1
|
Moriya A, Nakato E, Li JP, Nakato H. Chondroitin sulfate in invertebrate development. PROTEOGLYCAN RESEARCH 2024; 2:e70009. [PMID: 39664970 PMCID: PMC11632948 DOI: 10.1002/pgr2.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/16/2024] [Indexed: 12/13/2024]
Abstract
Chondroitin sulfate (CS) is one of the most evolutionarily conserved glycosaminoglycans (GAGs). Although CS's function in skeletal development is well established in vertebrates, CS exists in more primitive animal species with no cartilage or bone, such as C. elegans and Drosophila, indicating that the original role of CS was not in the skeletal system. In this review, we focus on the roles of CS and the mechanisms of action during development of two genetically trackable model organisms, C. elegans and Drosophila.
Collapse
Affiliation(s)
- Ayano Moriya
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Eriko Nakato
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Hiroshi Nakato
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
2
|
Alvarez-Rodrigo I, Willnow D, Vincent JP. The logistics of Wnt production and delivery. Curr Top Dev Biol 2023; 153:1-60. [PMID: 36967191 DOI: 10.1016/bs.ctdb.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Wnts are secreted proteins that control stem cell maintenance, cell fate decisions, and growth during development and adult homeostasis. Wnts carry a post-translational modification not seen in any other secreted protein: during biosynthesis, they are appended with a palmitoleoyl moiety that is required for signaling but also impairs solubility and hence diffusion in the extracellular space. In some contexts, Wnts act only in a juxtacrine manner but there are also instances of long range action. Several proteins and processes ensure that active Wnts reach the appropriate target cells. Some, like Porcupine, Wntless, and Notum are dedicated to Wnt function; we describe their activities in molecular detail. We also outline how the cell infrastructure (secretory, endocytic, and retromer pathways) contribute to the progression of Wnts from production to delivery. We then address how Wnts spread in the extracellular space and form a signaling gradient despite carrying a hydrophobic moiety. We highlight particularly the role of lipid-binding Wnt interactors and heparan sulfate proteoglycans. Finally, we briefly discuss how evolution might have led to the emergence of this unusual signaling pathway.
Collapse
|
3
|
Chemistry and Function of Glycosaminoglycans in the Nervous System. ADVANCES IN NEUROBIOLOGY 2023; 29:117-162. [DOI: 10.1007/978-3-031-12390-0_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
4
|
Liu YC, Wierbowski BM, Salic A. Hedgehog pathway modulation by glypican 3-conjugated heparan sulfate. J Cell Sci 2022; 135:274739. [PMID: 35142364 PMCID: PMC8977055 DOI: 10.1242/jcs.259297] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 02/04/2022] [Indexed: 11/20/2022] Open
Abstract
Glypicans are a family of cell surface heparan sulfate proteoglycans that play critical roles in multiple cell signaling pathways. Glypicans consist of a globular core, an unstructured stalk modified with sulfated glycosaminoglycan chains, and a glycosylphosphatidylinositol anchor. Though these structural features are conserved, their individual contribution to glypican function remains obscure. Here, we investigate how glypican 3 (GPC3), which is mutated in Simpson-Golabi-Behmel tissue overgrowth syndrome, regulates Hedgehog signaling. We find that GPC3 is necessary for the Hedgehog response, surprisingly controlling a downstream signal transduction step. Purified GPC3 ectodomain rescues signaling when artificially recruited to the surface of GPC3-deficient cells but has dominant-negative activity when unattached. Strikingly, the purified stalk, modified with heparan sulfate but not chondroitin sulfate, is necessary and sufficient for activity. Our results demonstrate a novel function for GPC3-associated heparan sulfate and provide a framework for the functional dissection of glycosaminoglycans by in vivo biochemical complementation. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Yulu Cherry Liu
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.,Department of Biology, Hood College, Frederick, MD 21701, USA
| | | | - Adrian Salic
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
5
|
Stapornwongkul KS, Vincent JP. Generation of extracellular morphogen gradients: the case for diffusion. Nat Rev Genet 2021; 22:393-411. [PMID: 33767424 DOI: 10.1038/s41576-021-00342-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2021] [Indexed: 02/07/2023]
Abstract
Cells within developing tissues rely on morphogens to assess positional information. Passive diffusion is the most parsimonious transport model for long-range morphogen gradient formation but does not, on its own, readily explain scaling, robustness and planar transport. Here, we argue that diffusion is sufficient to ensure robust morphogen gradient formation in a variety of tissues if the interactions between morphogens and their extracellular binders are considered. A current challenge is to assess how the affinity for extracellular binders, as well as other biophysical and cell biological parameters, determines gradient dynamics and shape in a diffusion-based transport system. Technological advances in genome editing, tissue engineering, live imaging and in vivo biophysics are now facilitating measurement of these parameters, paving the way for mathematical modelling and a quantitative understanding of morphogen gradient formation and modulation.
Collapse
|
6
|
Gopal S, Arokiasamy S, Pataki C, Whiteford JR, Couchman JR. Syndecan receptors: pericellular regulators in development and inflammatory disease. Open Biol 2021; 11:200377. [PMID: 33561383 PMCID: PMC8061687 DOI: 10.1098/rsob.200377] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
The syndecans are the major family of transmembrane proteoglycans, usually bearing multiple heparan sulfate chains. They are present on virtually all nucleated cells of vertebrates and are also present in invertebrates, indicative of a long evolutionary history. Genetic models in both vertebrates and invertebrates have shown that syndecans link to the actin cytoskeleton and can fine-tune cell adhesion, migration, junction formation, polarity and differentiation. Although often associated as co-receptors with other classes of receptors (e.g. integrins, growth factor and morphogen receptors), syndecans can nonetheless signal to the cytoplasm in discrete ways. Syndecan expression levels are upregulated in development, tissue repair and an array of human diseases, which has led to the increased appreciation that they may be important in pathogenesis not only as diagnostic or prognostic agents, but also as potential targets. Here, their functions in development and inflammatory diseases are summarized, including their potential roles as conduits for viral pathogen entry into cells.
