate human organogenesis and link to developmental disorders. Nat Commun 2020; 11:3920. [PMID: 32764605 PMCID: PMC7413392 DOI: 10.1038/s41467-020-17305-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 06/18/2020] [Indexed: 12/20/2022] Open
Abstract
How the genome activates or silences transcriptional programmes governs organ formation. Little is known in human embryos undermining our ability to benchmark the fidelity of stem cell differentiation or cell programming, or interpret the pathogenicity of noncoding variation. Here, we study histone modifications across thirteen tissues during human organogenesis. We integrate the data with transcription to build an overview of how the human genome differentially regulates alternative organ fates including by repression. Promoters from nearly 20,000 genes partition into discrete states. Key developmental gene sets are actively repressed outside of the appropriate organ without obvious bivalency. Candidate enhancers, functional in zebrafish, allow imputation of tissue-specific and shared patterns of transcription factor binding. Overlaying more than 700 noncoding mutations from patients with developmental disorders allows correlation to unanticipated target genes. Taken together, the data provide a comprehensive genomic framework for investigating normal and abnormal human development.
Collapse
Affiliation(s)
- Dave T Gerrard
- Faculty of Biology, Medicine & Health, Manchester Academic Health Sciences Centre, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Andrew A Berry
- Faculty of Biology, Medicine & Health, Manchester Academic Health Sciences Centre, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Rachel E Jennings
- Faculty of Biology, Medicine & Health, Manchester Academic Health Sciences Centre, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
- Endocrinology Department, Manchester University NHS Foundation Trust, Grafton Street, Manchester, M13 9WU, UK
| | - Matthew J Birket
- Faculty of Biology, Medicine & Health, Manchester Academic Health Sciences Centre, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Peyman Zarrineh
- Faculty of Biology, Medicine & Health, Manchester Academic Health Sciences Centre, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Myles G Garstang
- Faculty of Biology, Medicine & Health, Manchester Academic Health Sciences Centre, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Sarah L Withey
- Faculty of Biology, Medicine & Health, Manchester Academic Health Sciences Centre, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Patrick Short
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Sandra Jiménez-Gancedo
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigacionnes Cientificas/Universidad Pablo de Olavide/Junta de Analucía, Sevilla, Spain
| | - Panos N Firbas
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigacionnes Cientificas/Universidad Pablo de Olavide/Junta de Analucía, Sevilla, Spain
| | - Ian Donaldson
- Faculty of Biology, Medicine & Health, Manchester Academic Health Sciences Centre, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Andrew D Sharrocks
- Faculty of Biology, Medicine & Health, Manchester Academic Health Sciences Centre, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Karen Piper Hanley
- Faculty of Biology, Medicine & Health, Manchester Academic Health Sciences Centre, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | | | - José Luis Gomez-Skarmeta
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigacionnes Cientificas/Universidad Pablo de Olavide/Junta de Analucía, Sevilla, Spain
| | - Nicoletta Bobola
- Faculty of Biology, Medicine & Health, Manchester Academic Health Sciences Centre, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Neil A Hanley
- Faculty of Biology, Medicine & Health, Manchester Academic Health Sciences Centre, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
- Endocrinology Department, Manchester University NHS Foundation Trust, Grafton Street, Manchester, M13 9WU, UK.
| |
Collapse
|
23
|
Bae S, Lesch BJ. H3K4me1 Distribution Predicts Transcription State and Poising at Promoters. Front Cell Dev Biol 2020; 8:289. [PMID: 32432110 PMCID: PMC7214686 DOI: 10.3389/fcell.2020.00289] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/03/2020] [Indexed: 11/13/2022] Open
Abstract
Monomethylation on lysine 4 of histone H3 (H3K4me1) is commonly associated with distal enhancers, but H3K4me1 is also present at promoter regions proximal to transcription start sites. To assess a possible role for H3K4me1 in dictating gene regulatory states at promoters, we examined H3K4me1 peak density around promoters in human and mouse germ cells using an analytic strategy that allowed us to assess relationships between different epigenetic marks on a promoter-by-promoter basis. We found that H3K4me1 exhibits either a bimodal pattern at active promoters, where it flanks H3K4me3, or a unimodal pattern at poised promoters, where it coincides with both H3K4me3 and H3K27me3. This pattern is correlated with gene expression level, but is more strongly linked to a poised chromatin state, defined by the simultaneous presence of H3K4me3 and H3K27me3, than to transcriptional activity. The pattern is especially prominent in germ cells, but is also present in other cell types, including embryonic stem cells and differentiated somatic cells. We propose that H3K4me1 is a key feature of the poised epigenetic state, and suggest possible roles for this mark in epigenetic memory.
Collapse
Affiliation(s)
- Sunhee Bae
- Department of Genetics, Yale School of Medicine, New Haven, CT, United States
| | - Bluma J Lesch
- Department of Genetics, Yale School of Medicine, New Haven, CT, United States.,Yale Cancer Center, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
24
|
Kvist J, Athanàsio CG, Pfrender ME, Brown JB, Colbourne JK, Mirbahai L. A comprehensive epigenomic analysis of phenotypically distinguishable, genetically identical female and male Daphnia pulex. BMC Genomics 2020; 21:17. [PMID: 31906859 PMCID: PMC6945601 DOI: 10.1186/s12864-019-6415-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 12/19/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Daphnia species reproduce by cyclic parthenogenesis involving both sexual and asexual reproduction. The sex of the offspring is environmentally determined and mediated via endocrine signalling by the mother. Interestingly, male and female Daphnia can be genetically identical, yet display large differences in behaviour, morphology, lifespan and metabolic activity. Our goal was to integrate multiple omics datasets, including gene expression, splicing, histone modification and DNA methylation data generated from genetically identical female and male Daphnia pulex under controlled laboratory settings with the aim of achieving a better understanding of the underlying epigenetic factors that may contribute to the phenotypic differences observed between the two genders. RESULTS In this study we demonstrate that gene expression level is positively correlated with increased DNA methylation, and histone H3 trimethylation at lysine 4 (H3K4me3) at predicted promoter regions. Conversely, elevated histone H3 trimethylation at lysine 27 (H3K27me3), distributed across the entire transcript length, is negatively correlated with gene expression level. Interestingly, male Daphnia are dominated with epigenetic modifications that globally promote elevated gene expression, while female Daphnia are dominated with epigenetic modifications that reduce gene expression globally. For examples, CpG methylation (positively correlated with gene expression level) is significantly higher in almost all differentially methylated sites in male compared to female Daphnia. Furthermore, H3K4me3 modifications are higher in male compared to female Daphnia in more than 3/4 of the differentially regulated promoters. On the other hand, H3K27me3 is higher in female compared to male Daphnia in more than 5/6 of differentially modified sites. However, both sexes demonstrate roughly equal number of genes that are up-regulated in one gender compared to the other sex. Since, gene expression analyses typically assume that most genes are expressed at equal level among samples and different conditions, and thus cannot detect global changes affecting most genes. CONCLUSIONS The epigenetic differences between male and female in Daphnia pulex are vast and dominated by changes that promote elevated gene expression in male Daphnia. Furthermore, the differences observed in both gene expression changes and epigenetic modifications between the genders relate to pathways that are physiologically relevant to the observed phenotypic differences.
