1
|
Zhang P, Chen J, Wang X, Geng Y, Sun L, Zhang H. The centralspindlin complex regulates cytokinesis and morphogenesis in the C. elegans spermatheca. Development 2023; 150:286720. [PMID: 36661358 DOI: 10.1242/dev.200840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 12/13/2022] [Indexed: 01/21/2023]
Abstract
Organ morphogenesis needs orchestration of a series of cellular events, including cell division, cell shape change, cell rearrangement and cell death. Cytokinesis, the final step of cell division, is involved in the control of organ size, shape and function. Mechanistically, it is unclear how the molecules involved in cytokinesis regulate organ size and shape. Here, we demonstrate that the centralspindlin complex coordinates cell division and epithelial morphogenesis by regulating cytokinesis. Loss of the centralspindlin components CYK-4 and ZEN-4 disrupts cell division, resulting in altered cell arrangement and malformation of the Caenorhabditis elegans spermatheca. Further investigation revealed that most spermathecal cells undergo nuclear division without completion of cytokinesis. Germline mutant-based analyses suggest that CYK-4 regulates cytokinesis of spermathecal cells in a GTPase activator activity-independent manner. Spermathecal morphology defects can be enhanced by double knockdown of rho-1 and cyk-4, and partially suppressed by double knockdown of cdc-42 and cyk-4. Thus, the centralspindlin components CYK-4 and ZEN-4, together with RHO-1 and CDC-42, are central players of a signaling network that guides spermathecal morphogenesis by enabling completion of cytokinesis.
Collapse
Affiliation(s)
- Pei Zhang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Jiwei Chen
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Xiangchuan Wang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Yingchao Geng
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Liangyu Sun
- Biological Imaging and Stem Cell Core, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Hongjie Zhang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR 999078, China
| |
Collapse
|
2
|
Singh J, Imran Alsous J, Garikipati K, Shvartsman SY. Mechanics of stabilized intercellular bridges. Biophys J 2022; 121:3162-3171. [PMID: 35778841 PMCID: PMC9463629 DOI: 10.1016/j.bpj.2022.06.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/04/2022] [Accepted: 06/27/2022] [Indexed: 11/02/2022] Open
Abstract
Numerous engineered and natural systems form through reinforcement and stabilization of a deformed configuration that was generated by a transient force. An important class of such structures arises during gametogenesis, when a dividing cell undergoes incomplete cytokinesis, giving rise to daughter cells that remain connected through a stabilized intercellular bridge (ICB). ICBs can form through arrest of the contractile cytokinetic furrow and its subsequent stabilization. Despite knowledge of the molecular components, the mechanics underlying robust ICB assembly and the interplay between ring contractility and stiffening are poorly understood. Here, we report joint experimental and theoretical work that explores the physics underlying robust ICB assembly. We develop a continuum mechanics model that reveals the minimal requirements for the formation of stable ICBs, and validate the model's equilibrium predictions through a tabletop experimental analog. With insight into the equilibrium states, we turn to the dynamics: we demonstrate that contractility and stiffening are in dynamic competition and that the time intervals of their action must overlap to ensure assembly of ICBs of biologically observed proportions. Our results highlight a mechanism in which deformation and remodeling are tightly coordinated-one that is applicable to several mechanics-based applications and is a common theme in biological systems spanning several length scales.
Collapse
Affiliation(s)
- Jaspreet Singh
- Center for Computational Biology, Flatiron Institute, New York, New York
| | | | - Krishna Garikipati
- Departments of Mechanical Engineering, and Mathematics, Michigan Institute for Computational Discovery & Engineering, University of Michigan, Ann Arbor, Michigan.
| | - Stanislav Y Shvartsman
- Department of Molecular Biology, Princeton University, Princeton, New Jersey; The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey.
| |
Collapse
|
3
|
Bai X, Melesse M, Sorensen Turpin CG, Sloan DE, Chen CY, Wang WC, Lee PY, Simmons JR, Nebenfuehr B, Mitchell D, Klebanow LR, Mattson N, Betzig E, Chen BC, Cheerambathur D, Bembenek JN. Aurora B functions at the apical surface after specialized cytokinesis during morphogenesis in C. elegans. Development 2020; 147:dev.181099. [PMID: 31806662 PMCID: PMC6983721 DOI: 10.1242/dev.181099] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/26/2019] [Indexed: 12/18/2022]
Abstract
Although cytokinesis has been intensely studied, the way it is executed during development is not well understood, despite a long-standing appreciation that various aspects of cytokinesis vary across cell and tissue types. To address this, we investigated cytokinesis during the invariant Caenorhabditis elegans embryonic divisions and found several parameters that are altered at different stages in a reproducible manner. During early divisions, furrow ingression asymmetry and midbody inheritance is consistent, suggesting specific regulation of these events. During morphogenesis, we found several unexpected alterations to cytokinesis, including apical midbody migration in polarizing epithelial cells of the gut, pharynx and sensory neurons. Aurora B kinase, which is essential for several aspects of cytokinesis, remains apically localized in each of these tissues after internalization of midbody ring components. Aurora B inactivation disrupts cytokinesis and causes defects in apical structures, even if inactivated post-mitotically. Therefore, we demonstrate that cytokinesis is implemented in a specialized way during epithelial polarization and that Aurora B has a role in the formation of the apical surface.
Collapse
Affiliation(s)
- Xiaofei Bai
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Michael Melesse
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | | | - Dillon E. Sloan
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA,Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chin-Yi Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Wen-Cheng Wang
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Po-Yi Lee
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - James R. Simmons
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Benjamin Nebenfuehr
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Diana Mitchell
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lindsey R. Klebanow
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Nicholas Mattson
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Eric Betzig
- Janelia Research Campus, HHMI, Ashburn, VA 20147, USA
| | - Bi-Chang Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan,Janelia Research Campus, HHMI, Ashburn, VA 20147, USA
| | - Dhanya Cheerambathur
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Joshua N. Bembenek
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA,Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA,Author for correspondence ()
| |
Collapse
|
4
|
Abstract
The midbody is a protein-dense assembly that forms during cytokinesis when the actomyosin ring constricts around bundling central spindle microtubules. After its initial description by Walther Flemming in the late nineteenth century and its rediscovery through electron microscopy in the 1960s and 1970s, its ultrastructural organization and the sequential recruitment of its molecular constituents has only been elucidated in the past decade. Recently, it has become clear that the midbody can serve as a polarity cue during asymmetric cell division, cell polarization, and spindle orientation by coordinating cytoskeletal organization, vesicular transport, and localized cortical cues. In this chapter, these newly emerging functions will be discussed as well as asymmetries during midbody formation and their consequences for cellular organization in tissues.
Collapse
Affiliation(s)
- Christian Pohl
- Buchmann Institute for Molecular Life Sciences, Institute of Biochemistry II, Goethe University Medical School, Max-von-Laue-Strasse 15, 60438, Frankfurt (Main), Germany.
| |
Collapse
|
5
|
Meitinger F, Khmelinskii A, Morlot S, Kurtulmus B, Palani S, Andres-Pons A, Hub B, Knop M, Charvin G, Pereira G. A memory system of negative polarity cues prevents replicative aging. Cell 2014; 159:1056-1069. [PMID: 25416945 DOI: 10.1016/j.cell.2014.10.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 08/20/2014] [Accepted: 09/25/2014] [Indexed: 10/24/2022]
Abstract
Cdc42 is a highly conserved master regulator of cell polarity. Here, we investigated the mechanism by which yeast cells never re-establish polarity at cortical sites (cytokinesis remnants [CRMs]) that have previously supported Cdc42-mediated growth as a paradigm to mechanistically understand how Cdc42-inhibitory polarity cues are established. We revealed a two-step mechanism of loading the Cdc42 antagonist Nba1 into CRMs to mark these compartments as refractory for a second round of Cdc42 activation. Our data indicate that Nba1 together with a cortically tethered adaptor protein confers memory of previous polarization events to translate this spatial legacy into a biochemical signal that ensures the local singularity of Cdc42 activation. "Memory loss" mutants that repeatedly use the same polarity site over multiple generations display nuclear segregation defects and a shorter lifespan. Our work thus established CRMs as negative polarity cues that prevent Cdc42 reactivation to sustain the fitness of replicating cells.