Collapse
Affiliation(s)
- Sandeep Gopal
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Samantha Arokiasamy
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Csilla Pataki
- Biotech Research and Innovation Centre, University of Copenhagen, Biocentre 1.3.16, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - James R. Whiteford
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - John R. Couchman
- Biotech Research and Innovation Centre, University of Copenhagen, Biocentre 1.3.16, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| |
Collapse
|
7
|
Zhu W, Chang L, Zhao T, Wang B, Jiang J. Remarkable metabolic reorganization and altered metabolic requirements in frog metamorphic climax. Front Zool 2020; 17:30. [PMID: 33062031 PMCID: PMC7542913 DOI: 10.1186/s12983-020-00378-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
Background Metamorphic climax is the crucial stage of amphibian metamorphosis responsible for the morphological and functional changes necessary for transition to a terrestrial habitat. This developmental period is sensitive to environmental changes and pollution. Understanding its metabolic basis and requirements is significant for ecological and toxicological research. Rana omeimontis tadpoles are a useful model for investigating this stage as their liver is involved in both metabolic regulation and fat storage. Results We used a combined approach of transcriptomics and metabolomics to study the metabolic reorganization during natural and T3-driven metamorphic climax in the liver and tail of Rana omeimontis tadpoles. The metabolic flux from the apoptotic tail replaced hepatic fat storage as metabolic fuel, resulting in increased hepatic amino acid and fat levels. In the liver, amino acid catabolism (transamination and urea cycle) was upregulated along with energy metabolism (TCA cycle and oxidative phosphorylation), while the carbohydrate and lipid catabolism (glycolysis, pentose phosphate pathway (PPP), and β-oxidation) decreased. The hepatic glycogen phosphorylation and gluconeogenesis were upregulated, and the carbohydrate flux was used for synthesis of glycan units (e.g., UDP-glucuronate). In the tail, glycolysis, β-oxidation, and transamination were all downregulated, accompanied by synchronous downregulation of energy production and consumption. Glycogenolysis was maintained in the tail, and the carbohydrate flux likely flowed into both PPP and the synthesis of glycan units (e.g., UDP-glucuronate and UDP-glucosamine). Fatty acid elongation and desaturation, as well as the synthesis of bioactive lipid (e.g., prostaglandins) were encouraged in the tail during metamorphic climax. Protein synthesis was downregulated in both the liver and tail. The significance of these metabolic adjustments and their potential regulation mechanism are discussed. Conclusion The energic strategy and anabolic requirements during metamorphic climax were revealed at the molecular level. Amino acid made an increased contribution to energy metabolism during metamorphic climax. Carbohydrate anabolism was essential for the body construction of the froglets. The tail was critical in anabolism including synthesizing bioactive metabolites. These findings increase our understanding of amphibian metamorphosis and provide background information for ecological, evolutionary, conservation, and developmental studies of amphibians.
Collapse
Affiliation(s)
- Wei Zhu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, No.9, Section4, South Renmin Road, Chengdu, 610041 Sichuan China
| | - Liming Chang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, No.9, Section4, South Renmin Road, Chengdu, 610041 Sichuan China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Tian Zhao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, No.9, Section4, South Renmin Road, Chengdu, 610041 Sichuan China
| | - Bin Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, No.9, Section4, South Renmin Road, Chengdu, 610041 Sichuan China
| | - Jianping Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, No.9, Section4, South Renmin Road, Chengdu, 610041 Sichuan China
| |
Collapse
|
8
|
Xie M, Li JP. Heparan sulfate proteoglycan - A common receptor for diverse cytokines. Cell Signal 2018; 54:115-121. [PMID: 30500378 DOI: 10.1016/j.cellsig.2018.11.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 01/04/2023]
Abstract
Heparan sulfate proteoglycans (HSPG) are macromolecular glyco-conjugates expressed ubiquitously on the cell surface and in the extracellular matrix where they interact with a wide range of ligands to regulate many aspects of cellular function. The capacity of the side glycosaminoglycan chain heparan sulfate (HS) being able to interact with diverse protein ligands relies on its complex structure that is generated by a controlled biosynthesis process, involving the actions of glycosyl-transferases, sulfotransferases and the glucuronyl C5-epimerase. It is believed that activities of the modification enzymes control the HS structures that are designed to serve the biological functions in a given cell or biological status. In this review, we briefly discuss recent understandings on the roles of HSPG in cytokine stimulated cellular signaling, focusing on FGF, TGF-β, Wnt, Hh, HGF and VEGF.
Collapse
Affiliation(s)
- Meng Xie
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology, SciLifeLab Uppsala, The Biomedical Center, University of Uppsala, Uppsala, Sweden.
| |
Collapse
|
9
|
Grainger S, Willert K. Mechanisms of Wnt signaling and control. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2018; 10:e1422. [PMID: 29600540 PMCID: PMC6165711 DOI: 10.1002/wsbm.1422] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 02/14/2018] [Accepted: 02/22/2018] [Indexed: 01/17/2023]
Abstract
The Wnt signaling pathway is a highly conserved system that regulates complex biological processes across all metazoan species. At the cellular level, secreted Wnt proteins serve to break symmetry and provide cells with positional information that is critical to the patterning of the entire body plan. At the organismal level, Wnt signals are employed to orchestrate fundamental developmental processes, including the specification of the anterior-posterior body axis, induction of the primitive streak and ensuing gastrulation movements, and the generation of cell and tissue diversity. Wnt functions extend into adulthood where they regulate stem cell behavior, tissue homeostasis, and damage repair. Disruption of Wnt signaling activity during embryonic development or in adults results in a spectrum of abnormalities and diseases, including cancer. The molecular mechanisms that underlie the myriad of Wnt-regulated biological effects have been the subject of intense research for over three decades. This review is intended to summarize our current understanding of how Wnt signals are generated and interpreted. This article is categorized under: Biological Mechanisms > Cell Signaling Developmental Biology > Stem Cell Biology and Regeneration.
Collapse
Affiliation(s)
- Stephanie Grainger
- Department of Cellular and Molecular Medicine University of California San Diego La Jolla California
| | - Karl Willert
- Department of Cellular and Molecular Medicine University of California San Diego La Jolla California
| |
Collapse
|
10
|
Coulson-Thomas VJ. The role of heparan sulphate in development: the ectodermal story. Int J Exp Pathol 2016; 97:213-29. [PMID: 27385054 DOI: 10.1111/iep.12180] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/24/2016] [Indexed: 12/27/2022] Open
Abstract
Heparan sulphate (HS) is ubiquitously expressed and is formed of repeating glucosamine and glucuronic/iduronic acid units which are generally highly sulphated. HS is found in tissues bound to proteins forming HS proteoglycans (HSPGs) which are present on the cell membrane or in the extracellular matrix. HSPGs influence a variety of biological processes by interacting with physiologically important proteins, such as morphogens, creating storage pools, generating morphogen gradients and directly mediating signalling pathways, thereby playing vital roles during development. This review discusses the vital role HS plays in the development of tissues from the ectodermal lineage. The ectodermal layer differentiates to form the nervous system (including the spine, peripheral nerves and brain), eye, epidermis, skin appendages and tooth enamel.