Collapse
Affiliation(s)
- Jouni Kvist
- Research Program for Molecular Neurology, University of Helsinki, Helsinki, Finland.
| | | | - Michael E Pfrender
- Department of Biological Sciences and Environmental Change Initiative, University of Notre Dame, Notre Dame, USA
| | - James B Brown
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, USA
- Centre for Computational Biology (CCB), University of Birmingham, Birmingham, UK
| | | | - Leda Mirbahai
- Warwick Medical School, University of Warwick, Coventry, UK.
| |
Collapse
|
25
|
Darracq A, Pak H, Bourgoin V, Zmiri F, Dellaire G, Affar EB, Milot E. NPM and NPM-MLF1 interact with chromatin remodeling complexes and influence their recruitment to specific genes. PLoS Genet 2019; 15:e1008463. [PMID: 31675375 PMCID: PMC6853375 DOI: 10.1371/journal.pgen.1008463] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 11/13/2019] [Accepted: 10/04/2019] [Indexed: 11/18/2022] Open
Abstract
Nucleophosmin (NPM1) is frequently mutated or subjected to chromosomal translocation in acute myeloid leukemia (AML). NPM protein is primarily located in the nucleus, but the recurrent NPMc+ mutation, which creates a nuclear export signal, is characterized by cytoplasmic localization and leukemogenic properties. Similarly, the NPM-MLF1 translocation product favors the partial cytoplasmic retention of NPM. Regardless of their common cellular distribution, NPM-MLF1 malignancies engender different effects on hematopoiesis compared to NPMc+ counterparts, highlighting possible aberrant nuclear function(s) of NPM in NPMc+ and NPM-MLF1 AML. We performed a proteomic analysis and found that NPM and NPM-MLF1 interact with various nuclear proteins including subunits of the chromatin remodeling complexes ISWI, NuRD and P/BAF. Accordingly, NPM and NPM-MLF1 are recruited to transcriptionally active or repressed genes along with NuRD subunits. Although the overall gene expression program in NPM knockdown cells is similar to that resulting from NPMc+, NPM-MLF1 expression differentially altered gene transcription regulated by NPM. The abnormal gene regulation imposed by NPM-MLF1 can be characterized by the enhanced recruitment of NuRD to gene regulatory regions. Thus, different mechanisms would orchestrate the dysregulation of NPM function in NPMc+- versus NPM1-MLF1-associated leukemia. NPMc+ mutation is the most common mutation in acute myeloid leukemia (AML) with prevalence in one third of all AML cases. NPM can also be involved in leukemogenic translocation including the t(3;5)(q25;q34) NPM-MLF1 translocation, which is associated to bad clinical course but remains poorly defined. We are reporting that NPM and the leukemogenic NPM-MLF1 play central role in chromatin organization and gene regulation in hematopoietic cells. A proteomic analysis provided the evidence that NPM and NPM-MLF1 are interacting with the chromatin remodeling complexes NuRD, P/BAF and ISWI in hematopoietic cells. The NPM nuclear depletion, such as imposed by the leukemogenic NPMc+ mutation, or the expression of NPM-MLF1 favors the uncontrolled recruitment of the CHD4/NuRD to chromatin and the abnormal regulation of NPM-target genes. Our results suggest that the abnormal gene regulation forced by NPM-MLF1 is different than the loss of nuclear function imposed by NPMc+, and it can be characterized by the enhanced recruitment of CHD4/NuRD to genes. Thus, NPM-MLF1 is likely to promote hematopoietic malignancies by disruption of gene regulation imposed by the NuRD activity.
Collapse
Affiliation(s)
- Anaïs Darracq
- Maisonneuve Rosemont Hospital Research Center, CIUSSS Est de l’Île de Montréal, boulevard l’Assomption, Montreal, Quebec, Canada
- Molecular Biology Program, University of Montreal, Montreal, Quebec, Canada
| | - Helen Pak
- Maisonneuve Rosemont Hospital Research Center, CIUSSS Est de l’Île de Montréal, boulevard l’Assomption, Montreal, Quebec, Canada
| | - Vincent Bourgoin
- Maisonneuve Rosemont Hospital Research Center, CIUSSS Est de l’Île de Montréal, boulevard l’Assomption, Montreal, Quebec, Canada
| | - Farah Zmiri
- Maisonneuve Rosemont Hospital Research Center, CIUSSS Est de l’Île de Montréal, boulevard l’Assomption, Montreal, Quebec, Canada
| | - Graham Dellaire
- Departments of Pathology and Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - El Bachir Affar
- Maisonneuve Rosemont Hospital Research Center, CIUSSS Est de l’Île de Montréal, boulevard l’Assomption, Montreal, Quebec, Canada
- Department of Medicine, University of Montreal, Boulevard Edouard-Montpetit, Montreal, Quebec, Canada
| | - Eric Milot
- Maisonneuve Rosemont Hospital Research Center, CIUSSS Est de l’Île de Montréal, boulevard l’Assomption, Montreal, Quebec, Canada
- Department of Medicine, University of Montreal, Boulevard Edouard-Montpetit, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
26
|
Ruthig VA, Friedersdorf MB, Garness JA, Munger SC, Bunce C, Keene JD, Capel B. The RNA-binding protein DND1 acts sequentially as a negative regulator of pluripotency and a positive regulator of epigenetic modifiers required for germ cell reprogramming. Development 2019; 146:dev175950. [PMID: 31253634 PMCID: PMC6803376 DOI: 10.1242/dev.175950] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/20/2019] [Indexed: 12/18/2022]
Abstract
The adult spermatogonial stem cell population arises from pluripotent primordial germ cells (PGCs) that enter the fetal testis around embryonic day (E)10.5. PGCs undergo rapid mitotic proliferation, then enter prolonged cell cycle arrest (G1/G0), during which they transition to pro-spermatogonia. In mice homozygous for the Ter mutation in the RNA-binding protein Dnd1 (Dnd1Ter/Ter ), many male germ cells (MGCs) fail to enter G1/G0 and instead form teratomas: tumors containing many embryonic cell types. To investigate the origin of these tumors, we sequenced the MGC transcriptome in Dnd1Ter/Ter mutants at E12.5, E13.5 and E14.5, immediately prior to teratoma formation, and correlated this information with DO-RIP-Seq-identified DND1 direct targets. Consistent with previous results, we found DND1 controls downregulation of many genes associated with pluripotency and active cell cycle, including mTor, Hippo and Bmp/Nodal signaling pathway elements. However, DND1 targets also include genes associated with male differentiation, including a large group of chromatin regulators activated in wild-type but not mutant MGCs during the E13.5 and E14.5 transition. Results suggest multiple DND1 functions and link DND1 to initiation of epigenetic modifications in MGCs.
Collapse
Affiliation(s)
- Victor A Ruthig
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Matthew B Friedersdorf
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jason A Garness
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Corey Bunce
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jack D Keene
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
27
|
Maezawa S, Yukawa M, Alavattam KG, Barski A, Namekawa SH. Dynamic reorganization of open chromatin underlies diverse transcriptomes during spermatogenesis. Nucleic Acids Res 2019; 46:593-608. [PMID: 29126117 PMCID: PMC5778473 DOI: 10.1093/nar/gkx1052] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/02/2017] [Indexed: 12/14/2022] Open
Abstract
During spermatogenesis, germ cells undergo massive cellular reconstruction and dynamic chromatin remodeling to facilitate highly diverse transcriptomes, which are required for the production of functional sperm. However, it remains unknown how germline chromatin is organized to promote the dynamic, complex transcriptomes of spermatogenesis. Here, using ATAC-seq, we establish the varied landscape of open chromatin during spermatogenesis. We identify the reorganization of accessible chromatin in intergenic and intronic regions during the mitosis-to-meiosis transition. During the transition, mitotic-type open chromatin is closed while the de novo formation of meiotic-type open chromatin takes place. Contrastingly, differentiation processes such as spermatogonial differentiation and the meiosis-to-postmeiosis transition involve chromatin closure without the de novo formation of accessible chromatin. In spermiogenesis, the germline-specific Polycomb protein SCML2 promotes the closure of open chromatin at autosomes for gene suppression. Paradoxically, we identify the massive de novo formation of accessible chromatin when the sex chromosomes undergo meiotic sex chromosome inactivation, and this is also mediated by SCML2. These results reveal meiotic sex chromosome inactivation as an active process for chromatin organization. Together, our results unravel the genome-wide, dynamic reorganization of open chromatin and reveal mechanisms that underlie diverse transcriptomes during spermatogenesis.