Collapse
Affiliation(s)
- Franz Meitinger
- Molecular Biology of Centrosomes and Cilia, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 581, Heidelberg 69120, Germany
| | - Anton Khmelinskii
- Center for Molecular Biology of the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Sandrine Morlot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 Rue Laurent Fries, 67400 Illkirch Cedex, France
| | - Bahtiyar Kurtulmus
- Molecular Biology of Centrosomes and Cilia, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 581, Heidelberg 69120, Germany
| | - Saravanan Palani
- Molecular Biology of Centrosomes and Cilia, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 581, Heidelberg 69120, Germany
| | - Amparo Andres-Pons
- Molecular Biology of Centrosomes and Cilia, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 581, Heidelberg 69120, Germany
| | - Birgit Hub
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Michael Knop
- Center for Molecular Biology of the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Gilles Charvin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 Rue Laurent Fries, 67400 Illkirch Cedex, France
| | - Gislene Pereira
- Molecular Biology of Centrosomes and Cilia, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 581, Heidelberg 69120, Germany.
| |
Collapse
|
6
|
Haglund K, Nezis IP, Stenmark H. Structure and functions of stable intercellular bridges formed by incomplete cytokinesis during development. Commun Integr Biol 2014. [DOI: 10.4161/cib.13550] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
7
|
Singh D, Pohl C. Coupling of rotational cortical flow, asymmetric midbody positioning, and spindle rotation mediates dorsoventral axis formation in C. elegans. Dev Cell 2014; 28:253-67. [PMID: 24525186 DOI: 10.1016/j.devcel.2014.01.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 12/02/2013] [Accepted: 01/02/2014] [Indexed: 10/25/2022]
Abstract
Cortical flows mediate anteroposterior polarization in Caenorhabditis elegans by generating two mutually exclusive membrane domains. However, factors downstream of anteroposterior polarity that establish the dorsoventral axis remain elusive. Here, we show that rotational cortical flow orthogonal to the anteroposterior axis during the division of the AB blastomere in the two-cell embryo positions the cytokinetic midbody remnant of the previous division asymmetrically at the future ventral side of the embryo. In the neighboring P1 blastomere, astral microtubules contact a transient PAR-2-dependent actin coat that forms asymmetrically onto the midbody remnant-P1 interface. Ablation of the midbody remnant or perturbation of rotational cortical flow reveals that microtubule-midbody remnant contacts are crucial for P1 spindle rotation and dorsoventral axis formation. Thus, our findings suggest a mechanism for dorsoventral patterning that relies on coupling of anteroposterior polarity, rotational cortical flow, midbody remnant positioning, and spindle orientation.
Collapse
Affiliation(s)
- Deepika Singh
- Buchmann Institute for Molecular Life Sciences, Institute of Biochemistry II, Goethe University, Max-von-Laue-Strasse 15, 60438 Frankfurt (Main), Germany
| | - Christian Pohl
- Buchmann Institute for Molecular Life Sciences, Institute of Biochemistry II, Goethe University, Max-von-Laue-Strasse 15, 60438 Frankfurt (Main), Germany.
| |
Collapse
|
8
|
Singh D, Pohl C. A function for the midbody remnant in embryonic patterning. Commun Integr Biol 2014; 7:e28533. [PMID: 25346787 PMCID: PMC4203541 DOI: 10.4161/cib.28533] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 03/14/2014] [Indexed: 01/10/2023] Open
Abstract
Asymmetric cell divisions combine cell division with fate specification and one general model of how this is achieved was proposed already decades ago1,2: During interphase, the cell polarity axis is specified, followed by orientation of the spindle along the polarity axis and segregation of fate determinants along the polarity axis during mitosis. In most cells, the polarity axis and the spindle will usually align with the long axis that the cell had before division, also called Hertwig’s rule3–6. In the C. elegans embryo, the first polarity axis also forms along the long axis of the embryo by enrichment of myosin in the anterior7 and formation of mutually exclusive anterior and posterior cortical polarity domains, mediated through directional cortical contractile flow8–10. The directionality of this flow is determined by an extrinsic cue, the entry of the sperm, which inhibits Rho-dependent myosin activation at the future posterior pole by bringing with it the Rho GTPase activating protein CYK-411,12. Moreover, since there is no previous division ‘history’ before the first cleavage, mechanisms have to ensure that the nucleus-centrosome complex undergoes a 90 degree rotation so that the spindle can subsequently elongate along the long axis13–15. Additional mechanisms ensure that the site of cleavage is perpendicular to the long axis16,17. Hence, tight coupling of an extrinsic cue to intrinsic polarity formation and spindle elongation enables alignment of the division orientation with the long axis of the organism and successful segregation of fate determinants.
Collapse
Affiliation(s)
- Deepika Singh
- Buchmann Institute for Molecular Life Sciences; Institute of Biochemistry II; Goethe University; Frankfurt (Main), Germany
| | - Christian Pohl
- Buchmann Institute for Molecular Life Sciences; Institute of Biochemistry II; Goethe University; Frankfurt (Main), Germany
| |
Collapse
|
9
|
Green RA, Mayers JR, Wang S, Lewellyn L, Desai A, Audhya A, Oegema K. The midbody ring scaffolds the abscission machinery in the absence of midbody microtubules. ACTA ACUST UNITED AC 2014; 203:505-20. [PMID: 24217623 PMCID: PMC3824018 DOI: 10.1083/jcb.201306036] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The septins, but not midbody microtubules, are important for daughter cell cytoplasmic isolation and ESCRT-dependent midbody ring release during abscission. Abscission completes cytokinesis to form the two daughter cells. Although abscission could be organized from the inside out by the microtubule-based midbody or from the outside in by the contractile ring–derived midbody ring, it is assumed that midbody microtubules scaffold the abscission machinery. In this paper, we assess the contribution of midbody microtubules versus the midbody ring in the Caenorhabditis elegans embryo. We show that abscission occurs in two stages. First, the cytoplasm in the daughter cells becomes isolated, coincident with formation of the intercellular bridge; proper progression through this stage required the septins (a midbody ring component) but not the membrane-remodeling endosomal sorting complex required for transport (ESCRT) machinery. Second, the midbody and midbody ring are released into a specific daughter cell during the subsequent cell division; this stage required the septins and the ESCRT machinery. Surprisingly, midbody microtubules were dispensable for both stages. These results delineate distinct steps during abscission and highlight the central role of the midbody ring, rather than midbody microtubules, in their execution.
Collapse
Affiliation(s)
- Rebecca A Green
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093
| | | | | | | | | | | | | |
Collapse
|
10
|
Lu MS, Johnston CA. Molecular pathways regulating mitotic spindle orientation in animal cells. Development 2013; 140:1843-56. [PMID: 23571210 DOI: 10.1242/dev.087627] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Orientation of the cell division axis is essential for the correct development and maintenance of tissue morphology, both for symmetric cell divisions and for the asymmetric distribution of fate determinants during, for example, stem cell divisions. Oriented cell division depends on the positioning of the mitotic spindle relative to an axis of polarity. Recent studies have illuminated an expanding list of spindle orientation regulators, and a molecular model for how cells couple cortical polarity with spindle positioning has begun to emerge. Here, we review both the well-established spindle orientation pathways and recently identified regulators, focusing on how communication between the cell cortex and the spindle is achieved, to provide a contemporary view of how positioning of the mitotic spindle occurs.
Collapse
Affiliation(s)
- Michelle S Lu
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | | |
Collapse
|
11
|
Chen CT, Ettinger AW, Huttner WB, Doxsey SJ. Resurrecting remnants: the lives of post-mitotic midbodies. Trends Cell Biol 2012; 23:118-28. [PMID: 23245592 DOI: 10.1016/j.tcb.2012.10.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 10/23/2012] [Accepted: 10/25/2012] [Indexed: 02/01/2023]
Abstract
Around a century ago, the midbody (MB) was described as a structural assembly within the intercellular bridge during cytokinesis that served to connect the two future daughter cells. The MB has become the focus of intense investigation through the identification of a growing number of diverse cellular and molecular pathways that localize to the MB and contribute to its cytokinetic functions, ranging from selective vesicle trafficking and regulated microtubule (MT), actin, and endosomal sorting complex required for transport (ESCRT) filament assembly and disassembly to post-translational modification, such as ubiquitination. More recent studies have revealed new and unexpected functions of MBs in post-mitotic cells. In this review, we provide a historical perspective, discuss exciting new roles for MBs beyond their cytokinetic function, and speculate on their potential contributions to pluripotency.
Collapse
Affiliation(s)
- Chun-Ting Chen
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | |
Collapse
|
12
|
Pohl C, Tiongson M, Moore JL, Santella A, Bao Z. Actomyosin-based self-organization of cell internalization during C. elegans gastrulation. BMC Biol 2012; 10:94. [PMID: 23198792 PMCID: PMC3583717 DOI: 10.1186/1741-7007-10-94] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 11/30/2012] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Gastrulation is a key transition in embryogenesis; it requires self-organized cellular coordination, which has to be both robust to allow efficient development and plastic to provide adaptability. Despite the conservation of gastrulation as a key event in Metazoan embryogenesis, the morphogenetic mechanisms of self-organization (how global order or coordination can arise from local interactions) are poorly understood. RESULTS We report a modular structure of cell internalization in Caenorhabditis elegans gastrulation that reveals mechanisms of self-organization. Cells that internalize during gastrulation show apical contractile flows, which are correlated with centripetal extensions from surrounding cells. These extensions converge to seal over the internalizing cells in the form of rosettes. This process represents a distinct mode of monolayer remodeling, with gradual extrusion of the internalizing cells and simultaneous tissue closure without an actin purse-string. We further report that this self-organizing module can adapt to severe topological alterations, providing evidence of scalability and plasticity of actomyosin-based patterning. Finally, we show that globally, the surface cell layer undergoes coplanar division to thin out and spread over the internalizing mass, which resembles epiboly. CONCLUSIONS The combination of coplanar division-based spreading and recurrent local modules for piecemeal internalization constitutes a system-level solution of gradual volume rearrangement under spatial constraint. Our results suggest that the mode of C. elegans gastrulation can be unified with the general notions of monolayer remodeling and with distinct cellular mechanisms of actomyosin-based morphogenesis.
