1
|
Brockmöller S, Worek F, Rothmiller S. Protein networking: nicotinic acetylcholine receptors and their protein-protein-associations. Mol Cell Biochem 2024; 479:1627-1642. [PMID: 38771378 DOI: 10.1007/s11010-024-05032-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/04/2024] [Indexed: 05/22/2024]
Abstract
Nicotinic acetylcholine receptors (nAChR) are complex transmembrane proteins involved in neurotransmission in the nervous system and at the neuromuscular junction. nAChR disorders may lead to severe, potentially fatal pathophysiological states. To date, the receptor has been the focus of basic and applied research to provide novel therapeutic interventions. Since most studies have investigated only the nAChR itself, it is necessary to consider the receptor as part of its protein network to understand or elucidate-specific pathways. On its way through the secretory pathway, the receptor interacts with several chaperones and proteins. This review takes a closer look at these molecular interactions and focuses especially on endoplasmic reticulum biogenesis, secretory pathway sorting, Golgi maturation, plasma membrane presentation, retrograde internalization, and recycling. Additional knowledge regarding the nAChR protein network may lead to a more detailed comprehension of the fundamental pathomechanisms of diseases or may lead to the discovery of novel therapeutic drug targets.
Collapse
Affiliation(s)
- Sabrina Brockmöller
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Bavaria, Germany.
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Bavaria, Germany
| | - Simone Rothmiller
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Bavaria, Germany
| |
Collapse
|
2
|
Fernandes de Lima VM, Hanke W. Extracellular matrix and its role in conveying glial/neural interactions in health and disease. J Integr Neurosci 2017; 16:93-106. [DOI: 10.3233/jin-170012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Vera Maura Fernandes de Lima
- Centro de Biotecnologia, CNEN-IPEN/SP, Av. Lineu Prestes 2242, Campus USP, São Paulo, SP, Brazil, 05508-000
- LIM-26 Faculdade de Medicina da USP-SP, São Paulo, Brazil
| | - Wolfgang Hanke
- Membrane Physiology Division, Institute of Physiology 230, Hohenheim University, Stuttgart, Germany
| |
Collapse
|
3
|
Fernandes de Lima VM, Pereira A. The Plastic Glial-Synaptic Dynamics within the Neuropil: A Self-Organizing System Composed of Polyelectrolytes in Phase Transition. Neural Plast 2016; 2016:7192427. [PMID: 26949548 PMCID: PMC4753343 DOI: 10.1155/2016/7192427] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/27/2015] [Indexed: 11/17/2022] Open
Abstract
Several explanations have been proposed to account for the mechanisms of neuroglial interactions involved in neural plasticity. We review experimental results addressing plastic nonlinear interactions between glial membranes and synaptic terminals. These results indicate the necessity of elaborating on a model based on the dynamics of hydroionic waves within the neuropil. These waves have been detected in a small scale experimental model of the central nervous system, the in vitro retina. We suggest that the brain, as the heart and kidney, is a system for which the state of water is functional. The use of nonlinear thermodynamics supports experiments at convenient biological spatiotemporal scales, while an understanding of the properties of ions and their interactions with water requires explanations based on quantum theories. In our approach, neural plasticity is seen as part of a larger process that encompasses higher brain functions; in this regard, hydroionic waves within the neuropil are considered to carry both physiological and cognitive functions.