Collapse
|
11
|
Nakato H, Li JP. Functions of Heparan Sulfate Proteoglycans in Development: Insights From Drosophila Models. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 325:275-93. [PMID: 27241223 DOI: 10.1016/bs.ircmb.2016.02.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Heparan sulfate proteoglycans (HSPGs) are a class of carbohydrate-modified proteins involved in key biological processes, including growth factor signaling, cell adhesion, and enzymatic catalysis. HSPGs serve as coreceptors for a number of ligand molecules to regulate their signaling and distribution. These HS-dependent factors include fibroblast growth factors, bone morphogenetic proteins, Wnt-related factors, hedgehog, and cytokines. Several classes of HSPGs are evolutionarily conserved from humans to the genetically tractable model organism Drosophila. Sophisticated molecular genetic tools available in Drosophila provide for a powerful system to address unanswered questions regarding in vivo functions of HSPGs. These studies have highlighted the functions of HSPGs in the regulation of significant developmental events, such as morphogen gradient formation, nervous system formation, and the stem cell niche. Drosophila genetics has also established HSPGs as key factors in feedback controls that ensure robustness in developmental systems.
Collapse
Affiliation(s)
- H Nakato
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States; Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| | - J-P Li
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
12
|
Pataki CA, Couchman JR, Brábek J. Wnt Signaling Cascades and the Roles of Syndecan Proteoglycans. J Histochem Cytochem 2015; 63:465-80. [PMID: 25910817 DOI: 10.1369/0022155415586961] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/21/2015] [Indexed: 12/17/2022] Open
Abstract
Wnt signaling comprises a group of pathways emanating from the extracellular environment through cell-surface receptors into the intracellular milieu. Wnt signaling cascades can be divided into two main branches, the canonical/β-catenin pathway and the non-canonical pathways containing the Wnt/planar cell polarity and Wnt/calcium signaling. Syndecans are type I transmembrane proteoglycans with a long evolutionary history, being expressed in all Bilateria and in almost all cell types. Both Wnt pathways have been extensively studied over the past 30 years and shown to have roles during development and in a multitude of diseases. Although the first evidence for interactions between syndecans and Wnts dates back to 1997, the number of studies connecting these pathways is low, and many open questions remained unanswered. In this review, syndecan's involvement in Wnt signaling pathways as well as some of the pathologies resulting from dysregulation of the components of these pathways are summarized.
Collapse
Affiliation(s)
- Csilla A Pataki
- Department of Cell Biology, Charles University in Prague, Czech Republic, University of Copenhagen, Denmark (CAP,JB)
| | - John R Couchman
- Department of Biomedical Sciences and Biotech Research and Innovation Center, University of Copenhagen, Denmark (JRC)
| | - Jan Brábek
- Department of Cell Biology, Charles University in Prague, Czech Republic, University of Copenhagen, Denmark (CAP,JB)
| |
Collapse
|
13
|
Cassese A, Guindani M, Antczak P, Falciani F, Vannucci M. A Bayesian model for the identification of differentially expressed genes in Daphnia magna exposed to munition pollutants. Biometrics 2015; 71:803-11. [PMID: 25771699 DOI: 10.1111/biom.12303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 12/01/2014] [Accepted: 02/01/2015] [Indexed: 11/29/2022]
Abstract
In this article we propose a Bayesian hierarchical model for the identification of differentially expressed genes in Daphnia magna organisms exposed to chemical compounds, specifically munition pollutants in water. The model we propose constitutes one of the very first attempts at a rigorous modeling of the biological effects of water purification. We have data acquired from a purification system that comprises four consecutive purification stages, which we refer to as "ponds," of progressively more contaminated water. We model the expected expression of a gene in a pond as the sum of the mean of the same gene in the previous pond plus a gene-pond specific difference. We incorporate a variable selection mechanism for the identification of the differential expressions, with a prior distribution on the probability of a change that accounts for the available information on the concentration of chemical compounds present in the water. We carry out posterior inference via MCMC stochastic search techniques. In the application, we reduce the complexity of the data by grouping genes according to their functional characteristics, based on the KEGG pathway database. This also increases the biological interpretability of the results. Our model successfully identifies a number of pathways that show differential expression between consecutive purification stages. We also find that changes in the transcriptional response are more strongly associated to the presence of certain compounds, with the remaining contributing to a lesser extent. We discuss the sensitivity of these results to the model parameters that measure the influence of the prior information on the posterior inference.
Collapse
Affiliation(s)
- Alberto Cassese
- Department of Statistics, Rice University, Houston, Texas 77005, U.S.A.,Department of Biostatistics, UT MD Anderson Cancer Center, Houston, Texas, U.S.A
| | - Michele Guindani
- Department of Biostatistics, UT MD Anderson Cancer Center, Houston, Texas, U.S.A
| | - Philipp Antczak
- Institute of Integrative Biology, University of Liverpool, Liverpool, U.K
| | - Francesco Falciani
- Institute of Integrative Biology, University of Liverpool, Liverpool, U.K
| | - Marina Vannucci
- Department of Statistics, Rice University, Houston, Texas 77005, U.S.A
| |
Collapse
|
14
|
Jumbo-Lucioni P, Parkinson W, Broadie K. Overelaborated synaptic architecture and reduced synaptomatrix glycosylation in a Drosophila classic galactosemia disease model. Dis Model Mech 2014; 7:1365-78. [PMID: 25326312 PMCID: PMC4257005 DOI: 10.1242/dmm.017137] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Classic galactosemia (CG) is an autosomal recessive disorder resulting from loss of galactose-1-phosphate uridyltransferase (GALT), which catalyzes conversion of galactose-1-phosphate and uridine diphosphate (UDP)-glucose to glucose-1-phosphate and UDP-galactose, immediately upstream of UDP-N-acetylgalactosamine and UDP-N-acetylglucosamine synthesis. These four UDP-sugars are essential donors for driving the synthesis of glycoproteins and glycolipids, which heavily decorate cell surfaces and extracellular spaces. In addition to acute, potentially lethal neonatal symptoms, maturing individuals with CG develop striking neurodevelopmental, motor and cognitive impairments. Previous studies suggest that neurological symptoms are associated with glycosylation defects, with CG recently being described as a congenital disorder of glycosylation (CDG), showing defects in both N- and O-linked glycans. Here, we characterize behavioral traits, synaptic development and glycosylated synaptomatrix formation in a GALT-deficient Drosophila disease model. Loss of Drosophila GALT (dGALT) greatly impairs coordinated movement and results in structural overelaboration and architectural abnormalities at the neuromuscular junction (NMJ). Dietary galactose and mutation of galactokinase (dGALK) or UDP-glucose dehydrogenase (sugarless) genes are identified, respectively, as critical environmental and genetic modifiers of behavioral and cellular defects. Assaying the NMJ extracellular synaptomatrix with a broad panel of lectin probes reveals profound alterations in dGALT mutants, including depletion of galactosyl, N-acetylgalactosamine and fucosylated horseradish peroxidase (HRP) moieties, which are differentially corrected by dGALK co-removal and sugarless overexpression. Synaptogenesis relies on trans-synaptic signals modulated by this synaptomatrix carbohydrate environment, and dGALT-null NMJs display striking changes in heparan sulfate proteoglycan (HSPG) co-receptor and Wnt ligand levels, which are also corrected by dGALK co-removal and sugarless overexpression. These results reveal synaptomatrix glycosylation losses, altered trans-synaptic signaling pathway components, defective synaptogenesis and impaired coordinated movement in a CG neurological disease model.