Collapse
Affiliation(s)
- Christian Pohl
- Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY, 10065, USA
- Buchmann Institute for Molecular Life Sciences, Institute of Biochemistry II, Goethe University, Max-von-Laue-Strasse 15, 60438 Frankfurt, Germany
| | - Michael Tiongson
- Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY, 10065, USA
| | - Julia L Moore
- Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY, 10065, USA
- Program in Computational Biology and Medicine, Cornell University, 1300 York Avenue, New York, NY, 10065, USA
| | - Anthony Santella
- Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY, 10065, USA
| | - Zhirong Bao
- Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY, 10065, USA
| |
Collapse
|
13
|
White EA, Glotzer M. Centralspindlin: at the heart of cytokinesis. Cytoskeleton (Hoboken) 2012; 69:882-92. [PMID: 22927365 PMCID: PMC3821549 DOI: 10.1002/cm.21065] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 08/15/2012] [Accepted: 08/20/2012] [Indexed: 12/14/2022]
Abstract
The final step in the cell cycle is the formation of two genetically identical daughter cells by cytokinesis. At the heart of cytokinesis in animal cells is the centralspindlin complex which is composed of two proteins, a kinesin-like protein, Mitotic kinesin-like protein 1, and a Rho GTPase activating protein (RhoGAP), CYK-4. Through its targeted localization to a narrow region of antiparallel microtubule overlap immediately following chromosome segregation, centralspindlin initiates central spindle assembly. Centralspindlin has several critical functions during cell division including positioning of the division plane, regulation of Rho family GTPases, as well as midbody assembly and abscission. In this review, we will examine the biochemistry of centralspindlin and its multiple functions during cell division. Remarkably, several of its critical functions are somewhat unexpected. Although endowed with motor domains, centralspindlin has an important role in generating stable, antiparallel microtubule bundles. Although it contains a Rho family GAP domain, it has a central role in the activation of RhoA during cytokinesis. Finally, centralspindlin functions as a motor protein complex, as a scaffold protein for key regulators of abscission and as a conventional RhoGAP. Because of these diverse functions, centralspindlin lies at the heart of the cytokinetic mechanism.
Collapse
Affiliation(s)
- Erin A. White
- Department of Molecular Genetics and Cell Biology, University of
Chicago, CLSC 901, 920 E. 58th St. Chicago, IL 60637
| | - Michael Glotzer
- Department of Molecular Genetics and Cell Biology, University of
Chicago, CLSC 901, 920 E. 58th St. Chicago, IL 60637
| |
Collapse
|
14
|
Manneville JB, Etienne-Manneville S. Positioning centrosomes and spindle poles: looking at the periphery to find the centre. Biol Cell 2012; 98:557-65. [PMID: 16907664 DOI: 10.1042/bc20060017] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Centrosome positioning is tightly controlled throughout the cell cycle and probably shares common regulatory mechanisms with spindle-pole positioning. In this article, we detail the possible mechanisms controlling centrosome and spindle positioning in various organisms both in interphase and mitotic cells, and discuss recent findings showing how microtubule plus-end-associated proteins interact with the cell cortex. We suggest that microtubule plus-end complexes simultaneously regulate microtubule dynamics and microtubule anchoring at the cell periphery to allow proper centrosome and spindle-pole positioning.
Collapse
|
15
|
Abstract
This chapter describes methods for studying membrane traffic and organelle biogenesis in Caenorhabditis elegans. These processes have traditionally been studied with yeast or mammalian cells, but C. elegans is emerging as an attractive alternative model system for cell biologists. C. elegans is well known for the ease of manipulation through classic and molecular genetic techniques. In addition, C. elegans is transparent, so fluorescent proteins can be observed in live animals. These properties have aided the development of functional assays for tracking cell biological processes in situ. Localization results obtained with fluorescent proteins can be validated with immunofluorescence and with biochemical methods, such as subcellular fractionation, adapted from methods developed for other organisms. C. elegans thus combines powerful genetics with a range of cell biological techniques to study subcellular processes in a tractable multicellular organism.
Collapse
Affiliation(s)
- Hanna Fares
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | | |
Collapse
|
16
|
Kyvelidou C, Tserevelakis GJ, Filippidis G, Ranella A, Kleovoulou A, Fotakis C, Athanassakis I. Following the course of pre-implantation embryo patterning by non-linear microscopy. J Struct Biol 2011; 176:379-86. [DOI: 10.1016/j.jsb.2011.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 09/11/2011] [Accepted: 09/19/2011] [Indexed: 02/04/2023]
|
17
|
McDougall A, Chenevert J, Lee KW, Hebras C, Dumollard R. Cell cycle in ascidian eggs and embryos. Results Probl Cell Differ 2011; 53:153-169. [PMID: 21630145 DOI: 10.1007/978-3-642-19065-0_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In ascidians the cell cycle machinery has been studied mainly in oocytes while ascidian embryos have been used to dissect the mechanism that controls asymmetric cell division (ACD). Here we overview the most specific and often exceptional points and events in cell cycle control in ascidian oocytes and early embryos. Mature stage IV eggs are arrested at metaphase I due to cytostatic factor (CSF). In vertebrates, unfertilized eggs are arrested at metaphase II by CSF. Meta II-CSF is mediated by the Mos/MEK/MAPK/Erp1 pathway, which inhibits the ubiquitin ligase APC/C(cdc20) preventing cyclin B destruction thus stabilizing MPF activity. CSF is inactivated by the fertilization Ca(2+) transient that stimulates the destruction of Erp1 thus releasing APC/C(cdc20) from inhibition. Although many of the components of CSF are conserved between the ascidian and the vertebrates, the lack of Erp1 in the ascidians (and indeed other invertebrates) is notable since the Mos/MAPK pathway nonetheless mediates Meta I-CSF. Moreover, since the fertilization Ca(2+) transient targets Erp1, it is not clear how the sperm-triggered Ca(2+) transient in ascidians (and again other invertebrates) stimulates cyclin B destruction in the absence of Erp1. Nonetheless, like mammalian eggs, sperm trigger a series of Ca(2+) oscillations that increases the rate of cyclin B destruction and the subsequent loss of MAPK activity leading to meiotic exit in ascidians. Positive feedback from MPF maintains the Ca(2+) oscillations in fertilized ascidian eggs ensuring the eventual loss of MPF stimulating the egg-to-embryo transition. Embryonic cell cycles in the ascidian are highly stereotyped where both the rate of cell division and the orientation of cell division planes are precisely controlled. Three successive rounds of ACD generate two small posterior germ cell precursors at the 64 cell stage. The centrosome-attracting body (CAB) is a macroscopic cortical structure visible by light microscopy that causes these three rounds of ACD. Entry into mitosis activates the CAB causing the whole mitotic spindle to rotate and migrate toward the cortical CAB leading to a highly ACD whereby one small cell is formed that inherits the CAB and approximately 40 maternal postplasmic/PEM RNAs including the germ cell marker vasa.
Collapse
Affiliation(s)
- Alex McDougall
- Developmental Biology Unit UMR 7009, UMPC Univ. Paris 06 and Center National de la Recherche (CNRS), Observatoire Océanologique, 06230 Villefranche-sur-Mer, France.
| | | | | | | | | |
Collapse
|
18
|
Prodon F, Chenevert J, Hébras C, Dumollard R, Faure E, Gonzalez-Garcia J, Nishida H, Sardet C, McDougall A. Dual mechanism controls asymmetric spindle position in ascidian germ cell precursors. Development 2010; 137:2011-21. [DOI: 10.1242/dev.047845] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mitotic spindle orientation with respect to cortical polarity cues generates molecularly distinct daughter cells during asymmetric cell division (ACD). However, during ACD it remains unknown how the orientation of the mitotic spindle is regulated by cortical polarity cues until furrowing begins. In ascidians, the cortical centrosome-attracting body (CAB) generates three successive unequal cleavages and the asymmetric segregation of 40 localized postplasmic/PEM RNAs in germ cell precursors from the 8-64 cell stage. By combining fast 4D confocal fluorescence imaging with gene-silencing and classical blastomere isolation experiments, we show that spindle repositioning mechanisms are active from prometaphase until anaphase, when furrowing is initiated in B5.2 cells. We show that the vegetal-most spindle pole/centrosome is attracted towards the CAB during prometaphase, causing the spindle to position asymmetrically near the cortex. Next, during anaphase, the opposite spindle pole/centrosome is attracted towards the border with neighbouring B5.1 blastomeres, causing the spindle to rotate (10°/minute) and migrate (3 μm/minute). Dynamic 4D fluorescence imaging of filamentous actin and plasma membrane shows that precise orientation of the cleavage furrow is determined by this second phase of rotational spindle displacement. Furthermore, in pairs of isolated B5.2 blastomeres, the second phase of rotational spindle displacement was lost. Finally, knockdown of PEM1, a protein localized in the CAB and required for unequal cleavage in B5.2 cells, completely randomizes spindle orientation. Together these data show that two separate mechanisms active during mitosis are responsible for spindle positioning, leading to precise orientation of the cleavage furrow during ACD in the cells that give rise to the germ lineage in ascidians.