Collapse
Affiliation(s)
- Vera Maura Fernandes de Lima
- Centro de Biotecnologia, IPEN-CNEN/SP, Avenida Prof. Lineu Prestes 2242, Butantã, 05508-000 São Paulo, SP, Brazil
| | - Alfredo Pereira
- Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Campus Rubião Jr., 18618-970 Botucatu, SP, Brazil
| |
Collapse
|
4
|
Mis K, Matkovic U, Pirkmajer S, Sciancalepore M, Lorenzon P, Mars T, Grubic Z. Acetylcholinesterase and agrin: different functions, similar expression patterns, multiple roles. Chem Biol Interact 2012; 203:297-301. [PMID: 23117006 DOI: 10.1016/j.cbi.2012.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 10/16/2012] [Accepted: 10/17/2012] [Indexed: 12/31/2022]
Abstract
Acetylcholinesterase (AChE) and agrin play unique functional roles in the neuromuscular junction (NMJ). AChE is a cholinergic and agrin a synaptogenetic component. In spite of their different functions, they share several common features: their targeting is determined by alternative splicing; unlike most other NMJ components they are expressed in both, muscle and motor neuron and both reside on the synaptic basal lamina of the NMJ. Also, both were reported to play various nonjunctional roles. However, while the origin of basal lamina bound agrin is undoubtedly neural, the neural origin of AChE, which is anchored to the basal lamina with collagenic tail ColQ, is elusive. Hypothesizing that motor neuron proteins targeted to the NMJ basal lamina share common temporal pattern of expression, which is coordinated with the formation of basal lamina, we compared expression of agrin isoforms with the expression of AChE-T and ColQ in the developing rat spinal cord at the stages before and after the formation of NMJ basal lamina. Cellular origin of AChE-T and agrin was determined by in situ hybridization and their quantitative levels by RT PCR. We found parallel increase in expression of the synaptogenetic (agrin 8) isoform of agrin and ColQ after the formation of basal lamina supporting the view that ColQ bound AChE and agrin 8 isoform are destined to the basal lamina. Catalytic AChE-T subunit and agrin isoforms 19 and 0 followed different expression patterns. In accordance with the reports of other authors, our investigations also revealed various alternative functions for AChE and agrin. We have already demonstrated participation of AChE in myoblast apoptosis; here we present the evidence that agrin promotes the maturation of heavy myosin chains and the excitation-contraction coupling. These results show that common features of AChE and agrin extend to their capacity to play multiple roles in muscle development.
Collapse
Affiliation(s)
- Katarina Mis
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | | | | | | | |
Collapse
|
5
|
Reliability of neuromuscular transmission and how it is maintained. HANDBOOK OF CLINICAL NEUROLOGY 2008; 91:27-101. [PMID: 18631840 DOI: 10.1016/s0072-9752(07)01502-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Patton B, Burgess RW. Synaptogenesis. Dev Neurobiol 2006. [DOI: 10.1007/0-387-28117-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Stocksley MA, Awad SS, Young C, Lightowlers RN, Brenner HR, Slater CR. Accumulation of Nav1 mRNAs at differentiating postsynaptic sites in rat soleus muscles. Mol Cell Neurosci 2005; 28:694-702. [PMID: 15797716 DOI: 10.1016/j.mcn.2004.11.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Revised: 11/17/2004] [Accepted: 11/30/2004] [Indexed: 11/21/2022] Open
Abstract
Acetylcholine receptors (AChRs) and voltage-gated sodium channels (Na(V)1s) accumulate at different times in the development of the murine neuromuscular junction (NMJ). We used in situ hybridization to study the relationship of Na(V)1 mRNA accumulation to this difference. mRNAs encoding both muscle Na(V)1 isoforms, Na(v)1.4 and Na(v)1.5, were first concentrated at NMJs at birth, when the proteins start to accumulate. Within 4 weeks, Na(v)1.4 mRNA increased 5-fold at the NMJ while Na(v)1.5 mRNA became undetectable. Na(V)1 mRNA accumulation occurred even if the nerve was cut at birth. Like AChR mRNA, Na(V)1 mRNA accumulated at denervated synaptic sites on regenerating muscles and in response to ectopically expressed neural agrin. Clustering of Na(V)1 at the NMJ follows that of its mRNA while AChR clustering precedes its mRNA clustering by several days. This suggests that factors other than local mRNA upregulation determine the timing of clustering of these two important postsynaptic ion channels.
Collapse
Affiliation(s)
- Mark A Stocksley
- School of Neurology, Neurobiology and Psychiatry, The Medical School, University of Newcastle upon Tyne, Framlington Place, Newcastle-upon-Tyne NE2 4HH, UK
| | | | | | | | | | | |
Collapse
|
8
|
Huang YZ, Wang Q, Won S, Luo ZG, Xiong WC, Mei L. Compartmentalized NRG signaling and PDZ domain-containing proteins in synapse structure and function. Int J Dev Neurosci 2002; 20:173-85. [PMID: 12175853 DOI: 10.1016/s0736-5748(02)00011-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The synapse-specific synthesis of the acetylcholine receptor (AChR) is mediated by multiple mechanisms including compartmentalized signaling induced by neuregulin (NRG). This paper presents evidence that NRG receptors--ErbB receptor tyrosine kinases interact with distinct PDZ domain-containing proteins that are localized at the neuromuscular junction (NMJ). ErbB4 associates with the PSD-95 (also known as SAP90)-family members including PSD-95, SAP97, and SAP102 whereas ErbB2 interacts with Erbin and PICK1. Although, ErbB kinases are concentrated at the NMJ, they are not colocalized with the AChR in cultured muscle cells even in the presence of agrin. Co-expression of PSD-95 causes ErbB4 to form clusters in COS cells. We propose that PDZ domain-containing proteins play a role in anchoring ErbB proteins at the neuromuscular junction, and/or mediating downstream signaling pathways. Such mechanisms could be important for the maintenance and function of the synapse.