Collapse
Affiliation(s)
- So Maezawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
| | - Masashi Yukawa
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA.,Division of Allergy and Immunology, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kris G Alavattam
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
| | - Artem Barski
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA.,Division of Allergy and Immunology, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Satoshi H Namekawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
| |
Collapse
|
28
|
Alavattam KG, Maezawa S, Sakashita A, Khoury H, Barski A, Kaplan N, Namekawa SH. Attenuated chromatin compartmentalization in meiosis and its maturation in sperm development. Nat Struct Mol Biol 2019; 26:175-184. [PMID: 30778237 PMCID: PMC6402993 DOI: 10.1038/s41594-019-0189-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 01/15/2019] [Indexed: 12/17/2022]
Abstract
Germ cells manifest a unique gene expression program and regain totipotency in the zygote. Here, we perform Hi-C analysis to examine 3D chromatin organization in male germ cells during spermatogenesis. We show that the highly compartmentalized 3D chromatin organization characteristic of interphase nuclei is attenuated in meiotic prophase. Meiotic prophase is predominated by short-range intrachromosomal interactions that represent a condensed form akin to that of mitotic chromosomes. However, unlike mitotic chromosomes, meiotic chromosomes display weak genomic compartmentalization, weak topologically associating domains, and localized point interactions in prophase. In postmeiotic round spermatids, genomic compartmentalization increases and gives rise to the strong compartmentalization seen in mature sperm. The X chromosome lacks domain organization during meiotic sex-chromosome inactivation. We propose that male meiosis occurs amid global reprogramming of 3D chromatin organization and that strengthening of chromatin compartmentalization takes place in spermiogenesis to prepare the next generation of life.
Collapse
Affiliation(s)
- Kris G Alavattam
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - So Maezawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Akihiko Sakashita
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Haia Khoury
- Department of Physiology, Biophysics & Systems Biology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Artem Barski
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Allergy and Immunology, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Noam Kaplan
- Department of Physiology, Biophysics & Systems Biology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.
| | - Satoshi H Namekawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
29
|
Lioznova AV, Khamis AM, Artemov AV, Besedina E, Ramensky V, Bajic VB, Kulakovskiy IV, Medvedeva YA. CpG traffic lights are markers of regulatory regions in human genome. BMC Genomics 2019; 20:102. [PMID: 30709331 PMCID: PMC6359853 DOI: 10.1186/s12864-018-5387-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/18/2018] [Indexed: 12/22/2022] Open
Abstract
Background DNA methylation is involved in the regulation of gene expression. Although bisulfite-sequencing based methods profile DNA methylation at a single CpG resolution, methylation levels are usually averaged over genomic regions in the downstream bioinformatic analysis. Results We demonstrate that on the genome level a single CpG methylation can serve as a more accurate predictor of gene expression than an average promoter / gene body methylation. We define CpG traffic lights (CpG TL) as CpG dinucleotides with a significant correlation between methylation and expression of a gene nearby. CpG TL are enriched in all regulatory regions. Among all promoters, CpG TL are especially enriched in poised ones, suggesting involvement of DNA methylation in their regulation. Yet, binding of only a handful of transcription factors, such as NRF1, ETS, STAT and IRF-family members, could be regulated by direct methylation of transcription factor binding sites (TFBS) or its close proximity. For the majority of TF, an alternative scenario is more likely: methylation and inactivation of the whole regulatory element indirectly represses functional TF binding with a CpG TL being a reliable marker of such inactivation. Conclusions CpG TL provide a promising insight into mechanisms of enhancer activity and gene regulation linking methylation of single CpG to gene expression. CpG TL methylation can be used as reliable markers of enhancer activity and gene expression in applications, e.g. in clinic where measuring DNA methylation is easier compared to directly measuring gene expression due to more stable nature of DNA. Electronic supplementary material The online version of this article (10.1186/s12864-018-5387-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna V Lioznova
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Abdullah M Khamis
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Artem V Artemov
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia.,Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, 127051, Russia
| | - Elizaveta Besedina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Vasily Ramensky
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Vladimir B Bajic
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Ivan V Kulakovskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.,Institute of Mathematical Problems of Biology RAS - the Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Pushchino, 142290, Moscow Region, Russia.,Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Yulia A Medvedeva
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia. .,Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia. .,Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
30
|
Maezawa S, Alavattam KG, Tatara M, Nagai R, Barski A, Namekawa SH. A rapidly evolved domain, the SCML2 DNA-binding repeats, contributes to chromatin binding of mouse SCML2†. Biol Reprod 2019; 100:409-419. [PMID: 30137219 DOI: 10.1093/biolre/ioy181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/20/2018] [Accepted: 08/16/2018] [Indexed: 11/14/2022] Open
Abstract
Genes involved in sexual reproduction diverge rapidly as a result of reproductive fitness. Here, we identify a novel protein domain in the germline-specific Polycomb protein SCML2 that is required for the establishment of unique gene expression programs after the mitosis-to-meiosis transition in spermatogenesis. We term this novel domain, which is comprised of rapidly evolved, DNA-binding repeat units of 28 amino acids, the SCML2 DNA-binding (SDB) repeats. These repeats are acquired in a specific subgroup of the rodent lineage, having been subjected to positive selection in the course of evolution. Mouse SCML2 has two DNA-binding domains: one is the SDB repeats and the other is an RNA-binding region, which is conserved in human SCML2. For the recruitment of SCML2 to target loci, the SDB repeats cooperate with the other functional domains of SCML2 to bind chromatin. The cooperative action of these domains enables SCML2 to sense DNA hypomethylation in an in vivo chromatin environment, thereby enabling SCML2 to bind to hypomethylated chromatin. We propose that the rapid evolution of SCML2 is due to reproductive adaptation, which has promoted species-specific gene expression programs in spermatogenesis.
Collapse
Affiliation(s)
- So Maezawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Kris G Alavattam
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Mayu Tatara
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Rika Nagai
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Artem Barski
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Allergy and Immunology, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Satoshi H Namekawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
31
|
Al-Alem LF, Pandya UM, Baker AT, Bellio C, Zarrella BD, Clark J, DiGloria CM, Rueda BR. Ovarian cancer stem cells: What progress have we made? Int J Biochem Cell Biol 2018; 107:92-103. [PMID: 30572025 DOI: 10.1016/j.biocel.2018.12.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/14/2018] [Accepted: 12/16/2018] [Indexed: 12/18/2022]
Abstract
Ovarian cancer (OvCa) is the most lethal gynecological malignancy in the United States primarily due to lack of a reliable early diagnostic, high incidence of chemo-resistant recurrent disease as well as profuse tumor heterogeneity. Cancer stem cells (CSCs) continue to gain attention, as they are known to resist chemotherapy, self-renew and re-populate the bulk tumor with undifferentiated and differentiated cells. Moreover, CSCs appear to readily adapt to environmental, immunologic and pharmacologic cues. The plasticity and ability to inactivate or activate signaling pathways promoting their longevity has been, and continues to be, the challenge faced in developing successful CSC targeted therapies. Identifying and understanding unique ovarian CSC markers and the pathways they utilize could reveal new therapeutic opportunities that may offer alternative adjuvant treatment options. Herein, we will discuss the current state of ovarian CSC characterization, their contribution to disease resistance, recurrence and shed light on clinical trials that may target the CSC population.