Collapse
Affiliation(s)
- François Prodon
- Developmental Biology Unit UMR 7009, UPMC (University of Paris 06) and Centre National de la Recherche (CNRS), Observatoire Océanologique, 06230 Villefranche-sur-Mer, France
| | - Janet Chenevert
- Developmental Biology Unit UMR 7009, UPMC (University of Paris 06) and Centre National de la Recherche (CNRS), Observatoire Océanologique, 06230 Villefranche-sur-Mer, France
| | - Céline Hébras
- Developmental Biology Unit UMR 7009, UPMC (University of Paris 06) and Centre National de la Recherche (CNRS), Observatoire Océanologique, 06230 Villefranche-sur-Mer, France
| | - Rémi Dumollard
- Developmental Biology Unit UMR 7009, UPMC (University of Paris 06) and Centre National de la Recherche (CNRS), Observatoire Océanologique, 06230 Villefranche-sur-Mer, France
| | - Emmanuel Faure
- ISCPIF-CREA, Ecole Polytechnique–CNRS, 75015 Paris, France
| | - Jose Gonzalez-Garcia
- Department of Obstetrics and Gynaecology, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Christian Sardet
- Developmental Biology Unit UMR 7009, UPMC (University of Paris 06) and Centre National de la Recherche (CNRS), Observatoire Océanologique, 06230 Villefranche-sur-Mer, France
| | - Alex McDougall
- Developmental Biology Unit UMR 7009, UPMC (University of Paris 06) and Centre National de la Recherche (CNRS), Observatoire Océanologique, 06230 Villefranche-sur-Mer, France
| |
Collapse
|
19
|
Crittenden S, Kimble J. Preparation and immunolabeling of Caenorhabditis elegans. Cold Spring Harb Protoc 2010; 2009:pdb.prot5216. [PMID: 20147168 DOI: 10.1101/pdb.prot5216] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Gerashchenko MV, Chernoivanenko IS, Moldaver MV, Minin AA. Dynein is a motor for nuclear rotation while vimentin IFs is a "brake". Cell Biol Int 2009; 33:1057-64. [PMID: 19560548 DOI: 10.1016/j.cellbi.2009.06.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 04/22/2009] [Accepted: 06/03/2009] [Indexed: 11/24/2022]
Abstract
The positioning of the nucleus is achieved by two interconnected processes, anchoring and migration, both of which are controlled by cytoskeleton structures. Rotation is a special type of nuclear motility in many cell types, but its significance remains unclear. We used a vimentin-null cell line, MFT-16, which shows extensive nuclear rotation to study the phenomenon in detail. By selective disruption of cytoskeletal structures and video-microscopic analysis, nuclear rotation was a microtubule-dependent process that F-actin partially impedes. The dynein-dynactin complex is responsible and inhibiting this motor by expression of a dominant negative mutant of its component P-150 completely stops it. Nuclear rotation is powered by dynein associated with the nuclear envelope along stationary microtubules, centrosomes remaining immobile. We confirmed that vimentin IFs inhibit nuclear rotation, and variant proteins of the mutated wild type gene for vimentin that lacked considerable fragments of the N- and C-terminal domains restored nuclear anchoring. Immunochemical analysis showed that these mutated IFs also bound plectin, arguing for a key role of this cytolinker protein in nuclear anchoring. It is proposed that this versatile machinery guarantees not only rotation and the correct location of a nucleus, but also its orientation in a cell.
Collapse
Affiliation(s)
- Maxim V Gerashchenko
- Group of Cell Biology, Institute of Protein Research, Russian Academy of Sciences, Moscow 119334, Russian Federation
| | | | | | | |
Collapse
|
21
|
Patel FB, Bernadskaya YY, Chen E, Jobanputra A, Pooladi Z, Freeman KL, Gally C, Mohler WA, Soto MC. The WAVE/SCAR complex promotes polarized cell movements and actin enrichment in epithelia during C. elegans embryogenesis. Dev Biol 2008; 324:297-309. [PMID: 18938151 PMCID: PMC2629559 DOI: 10.1016/j.ydbio.2008.09.023] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 09/04/2008] [Accepted: 09/18/2008] [Indexed: 12/21/2022]
Abstract
The WAVE/SCAR complex promotes actin nucleation through the Arp2/3 complex, in response to Rac signaling. We show that loss of WVE-1/GEX-1, the only C. elegans WAVE/SCAR homolog, by genetic mutation or by RNAi, has the same phenotype as loss of GEX-2/Sra1/p140/PIR121, GEX-3/NAP1/HEM2/KETTE, or ABI-1/ABI, the three other components of the C. elegans WAVE/SCAR complex. We find that the entire WAVE/SCAR complex promotes actin-dependent events at different times and in different tissues during development. During C. elegans embryogenesis loss of CED-10/Rac1, WAVE/SCAR complex components, or Arp2/3 blocks epidermal cell migrations despite correct epidermal cell differentiation. 4D movies show that this failure occurs due to decreased membrane dynamics in specific epidermal cells. Unlike myoblasts in Drosophila, epidermal cell fusions in C. elegans can occur in the absence of WAVE/SCAR or Arp2/3. Instead we find that subcellular enrichment of F-actin in epithelial tissues requires the Rac-WAVE/SCAR-Arp2/3 pathway. Intriguingly, we find that at the same stage of development both F-actin and WAVE/SCAR proteins are enriched apically in one epithelial tissue and basolaterally in another. We propose that temporally and spatially regulated actin nucleation by the Rac-WAVE/SCAR-Arp2/3 pathway is required for epithelial cell organization and movements during morphogenesis.
Collapse
Affiliation(s)
- Falshruti B. Patel
- Department of Pathology and Laboratory Medicine, UMDNJ – Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854
| | - Yelena Y. Bernadskaya
- Department of Pathology and Laboratory Medicine, UMDNJ – Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854
| | - Esteban Chen
- Department of Pathology and Laboratory Medicine, UMDNJ – Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854
| | - Aesha Jobanputra
- Department of Pathology and Laboratory Medicine, UMDNJ – Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854
| | - Zahra Pooladi
- Department of Pathology and Laboratory Medicine, UMDNJ – Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854
| | - Kristy L. Freeman
- Department of Genetics and Developmental Biology and Center for Cell Analysis and Modeling, University of Connecticut Health Center, 263 Farmington Ave., MC-3301, Farmington, CT 06030-3301
| | - Christelle Gally
- IGBMC, CNRS/INSERM/ULP, 1 rue Laurent Fries, BP10142, 67400 Illkirch, France
| | - William A. Mohler
- Department of Genetics and Developmental Biology and Center for Cell Analysis and Modeling, University of Connecticut Health Center, 263 Farmington Ave., MC-3301, Farmington, CT 06030-3301
| | - Martha C. Soto
- Department of Pathology and Laboratory Medicine, UMDNJ – Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854
| |
Collapse
|
22
|
Zhang H, Skop AR, White JG. Src and Wnt signaling regulate dynactin accumulation to the P2-EMS cell border in C. elegans embryos. J Cell Sci 2008; 121:155-61. [PMID: 18187449 DOI: 10.1242/jcs.015966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2024] Open
Abstract
In many organisms, the dynein-dynactin complex is required for the alignment of the mitotic spindle onto the axis of polarity of a cell undergoing asymmetric cell division. How this complex transduces polarity cues, either intrinsic or extrinsic, and rotationally aligns the spindle accordingly is not well understood. The Caenorhabditis elegans blastomere P2 polarizes the neighboring EMS blastomere, which causes the EMS spindle to rotationally align along the defined axis of polarity via two redundant signaling pathways: Wnt and Src. Here, we describe how components of the dynactin complex became locally enriched at the P2-EMS border prior to and during rotational alignment of their spindles. Wnt and Src signaling were required for both localized dynactin enrichment, and for rotational alignment of the P2 and EMS spindles. Depleting the trimeric G-protein subunit G alpha did not abolish dynactin accumulation to the P2-EMS border, yet both EMS and P2 spindles failed to rotationally align, indicating that G alpha might act to regulate dynein/dynactin motor activity. By RNAi of a weak dnc-1(ts) allele, we showed that dynactin activity was required at least for EMS spindle rotational alignment.