Collapse
Affiliation(s)
- Yang Z Huang
- Department of Neurobiology, Pathology, Physical Medicine and Rehabilitation, University of Alabama at Birmingham, 35294-0021, USA
| | | | | | | | | | | |
Collapse
|
9
|
Huang YZ, Wang Q, Xiong WC, Mei L. Erbin is a protein concentrated at postsynaptic membranes that interacts with PSD-95. J Biol Chem 2001; 276:19318-26. [PMID: 11279080 DOI: 10.1074/jbc.m100494200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Neuregulin is a factor essential for synapse-specific transcription of acetylcholine receptor genes at the neuromuscular junction. Its receptors, ErbB receptor tyrosine kinases, are localized at the postjunctional membrane presumably to ensure localized signaling. However, the molecular mechanisms underlying synaptic localization of ErbBs are unknown. Our recent studies indicate that ErbB4 interacts with postsynaptic density (PSD)-95 (SAP90), a PDZ domain-containing protein that does not interact with ErbB2 or ErbB3. Using as bait the ErbB2 C terminus, we identified Erbin, another PDZ domain-containing protein that interacts specifically with ErbB2. Erbin is concentrated in postsynaptic membranes at the neuromuscular junction and in the central nervous system, where ErbB2 is concentrated. Expression of Erbin increases the amount of ErbB2 labeled by biotin in transfected cells, suggesting that Erbin is able to increase ErbB2 surface expression. Furthermore, we provide evidence that Erbin interacts with PSD-95 in both transfected cells and synaptosomes. Thus ErbB proteins can interact with a network of PDZ domain-containing proteins. This interaction may play an important role in regulation of neuregulin signaling and/or subcellular localization of ErbB proteins.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Biotin/metabolism
- Blotting, Northern
- Carrier Proteins/chemistry
- Carrier Proteins/genetics
- Cell Line
- Cell Membrane/metabolism
- Cells, Cultured
- Cloning, Molecular
- DNA, Complementary/metabolism
- Disks Large Homolog 4 Protein
- ErbB Receptors/metabolism
- Fungal Proteins/metabolism
- Glutathione Transferase/metabolism
- Hippocampus/metabolism
- Humans
- Immunoblotting
- Immunohistochemistry
- Intracellular Signaling Peptides and Proteins
- Membrane Proteins
- Muscles/embryology
- Muscles/metabolism
- Nerve Tissue Proteins/chemistry
- Nerve Tissue Proteins/metabolism
- Neuromuscular Junction/metabolism
- Precipitin Tests
- Protein Binding
- Protein Structure, Tertiary
- RNA, Messenger/metabolism
- Rats
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-3/metabolism
- Receptor, ErbB-4
- Signal Transduction
- Subcellular Fractions
- Tissue Distribution
- Transcription, Genetic
- Transfection
- Two-Hybrid System Techniques
Collapse
Affiliation(s)
- Y Z Huang
- Departments of Neurobiology, University of Alabama at Birmingham, School of Medicine, Birmingham, Alabama 35294, USA
| | | | | | | |
Collapse
|
10
|
Gaspersic R, Koritnik B, Erzen I, Sketelj J. Muscle activity-resistant acetylcholine receptor accumulation is induced in places of former motor endplates in ectopically innervated regenerating rat muscles. Int J Dev Neurosci 2001; 19:339-46. [PMID: 11337203 DOI: 10.1016/s0736-5748(01)00018-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Expression of acetylcholine receptors (AChRs) in the extrajunctional muscle regions, but not in the neuromuscular junctions, is repressed by propagated electric activity in muscle fibers. During regeneration, subsynaptic-like specializations accumulating AChRs are induced in new myotubes by agrin attached to the synaptic basal lamina at the places of former motor endplates even in the absence of innervation. We examined whether AChRs still accumulated at these places when the regenerating muscles were ectopically innervated and the former synaptic places became extrajunctional. Rat soleus muscles were injured by bupivacaine and ischemia to produce complete myofiber degeneration. The soleus muscle nerve was permanently severed and the muscle was ectopically innervated by the peroneal nerve a few millimeters away from the former junctional region. After 4 weeks of regeneration, the muscles contracted upon nerve stimulation, showed little atrophy and the cross-section areas of their fibers were completely above the range in non-innervated regenerating muscles, indicating successful innervation. Subsynaptic-like specializations in the former junctional region still accumulated AChRs (and acetylcholinesterase) although no motor nerve endings were observed in their vicinity and the cross-section area of their fibers clearly demonstrated that they were ectopically innervated. We conclude that the expression of AChRs at the places of the former neuromuscular junctions in the ectopically innervated regenerated soleus muscles is activity-independent.