Collapse
Affiliation(s)
- Linah F Al-Alem
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Unnati M Pandya
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Andrew T Baker
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Chiara Bellio
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Bianca D Zarrella
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Celeste M DiGloria
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
| | - Bo R Rueda
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
32
|
Liu L, Lu Y, Wei L, Yu H, Cao Y, Li Y, Yang N, Song Y, Liang C, Wang T. Transcriptomics analyses reveal the molecular roadmap and long non-coding RNA landscape of sperm cell lineage development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:421-437. [PMID: 30047180 DOI: 10.1111/tpj.14041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/19/2018] [Indexed: 06/08/2023]
Abstract
Sperm cell (SC) lineage development from the haploid microspore to SCs represents a unique biological process in which the microspore generates a larger vegetative cell (VC) and a smaller generative cell (GC) enclosed in the VC, then the GC further develops to functionally specified SCs in the VC for double fertilization. Understanding the mechanisms of SC lineage development remains a critical goal in plant biology. We isolated individual cells of the three cell types, and characterized the genome-wide atlas of long non-coding (lnc) RNAs and mRNAs of haploid SC lineage cells. Sperm cell lineage development involves global repression of genes for pluripotency, somatic development and metabolism following asymmetric microspore division and coordinated upregulation of GC/SC preferential genes. This process is accompanied by progressive loss of the active marks H3K4me3 and H3K9ac, and accumulation of the repressive methylation mark H3K9. The SC lineage has a higher ratio of lncRNAs to mRNAs and preferentially expresses a larger percentage of lncRNAs than does the non-SC lineage. A co-expression network showed that the largest set of lncRNAs in these nodes, with more than 100 links, are GC-preferential, and a small proportion of lncRNAs co-express with their neighboring genes. Single molecular fluorescence in situ hybridization showed that several candidate genes may be markers distinguishing the three cell types of the SC lineage. Our findings reveal the molecular programming and potential roles of lncRNAs in SC lineage development.
Collapse
Affiliation(s)
- Lingtong Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yunlong Lu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liqin Wei
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hua Yu
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
- Research Center for Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yinghao Cao
- Research Center for Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yan Li
- Research Center for Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ning Yang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yunyun Song
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengzhi Liang
- Research Center for Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tai Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
33
|
Maezawa S, Hasegawa K, Alavattam KG, Funakoshi M, Sato T, Barski A, Namekawa SH. SCML2 promotes heterochromatin organization in late spermatogenesis. J Cell Sci 2018; 131:jcs217125. [PMID: 30097555 PMCID: PMC6140322 DOI: 10.1242/jcs.217125] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/31/2018] [Indexed: 12/15/2022] Open
Abstract
Spermatogenesis involves the progressive reorganization of heterochromatin. However, the mechanisms that underlie the dynamic remodeling of heterochromatin remain unknown. Here, we identify SCML2, a germline-specific Polycomb protein, as a critical regulator of heterochromatin organization in spermatogenesis. We show that SCML2 accumulates on pericentromeric heterochromatin (PCH) in male germ cells, where it suppresses PRC1-mediated monoubiquitylation of histone H2A at Lysine 119 (H2AK119ub) and promotes deposition of PRC2-mediated H3K27me3 during meiosis. In postmeiotic spermatids, SCML2 is required for heterochromatin organization, and the loss of SCML2 leads to the formation of ectopic patches of facultative heterochromatin. Our data suggest that, in the absence of SCML2, the ectopic expression of somatic lamins drives this process. Furthermore, the centromere protein CENP-V is a specific marker of PCH in postmeiotic spermatids, and SCML2 is required for CENP-V localization on PCH. Given the essential functions of PRC1 and PRC2 for genome-wide gene expression in spermatogenesis, our data suggest that heterochromatin organization and spermatogenesis-specific gene expression are functionally linked. We propose that SCML2 coordinates the organization of heterochromatin and gene expression through the regulation of Polycomb complexes.
Collapse
Affiliation(s)
- So Maezawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
| | - Kazuteru Hasegawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
| | - Kris G Alavattam
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
| | - Mayuka Funakoshi
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
| | - Taiga Sato
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
| | - Artem Barski
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
- Division of Allergy and Immunology, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Satoshi H Namekawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
| |
Collapse
|
34
|
Dattani A, Kao D, Mihaylova Y, Abnave P, Hughes S, Lai A, Sahu S, Aboobaker AA. Epigenetic analyses of planarian stem cells demonstrate conservation of bivalent histone modifications in animal stem cells. Genome Res 2018; 28:1543-1554. [PMID: 30143598 PMCID: PMC6169894 DOI: 10.1101/gr.239848.118] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/16/2018] [Indexed: 12/14/2022]
Abstract
Planarian flatworms have an indefinite capacity to regenerate missing or damaged body parts owing to a population of pluripotent adult stems cells called neoblasts (NBs). Currently, little is known about the importance of the epigenetic status of NBs and how histone modifications regulate homeostasis and cellular differentiation. We have developed an improved and optimized ChIP-seq protocol for NBs in Schmidtea mediterranea and have generated genome-wide profiles for the active marks H3K4me3 and H3K36me3, and suppressive marks H3K4me1 and H3K27me3. The genome-wide profiles of these marks were found to correlate well with NB gene expression profiles. We found that genes with little transcriptional activity in the NB compartment but which switch on in post-mitotic progeny during differentiation are bivalent, being marked by both H3K4me3 and H3K27me3 at promoter regions. In further support of this hypothesis, bivalent genes also have a high level of paused RNA Polymerase II at the promoter-proximal region. Overall, this study confirms that epigenetic control is important for the maintenance of a NB transcriptional program and makes a case for bivalent promoters as a conserved feature of animal stem cells and not a vertebrate-specific innovation. By establishing a robust ChIP-seq protocol and analysis methodology, we further promote planarians as a promising model system to investigate histone modification–mediated regulation of stem cell function and differentiation.
Collapse
Affiliation(s)
- Anish Dattani
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| | - Damian Kao
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| | - Yuliana Mihaylova
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| | - Prasad Abnave
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| | - Samantha Hughes
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| | - Alvina Lai
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| | - Sounak Sahu
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| | - A Aziz Aboobaker
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| |
Collapse
|
35
|
Prudêncio P, Guilgur LG, Sobral J, Becker JD, Martinho RG, Navarro-Costa P. The Trithorax group protein dMLL3/4 instructs the assembly of the zygotic genome at fertilization. EMBO Rep 2018; 19:e45728. [PMID: 30037897 PMCID: PMC6073209 DOI: 10.15252/embr.201845728] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 06/27/2018] [Accepted: 07/02/2018] [Indexed: 12/25/2022] Open
Abstract
The transition from fertilized oocyte to totipotent embryo relies on maternal factors that are synthetized and accumulated during oocyte development. Yet, it is unclear how oocytes regulate the expression of maternal genes within the transcriptional program of oogenesis. Here, we report that the Drosophila Trithorax group protein dMLL3/4 (also known as Trr) is essential for the transition to embryo fate at fertilization. In the absence of dMLL3/4, oocytes develop normally but fail to initiate the embryo mitotic divisions after fertilization. This incapability results from defects in paternal genome reprogramming and maternal meiotic completion. The methyltransferase activity of dMLL3/4 is dispensable for both these processes. We further show that dMLL3/4 promotes the expression of a functionally coherent gene subset that is required for the initiation of post-fertilization development. Accordingly, we identify the evolutionarily conserved IDGF4 glycoprotein (known as oviductin in mammals) as a new oocyte-to-embryo transition gene under direct dMLL3/4 transcriptional control. Based on these observations, we propose that dMLL3/4 plays an instructive role in the oocyte-to-embryo transition that is functionally uncoupled from the requirements of oogenesis.