Collapse
Affiliation(s)
- Haining Zhang
- Laboratory of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
23
|
Schulze J, Schierenberg E. Cellular pattern formation, establishment of polarity and segregation of colored cytoplasm in embryos of the nematode Romanomermis culicivorax. Dev Biol 2008; 315:426-36. [PMID: 18275948 DOI: 10.1016/j.ydbio.2007.12.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 12/17/2007] [Accepted: 12/31/2007] [Indexed: 01/04/2023]
Abstract
We have begun to analyze the early embryogenesis of Romanomermis culicivorax, an insect-parasitic nematode phylogenetically distant to Caenorhabditis elegans. Development of R. culicivorax differs from C. elegans in many aspects including establishment of polarity, formation of embryonic axes and the pattern of asymmetric cleavages. Here, a polarity reversal in the germline takes place already in P(1) rather than P(2), the dorsal-ventral axis appears to be inverted and gut fate is derived from the AB rather than from the EMS blastomere. So far unique for nematodes is the presence of colored cytoplasm and its segregation into one specific founder cell. Normal development observed after experimentally induced abnormal partitioning of pigment indicates that it is not involved in cell specification. Another typical feature is prominent midbodies (MB). We investigated the role of the MB region in the establishment of asymmetry. After its irradiation the potential for unequal cleavage in somatic and germline cells as well as differential distribution of pigment are lost. This indicates a crucial involvement of this region for spindle orientation, positioning, and cytoplasmic segregation. A scenario is sketched suggesting why and how during evolution the observed differences between R. culicivorax and C. elegans may have evolved.
Collapse
Affiliation(s)
- Jens Schulze
- Zoological Institute, University of Cologne, Germany
| | | |
Collapse
|
24
|
McCarthy EK, Goldstein B. Asymmetric spindle positioning. Curr Opin Cell Biol 2006; 18:79-85. [PMID: 16361093 PMCID: PMC2186777 DOI: 10.1016/j.ceb.2005.12.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2005] [Accepted: 12/01/2005] [Indexed: 12/16/2022]
Abstract
When a spindle is positioned asymmetrically in a dividing cell, the resulting daughter cells are unequal in size. Asymmetric spindle positioning is driven by regulated forces that can pull or push a spindle. The physical and molecular mechanisms that can position spindles asymmetrically have been studied in several systems, and some themes have begun to emerge from recent research. Recent work in budding yeast has presented a model for how cytoskeletal motors and cortical capture molecules can function in orienting and positioning a spindle. The temporal regulation of microtubule-based pulling forces that move a spindle has been examined in one animal system. Although the spindle positioning force generators have not been identified in most animal systems, the forces have been found to be regulated by both PAR polarity proteins and G-protein signaling pathways in more than one animal system.
Collapse
Affiliation(s)
- Erin K McCarthy
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280, USA
| | | |
Collapse
|
25
|
Leslie M. Centrosome choreography. J Biophys Biochem Cytol 2006. [PMCID: PMC2063641 DOI: 10.1083/jcb1723fta1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
26
|
Kovar DR, Wu JQ, Pollard TD. Profilin-mediated competition between capping protein and formin Cdc12p during cytokinesis in fission yeast. Mol Biol Cell 2005; 16:2313-24. [PMID: 15743909 PMCID: PMC1087237 DOI: 10.1091/mbc.e04-09-0781] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Fission yeast capping protein SpCP is a heterodimer of two subunits (Acp1p and Acp2p) that binds actin filament barbed ends. Neither acp1 nor acp2 is required for viability, but cells lacking either or both subunits have cytokinesis defects under stressful conditions, including elevated temperature, osmotic stress, or in combination with numerous mild mutations in genes important for cytokinesis. Defects arise as the contractile ring constricts and disassembles, resulting in delays in cell separation. Genetic and biochemical interactions show that the cytokinesis formin Cdc12p competes with capping protein for actin filament barbed ends in cells. Deletion of acp2 partly suppresses cytokinesis defects in temperature-sensitive cdc12-112 cells and mild overexpression of capping protein kills cdc12-112 cells. Biochemically, profilin has opposite effects on filaments capped with Cdc12p and capping protein. Profilin depolymerizes actin filaments capped by capping protein but allows filaments capped by Cdc12p to grow at their barbed ends. Once associated with a barbed end, either Cdc12p or capping protein prevents the other from influencing polymerization at that end. Given that capping protein arrives at the division site 20 min later than Cdc12p, capping protein may slowly replace Cdc12p on filament barbed ends in preparation for filament disassembly during ring constriction.
Collapse
Affiliation(s)
- David R Kovar
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | | | |
Collapse
|
27
|
Abstract
The one-cell Caenorhabditis elegans embryo divides asymmetrically into a larger and smaller blastomere, each with a different fate. How does such asymmetry arise? The sperm-supplied centrosome establishes an axis of polarity in the embryo that is transduced into the establishment of anterior and posterior cortical domains. These cortical domains define the polarity of the embryo, acting upstream of the PAR proteins. The PAR proteins, in turn, determine the subsequent segregation of fate determinants and the plane of cell division. We address how cortical asymmetry could be established, relying on data from C. elegans and other polarized cells, as well as from applicable models. We discuss how cortical polarity influences spindle position to accomplish an asymmetric division, presenting the current models of spindle orientation and anaphase spindle displacement. We focus on asymmetric cell division as a function of the actin and microtubule cytoskeletons, emphasizing the cell biology of polarity.
Collapse
Affiliation(s)
- Carrie R Cowan
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
| | | |
Collapse
|
28
|
Robinson DN, Cooley L. Stable intercellular bridges in development: the cytoskeleton lining the tunnel. Trends Cell Biol 2005; 6:474-9. [PMID: 15157506 DOI: 10.1016/0962-8924(96)84945-2] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A wide variety of intercellular junctions that are involved with cell adhesion or signal transduction have been described in recent years. A widespread but less well-characterized type of intercellular junction is the stable intercellular bridge. Several organisms use stable intercellular bridges as cytoplasmic connections, probably to allow rapid transfer of information and organelles between cells. Here, the authors take a detailed look at the assembly of intercellular bridges called ring canals in the Drosophila germline and discuss how examination of mutants that disrupt Drosophila ovarian ring canal assembly indicates that these bridges are required for intercellular transport of cytoplasm.
Collapse
Affiliation(s)
- D N Robinson
- Dept of Genetics, Yale University School of Medicine, 333 Cedar St, New Haven, CT 06510, USA
| | | |
Collapse
|
29
|
Abstract
During intrinsically asymmetric division, the spindle is oriented onto a polarized axis specified by a group of conserved PAR proteins. Extrinsic geometric asymmetry generated by cell shape also affects spindle orientation in some systems, but how intrinsic and extrinsic mechanisms coexist without interfering with each other is unknown. In some asymmetrically dividing cells of the wild-type Caenorhabditis elegans embryo, nuclear rotation directed toward the anterior cortex orients the forming spindle. We find that in such cells, a PAR-dependent mechanism dominates and causes rotation onto the polarized axis, regardless of cell shape. However, when geometric asymmetry is removed, free nuclear rotation in the center of the cell is observed, indicating that the anterior-directed nature of rotation in unaltered embryos is an effect of cell shape. This free rotation is inconsistent with the prevailing model for nuclear rotation, the specialized cortical site model. In contrast, in par-3 mutant embryos, a geometry-dependent mechanism becomes active and causes directed nuclear rotation. These results lead to the model that in wild-type embryos both PAR-3 and PAR-2 are essential for nuclear rotation in asymmetrically dividing cells, but that PAR-3 inhibits geometry-dependent rotation in nonpolarized cells, thus preventing cell shape from interfering with spindle orientation.
Collapse
Affiliation(s)
- Meng-Fu Bryan Tsou
- Section of Molecular and Cellular Biology, One Shields Ave., University of California, Davis, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
30
|
Ji JY, Haghnia M, Trusty C, Goldstein LSB, Schubiger G. A genetic screen for suppressors and enhancers of the Drosophila cdk1-cyclin B identifies maternal factors that regulate microtubule and microfilament stability. Genetics 2002; 162:1179-95. [PMID: 12454065 PMCID: PMC1462342 DOI: 10.1093/genetics/162.3.1179] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Coordination between cell-cycle progression and cytoskeletal dynamics is important for faithful transmission of genetic information. In early Drosophila embryos, increasing maternal cyclin B leads to higher Cdk1-CycB activity, shorter microtubules, and slower nuclear movement during cycles 5-7 and delays in nuclear migration to the cortex at cycle 10. Later during cycle 14 interphase of six cycB embryos, we observed patches of mitotic nuclei, chromosome bridges, abnormal nuclear distribution, and small and large nuclei. These phenotypes indicate disrupted coordination between the cell-cycle machinery and cytoskeletal function. Using these sensitized phenotypes, we performed a dosage-sensitive genetic screen to identify maternal proteins involved in this process. We identified 10 suppressors classified into three groups: (1) gene products regulating Cdk1 activities, cdk1 and cyclin A; (2) gene products interacting with both microtubules and microfilaments, Actin-related protein 87C; and (3) gene products interacting with microfilaments, chickadee, diaphanous, Cdc42, quail, spaghetti-squash, zipper, and scrambled. Interestingly, most of the suppressors that rescue the astral microtubule phenotype also reduce Cdk1-CycB activities and are microfilament-related genes. This suggests that the major mechanism of suppression relies on the interactions among Cdk1-CycB, microtubule, and microfilament networks. Our results indicate that the balance among these different components is vital for normal early cell cycles and for embryonic development. Our observations also indicate that microtubules and cortical microfilaments antagonize each other during the preblastoderm stage.