Collapse
Affiliation(s)
- R Gaspersic
- Institute of Pathophysiology, School of Medicine, University of Ljubljana, Zaloska 4, 1000, Ljubljana, Slovenia
| | | | | | | |
Collapse
|
11
|
Abstract
We describe the formation, maturation, elimination, maintenance, and regeneration of vertebrate neuromuscular junctions (NMJs), the best studied of all synapses. The NMJ forms in a series of steps that involve the exchange of signals among its three cellular components--nerve terminal, muscle fiber, and Schwann cell. Although essentially any motor axon can form NMJs with any muscle fiber, an additional set of cues biases synapse formation in favor of appropriate partners. The NMJ is functional at birth but undergoes numerous alterations postnatally. One step in maturation is the elimination of excess inputs, a competitive process in which the muscle is an intermediary. Once elimination is complete, the NMJ is maintained stably in a dynamic equilibrium that can be perturbed to initiate remodeling. NMJs regenerate following damage to nerve or muscle, but this process differs in fundamental ways from embryonic synaptogenesis. Finally, we consider the extent to which the NMJ is a suitable model for development of neuron-neuron synapses.
Collapse
Affiliation(s)
- J R Sanes
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
12
|
Bennett MR. Synapse formation molecules in muscle and autonomic ganglia: the dual constraint hypothesis. Prog Neurobiol 1999; 57:225-87. [PMID: 9987806 DOI: 10.1016/s0301-0082(98)00043-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In 1970 it was thought that if the motor-nerve supply to a muscle was interrupted and then allowed to regenerate into the muscle, motor-synaptic terminals most often formed presynaptic specializations at random positions over the surface of the constituent muscle fibres, so that the original spatial pattern of synapses was not restored. However, in the early 1970s a systematic series of experiments were carried out showing that if injury to muscles was avoided then either reinnervation or cross-reinnervation reconstituted the pattern of synapses on the muscle fibres according to an analysis using the combined techniques of electrophysiology, electronmicroscopy and histology on the muscles. It was thus shown that motor-synaptic terminals are uniquely restored to their original synaptic positions. This led to the concept of the synaptic site, defined as that region on a muscle fibre that contains molecules for triggering synaptic terminal formation. However, nerves in developing muscles were found to form connections at random positions on the surface of the very short muscle cells, indicating that these molecules are not generated by the muscle but imprinted by the nerves themselves; growth in length of the cells on either side of the imprint creates the mature synaptic site in the approximate middle of the muscle fibres. This process is accompanied at first by the differentiation of an excess number of terminals at the synaptic site, and then the elimination of all but one of the terminals. In the succeeding 25 years, identification of the synaptic site molecules has been a major task of molecular neurobiology. This review presents an historical account of the developments this century of the idea that synaptic-site formation molecules exist in muscle. The properties that these molecules must possess if they are to guide the differentiation and elimination of synaptic terminals is considered in the context of a quantitative model of this process termed the dual-constraint hypothesis. It is suggested that the molecules agrin, ARIA, MuSK and S-laminin have suitable properties according to the dual-constraint hypothesis to subserve this purpose. The extent to which there is evidence for similar molecules at neuronal synapses such as those in autonomic ganglia is also considered.