Collapse
Affiliation(s)
- Pedro Prudêncio
- Center for Biomedical Research and Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Faro, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | | | - João Sobral
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Rui Gonçalo Martinho
- Center for Biomedical Research and Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Faro, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Institute of Biomedicine - iBiMED and Department of Medical Sciences, Universidade de Aveiro, Aveiro, Portugal
| | - Paulo Navarro-Costa
- Center for Biomedical Research and Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Faro, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
36
|
Western PS. Epigenomic drugs and the germline: Collateral damage in the home of heritability? Mol Cell Endocrinol 2018; 468:121-133. [PMID: 29471014 DOI: 10.1016/j.mce.2018.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/16/2018] [Accepted: 02/16/2018] [Indexed: 02/07/2023]
Abstract
The testis and ovary provide specialised environments that nurture germ cells and facilitate their maturation, culminating in the production of mature gametes that can found the following generation. The sperm and egg not only transmit genetic information, but also epigenetic modifications that affect the development and physiology of offspring. Importantly, the epigenetic information contained in mature sperm and oocytes can be influenced by a range of environmental factors, such as diet, chemicals and drugs. An increasing range of studies are revealing how gene-environment interactions are mediated through the germline. Outside the germline, altered epigenetic state is common in a range of diseases, including many cancers. As epigenetic modifications are reversible, pharmaceuticals that directly target epigenetic modifying proteins have been developed and are delivering substantial benefits to patients, particularly in oncology. While providing the most effective patient treatment is clearly the primary concern, some patients will want to conceive children after treatment. However, the impacts of epigenomic drugs on the male and female gametes are poorly understood and whether these drugs will have lasting effects on patients' germline epigenome and subsequent offspring remains largely undetermined. Currently, evidence based clinical guidelines for use of epigenomic drugs in patients of reproductive age are limited in this context. Developing a deeper understanding of the epigenetic mechanisms regulating the germline epigenome and its impact on inherited traits and disease susceptibility is required to determine how specific epigenomic drugs might affect the germline and inheritance. Understanding these potential effects will facilitate the development of informed clinical guidelines appropriate for the use of epigenomic drugs in patients of reproductive age, ultimately improving the safety of these therapies in the clinic.
Collapse
Affiliation(s)
- Patrick S Western
- Centre for Reproductive Health, Hudson Institute of Medical Research and Department of Molecular and Translational Science, Monash University, Clayton, Victoria, 3168, Australia.
| |
Collapse
|
37
|
Dattani A, Sridhar D, Aziz Aboobaker A. Planarian flatworms as a new model system for understanding the epigenetic regulation of stem cell pluripotency and differentiation. Semin Cell Dev Biol 2018; 87:79-94. [PMID: 29694837 DOI: 10.1016/j.semcdb.2018.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/21/2018] [Indexed: 12/11/2022]
Abstract
Planarian flatworms possess pluripotent stem cells (neoblasts) that are able to differentiate into all cell types that constitute the adult body plan. Consequently, planarians possess remarkable regenerative capabilities. Transcriptomic studies have revealed that gene expression is coordinated to maintain neoblast pluripotency, and ensure correct lineage specification during differentiation. But as yet they have not revealed how this regulation of expression is controlled. In this review, we propose that planarians represent a unique and effective system to study the epigenetic regulation of these processes in an in vivo context. We consolidate evidence suggesting that although DNA methylation is likely present in some flatworm lineages, it does not regulate neoblast function in Schmidtea mediterranea. A number of phenotypic studies have documented the role of histone modification and chromatin remodelling complexes in regulating distinct neoblast processes, and we focus on four important examples of planarian epigenetic regulators: Nucleosome Remodeling Deacetylase (NuRD) complex, Polycomb Repressive Complex (PRC), the SET1/MLL methyltransferases, and the nuclear PIWI/piRNA complex. Given the recent advent of ChIP-seq in planarians, we propose future avenues of research that will identify the genomic targets of these complexes allowing for a clearer picture of how neoblast processes are coordinated at the epigenetic level. These insights into neoblast biology may be directly relevant to mammalian stem cells and disease. The unique biology of planarians will also allow us to investigate how extracellular signals feed into epigenetic regulatory networks to govern concerted neoblast responses during regenerative polarity, tissue patterning, and remodelling.
Collapse
Affiliation(s)
- Anish Dattani
- Department of Zoology, South Parks Road, University of Oxford, OX1 3PS, UK.
| | - Divya Sridhar
- Department of Zoology, South Parks Road, University of Oxford, OX1 3PS, UK
| | - A Aziz Aboobaker
- Department of Zoology, South Parks Road, University of Oxford, OX1 3PS, UK.
| |
Collapse
|
38
|
Polycomb protein SCML2 facilitates H3K27me3 to establish bivalent domains in the male germline. Proc Natl Acad Sci U S A 2018; 115:4957-4962. [PMID: 29686098 DOI: 10.1073/pnas.1804512115] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Repressive H3K27me3 and active H3K4me2/3 together form bivalent chromatin domains, molecular hallmarks of developmental potential. In the male germline, these domains are thought to persist into sperm to establish totipotency in the next generation. However, it remains unknown how H3K27me3 is established on specific targets in the male germline. Here, we demonstrate that a germline-specific Polycomb protein, SCML2, binds to H3K4me2/3-rich hypomethylated promoters in undifferentiated spermatogonia to facilitate H3K27me3. Thus, SCML2 establishes bivalent domains in the male germline of mice. SCML2 regulates two major classes of bivalent domains: Class I domains are established on developmental regulator genes that are silent throughout spermatogenesis, while class II domains are established on somatic genes silenced during late spermatogenesis. We propose that SCML2-dependent H3K27me3 in the male germline prepares the expression of developmental regulator and somatic genes in embryonic development.
Collapse
|
39
|
CCCTC-Binding Factor Acts as a Heterochromatin Barrier on Herpes Simplex Viral Latent Chromatin and Contributes to Poised Latent Infection. mBio 2018; 9:mBio.02372-17. [PMID: 29437926 PMCID: PMC5801469 DOI: 10.1128/mbio.02372-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) establishes latent infection in neurons via a variety of epigenetic mechanisms that silence its genome. The cellular CCCTC-binding factor (CTCF) functions as a mediator of transcriptional control and chromatin organization and has binding sites in the HSV-1 genome. We constructed an HSV-1 deletion mutant that lacked a pair of CTCF-binding sites (CTRL2) within the latency-associated transcript (LAT) coding sequences and found that loss of these CTCF-binding sites did not alter lytic replication or levels of establishment of latent infection, but their deletion reduced the ability of the virus to reactivate from latent infection. We also observed increased heterochromatin modifications on viral chromatin over the LAT promoter and intron. We therefore propose that CTCF binding at the CTRL2 sites acts as a chromatin insulator to keep viral chromatin in a form that is poised for reactivation, a state which we call poised latency. Herpes simplex virus 1 (HSV-1) is a human pathogen that persists for the lifetime of the host as a result of its ability to establish latent infection within sensory neurons. The mechanism by which HSV-1 transitions from the lytic to latent infection program is largely unknown; however, HSV-1 is able to coopt cellular silencing mechanisms to facilitate the suppression of lytic gene expression. Here, we demonstrate that the cellular CCCTC-binding factor (CTCF)-binding site within the latency associated transcript (LAT) region is critical for the maintenance of a specific local chromatin structure. Additionally, loss of CTCF binding has detrimental effects on the ability to reactivate from latent infection. These results argue that CTCF plays a critical role in epigenetic regulation of viral gene expression to establish and/or maintain a form of latent infection that can reactivate efficiently.