Collapse
Affiliation(s)
- Jun-Yuan Ji
- Department of Zoology, University of Washington, Seattle 98195-1800, USA
| | | | | | | | | |
Collapse
|
31
|
Abstract
Accurate spindle positioning is crucial for spatial control of cell division. During metazoan development, coordination between polarity cues and spindle position also ensures correct segregation of cell fate determinants. Converging evidence indicates that spindle positioning is achieved through interactions between cortical anchors and the plus ends of microtubules, generating pulling forces acting on spindle poles. This article discusses recent findings that indicate how this mechanism might be used for spindle positioning during Drosophila and Caenorhabditis elegans development.
Collapse
Affiliation(s)
- Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), 155 ch. des Boveresses, CH-1066 Epalinges/Lausanne, Switzerland.
| |
Collapse
|
32
|
Hamaguchi Y. Displacement of the mitotic apparatus which induces ectopic polar body formation or parthenogenetic cleavage in starfish oocytes. Dev Biol 2001; 239:364-75. [PMID: 11784041 DOI: 10.1006/dbio.2001.0421] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
When the mitotic apparatus (MA) at meiosis I and II in starfish oocytes was detached from the animal pole and translocated to the other cortex, MA induced polar body formation, which indicates reattachment of MA to the cortex. MA attachment was so strong that MA at meiosis II was frequently broken into two parts during detachment and from the remnant part remaining at the cortex an aster derived and a nucleus derived from the detached part. When they were apart until the cleavage stage, the oocyte divided into the aster-containing and nucleus-containing blastomeres and, further, only the former blastomere divided repeatedly. This result indicates that the centrosome in the peripheral aster, which presumes to be discarded into the second polar body, always has the capacity of duplication but the centrosome in the inner aster, which stays in the oocyte interior, has not the capacity and confirms our previous report ( Saiki and Hamaguchi (1998) Dev. Biol. 203, 62-74). Furthermore, it is found by observing meiotic MA formation that this peculiar centrosome delivery at meiosis II is ensured by the fact that the attachment of the aster staying in the oocyte interior to the cortex occurs earlier than centrosome duplication.
Collapse
Affiliation(s)
- Y Hamaguchi
- Functional Bioengineering, Department of Bioengineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8551, Japan.
| |
Collapse
|
33
|
Detwiler MR, Reuben M, Li X, Rogers E, Lin R. Two zinc finger proteins, OMA-1 and OMA-2, are redundantly required for oocyte maturation in C. elegans. Dev Cell 2001; 1:187-99. [PMID: 11702779 DOI: 10.1016/s1534-5807(01)00026-0] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Oocytes are released from meiotic prophase I arrest through a process termed oocyte maturation. We present here a genetic characterization of oocyte maturation, using C. elegans as a model system. We show that two TIS11 zinc finger-containing proteins, OMA-1 and OMA-2, express specifically in maturing oocytes and function redundantly in oocyte maturation. Oocytes in oma-1;oma-2 mutants initiate but do not complete maturation and arrest at a defined point in prophase I. Two maturation signal-induced molecular events, including the maintenance of activated MAP kinase, do not occur in Oma oocytes. The Oma prophase arrest is released by inactivation of a MYT-1-like kinase, suggesting that OMA-1 and OMA-2 function upstream of MYT-1 as positive regulators of prophase progression during meiotic maturation.
Collapse
Affiliation(s)
- M R Detwiler
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas 75390-9148, USA
| | | | | | | | | |
Collapse
|
34
|
Skop AR, Bergmann D, Mohler WA, White JG. Completion of cytokinesis in C. elegans requires a brefeldin A-sensitive membrane accumulation at the cleavage furrow apex. Curr Biol 2001; 11:735-46. [PMID: 11378383 PMCID: PMC3733387 DOI: 10.1016/s0960-9822(01)00231-7] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The terminal phase of cytokinesis in eukaryotic cells involves breakage of the intercellular canal containing the spindle midzone and resealing of the daughter cells. Recent observations suggest that the spindle midzone is required for this process. In this study, we investigated the possibility that targeted secretion in the vicinity of the spindle midzone is required for the execution of the terminal phase of cytokinesis. RESULTS We inhibited secretion in early C. elegans embryos by treatment with brefeldin A (BFA). Using 4D recordings of dividing cells, we showed that BFA induced stereotyped failures in the terminal phase of cytokinesis; although the furrow ingressed normally, after a few minutes the furrow completely regressed, even though spindle midzone and midbody microtubules appeared normal. In addition, using an FM1-43 membrane probe, we found that membrane accumulated locally at the apices of the late cleavage furrows that form the persisting intercellular canals between daughter cells. However, in BFA-treated embryos this membrane accumulation did not occur, which possibly accounts for the observed cleavage failures. CONCLUSIONS We have shown that BFA disrupts the terminal phase of cytokinesis in the embryonic blastomeres of C. elegans. We observed that membrane accumulates at the apices of the late cleavage furrow by means of a BFA-sensitive mechanism. We suggest that this local membrane accumulation is necessary for the completion of cytokinesis and speculate that the spindle midzone region of animal cells is functionally equivalent to the phragmoplast of plants and acts to target secretion to the equatorial plane of a cleaving cell.
Collapse
Affiliation(s)
- Ahna R. Skop
- Laboratory of Molecular Biology, University of Colorado, Boulder, Colorado 80309, USA
| | - Dominique Bergmann
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
| | - William A. Mohler
- Laboratory of Molecular Biology, University of Colorado, Boulder, Colorado 80309, USA
| | - John G. White
- Laboratory of Molecular Biology, University of Colorado, Boulder, Colorado 80309, USA
- Department of Anatomy, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
35
|
Affiliation(s)
- L M Machesky
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | |
Collapse
|
36
|
Nguyen TQ, Sawa H, Okano H, White JG. The C. elegans septin genes, unc-59 and unc-61, are required for normal postembryonic cytokineses and morphogenesis but have no essential function in embryogenesis. J Cell Sci 2000; 113 Pt 21:3825-37. [PMID: 11034910 DOI: 10.1242/jcs.113.21.3825] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Septins have been shown to play important roles in cytokinesis in diverse organisms ranging from yeast to mammals. In this study, we show that both the unc-59 and unc-61 loci encode Caenorhabditis elegans septins. Genomic database searches indicate that unc-59 and unc-61 are probably the only septin genes in the C. elegans genome. UNC-59 and UNC-61 localize to the leading edge of cleavage furrows and eventually reside at the midbody. Analysis of unc-59 and unc-61 mutants revealed that each septin requires the presence of the other for localization to the cytokinetic furrow. Surprisingly, unc-59 and unc-61 mutants generally have normal embryonic development; however, defects were observed in post-embryonic development affecting the morphogenesis of the vulva, male tail, gonad, and sensory neurons. These defects can be at least partially attributed to failures in post-embryonic cytokineses although our data also suggest other possible roles for septins. unc-59 and unc-61 double mutants show similar defects to each of the single mutants.
Collapse
Affiliation(s)
- T Q Nguyen
- Cellular Molecular Biology Program, Laboratory of Molecular Biology, University of Wisconsin, Madison, WI 53706 USA
| | | | | | | |
Collapse
|
37
|
Schaerer-Brodbeck C, Riezman H. Interdependence of filamentous actin and microtubules for asymmetric cell division. Biol Chem 2000; 381:815-25. [PMID: 11076014 DOI: 10.1515/bc.2000.104] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Asymmetric cell divisions are crucial to the generation of cell fate diversity. They contribute to unequal distribution of cellular factors to the daughter cells. Asymmetric divisions are characterized by a 90 degrees rotation of the mitotic spindle. There is increasing evidence that a tight cooperation between cortical, filamentous actin and astral microtubules is indispensable for successful spindle rotation. Over the past years, the dynactin complex has emerged as a key candidate to mediate actin/microtubule interaction at the cortex. This review discusses our current understanding of how spindle rotation is accomplished by the interplay of filamentous actin and microtubules in a variety of experimental systems.