Collapse
Affiliation(s)
- Patricia Jumbo-Lucioni
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA
| | - William Parkinson
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA
| | - Kendal Broadie
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
15
|
Schwartz NB, Domowicz MS. Chemistry and Function of Glycosaminoglycans in the Nervous System. ADVANCES IN NEUROBIOLOGY 2014; 9:89-115. [DOI: 10.1007/978-1-4939-1154-7_5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
van Wijk XMR, van Kuppevelt TH. Heparan sulfate in angiogenesis: a target for therapy. Angiogenesis 2013; 17:443-62. [PMID: 24146040 DOI: 10.1007/s10456-013-9401-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 10/15/2013] [Indexed: 01/02/2023]
Abstract
Heparan sulfate (HS), a long linear polysaccharide of alternating disaccharide residues, interacts with a wide variety of proteins, including many angiogenic factors. The involvement of HS in signaling of pro-angiogenic factors (e.g. vascular endothelial growth factor and fibroblast growth factor 2), as well as interaction with anti-angiogenic factors (e.g. endostatin), warrants its role as an important modifier of (tumor) angiogenesis. This review summarizes our current understanding of the role of HS in angiogenic growth factor signaling, and discusses therapeutic strategies to target HS and modulate angiogenesis.
Collapse
Affiliation(s)
- Xander M R van Wijk
- Department of Biochemistry (280), Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, PO. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Wnt proteins are morphogens encoded by 19 mammalian genes that play essential roles in embryonic development, stem cell renewal, and adult tissue homeostasis. The recent publication of the first crystal structure of a Wnt protein represents a key step in the study of Wnt signaling. RECENT FINDINGS We discuss the basic aspects of Wnt signaling, provide historical background for why the proteins have been so challenging to study from a biochemical perspective, describe the lipid modifications that occur to Wnt proteins, and then discuss the implications of the recently reported crystal structure. SUMMARY The recent determination of the Wnt8-Fz8 structure has created new opportunities to better understand the mechanisms by which Wnt proteins activate downstream signaling pathways and has further clarified why lipid modification of Wnt is required for activation.
Collapse
Affiliation(s)
- Jiyuan Ke
- Laboratory of Structural Studies, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | | | | |
Collapse
|
18
|
Abstract
The canonical Wnt/β-catenin pathway is an ancient and evolutionarily conserved signaling pathway that is required for the proper development of all metazoans, from the basal demosponge Amphimedon queenslandica to humans. Misregulation of Wnt signaling is implicated in many human diseases, making this pathway an intense area of research in industry as well as academia. In this review, we explore our current understanding of the molecular steps involved in the transduction of a Wnt signal. We will focus on how the critical Wnt pathway component, β-catenin, is in a "futile cycle" of constant synthesis and degradation and how this cycle is disrupted upon pathway activation. We describe the role of the Wnt pathway in major human cancers and in the control of stem cell self-renewal in the developing organism and in adults. Finally, we describe well-accepted criteria that have been proposed as evidence for the involvement of a molecule in regulating the canonical Wnt pathway.
Collapse
Affiliation(s)
- Kenyi Saito-Diaz
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232-8240, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Zhang Y, You J, Ren W, Lin X. Drosophila glypicans Dally and Dally-like are essential regulators for JAK/STAT signaling and Unpaired distribution in eye development. Dev Biol 2013; 375:23-32. [PMID: 23313126 DOI: 10.1016/j.ydbio.2012.12.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 12/22/2012] [Accepted: 12/31/2012] [Indexed: 11/19/2022]
Abstract
The highly conserved janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway is a well-known signaling system that is involved in many biological processes. In Drosophila, this signaling cascade is activated by ligands of the Unpaired (Upd) family. Therefore, the regulation of Upd distribution is one of the key issues in controlling the JAK/STAT signaling activity and function. Heparan sulfate proteoglycans (HSPGs) are macromolecules that regulate the distribution of many ligand proteins including Wingless, Hedgehog and Decapentaplegic (Dpp). Here we show that during Drosophila eye development, HSPGs are also required in normal Upd distribution and JAK/STAT signaling activity. Loss of HSPG biosynthesis enzyme Brother of tout-velu (Botv), Sulfateless (Sfl), or glypicans Division abnormally delayed (Dally) and Dally-like protein (Dlp) led to reduced levels of extracellular Upd and reduction in JAK/STAT signaling activity. Overexpression of dally resulted in the accumulation of Upd and up-regulation of the signaling activity. Luciferase assay also showed that Dally promotes JAK/STAT signaling activity, and is dependent on its heparin sulfate chains. These data suggest that Dally and Dlp are essential for Upd distribution and JAK/STAT signaling activity.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Science, Beijing 100101, China
| | | | | | | |
Collapse
|
20
|
Rescue of Notch signaling in cells incapable of GDP-L-fucose synthesis by gap junction transfer of GDP-L-fucose in Drosophila. Proc Natl Acad Sci U S A 2012; 109:15318-23. [PMID: 22949680 DOI: 10.1073/pnas.1202369109] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Notch (N) is a transmembrane receptor that mediates cell-cell interactions to determine many cell-fate decisions. N contains EGF-like repeats, many of which have an O-fucose glycan modification that regulates N-ligand binding. This modification requires GDP-L-fucose as a donor of fucose. The GDP-L-fucose biosynthetic pathways are well understood, including the de novo pathway, which depends on GDP-mannose 4,6 dehydratase (Gmd) and GDP-4-keto-6-deoxy-D-mannose 3,5-epimerase/4-reductase (Gmer). However, the potential for intercellularly supplied GDP-L-fucose and the molecular basis of such transportation have not been explored in depth. To address these points, we studied the genetic effects of mutating Gmd and Gmer on fucose modifications in Drosophila. We found that these mutants functioned cell-nonautonomously, and that GDP-L-fucose was supplied intercellularly through gap junctions composed of Innexin-2. GDP-L-fucose was not supplied through body fluids from different isolated organs, indicating that the intercellular distribution of GDP-L-fucose is restricted within a given organ. Moreover, the gap junction-mediated supply of GDP-L-fucose was sufficient to support the fucosylation of N-glycans and the O-fucosylation of the N EGF-like repeats. Our results indicate that intercellular delivery is a metabolic pathway for nucleotide sugars in live animals under certain circumstances.