Collapse
Affiliation(s)
- M R Bennett
- Neurobiology Laboratory, University of Sydney, NSW, Australia.
| |
Collapse
|
13
|
Rimer M, Cohen I, Lømo T, Burden SJ, McMahan UJ. Neuregulins and erbB receptors at neuromuscular junctions and at agrin-induced postsynaptic-like apparatus in skeletal muscle. Mol Cell Neurosci 1998; 12:1-15. [PMID: 9770336 DOI: 10.1006/mcne.1998.0695] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We demonstrate by immunohistochemistry that at least two isoforms of neuregulin (NRG) are concentrated at neuromuscular junctions in adult rat muscles. One is NRGbeta3, a secreted protein which is bound to basal lamina that occupies the synaptic cleft. The other(s), NRG-a, is in the muscle fibers' plasma membrane. We show further that muscle NRG, including NRG-a, is concentrated at postsynaptic-like apparatus induced to form in the extrajunctional region of the soleus muscle by exposure to neural agrin. The agrin-induced postsynaptic-like apparatus also includes aggregates of the NRG receptors erbB2 and erbB3 as does postsynaptic apparatus at neuromuscular junctions. These findings together with those of others suggest a mechanism by which neural agrin induces the expression of epsilon-AChR subunits in postsynaptic-like apparatus, and they support the hypothesis that agrin has a similar function at neuromuscular junctions.
Collapse
Affiliation(s)
- M Rimer
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California, 94305, USA
| | | | | | | | | |
Collapse
|
14
|
Meier T, Masciulli F, Moore C, Schoumacher F, Eppenberger U, Denzer AJ, Jones G, Brenner HR. Agrin can mediate acetylcholine receptor gene expression in muscle by aggregation of muscle-derived neuregulins. J Cell Biol 1998; 141:715-26. [PMID: 9566971 PMCID: PMC2132745 DOI: 10.1083/jcb.141.3.715] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The neural isoforms of agrin can stimulate transcription of the acetylcholine receptor (AChR) epsilon subunit gene in electrically active muscle fibers, as does the motor neuron upon the formation of a neuromuscular junction. It is not clear, however, whether this induction involves neuregulins (NRGs), which stimulate AChR subunit gene transcription in vitro by activating ErbB receptors. In this study, we show that agrin- induced induction of AChR epsilon subunit gene transcription is inhibited in cultured myotubes overexpressing an inactive mutant of the ErbB2 receptor, demonstrating involvement of the NRG/ErbB pathway in agrin- induced AChR expression. Furthermore, salt extracts from the surface of cultured myotubes induce tyrosine phosphorylation of ErbB2 receptors, indicating that muscle cells express biological NRG-like activity on their surface. We further demonstrate by RT-PCR analysis that muscle NRGs have Ig-like domains required for their immobilization at heparan sulfate proteoglycans (HSPGs) of the extracellular matrix. In extrasynaptic regions of innervated muscle fibers in vivo, ectopically expressed neural agrin induces the colocalized accumulation of AChRs, muscle-derived NRGs, and HSPGs. By using overlay and radioligand-binding assays we show that the Ig domain of NRGs bind to the HSPGs agrin and perlecan. These findings show that neural agrin can induce AChR subunit gene transcription by aggregating muscle HSPGs on the muscle fiber surface that then serve as a local sink for focal binding of muscle-derived NRGs to regulate AChR gene expression at the neuromuscular junction.
Collapse
Affiliation(s)
- T Meier
- Department of Physiology, University of Basel, Vesalgasse 1, CH-4051 Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Affiliation(s)
- S J Burden
- Molecular Neurobiology Program, Skirball Institute, New York University Medical Center, New York, New York 10016 USA.