Collapse
|
38
|
Jantsch-Plunger V, Gönczy P, Romano A, Schnabel H, Hamill D, Schnabel R, Hyman AA, Glotzer M. CYK-4: A Rho family gtpase activating protein (GAP) required for central spindle formation and cytokinesis. J Cell Biol 2000; 149:1391-404. [PMID: 10871280 PMCID: PMC2175131 DOI: 10.1083/jcb.149.7.1391] [Citation(s) in RCA: 325] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
During cytokinesis of animal cells, the mitotic spindle plays at least two roles. Initially, the spindle positions the contractile ring. Subsequently, the central spindle, which is composed of microtubule bundles that form during anaphase, promotes a late step in cytokinesis. How the central spindle assembles and functions in cytokinesis is poorly understood. The cyk-4 gene has been identified by genetic analysis in Caenorhabditis elegans. Embryos from cyk-4(t1689ts) mutant hermaphrodites initiate, but fail to complete, cytokinesis. These embryos also fail to assemble the central spindle. We show that the cyk-4 gene encodes a GTPase activating protein (GAP) for Rho family GTPases. CYK-4 activates GTP hydrolysis by RhoA, Rac1, and Cdc42 in vitro. RNA-mediated interference of RhoA, Rac1, and Cdc42 indicates that only RhoA is essential for cytokinesis and, thus, RhoA is the likely target of CYK-4 GAP activity for cytokinesis. CYK-4 and a CYK-4:GFP fusion protein localize to the central spindle and persist at cell division remnants. CYK-4 localization is dependent on the kinesin-like protein ZEN-4/CeMKLP1 and vice versa. These data suggest that CYK-4 and ZEN-4/CeMKLP1 cooperate in central spindle assembly. Central spindle localization of CYK-4 could accelerate GTP hydrolysis by RhoA, thereby allowing contractile ring disassembly and completion of cytokinesis.
Collapse
Affiliation(s)
| | - Pierre Gönczy
- European Molecular Biology Lab, Heidelberg D-69117, Germany
| | - Alper Romano
- Research Institute of Molecular Pathology, A-1030 Vienna, Austria
| | - Heinke Schnabel
- Technical University Braunschweig, D-38106, Braunschweig, Germany
| | | | - Ralf Schnabel
- Technical University Braunschweig, D-38106, Braunschweig, Germany
| | | | - Michael Glotzer
- Research Institute of Molecular Pathology, A-1030 Vienna, Austria
| |
Collapse
|
39
|
Ono S. Purification and biochemical characterization of actin from Caenorhabditis elegans: its difference from rabbit muscle actin in the interaction with nematode ADF/cofilin. CELL MOTILITY AND THE CYTOSKELETON 2000; 43:128-36. [PMID: 10379837 DOI: 10.1002/(sici)1097-0169(1999)43:2<128::aid-cm4>3.0.co;2-c] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Biochemical analysis of cytoskeletal proteins of the nematode Caenorhabditis elegans can be combined with a vast resource of genetic information in order to understand the regulation and function of the cytoskeleton in vivo. Here, I report an improved and efficient method to purify actin from wild-type C. elegans and characterization of its biochemical properties. The purified actin was highly pure and free of several known actin-binding proteins. G-actin was polymerized into F-actin in a similar kinetic process to rabbit muscle actin. G-actin interacted with bovine DNase I and inhibited its activity. However, UNC-60B, an isoform of ADF/cofilin in C. elegans, showed a marked depolymerizing activity on C. elegans actin but not on rabbit muscle actin. The results indicate that C. elegans actin shares common biochemical properties with rabbit muscle actin, while actin-binding proteins can interact with C. elegans actin in a distinct manner from rabbit muscle actin.
Collapse
Affiliation(s)
- S Ono
- Department of Pathology, Emory University, Atlanta, Georgia 30322, USA.
| |
Collapse
|
40
|
Pichler S, Gönczy P, Schnabel H, Pozniakowski A, Ashford A, Schnabel R, Hyman AA. OOC-3, a novel putative transmembrane protein required for establishment of cortical domains and spindle orientation in the P(1) blastomere of C. elegans embryos. Development 2000; 127:2063-73. [PMID: 10769231 DOI: 10.1242/dev.127.10.2063] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Asymmetric cell divisions require the establishment of an axis of polarity, which is subsequently communicated to downstream events. During the asymmetric cell division of the P(1) blastomere in C. elegans, establishment of polarity depends on the establishment of anterior and posterior cortical domains, defined by the localization of the PAR proteins, followed by the orientation of the mitotic spindle along the previously established axis of polarity. To identify genes required for these events, we have screened a collection of maternal-effect lethal mutations on chromosome II of C. elegans. We have identified a mutation in one gene, ooc-3, with mis-oriented division axes at the two-cell stage. Here we describe the phenotypic and molecular characterization of ooc-3. ooc-3 is required for the correct localization of PAR-2 and PAR-3 cortical domains after the first cell division. OOC-3 is a novel putative transmembrane protein, which localizes to a reticular membrane compartment, probably the endoplasmic reticulum, that spans the whole cytoplasm and is enriched on the nuclear envelope and cell-cell boundaries. Our results show that ooc-3 is required to form the cortical domains essential for polarity after cell division.
Collapse
Affiliation(s)
- S Pichler
- Max Planck Institute for Cell Biology and Genetics, D-01307 Dresden, Germany
| | | | | | | | | | | | | |
Collapse
|
41
|
Heil-Chapdelaine RA, Tran NK, Cooper JA. Dynein-dependent movements of the mitotic spindle in Saccharomyces cerevisiae Do not require filamentous actin. Mol Biol Cell 2000; 11:863-72. [PMID: 10712505 PMCID: PMC14816 DOI: 10.1091/mbc.11.3.863] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In budding yeast, the mitotic spindle is positioned in the neck between the mother and the bud so that both cells inherit one nucleus. The movement of the mitotic spindle into the neck can be divided into two phases: (1) Kip3p-dependent movement of the nucleus to the neck and alignment of the short spindle, followed by (2) dynein-dependent movement of the spindle into the neck and oscillation of the elongating spindle within the neck. Actin has been hypothesized to be involved in all these movements. To test this hypothesis, we disrupted the actin cytoskeleton with the use of mutations and latrunculin A (latrunculin). We assayed nuclear segregation in synchronized cell populations and observed spindle movements in individual living cells. In synchronized cell populations, no actin cytoskeletal mutant segregated nuclei as poorly as cells lacking dynein function. Furthermore, nuclei segregated efficiently in latrunculin-treated cells. Individual living cell analysis revealed that the preanaphase spindle was mispositioned and misaligned in latrunculin-treated cells and that astral microtubules were misoriented, confirming a role for filamentous actin in the early, Kip3p-dependent phase of spindle positioning. Surprisingly, mispositioned and misaligned mitotic spindles moved into the neck in the absence of filamentous actin, albeit less efficiently. Finally, dynein-dependent sliding of astral microtubules along the cortex and oscillation of the elongating mitotic spindle in the neck occurred in the absence of filamentous actin.
Collapse
Affiliation(s)
- R A Heil-Chapdelaine
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | |
Collapse
|
42
|
Kaltschmidt JA, Davidson CM, Brown NH, Brand AH. Rotation and asymmetry of the mitotic spindle direct asymmetric cell division in the developing central nervous system. Nat Cell Biol 2000; 2:7-12. [PMID: 10620800 DOI: 10.1038/71323] [Citation(s) in RCA: 250] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The asymmetric segregation of cell-fate determinants and the generation of daughter cells of different sizes rely on the correct orientation and position of the mitotic spindle. In the Drosophila embryo, the determinant Prospero is localized basally and is segregated equally to daughters of similar cell size during epidermal cell division. In contrast, during neuroblast division Prospero is segregated asymmetrically to the smaller daughter cell. This simple switch between symmetric and asymmetric segregation is achieved by changing the orientation of cell division: neural cells divide in a plane perpendicular to that of epidermoblast division. Here, by labelling mitotic spindles in living Drosophila embryos, we show that neuroblast spindles are initially formed in the same axis as epidermal cells, but rotate before cell division. We find that daughter cells of different sizes arise because the spindle itself becomes asymmetric at anaphase: apical microtubules elongate, basal microtubules shorten, and the midbody moves basally until it is positioned asymmetrically between the two spindle poles. This observation contradicts the widely held hypothesis that the cleavage furrow is always placed midway between the two centrosomes.