Collapse
|
21
|
Kraushaar DC, Rai S, Condac E, Nairn A, Zhang S, Yamaguchi Y, Moremen K, Dalton S, Wang L. Heparan sulfate facilitates FGF and BMP signaling to drive mesoderm differentiation of mouse embryonic stem cells. J Biol Chem 2012; 287:22691-700. [PMID: 22556407 DOI: 10.1074/jbc.m112.368241] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heparan sulfate (HS) has been implicated in regulating cell fate decisions during differentiation of embryonic stem cells (ESCs) into advanced cell types. However, the necessity and the underlying molecular mechanisms of HS in early cell lineage differentiation are still largely unknown. In this study, we examined the potential of EXT1(-/-) mouse ESCs (mESCs), that are deficient in HS, to differentiate into primary germ layer cells. We observed that EXT1(-/-) mESCs lost their differentiation competence and failed to differentiate into Pax6(+)-neural precursor cells and mesodermal cells. More detailed analyses highlighted the importance of HS for the induction of Brachyury(+) pan-mesoderm as well as normal gene expression associated with the dorso-ventral patterning of mesoderm. Examination of developmental cell signaling revealed that EXT1 ablation diminished FGF and BMP but not Wnt signaling. Furthermore, restoration of FGF and BMP signaling each partially rescued mesoderm differentiation defects. We further show that BMP4 is more prone to degradation in EXT1(-/-) mESCs culture medium compared with that of wild type cells. Therefore, our data reveal that HS stabilizes BMP ligand and thereby maintains the BMP signaling output required for normal mesoderm differentiation. In summary, our study demonstrates that HS is required for ESC pluripotency, in particular lineage specification into mesoderm through facilitation of FGF and BMP signaling.
Collapse
Affiliation(s)
- Daniel C Kraushaar
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Extracellular signaling molecules have crucial roles in development and homeostasis, and their incorrect deployment can lead to developmental defects and disease states. Signaling molecules are released from sending cells, travel to target cells, and act over length scales of several orders of magnitude, from morphogen-mediated patterning of small developmental fields to hormonal signaling throughout the organism. We discuss how signals are modified and assembled for transport, which routes they take to reach their targets, and how their range is affected by mobility and stability.
Collapse
Affiliation(s)
- Patrick Müller
- Department of Molecular and Cellular Biology, Harvard Stem Cell Institute, Broad Institute, Center for Brain Science, FAS Center for Systems Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA.
| | | |
Collapse
|
23
|
Trivigno C, Haerry TE. The Drosophila mitochondrial translation elongation factor G1 contains a nuclear localization signal and inhibits growth and DPP signaling. PLoS One 2011; 6:e16799. [PMID: 21364917 PMCID: PMC3045377 DOI: 10.1371/journal.pone.0016799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 12/23/2010] [Indexed: 11/18/2022] Open
Abstract
Mutations in the human mitochondrial elongation factor G1 (EF-G1) are recessive lethal and cause death shortly after birth. We have isolated mutations in iconoclast (ico), which encodes the highly conserved Drosophila orthologue of EF-G1. We find that EF-G1 is essential during fly development, but its function is not required in every tissue. In contrast to null mutations, missense mutations exhibit stronger, possibly neomorphic phenotypes that lead to premature death during embryogenesis. Our experiments show that EF-G1 contains a secondary C-terminal nuclear localization signal. Expression of missense mutant forms of EF-G1 can accumulate in the nucleus and cause growth and patterning defects and animal lethality. We find that transgenes that encode mutant human EF-G1 proteins can rescue ico mutants, indicating that the underlying problem of the human disease is not just the loss of enzymatic activity. Our results are consistent with a model where EF-G1 acts as a retrograde signal from mitochondria to the nucleus to slow down cell proliferation if mitochondrial energy output is low.
Collapse
Affiliation(s)
- Catherine Trivigno
- Center for Molecular Biology and Biotechnology, Florida Atlantic University, Boca Raton, Florida, United States of America
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, United States of America
| | - Theodor E. Haerry
- Center for Molecular Biology and Biotechnology, Florida Atlantic University, Boca Raton, Florida, United States of America
- * E-mail:
| |
Collapse
|
24
|
Fuerer C, Habib SJ, Nusse R. A study on the interactions between heparan sulfate proteoglycans and Wnt proteins. Dev Dyn 2010; 239:184-90. [PMID: 19705435 PMCID: PMC2846786 DOI: 10.1002/dvdy.22067] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The Wnt signaling pathway plays key roles in development and adult homeostasis. Wnt proteins are secreted, lipid-modified glycoproteins. They can form morphogen gradients that are regulated at the level of protein secretion, diffusion, and internalization. These gradients can only exist if the hydrophobic Wnt proteins are prevented from aggregating in the extracellular environment. Heparan sulfate proteoglycans (HSPGs) are necessary for proper activity of Wnt proteins and influence their distribution along the morphogenetic gradient. In this study, we show that HSPGs are able to maintain the solubility of Wnt proteins, thus stabilizing their signaling activity. Our results suggest that the role of HSPGs is not only to concentrate Wnt molecules at the cell surface but also to prevent them from aggregating in the extracellular environment.
Collapse
Affiliation(s)
- Christophe Fuerer
- Howard Hughes Medical Institute, Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | |
Collapse
|
25
|
Buono M, Cosma MP. Sulfatase activities towards the regulation of cell metabolism and signaling in mammals. Cell Mol Life Sci 2010; 67:769-80. [PMID: 20165970 PMCID: PMC11115828 DOI: 10.1007/s00018-009-0203-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 10/27/2009] [Accepted: 11/04/2009] [Indexed: 10/20/2022]
Abstract
In higher vertebrates, sulfatases belong to a conserved family of enzymes that are involved in the regulation of cell metabolism and in developmental cell signaling. They cleave the sulfate from sulfate esters contained in hormones, proteins, and complex macromolecules. A highly conserved cysteine in their active site is post-translationally converted into formylglycine by the formylglycine-generating enzyme encoded by SUMF1 (sulfatase modifying factor 1). This post-translational modification activates all sulfatases. Sulfatases are extensively glycosylated proteins and some of them follow trafficking pathways through cells, being secreted and taken up by distant cells. Many proteoglycans, glycoproteins, and glycolipids contain sulfated carbohydrates, which are sulfatase substrates. Indeed, sulfatases operate as decoding factors for a large amount of biological information contained in the structures of the sulfated sugar chains that are covalently linked to proteins and lipids. Modifications to these sulfate groups have pivotal roles in modulating specific signaling pathways and cell metabolism in mammals.