Collapse
|
40
|
Lee D, Park JH, Kim S, Lee SG, Myung K. SHPRH as a new player in ribosomal RNA transcription and its potential role in homeostasis of ribosomal DNA repeats. Transcription 2017; 9:190-195. [PMID: 29139335 DOI: 10.1080/21541264.2017.1381795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
There are hundreds of copies of rDNA repeats in mammalian chromosomes and the ratio of active, poised, or inactive rDNA is regulated in epigenetic manners. Recent studies demonstrated that a post-DNA replication repair enzyme, SHPRH affects rRNA transcription by recognizing epigenetic markers on rDNA promoters and unveiled potential links between DNA repair and ribosome biogenesis. This study suggests that SHPRH could be a link between mTOR-mediated epigenetic regulations and rRNA transcription, while concomitantly affecting genomic integrity.
Collapse
Affiliation(s)
- Deokjae Lee
- a Medytox Inc. 114 , Yeongtong-gu , Suwon-si , Gyeonggi-do , Korea
| | - Jun Hong Park
- b Center for Genomic Integrity , Institute for Basic Science , Ulsan , Korea
| | - Shinseog Kim
- b Center for Genomic Integrity , Institute for Basic Science , Ulsan , Korea
| | - Seon-Gyeong Lee
- b Center for Genomic Integrity , Institute for Basic Science , Ulsan , Korea.,c Department of Biological Sciences , School of Life Sciences , Ulsan National Institute of Science and Technology , Ulsan , Korea
| | - Kyungjae Myung
- b Center for Genomic Integrity , Institute for Basic Science , Ulsan , Korea.,c Department of Biological Sciences , School of Life Sciences , Ulsan National Institute of Science and Technology , Ulsan , Korea
| |
Collapse
|
41
|
Nettersheim D, Jostes S, Schneider S, Schorle H. Elucidating human male germ cell development by studying germ cell cancer. Reproduction 2017; 152:R101-13. [PMID: 27512122 DOI: 10.1530/rep-16-0114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/07/2016] [Indexed: 12/19/2022]
Abstract
Human germ cell development is regulated in a spatio-temporal manner by complex regulatory networks. Here, we summarize results obtained in germ cell tumors and respective cell lines and try to pinpoint similarities to normal germ cell development. This comparison allows speculating about the critical and error-prone mechanisms, which when disturbed, lead to the development of germ cell tumors. Short after specification, primordial germ cells express markers of pluripotency, which, in humans, persists up to the stage of fetal/infantile spermatogonia. Aside from the rare spermatocytic tumors, virtually all seminomas and embryonal carcinomas express markers of pluripotency and show signs of pluripotency or totipotency. Therefore, it appears that proper handling of the pluripotency program appears to be the most critical step in germ cell development in terms of tumor biology. Furthermore, data from mice reveal that germline cells display an epigenetic signature, which is highly similar to pluripotent cells. This signature (poised histone code, DNA hypomethylation) is required for the rapid induction of toti- and pluripotency upon fertilization. We propose that adult spermatogonial cells, when exposed to endocrine disruptors or epigenetic active substances, are prone to reinitiate the pluripotency program, giving rise to a germ cell tumor. The fact that pluripotent cells can be derived from adult murine and human testicular cells further corroborates this idea.
Collapse
Affiliation(s)
- Daniel Nettersheim
- Department of Developmental PathologyInstitute of Pathology, University of Bonn Medical School, Bonn, Germany
| | - Sina Jostes
- Department of Developmental PathologyInstitute of Pathology, University of Bonn Medical School, Bonn, Germany
| | - Simon Schneider
- Department of Developmental PathologyInstitute of Pathology, University of Bonn Medical School, Bonn, Germany
| | - Hubert Schorle
- Department of Developmental PathologyInstitute of Pathology, University of Bonn Medical School, Bonn, Germany
| |
Collapse
|
42
|
Not All H3K4 Methylations Are Created Equal: Mll2/COMPASS Dependency in Primordial Germ Cell Specification. Mol Cell 2017; 65:460-475.e6. [PMID: 28157506 DOI: 10.1016/j.molcel.2017.01.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 07/16/2016] [Accepted: 01/04/2017] [Indexed: 11/20/2022]
Abstract
The spatiotemporal regulation of gene expression is central for cell-lineage specification during embryonic development and is achieved through the combinatorial action of transcription factors/co-factors and epigenetic states at cis-regulatory elements. Here, we show that in addition to implementing H3K4me3 at promoters of bivalent genes, Mll2 (KMT2B)/COMPASS can also implement H3K4me3 at a subset of non-TSS regulatory elements, a subset of which shares epigenetic signatures of active enhancers. Our mechanistic studies reveal that association of Mll2's CXXC domain with CpG-rich regions plays an instrumental role for chromatin targeting and subsequent implementation of H3K4me3. Although Mll2/COMPASS is required for H3K4me3 implementation on thousands of loci, generation of catalytically mutant MLL2/COMPASS demonstrated that H3K4me3 implemented by this enzyme was essential for expression of a subset of genes, including those functioning in the control of transcriptional programs during embryonic development. Our findings suggest that not all H3K4 trimethylations implemented by MLL2/COMPASS are functionally equivalent.
Collapse
|
43
|
Abstract
Sexual reproduction crucially depends on the production of sperm in males and oocytes in females. Both types of gamete arise from the same precursor, the germ cells. We review the events that characterize the development of germ cells during fetal life as they commit to, and prepare for, oogenesis or spermatogenesis. In females, fetal germ cells enter meiosis, whereas in males they delay meiosis and instead lose pluripotency, activate an irreversible program of prospermatogonial differentiation, and temporarily cease dividing. Both pathways involve sex-specific molecular signals from the somatic cells of the developing gonads and a suite of intrinsic receptors, signal transducers, transcription factors, RNA stability factors, and epigenetic modulators that act in complex, interconnected positive and negative regulatory networks. Understanding these networks is important in the contexts of the etiology, diagnosis, and treatment of infertility and gonadal cancers, and in efforts to augment human and animal fertility using stem cell approaches.
Collapse
Affiliation(s)
- Cassy Spiller
- School of Biomedical Sciences, The University of Queensland, Brisbane QLD 4072, Australia
| | - Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia;
| | - Josephine Bowles
- School of Biomedical Sciences, The University of Queensland, Brisbane QLD 4072, Australia
| |
Collapse
|
44
|
Pinon V, Yao X, Dong A, Shen WH. SDG2-Mediated H3K4me3 Is Crucial for Chromatin Condensation and Mitotic Division during Male Gametogenesis in Arabidopsis. PLANT PHYSIOLOGY 2017; 174:1205-1215. [PMID: 28455402 PMCID: PMC5462044 DOI: 10.1104/pp.17.00306] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/25/2017] [Indexed: 05/02/2023]
Abstract
Epigenetic reprogramming occurring during reproduction is crucial for both animal and plant development. Histone H3 Lys 4 trimethylation (H3K4me3) is an evolutionarily conserved epigenetic mark of transcriptional active euchromatin. While much has been learned in somatic cells, H3K4me3 deposition and function in gametophyte is poorly studied. Here, we demonstrate that SET DOMAIN GROUP2 (SDG2)-mediated H3K4me3 deposition participates in epigenetic reprogramming during Arabidopsis male gametogenesis. We show that loss of SDG2 barely affects meiosis and cell fate establishment of haploid cells. However, we found that SDG2 is critical for postmeiotic microspore development. Mitotic cell division progression is partly impaired in the loss-of-function sdg2-1 mutant, particularly at the second mitosis setting up the two sperm cells. We demonstrate that SDG2 is involved in promoting chromatin decondensation in the pollen vegetative nucleus, likely through its role in H3K4me3 deposition, which prevents ectopic heterochromatic H3K9me2 speckle formation. Moreover, we found that derepression of the LTR retrotransposon ATLANTYS1 is compromised in the vegetative cell of the sdg2-1 mutant pollen. Consistent with chromatin condensation and compromised transcription activity, pollen germination and pollen tube elongation, representing the key function of the vegetative cell in transporting sperm cells during fertilization, are inhibited in the sdg2-1 mutant. Taken together, we conclude that SDG2-mediated H3K4me3 is an essential epigenetic mark of the gametophyte chromatin landscape, playing critical roles in gamete mitotic cell cycle progression and pollen vegetative cell function during male gametogenesis and beyond.