Collapse
Affiliation(s)
- J A Kaltschmidt
- Wellcome/CRC Institute and Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | | | | | | |
Collapse
|
43
|
Schober M, Schaefer M, Knoblich JA. Bazooka recruits Inscuteable to orient asymmetric cell divisions in Drosophila neuroblasts. Nature 1999; 402:548-51. [PMID: 10591217 DOI: 10.1038/990135] [Citation(s) in RCA: 295] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Asymmetric cell divisions can be generated by the segregation of determinants into one of the two daughter cells. In Drosophila, neuroblasts divide asymmetrically along the apical-basal axis shortly after their delamination from the neuroectodermal epithelium. Several proteins, including Numb and Miranda, segregate into the basal daughter cell and are needed for the determination of its correct cell fate. Both the apical-basal orientation of the mitotic spindle and the localization of Numb and Miranda to the basal cell cortex are directed by Inscuteable, a protein that localizes to the apical cell cortex before and during neuroblast mitosis. Here we show that the apical localizaton of Inscuteable requires Bazooka, a protein containing a PDZ domain that is essential for apical-basal polarity in epithelial cells. Bazooka localizes with Inscuteable in neuroblasts and binds to the Inscuteable localization domain in vitro and in vivo. In embryos lacking both maternal and zygotic bazooka function, Inscuteable no longer localizes asymmetrically in neuroblasts and is instead uniformly distributed in the cytoplasm. Mitotic spindles in neuroblasts are misoriented in these embryos, and the proteins Numb and Miranda fail to localize asymmetrically in metaphase. Our results suggest that direct binding to Bazooka mediates the asymmetric localization of Inscuteable and connects the asymmetric division of neuroblasts to the axis of epithelial apical-basal polarity.
Collapse
Affiliation(s)
- M Schober
- Research Institute of Molecular Pathology, Vienna, Austria
| | | | | |
Collapse
|
44
|
Pattern formation in single cells. Trends Genet 1999. [DOI: 10.1016/s0168-9525(99)01905-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
|
46
|
|
47
|
Basham SE, Rose LS. Mutations in ooc-5 and ooc-3 disrupt oocyte formation and the reestablishment of asymmetric PAR protein localization in two-cell Caenorhabditis elegans embryos. Dev Biol 1999; 215:253-63. [PMID: 10545235 DOI: 10.1006/dbio.1999.9447] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The early development of Caenorhabditis elegans embryos is characterized by a series of asymmetric divisions in which the mitotic spindle is repeatedly oriented on the same axis due to a rotation of the nuclear-centrosome complex. To identify genes involved in the control of spindle orientation, we have screened maternal-effect lethal mutants for alterations in cleavage pattern. Here we describe mutations in ooc-5 and ooc-3, which were isolated on the basis of a nuclear rotation defect in the P(1) cell of two-cell embryos. These mutations are novel in that they affect the asymmetric localization of PAR proteins at the two-cell stage, but not at the one-cell stage. In wild-type two-cell embryos, PAR-3 protein is present around the entire periphery of the AB cell and prevents nuclear rotation in this cell. In contrast, PAR-2 functions to allow nuclear rotation in the P(1) cell by restricting PAR-3 localization to the anterior periphery of P(1). In ooc-5 and ooc-3 mutant embryos, PAR-3 was mislocalized around the periphery of P(1), while PAR-2 was reduced or absent. The germ-line-specific P granules were also mislocalized at the two-cell stage. Mutations in ooc-5 and ooc-3 also result in reduced-size oocytes and embryos. However, par-3 ooc double-mutant embryos can exhibit nuclear rotation, indicating that small size per se does not prevent rotation and that PAR-3 mislocalization contributes to the failure of rotation in ooc mutants. We therefore postulate that wild-type ooc-5 and ooc-3 function in oogenesis and in the reestablishment of asymmetric domains of PAR proteins at the two-cell stage.
Collapse
Affiliation(s)
- S E Basham
- Section of Molecular and Cellular Biology, University of California at Davis, One Shields Avenue, Davis, California 95616, USA
| | | |
Collapse
|
48
|
Gallagher K, Smith LG. discordia mutations specifically misorient asymmetric cell divisions during development of the maize leaf epidermis. Development 1999; 126:4623-33. [PMID: 10498696 DOI: 10.1242/dev.126.20.4623] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In plant cells, cytokinesis depends on a cytoskeletal structure called a phragmoplast, which directs the formation of a new cell wall between daughter nuclei after mitosis. The orientation of cell division depends on guidance of the phragmoplast during cytokinesis to a cortical site marked throughout prophase by another cytoskeletal structure called a preprophase band. Asymmetrically dividing cells become polarized and form asymmetric preprophase bands prior to mitosis; phragmoplasts are subsequently guided to these asymmetric cortical sites to form daughter cells of different shapes and/or sizes. Here we describe two new recessive mutations, discordia1 (dcd1) and discordia2 (dcd2), which disrupt the spatial regulation of cytokinesis during asymmetric cell divisions. Both mutations disrupt four classes of asymmetric cell divisions during the development of the maize leaf epidermis, without affecting the symmetric divisions through which most epidermal cells arise. The effects of dcd mutations on asymmetric cell division can be mimicked by cytochalasin D treatment, and divisions affected by dcd1 are hypersensitive to the effects of cytochalasin D. Analysis of actin and microtubule organization in these mutants showed no effect of either mutation on cell polarity, or on formation and localization of preprophase bands and spindles. In mutant cells, phragmoplasts in asymmetrically dividing cells are structurally normal and are initiated in the correct location, but often fail to move to the position formerly occupied by the preprophase band. We propose that dcd mutations disrupt an actin-dependent process necessary for the guidance of phragmoplasts during cytokinesis in asymmetrically dividing cells.
Collapse
Affiliation(s)
- K Gallagher
- Department of Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | |
Collapse
|
49
|
Gönczy P, Pichler S, Kirkham M, Hyman AA. Cytoplasmic dynein is required for distinct aspects of MTOC positioning, including centrosome separation, in the one cell stage Caenorhabditis elegans embryo. J Cell Biol 1999; 147:135-50. [PMID: 10508861 PMCID: PMC2164971 DOI: 10.1083/jcb.147.1.135] [Citation(s) in RCA: 360] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/1999] [Accepted: 08/23/1999] [Indexed: 11/22/2022] Open
Abstract
We have investigated the role of cytoplasmic dynein in microtubule organizing center (MTOC) positioning using RNA-mediated interference (RNAi) in Caenorhabditis elegans to deplete the product of the dynein heavy chain gene dhc-1. Analysis with time-lapse differential interference contrast microscopy and indirect immunofluorescence revealed that pronuclear migration and centrosome separation failed in one cell stage dhc-1 (RNAi) embryos. These phenotypes were also observed when the dynactin components p50/dynamitin or p150(Glued) were depleted with RNAi. Moreover, in 15% of dhc-1 (RNAi) embryos, centrosomes failed to remain in proximity of the male pronucleus. When dynein heavy chain function was diminished only partially with RNAi, centrosome separation took place, but orientation of the mitotic spindle was defective. Therefore, cytoplasmic dynein is required for multiple aspects of MTOC positioning in the one cell stage C. elegans embryo. In conjunction with our observation of cytoplasmic dynein distribution at the periphery of nuclei, these results lead us to propose a mechanism in which cytoplasmic dynein anchored on the nucleus drives centrosome separation.
Collapse
Affiliation(s)
- P Gönczy
- European Molecular Biology Laboratory, Heidelberg, D-69117 Germany.
| | | | | | | |
Collapse
|
50
|
McCartney BM, Dierick HA, Kirkpatrick C, Moline MM, Baas A, Peifer M, Bejsovec A. Drosophila APC2 is a cytoskeletally-associated protein that regulates wingless signaling in the embryonic epidermis. J Cell Biol 1999; 146:1303-18. [PMID: 10491393 PMCID: PMC2156123 DOI: 10.1083/jcb.146.6.1303] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/1999] [Accepted: 08/09/1999] [Indexed: 01/11/2023] Open
Abstract
The tumor suppressor adenomatous polyposis coli (APC) negatively regulates Wingless (Wg)/Wnt signal transduction by helping target the Wnt effector beta-catenin or its Drosophila homologue Armadillo (Arm) for destruction. In cultured mammalian cells, APC localizes to the cell cortex near the ends of microtubules. Drosophila APC (dAPC) negatively regulates Arm signaling, but only in a limited set of tissues. We describe a second fly APC, dAPC2, which binds Arm and is expressed in a broad spectrum of tissues. dAPC2's subcellular localization revealed colocalization with actin in many but not all cellular contexts, and also suggested a possible interaction with astral microtubules. For example, dAPC2 has a striking asymmetric distribution in neuroblasts, and dAPC2 colocalizes with assembling actin filaments at the base of developing larval denticles. We identified a dAPC2 mutation, revealing that dAPC2 is a negative regulator of Wg signaling in the embryonic epidermis. This allele acts genetically downstream of wg, and upstream of arm, dTCF, and, surprisingly, dishevelled. We discuss the implications of our results for Wg signaling, and suggest a role for dAPC2 as a mediator of Wg effects on the cytoskeleton. We also speculate on more general roles that APCs may play in cytoskeletal dynamics.
Collapse
Affiliation(s)
- Brooke M. McCartney
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280
| | - Herman A. Dierick
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois 60208-3500
| | - Catherine Kirkpatrick
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280
| | - Melissa M. Moline
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois 60208-3500
| | - Annette Baas
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280
| | - Amy Bejsovec
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois 60208-3500
| |
Collapse
|