Collapse
Affiliation(s)
- M. Buono
- Telethon Institute of Genetics and Medicine (TIGEM), CNR, via P. Castellino, 111, 80134 Naples, Italy
- Institute of Genetics and Biophysics (IGB), CNR, via P. Castellino, 111, 80134 Naples, Italy
| | - Maria Pia Cosma
- Telethon Institute of Genetics and Medicine (TIGEM), CNR, via P. Castellino, 111, 80134 Naples, Italy
- Institute of Genetics and Biophysics (IGB), CNR, via P. Castellino, 111, 80134 Naples, Italy
| |
Collapse
|
26
|
Ringvall M, Kjellén L. Mice deficient in heparan sulfate N-deacetylase/N-sulfotransferase 1. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 93:35-58. [PMID: 20807640 DOI: 10.1016/s1877-1173(10)93003-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ndsts (N-deacetylase/N-sulfotransferases) are enzymes responsible for N-sulfation during heparan sulfate (HS) and heparin biosynthesis. In this review, basic features of the Ndst1 enzyme are covered and a brief description of HS biosynthesis and its regulation is presented. Effects of Ndst1 deficiency on embryonic development are described. These include immature lungs, craniofacial dysplasia and eye developmental defects, branching defect during lacrimal gland development, delayed mineralization of the skeleton, and reduced pericyte recruitment during vascular development. A brief account of the effects of Ndst1 deficiency in selective cell types in adult mice is also given.
Collapse
Affiliation(s)
- Maria Ringvall
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
27
|
Kraushaar DC, Yamaguchi Y, Wang L. Heparan sulfate is required for embryonic stem cells to exit from self-renewal. J Biol Chem 2009; 285:5907-16. [PMID: 20022960 DOI: 10.1074/jbc.m109.066837] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pluripotent embryonic stem cells (ESCs) must select between alternative fates of self-renewal and lineage commitment at each division during continuous proliferation. Heparan sulfate (HS) is a highly sulfated polysaccharide and is present abundantly on the ESC surface. In this study, we investigated the role of HS in ESC self-renewal by examining Ext1(-/-) ESCs that are deficient in HS. We found that Ext1(-/-) ESCs retained their self-renewal potential but failed to transit from self-renewal to differentiation upon removal of leukemia inhibitory factor. Furthermore, we found that the aberrant cell fate commitment is caused by defects in fibroblast growth factor signaling, which directly retained high expression of the pluripotency gene Nanog in Ext1(-/-) ESCs. Therefore, our studies identified and defined HS as a novel factor that controls ESC fate commitment and also delineates that HS facilitates fibroblast growth factor signaling, which, in turn, inhibits Nanog expression and commits ESCs to lineage differentiation.
Collapse
Affiliation(s)
- Daniel C Kraushaar
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | |
Collapse
|
28
|
Moro E, Tomanin R, Friso A, Modena N, Tiso N, Scarpa M, Argenton F. A novel functional role of iduronate-2-sulfatase in zebrafish early development. Matrix Biol 2009; 29:43-50. [PMID: 19761845 DOI: 10.1016/j.matbio.2009.09.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 07/13/2009] [Accepted: 09/04/2009] [Indexed: 01/25/2023]
Abstract
Sulfated glycosaminoglycan chains of extracellular matrix and cell membrane-tethered proteoglycans exert specific cellular functions by interacting with a broad spectrum of morphogens and growth factors. In humans, a congenital impaired catabolism of sulfated glycosaminoglycans is associated with severe metabolic disorders. Here, we report on the identification and characterization of a zebrafish iduronate sulfatase orthologue. By knocking down its function with antisense morpholino oligos, we demonstrate that iduronate sulfatase plays a critical role during early vertebrate development and its downregulation may be responsible for severe developmental defects, including a misshapen trunk and abnormal craniofacial cartilages. We show that the altered cartilage patterning is mediated by depauperation of sox10-expressing neural crest cell precursors. Through the application of a transactivation reporter assay, we also provide a molecular proof that increased TGFbeta (Transforming Growth Factor beta) signalling is tightly associated with downregulation of iduronate sulfatase function. Our results provide an insight into the early biological impairments underlying the Hunter syndrome and suggest the use of zebrafish as a novel tool to better understand lysosomal storage disorder pathogenesis.
Collapse
Affiliation(s)
- Enrico Moro
- Department of Biology, University of Padova, Padova, Italy
| | | | | | | | | | | | | |
Collapse
|
29
|
Enzymatic assay of d-glucuronate using uronate dehydrogenase. Anal Biochem 2009; 392:183-5. [DOI: 10.1016/j.ab.2009.05.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 05/20/2009] [Accepted: 05/22/2009] [Indexed: 11/19/2022]
|
30
|
Edwards AC, Zwarts L, Yamamoto A, Callaerts P, Mackay TFC. Mutations in many genes affect aggressive behavior in Drosophila melanogaster. BMC Biol 2009; 7:29. [PMID: 19519879 PMCID: PMC2707370 DOI: 10.1186/1741-7007-7-29] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 06/11/2009] [Indexed: 01/06/2023] Open
Abstract
Background Aggressive behavior in animals is important for survival and reproduction. Identifying the underlying genes and environmental contexts that affect aggressive behavior is important for understanding the evolutionary forces that maintain variation for aggressive behavior in natural populations, and to develop therapeutic interventions to modulate extreme levels of aggressive behavior in humans. While the role of neurotransmitters and a few other molecules in mediating and modulating levels of aggression is well established, it is likely that many additional genetic pathways remain undiscovered. Drosophila melanogaster has recently been established as an excellent model organism for studying the genetic basis of aggressive behavior. Here, we present the results of a screen of 170 Drosophila P-element insertional mutations for quantitative differences in aggressive behavior from their co-isogenic control line. Results We identified 59 mutations in 57 genes that affect aggressive behavior, none of which had been previously implicated to affect aggression. Thirty-two of these mutants exhibited increased aggression, while 27 lines were less aggressive than the control. Many of the genes affect the development and function of the nervous system, and are thus plausibly relevant to the execution of complex behaviors. Others affect basic cellular and metabolic processes, or are mutations in computationally predicted genes for which aggressive behavior is the first biological annotation. Most of the mutations had pleiotropic effects on other complex traits. We characterized nine of these mutations in greater detail by assessing transcript levels throughout development, morphological changes in the mushroom bodies, and restoration of control levels of aggression in revertant alleles. All of the P-element insertions affected the tagged genes, and had pleiotropic effects on brain morphology. Conclusion This study reveals that many more genes than previously suspected affect aggressive behavior, and that these genes have widespread pleiotropic effects. Given the conservation of aggressive behavior among different animal species, these are novel candidate genes for future study in other animals, including humans.