| |
Collapse
|
16
|
Daniels MP. Intercellular communication that mediates formation of the neuromuscular junction. Mol Neurobiol 1997; 14:143-70. [PMID: 9294861 DOI: 10.1007/bf02740654] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Reciprocal signals between the motor axon and myofiber induce structural and functional differentiation in the developing neuromuscular junction (NMJ). Elevation of presynaptic acetylcholine (ACh) release on nerve-muscle contact and the correlated increase in axonal-free calcium are triggered by unidentified membrane molecules. Restriction of axon growth to the developing NMJ and formation of active zones for ACh release in the presynaptic terminal may be induced by molecules in the synaptic basal lamina, such as S-laminin, heparin binding growth factors, and agrin. Acetylcholine receptor (AChR) synthesis by muscle cells may be increased by calcitonin gene-related peptide (CGRP), ascorbic acid, and AChR-inducing activity (ARIA)/heregulin, which is the best-established regulator. Heparin binding growth factors, proteases, adhesion molecules, and agrin all may be involved in the induction of AChR redistribution to form postsynaptic-like aggregates. However, the strongest case has been made for agrin's involvement. "Knockout" experiments have implicated agrin as a primary anterograde signal for postsynaptic differentiation and muscle-specific kinase (MuSK), as a putative agrin receptor. It is likely that both presynaptic and postsynaptic differentiation are induced by multiple molecular signals. Future research should reveal the physiological roles of different molecules, their interactions, and the identity of other molecular participants.
Collapse
Affiliation(s)
- M P Daniels
- Laboratory of Biochemical Genetics, National Heart, Lung and Blood Institute, National Institute of Health, Bethesda, MD 20892, USA
| |
Collapse
|
17
|
Jones G, Meier T, Lichtsteiner M, Witzemann V, Sakmann B, Brenner HR. Induction by agrin of ectopic and functional postsynaptic-like membrane in innervated muscle. Proc Natl Acad Sci U S A 1997; 94:2654-9. [PMID: 9122251 PMCID: PMC20144 DOI: 10.1073/pnas.94.6.2654] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Two factors secreted from the nerve terminal, agrin and neuregulin, have been postulated to induce localization of the acetylcholine receptors (AChRs) to the subsynaptic membrane in skeletal muscle fibers. The principal function ascribed to neuregulin is induction of AChR subunit gene expression and to agrin is the aggregation of AChRs. Here we report that when myoblasts engineered to secrete an agrin fragment were placed into the nerve-free region of denervated rodent muscle, the host muscle fibers expressed AChR epsilon-subunit gene transcripts, characteristic of the neuromuscular synapse in adult muscle. Transcripts were colocalized with agrin deposits and AChR clusters that were resistant to electrical muscle activity. More directly, single innervated muscle fibers injected intracellularly with agrin expression plasmids in their extrasynaptic region developed a functional ectopic postsynaptic membrane with clusters of adult-type AChR channels and acetylcholinesterase and accumulation of myonuclei. The results demonstrate that agrin is the principal neural signal that induces the formation of the subsynaptic apparatus in the muscle fiber and controls locally, either indirectly or directly, the transcription of AChR subunit genes and the aggregation of AChRs.
Collapse
Affiliation(s)
- G Jones
- Institut für Physiologie, Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Motor neurons influence the expression and the distribution of acetylcholine receptors in skeletal muscle. Molecules that mediate this carefully choreographed interaction have recently been identified. One of them, ARIA, is a polypeptide purified from chicken brain on the basis of its ability to stimulate the synthesis of muscle acetylcholine receptors. The predicted amino acid sequence suggests that ARIA is synthesized as a transmembrane precursor protein and that it is a member of a family of ligands that activate receptor tyrosine kinases related to the epidermal growth factor receptor. Certain features of the ligand family (the neuregulins) and their receptors (erbBs) are reviewed. Evidence that ARIA plays an important role at developing and mature neuromuscularjunctions is discussed.
Collapse
Affiliation(s)
- G D Fischbach
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
19
|
Abstract
Development of pre- and postsynaptic specializations at the vertebrate neuromuscular junction is affected by molecules concentrated in the extracellular matrix of the synaptic cleft. Agrin, laminin beta 2 and ARIA are the best characterized proteins known to be involved in particular aspects of synaptic differentiation. Recent advances in defining the domains of these molecules that are crucial for their synapse-organizing activity and their localization to synaptic basal lamina will help our understanding of the molecular mechanisms involved in synapse formation.
Collapse
Affiliation(s)
- M A Ruegg
- Department of Pharmacology, Biozentrum, University of Basel, Switzerland.
| |
Collapse
|
20
|
Herczeg A, Jones G, Brenner HR. Involvement of extracellular matrix in acetylcholine receptor epsilon-subunit gene expression at the rat neuromuscular junction. Neurosci Lett 1995; 193:33-6. [PMID: 7566660 DOI: 10.1016/0304-3940(95)11661-f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
During neuromuscular development, the nerve induces the expression of acetylcholine receptor (AChR) epsilon-subunit gene selectively in synaptic myonuclei. Here we show that even after elimination of neural effects by denervation, synaptic expression of epsilon-subunit transcripts is maintained for > 4 months. In contrast, after damage of the extracellular matrix (ECM) by treatment with proteolytic enzymes, epsilon-subunit mRNA is significantly reduced within less than 1 day, indicating a role of ECM in the regulation of AChR subunit transcripts at the synapse.