Collapse
Affiliation(s)
- Violaine Pinon
- Université de Strasbourg, Centre National de la Recherche Scientifique UPR2357, F-67000 Strasbourg, France (V.P., W.-H.S.)
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of Centre National de la Recherche Scientifique-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China (X.Y., A.D., W.-H.S.); and
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China (X.Y.)
| | - Xiaozhen Yao
- Université de Strasbourg, Centre National de la Recherche Scientifique UPR2357, F-67000 Strasbourg, France (V.P., W.-H.S.)
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of Centre National de la Recherche Scientifique-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China (X.Y., A.D., W.-H.S.); and
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China (X.Y.)
| | - Aiwu Dong
- Université de Strasbourg, Centre National de la Recherche Scientifique UPR2357, F-67000 Strasbourg, France (V.P., W.-H.S.)
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of Centre National de la Recherche Scientifique-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China (X.Y., A.D., W.-H.S.); and
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China (X.Y.)
| | - Wen-Hui Shen
- Université de Strasbourg, Centre National de la Recherche Scientifique UPR2357, F-67000 Strasbourg, France (V.P., W.-H.S.);
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of Centre National de la Recherche Scientifique-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China (X.Y., A.D., W.-H.S.); and
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China (X.Y.)
| |
Collapse
|
45
|
Di Giorgio E, Franforte E, Cefalù S, Rossi S, Dei Tos AP, Brenca M, Polano M, Maestro R, Paluvai H, Picco R, Brancolini C. The co-existence of transcriptional activator and transcriptional repressor MEF2 complexes influences tumor aggressiveness. PLoS Genet 2017; 13:e1006752. [PMID: 28419090 PMCID: PMC5413110 DOI: 10.1371/journal.pgen.1006752] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 05/02/2017] [Accepted: 04/10/2017] [Indexed: 12/18/2022] Open
Abstract
The contribution of MEF2 TFs to the tumorigenic process is still mysterious. Here we clarify that MEF2 can support both pro-oncogenic or tumor suppressive activities depending on the interaction with co-activators or co-repressors partners. Through these interactions MEF2 supervise histone modifications associated with gene activation/repression, such as H3K4 methylation and H3K27 acetylation. Critical switches for the generation of a MEF2 repressive environment are class IIa HDACs. In leiomyosarcomas (LMS), this two-faced trait of MEF2 is relevant for tumor aggressiveness. Class IIa HDACs are overexpressed in 22% of LMS, where high levels of MEF2, HDAC4 and HDAC9 inversely correlate with overall survival. The knock out of HDAC9 suppresses the transformed phenotype of LMS cells, by restoring the transcriptional proficiency of some MEF2-target loci. HDAC9 coordinates also the demethylation of H3K4me3 at the promoters of MEF2-target genes. Moreover, we show that class IIa HDACs do not bind all the regulative elements bound by MEF2. Hence, in a cell MEF2-target genes actively transcribed and strongly repressed can coexist. However, these repressed MEF2-targets are poised in terms of chromatin signature. Overall our results candidate class IIa HDACs and HDAC9 in particular, as druggable targets for a therapeutic intervention in LMS. The tumorigenic process is characterized by profound alterations of the transcriptional landscape, aimed to sustain uncontrolled cell growth, resistance to apoptosis and metastasis. The contribution of MEF2, a pleiotropic family of transcription factors, to these changes is controversial, since both pro-oncogenic and tumor-suppressive activities have been reported. To clarify this paradox, we studied the role of MEF2 in an aggressive type of soft-tissue sarcomas, the leiomyosarcomas (LMS). We found that in LMS cells MEF2 become oncogenes when in complex with class IIa HDACs. We have identified different sub-classes of MEF2-target genes and observed that HDAC9 converts MEF2 into transcriptional repressors on some, but not all, MEF2-regulated loci. This conversion correlates with the acquisition by MEF2 of oncogenic properties. We have also elucidated some epigenetic re-arrangements supervised by MEF2. In summary, our studies suggest that the paradoxical actions of MEF2 in cancer can be explained by their dual role as activators/repressors of transcription and open new possibilities for therapeutic interventions.
Collapse
Affiliation(s)
- Eros Di Giorgio
- Department of Medical and Biological Sciences, Università degli Studi di Udine. P.le Kolbe 4-Udine Italy
| | - Elisa Franforte
- Department of Medical and Biological Sciences, Università degli Studi di Udine. P.le Kolbe 4-Udine Italy
| | - Sebastiano Cefalù
- Department of Medical and Biological Sciences, Università degli Studi di Udine. P.le Kolbe 4-Udine Italy
| | - Sabrina Rossi
- Department of Anatomical Pathology, Treviso General Hospital, Treviso, Italy
| | - Angelo Paolo Dei Tos
- Department of Anatomical Pathology, Treviso General Hospital, Treviso, Italy.,Department of Medicine, University of Padua, Padua, Italy
| | - Monica Brenca
- Experimental Oncology 1, CRO National Cancer Institute, Aviano, Italy
| | - Maurizio Polano
- Experimental Oncology 1, CRO National Cancer Institute, Aviano, Italy
| | - Roberta Maestro
- Experimental Oncology 1, CRO National Cancer Institute, Aviano, Italy
| | - Harikrishnareddy Paluvai
- Department of Medical and Biological Sciences, Università degli Studi di Udine. P.le Kolbe 4-Udine Italy
| | - Raffaella Picco
- Department of Medical and Biological Sciences, Università degli Studi di Udine. P.le Kolbe 4-Udine Italy
| | - Claudio Brancolini
- Department of Medical and Biological Sciences, Università degli Studi di Udine. P.le Kolbe 4-Udine Italy
| |
Collapse
|
46
|
Functional Roles of Acetylated Histone Marks at Mouse Meiotic Recombination Hot Spots. Mol Cell Biol 2017; 37:MCB.00942-15. [PMID: 27821479 DOI: 10.1128/mcb.00942-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 11/03/2016] [Indexed: 12/14/2022] Open
Abstract
Meiotic recombination initiates following the formation of DNA double-strand breaks (DSBs) by the Spo11 endonuclease early in prophase I, at discrete regions in the genome coined "hot spots." In mammals, meiotic DSB site selection is directed in part by sequence-specific binding of PRDM9, a polymorphic histone H3 (H3K4Me3) methyltransferase. However, other chromatin features needed for meiotic hot spot specification are largely unknown. Here we show that the recombinogenic cores of active hot spots in mice harbor several histone H3 and H4 acetylation and methylation marks that are typical of open, active chromatin. Further, deposition of these open chromatin-associated histone marks is dynamic and is manifest at spermatogonia and/or pre-leptotene-stage cells, which facilitates PRDM9 binding and access for Spo11 to direct the formation of DSBs, which are initiated at the leptotene stage. Importantly, manipulating histone acetylase and deacetylase activities established that histone acetylation marks are necessary for both hot spot activity and crossover resolution. We conclude that there are functional roles for histone acetylation marks at mammalian meiotic recombination hot spots.