Collapse
Affiliation(s)
- Alexis C Edwards
- Department of Genetics, North Carolina State University, Raleigh, NC, USA.
| | | | | | | | | |
Collapse
|
31
|
Olivares GH, Carrasco H, Aroca F, Carvallo L, Segovia F, Larraín J. Syndecan-1 regulates BMP signaling and dorso-ventral patterning of the ectoderm during early Xenopus development. Dev Biol 2009; 329:338-49. [PMID: 19303002 DOI: 10.1016/j.ydbio.2009.03.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 03/06/2009] [Accepted: 03/06/2009] [Indexed: 10/21/2022]
Abstract
Extracellular regulation of growth factor signaling is a key event for embryonic patterning. Heparan sulfate proteoglycans (HSPG) are among the molecules that regulate this signaling during embryonic development. Here we study the function of syndecan1 (Syn1), a cell-surface HSPG expressed in the non-neural ectoderm during early development of Xenopus embryos. Overexpression of Xenopus Syn1 (xSyn1) mRNA is sufficient to reduce BMP signaling, induce chordin expression and rescue dorso-ventral patterning in ventralized embryos. Experiments using chordin morpholinos established that xSyn1 mRNA can inhibit BMP signaling in the absence of chordin. Knockdown of xSyn1 resulted in a reduction of BMP signaling and expansion of the neural plate with the concomitant reduction of the non-neural ectoderm. Overexpression of xSyn1 mRNA in xSyn1 morphant embryos resulted in a biphasic effect, with BMP being inhibited at high concentrations and activated at low concentrations of xSyn1. Interestingly, the function of xSyn1 on dorso-ventral patterning and BMP signaling is specific for this HSPG. In summary, we report that xSyn1 regulates dorso-ventral patterning of the ectoderm through modulation of BMP signaling.
Collapse
Affiliation(s)
- Gonzalo H Olivares
- Center for Aging and Regeneration, Center for Cell Regulation and Pathology, MIFAB, Faculty of Biological Sciences, P. Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
The Wnt signalling pathway is an ancient system that has been highly conserved during evolution. It has a crucial role in the embryonic development of all animal species, in the regeneration of tissues in adult organisms and in many other processes. Mutations or deregulated expression of components of the Wnt pathway can induce disease, most importantly cancer. The first gene to be identified that encodes a Wnt signalling component, Int1 (integration 1), was molecularly characterized from mouse tumour cells 25 years ago. In parallel, the homologous gene Wingless in Drosophila melanogaster, which produces developmental defects in embryos, was characterized. Since then, further components of the Wnt pathway have been identified and their epistatic relationships have been defined. This article is a Timeline of crucial discoveries about the components and functions of this essential pathway.
Collapse
Affiliation(s)
- Alexandra Klaus
- Max Delbrück Centre for Molecular Medicine, Robert-Roessle-Strasse 10, 13,125 Berlin, Germany
| | | |
Collapse
|
33
|
Bhat RA, Stauffer B, Komm BS, Bodine PVN. Structure-function analysis of secreted frizzled-related protein-1 for its Wnt antagonist function. J Cell Biochem 2008; 102:1519-28. [PMID: 17471511 DOI: 10.1002/jcb.21372] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Secreted frizzled-related proteins (sFRPs) are glycoproteins that are recognized as Wnt antagonists. To identify the functional domains that are involved in Wnt antagonist function, several sFRP-1 mutants and sFRP-1/sFRP-2 chimeras were generated. These mutants were characterized in an optimized T-cell factor (TCF)-luciferase based assay in U2OS human osteosarcoma cells. Deletions of the sFRP-1 cysteine rich domain (CRD) lead to the complete loss of Wnt antagonist function. A region between amino acids 73-86 within the second loop of the CRD of sFRP-1 was necessary for the optimal Wnt inhibitory function. Within this region, a conserved tyrosine residue played a critical role, and its change to neutral or polar amino acids lead to decreased Wnt inhibitory activity. The sFRP-1/sFRP-2 chimeras with the netrin domain of sFRP-1 replaced by corresponding sFRP-2 sequences showed 40-70% loss of Wnt antagonist function. The sFRP-1/sFRP-2 chimera with the replacement of C-terminal 19 amino acids of sFRP-1 with 11 amino acids of sFRP-2 resulted in 70% loss of activity indicating that carboxyl-terminal region of sFRP-1 is important for its Wnt inhibitory activity. The structure-function analysis studies of sFRP-1 clearly demonstrate the interaction of several functional domains for its optimal Wnt antagonist function.
Collapse
Affiliation(s)
- Ramesh A Bhat
- Women's Health & Musculoskeletal Biology Division, Wyeth Research, Collegeville, Pennsylvania 19426, USA.
| | | | | | | |
Collapse
|
34
|
Okajima T, Reddy B, Matsuda T, Irvine KD. Contributions of chaperone and glycosyltransferase activities of O-fucosyltransferase 1 to Notch signaling. BMC Biol 2008; 6:1. [PMID: 18194540 PMCID: PMC2242781 DOI: 10.1186/1741-7007-6-1] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Accepted: 01/14/2008] [Indexed: 12/25/2022] Open
Abstract
Background O-fucosyltransferase1 (OFUT1) is a conserved ER protein essential for Notch signaling. OFUT1 glycosylates EGF domains, which can then be further modified by the N-acetylglucosaminyltransferase Fringe. OFUT1 also possesses a chaperone activity that promotes the folding and secretion of Notch. Here, we investigate the respective contributions of these activities to Notch signaling in Drosophila. Results We show that expression of an isoform lacking fucosyltransferase activity, Ofut1R245A, rescues the requirement for Ofut1 in embryonic neurogenesis. Lack of requirement for O-fucosylation is further supported by the absence of embryonic phenotypes in Gmd mutants, which lack all forms of fucosylation. Requirements for O-fucose during imaginal development were evaluated by characterizing clones of cells expressing only Ofut1R245A. These clones phenocopy fringe mutant clones, indicating that the absence of O-fucose is functionally equivalent to the absence of elongated O-fucose. Conclusion Our results establish that Notch does not need to be O-fucosylated for fringe-independent Notch signaling in Drosophila; the chaperone activity of OFUT1 is sufficient for the generation of functional Notch.
Collapse
Affiliation(s)
- Tetsuya Okajima
- Nagoya University Graduate School of Bioagricultural Sciences, Department of Applied Molecular Biosciences, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | | | | | | |
Collapse
|
35
|
Ji Y, Shah S, Soanes K, Islam MN, Hoxter B, Biffo S, Heslip T, Byers S. Eukaryotic initiation factor 6 selectively regulates Wnt signaling and beta-catenin protein synthesis. Oncogene 2007; 27:755-62. [PMID: 17667944 DOI: 10.1038/sj.onc.1210667] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Eukaryotic initiation factor 6 (eIF6), an essential protein important in ribosome biosynthesis and assembly, was identified as an interacting partner of the beta-catenin C terminus in the yeast two-hybrid assay. Independent studies identified Drosophila eIF6 (DeIF6) in a genetic screen designed to detect new genes involved in the regulation of the Wnt/Wg (wingless) pathway. Ectopic expression of DeIF6 in wing discs results in a Wg phenotype. Expression of eIF6 in adenomatous polyposis coli (APC)-mutant colon cancer cells, which express high levels of active beta-catenin, showed that eIF6 selectively inhibits the Wnt pathway at the level of beta-catenin protein independently of proteasomal degradation. Incorporation of radiolabeled amino acids into beta-catenin was selectively decreased in cells that overexpressed eIF6. A similar inverse relationship of the two proteins was observed in the APC(min/+) mouse intestine, in which beta-catenin levels are very high. Taken together these data reveal a link between eIF6 and Wnt signaling, perhaps at the level of ribosome recycling on beta-catenin mRNA.