Collapse
Affiliation(s)
- A Herczeg
- Department of Physiology, University of Basel, Switzerland
| | | | | |
Collapse
|
21
|
|
22
|
Chu GC, Moscoso LM, Sliwkowski MX, Merlie JP. Regulation of the acetylcholine receptor epsilon subunit gene by recombinant ARIA: an in vitro model for transynaptic gene regulation. Neuron 1995; 14:329-39. [PMID: 7857642 DOI: 10.1016/0896-6273(95)90289-9] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Structural specialization of the postsynaptic skeletal muscle membrane is in part mediated by the motor neuron-induced transcriptional regulation of synaptic muscle nuclei. ARIA, a factor that stimulates production of acetylcholine receptors (AChRs), is a candidate signaling molecule for such regulation. Here we examine the transynaptic inducing potential of this polypeptide factor. ARIA immunoreactivity is detectable at synaptic sites in vivo. In vitro, recombinant heregulin beta 1 (rHRG beta 1), the human homolog of ARIA, induces expression of the AChR epsilon gene, the subunit most sensitive to synaptic input. The inducing property of rHRG beta 1 is demonstrated most dramatically in primary muscle cultures from transgenic mice bearing an epsilon promoter-nuclear lacZ reporter transgene. Transient transfection experiments using the Sol 8 muscle cell line indicate that sequences that confer responsiveness to ARIA are located within a 150 bp epsilon subunit promoter region and are E box-independent. These results suggest that ARIA performs a vital role by directing spatially restricted gene expression at the neuromuscular junction.
Collapse
Affiliation(s)
- G C Chu
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | | | |
Collapse
|
23
|
|
24
|
Jo SA, Zhu X, Marchionni MA, Burden SJ. Neuregulins are concentrated at nerve-muscle synapses and activate ACh-receptor gene expression. Nature 1995; 373:158-61. [PMID: 7816098 DOI: 10.1038/373158a0] [Citation(s) in RCA: 228] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Two different signalling pathways mediate the localization of acetylcholine receptors (AChRs) to synaptic sites in skeletal muscle. The signal for one pathway is agrin, a protein that triggers a redistribution of previously unlocalized cell surface AChRs to synaptic sites. The signal for the other pathway is not known, but this signal stimulates transcription of AChR genes in myofibre nuclei near the synaptic site. Neuregulins, identified originally as a potential ligand for erbB2 (Neu differentiation factor, NDF), stimulate proliferation of Schwann cells (glial growth factor, GGF), increase the rate of AChR synthesis in cultured muscle cells (AChR-inducing activity) and are expressed in motor neurons. These results raise the possibility that neuregulin is the signal that activates AChR genes in synaptic nuclei. Here we show that neuregulin activates AChR gene expression in C2 muscle cells and that the neuregulin response element in the AChR delta-subunit gene is contained in the same 181 base pairs that confer synapse-specific expression in transgenic mice. We use antibodies to show that neuregulins are concentrated at synaptic sites and that, like the extracellular signal that stimulates synapse-specific expression, neuregulins remain at synaptic sites in the absence of nerve and muscle. We show that C2 muscle cells contain erbB2 and erbB3 messenger RNA but little or no erbB4 mRNA, and that neuregulin stimulates tyrosine phosphorylation of erbB2 and erbB3, indicating that neuregulin signalling in skeletal muscle may be mediated by a complex of erbB2 and erbB3.