Collapse
|
47
|
Nyer DB, Daer RM, Vargas D, Hom C, Haynes KA. Regulation of cancer epigenomes with a histone-binding synthetic transcription factor. NPJ Genom Med 2017; 2. [PMID: 28919981 PMCID: PMC5600530 DOI: 10.1038/s41525-016-0002-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Chromatin proteins have expanded the mammalian synthetic biology toolbox by enabling control of active and silenced states at endogenous genes. Others have reported synthetic proteins that bind DNA and regulate genes by altering chromatin marks, such as histone modifications. Previously, we reported the first synthetic transcriptional activator, the "Polycomb-based transcription factor" (PcTF) that reads histone modifications through a protein-protein interaction between the polycomb chromodomain motif and trimethylated lysine 27 of histone H3 (H3K27me3). Here, we describe the genome-wide behavior of the polycomb-based transcription factor fusion protein. Transcriptome and chromatin profiling revealed several polycomb-based transcription factor-sensitive promoter regions marked by distal H3K27me3 and proximal fusion protein binding. These results illuminate a mechanism in which polycomb-based transcription factor interactions bridge epigenomic marks with the transcription initiation complex at target genes. In three cancer-derived human cell lines tested here, some target genes encode developmental regulators and tumor suppressors. Thus, the polycomb-based transcription factor represents a powerful new fusion protein-based method for cancer research and treatment where silencing marks are translated into direct gene activation.
Collapse
Affiliation(s)
- David B Nyer
- School of Biological and Health Systems Engineering, Arizona State University, 501 E Tyler Mall, Box 9709, Tempe, AZ 85287, USA
| | - Rene M Daer
- School of Biological and Health Systems Engineering, Arizona State University, 501 E Tyler Mall, Box 9709, Tempe, AZ 85287, USA
| | - Daniel Vargas
- School of Biological and Health Systems Engineering, Arizona State University, 501 E Tyler Mall, Box 9709, Tempe, AZ 85287, USA
| | - Caroline Hom
- School of Biological and Health Systems Engineering, Arizona State University, 501 E Tyler Mall, Box 9709, Tempe, AZ 85287, USA
| | - Karmella A Haynes
- School of Biological and Health Systems Engineering, Arizona State University, 501 E Tyler Mall, Box 9709, Tempe, AZ 85287, USA
| |
Collapse
|
48
|
Respuela P, Nikolić M, Tan M, Frommolt P, Zhao Y, Wysocka J, Rada-Iglesias A. Foxd3 Promotes Exit from Naive Pluripotency through Enhancer Decommissioning and Inhibits Germline Specification. Cell Stem Cell 2016; 18:118-33. [PMID: 26748758 DOI: 10.1016/j.stem.2015.09.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/24/2015] [Accepted: 09/14/2015] [Indexed: 12/15/2022]
Abstract
Following implantation, mouse epiblast cells transit from a naive to a primed state in which they are competent for both somatic and primordial germ cell (PGC) specification. Using mouse embryonic stem cells as an in vitro model to study the transcriptional regulatory principles orchestrating peri-implantation development, here we show that the transcription factor Foxd3 is necessary for exit from naive pluripotency and progression to a primed pluripotent state. During this transition, Foxd3 acts as a repressor that dismantles a significant fraction of the naive pluripotency expression program through decommissioning of active enhancers associated with key naive pluripotency and early germline genes. Subsequently, Foxd3 needs to be silenced in primed pluripotent cells to allow re-activation of relevant genes required for proper PGC specification. Our findings therefore uncover a cycle of activation and deactivation of Foxd3 required for exit from naive pluripotency and subsequent PGC specification.
Collapse
Affiliation(s)
- Patricia Respuela
- Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch-Strasse 21, 50931 Cologne, Germany
| | - Miloš Nikolić
- Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch-Strasse 21, 50931 Cologne, Germany
| | - Minjia Tan
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Peter Frommolt
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Yingming Zhao
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alvaro Rada-Iglesias
- Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch-Strasse 21, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany.
| |
Collapse
|
49
|
Schagdarsurengin U, Western P, Steger K, Meinhardt A. Developmental origins of male subfertility: role of infection, inflammation, and environmental factors. Semin Immunopathol 2016; 38:765-781. [PMID: 27315198 DOI: 10.1007/s00281-016-0576-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 06/06/2016] [Indexed: 12/28/2022]
Abstract
Male gamete development begins with the specification of primordial cells in the epiblast of the early embryo and is not complete until spermatozoa mature in the epididymis of adult males. This protracted developmental process involves extensive alteration of the paternal germline epigenome. Initially, epigenetic reprogramming in fetal germ cells results in removal of most DNA methylation, including parent-specific epigenetic information. The germ cells then establish sex-specific epigenetic information through de novo methylation and undergo spermatogenesis. Chromatin in haploid germ cells is repackaged into protamines during spermiogenesis, providing further widespread epigenetic reorganization. Finally, after fertilization, epigenetic reprogramming in the preimplantation embryo is necessary for regaining totipotency. These events provide substantial windows during which epigenetic errors either may be corrected or may occur in the germline. There is now increasing evidence that environmental factors such as exposure to toxicants, the parents' and individual's diet, and even infectious and inflammatory events in the male reproductive tract may influence epigenetic reprogramming. This, together with other damage inflicted on the germline chromatin, may result in negative consequences for fertility and health. Large epidemiological birth cohort studies have yielded insight into possible causative environmental factors. Together with experimental animal studies, a clearer view of environmental impacts on fetal development and their intergenerational and even transgenerational effects on reproductive health has emerged and is reviewed in this article.
Collapse
Affiliation(s)
- Undraga Schagdarsurengin
- Department of Urology, Pediatric Urology and Andrology, Section Molecular Andrology, Justus-Liebig University of Giessen, Giessen, Germany
| | - Patrick Western
- Centre for Genetic Diseases, Hudson Institute for Medical Research and Department of Molecular and Translational Science, Monash University, Clayton, VIC, 3168, Australia
| | - Klaus Steger
- Department of Urology, Pediatric Urology and Andrology, Section Molecular Andrology, Justus-Liebig University of Giessen, Giessen, Germany
| | - Andreas Meinhardt
- Institute of Anatomy and Cell Biology, Unit of Reproductive Biology, Justus-Liebig University of Giessen, Aulweg 123, 35385, Giessen, Germany.
| |
Collapse
|
50
|
Lesch BJ, Silber SJ, McCarrey JR, Page DC. Parallel evolution of male germline epigenetic poising and somatic development in animals. Nat Genet 2016; 48:888-94. [PMID: 27294618 DOI: 10.1038/ng.3591] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 05/17/2016] [Indexed: 12/20/2022]
Abstract
Changes in gene regulation frequently underlie changes in morphology during evolution, and differences in chromatin state have been linked with changes in anatomical structure and gene expression across evolutionary time. Here we assess the relationship between evolution of chromatin state in germ cells and evolution of gene regulatory programs governing somatic development. We examined the poised (H3K4me3/H3K27me3 bivalent) epigenetic state in male germ cells from five mammalian and one avian species. We find that core genes poised in germ cells from multiple amniote species are ancient regulators of morphogenesis that sit at the top of transcriptional hierarchies controlling somatic tissue development, whereas genes that gain poising in germ cells from individual species act downstream of core poised genes during development in a species-specific fashion. We propose that critical regulators of animal development gained an epigenetically privileged state in germ cells, manifested in amniotes by H3K4me3/H3K27me3 poising, early in metazoan evolution.
Collapse
Affiliation(s)
| | - Sherman J Silber
- Infertility Center of St. Louis, St. Luke's Hospital, St. Louis, Missouri, USA
| | - John R McCarrey
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - David C Page
- Whitehead Institute, Cambridge, Massachusetts, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Howard Hughes Medical Institute, Whitehead Institute, Cambridge, Massachusetts, USA
| |
Collapse
|