Collapse
Affiliation(s)
- S A Jo
- Center for Blood Research, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | |
Collapse
|
25
|
Tang J, Jo SA, Burden SJ. Separate pathways for synapse-specific and electrical activity-dependent gene expression in skeletal muscle. Development 1994; 120:1799-804. [PMID: 7924987 DOI: 10.1242/dev.120.7.1799] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Signaling between nerve and muscle is mediated by multiple mechanisms, including two transcriptional pathways. Signals provided by the nerve terminal activate transcription of acetylcholine receptor (AChR) genes in myofiber nuclei near the synaptic site, and signals associated with myofiber electrical activity inactivate AChR gene expression throughout the myofiber. These opposing effects of innervation are conferred by 1.8 kb of 5′ flanking DNA from the AChR delta subunit gene. These results raise the possibility that synapse-specific and electrical activity-dependent gene expression are mediated by the same DNA sequence and that activation and repression are determined by differential regulation of the same DNA binding protein. We produced transgenic mice carrying AChR delta subunit-hGH gene fusions, and we show here that a binding site (E-box) for myogenic basic helix-loop-helix proteins is required for electrical activity-dependent but not for synapse-specific gene expression of the delta subunit gene. These results indicate that a change in the expression or activity of an E-box binding protein(s) mediates electrical activity-dependent gene regulation and that synapse-specific and electrical activity-dependent gene expression require different DNA sequences. Moreover, we show here that the cis-acting elements for both aspects of innervation-dependent gene regulation are contained in 181 bp of 5′ flanking DNA from the AChR delta subunit gene.
Collapse
Affiliation(s)
- J Tang
- Biology Department, Massachusetts Institute of Technology, Cambridge 02139
| | | | | |
Collapse
|
26
|
Walke W, Staple J, Adams L, Gnegy M, Chahine K, Goldman D. Calcium-dependent regulation of rat and chick muscle nicotinic acetylcholine receptor (nAChR) gene expression. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32189-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
27
|
Jasmin BJ, Lee RK, Rotundo RL. Compartmentalization of acetylcholinesterase mRNA and enzyme at the vertebrate neuromuscular junction. Neuron 1993; 11:467-77. [PMID: 8398140 DOI: 10.1016/0896-6273(93)90151-g] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Acetylcholinesterase (AChE) is concentrated at the vertebrate neuromuscular synapse. To determine whether increased transcript levels could underlie this selective accumulation, we employed a quantitative reverse transcription polymerase chain reaction-based assay to determine mRNA copy number in samples as small as single neuromuscular junctions (NMJs) and a microassay to measure AChE enzyme activity at single synapses. Our results show that AChE mRNA is an intermediate transcript at NMJs, whereas in noninnervated regions of muscle fibers, AChE transcripts are either undetectable or rare. In contrast, alpha-actin transcript levels in the same samples are similar in junctional and extrajunctional regions. However, compared with AChE enzyme activity and alpha-actin mRNA levels, the levels of AChE transcripts at NMJs are highly variable. These results indicate that AChE mRNA and protein expression are compartmentalized at the vertebrate NMJ and provide a direct approach toward dissecting the molecular events leading from synaptic activation to plastic changes in gene expression at single vertebrate synapses.
Collapse
Affiliation(s)
- B J Jasmin
- Department of Cell Biology and Anatomy, University of Miami School of Medicine, Florida 33101
| | | | | |
Collapse
|
28
|
Abstract
Major advances have occurred in our understanding of the signaling events involved in neuromuscular synapse formation. In particular, it has recently been shown that agrin is necessary for synapse formation, that acetylcholine receptor genes are specifically transcribed by synaptic nuclei in response to signals from the synaptic basal lamina, and that synaptic competition between motor neurons can occur by a Hebbian mechanism in cell culture.
Collapse
Affiliation(s)
- C G Jennings
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | |
Collapse
|
29
|
Abstract
Skeletal myofibers are specialized at the site of contact between nerve and muscle, and recent studies indicate that mechanisms involved in the formation of this specialized region are similar to mechanisms used to establish specialized domains in other syncytial cells. In this review experiments are summarized that indicate that nuclei in the synaptic region of syncytial myofibers are transcriptionally distinct from nuclei in the remainder of the myofiber, and the steps used to establish synapse-specific gene expression are compared with the mechanisms used to regulate gene expression among subsets of nuclei in other syncytia, namely the syncytial blastoderm of Drosophila melanogaster and the syncytial germ line of Caenorhabditis elegans.
Collapse
Affiliation(s)
- S J Burden
- Biology Department, Massachusetts Institute of Technology, Cambridge 02139
| |
Collapse
|
30
|
Affiliation(s)
- Z W Hall
- Department of Physiology, University of California, San Francisco 94143
| | | |
Collapse
|