Collapse
Affiliation(s)
- Y Ji
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC 20057, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Zhong X, Desilva T, Lin L, Bodine P, Bhat RA, Presman E, Pocas J, Stahl M, Kriz R. Regulation of Secreted Frizzled-related Protein-1 by Heparin. J Biol Chem 2007; 282:20523-33. [PMID: 17500071 DOI: 10.1074/jbc.m609096200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Secreted Frizzled-related protein-1 (sFRP-1) belongs to a class of extracellular antagonists that modulate Wnt signaling pathways by preventing ligand-receptor interactions among Wnts and Frizzled membrane receptor complexes. sFRP-1 and Wnts are heparin-binding proteins, and their interaction can be stabilized by heparin in vitro. Here we report that heparin can specifically enhance recombinant sFRP-1 accumulation in a cell type-specific manner. The effect requires O-sulfation in heparin, and involves fibroblast growth factor-2 as well as fibroblast growth factor receptor-1. Interestingly, further investigation uncovers that heparin can also affect the post-translational modification of sFRP-1. We demonstrate that sFRP-1 is post-translationally modified by tyrosine sulfation at tyrosines 34 and 36, which is inhibited by the treatment of heparin. The results suggest that accumulation of sFRP-1 induced by heparin is in part due to the relative stabilization of unsulfated sFRP-1 and the direct stabilization by heparin. The study has revealed a multifaceted regulation on sFRP-1 protein by heparin.
Collapse
Affiliation(s)
- Xiaotian Zhong
- Department of Chemical and Screening Sciences, Wyeth Research, 200 Cambridge Park Drive, Cambridge, MA 02140, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Yamashiro T, Zheng L, Shitaku Y, Saito M, Tsubakimoto T, Takada K, Takano-Yamamoto T, Thesleff I. Wnt10a regulates dentin sialophosphoprotein mRNA expression and possibly links odontoblast differentiation and tooth morphogenesis. Differentiation 2007; 75:452-62. [PMID: 17286598 DOI: 10.1111/j.1432-0436.2006.00150.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We have explored the role of Wnt signaling in dentinogenesis of mouse molar teeth. We found that Wnt10a was specifically associated with the differentiation of odontoblasts and that it showed striking colocalization with dentin sialophosphoprotein (Dspp) expression in secretory odontoblasts. Dspp is a tooth specific non-collagenous matrix protein and regulates dentin mineralization. Transient overexpression of Wnt10 in C3H10T1/2, a pluripotent fibroblast cell line induced Dspp mRNA. Interestingly, this induction occurred only when transfected cells were cultured on Matrigel basement membrane extracts. These findings indicated that Wnt10a is an upstream regulatory molecule for Dspp expression, and that cell-matrix interaction is essential for induction of Dspp expression. Furthermore, Wnt10a was specifically expressed in the epithelial signaling centers regulating tooth development, the primary and secondary enamel knots. The spatial and temporal distribution of Wnt10a mRNA demonstrated that the expression shifts from the secondary enamel knots, to the underlying preodontoblasts in the tips of future cusps. The expression patterns and overexpression studies together indicate that Wnt10a is a key molecule for dentinogenesis and that it is associated with the cell-matrix interactions regulating odontoblast differentiation. We conclude that Wnt10a may link the differentiation of odontoblasts and cusp morphogenesis.
Collapse
Affiliation(s)
- Takashi Yamashiro
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Hu Z, Yu M, Hu G. NDST-1 modulates BMPR and PTHrP signaling during endochondral bone formation in a gene knockout model. Bone 2007; 40:1462-74. [PMID: 17376755 DOI: 10.1016/j.bone.2007.01.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Revised: 01/09/2007] [Accepted: 01/31/2007] [Indexed: 10/23/2022]
Abstract
GlcNAc N-deacetylase/N-sulfotransferase-1 (NDST-1), a member of the enzyme family catalyzing the first modification step in the biosynthesis of heparan sulfate (HS), was knocked out in mice to investigate its role in embryonic development. NDST-1 null mice exhibited delayed endochondral bone formation including shortened calcified zones in limbs, delayed chondrocyte and osteogenetic differentiation, and increased chondrocyte proliferation. In situ HS binding assay revealed that the binding ability of bone morphogenetic protein (BMP) -2, -4, and -6 to endogenous HS was decreased in mutant phalanges, while that of fibroblast growth factor-1 (FGF-1) was not affected. Up-regulation of BMPR-IA, Phospho-Smad1 (P-Smad1) and parathyroid-hormone related protein (PTHrP), but not the Indian hedgehog, Gli1, Gli3, Patched, and FGFR-3, was observed. Furthermore, block of BMPR signaling with noggin rescued the delayed chondrocyte hypertrophic differentiation in NDST-1 (-/-) mice and recovered the expression of both P-Smad1 and PTHrP proteins. These results suggested that NDST-1-dependent heparan sulfate might negatively modulate BMP and its downstream PTHrP signaling, and thus affect endochondral bone development.
Collapse
Affiliation(s)
- Zhonghua Hu
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | | | | |
Collapse
|
39
|
Hung RJ, Chien HS, Lin RZ, Lin CT, Vatsyayan J, Peng HL, Chang HY. Comparative analysis of two UDP-glucose dehydrogenases in Pseudomonas aeruginosa PAO1. J Biol Chem 2007; 282:17738-48. [PMID: 17442666 DOI: 10.1074/jbc.m701824200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
UDP-glucose dehydrogenase (UGDH) catalyzes a two-step NAD(+)-dependent oxidation of UDP-glucose to produce UDP-glucuronic acid, which is a common substrate for the biosynthesis of exopolysaccharide. Searching the Pseudomonas aeruginosa PAO1 genome data base for a UGDH has helped identify two open reading frames, PA2022 and PA3559, which may encode a UGDH. To elucidate their enzymatic identity, the two genes were cloned and overexpressed in Escherichia coli, and the recombinant proteins were purified. Both the gene products are active as dimers and are capable of utilizing UDP-glucose as a substrate to generate UDP-glucuronic acid. The K(m) values of PA2022 and PA3559 for UDP-glucose are approximately 0.1 and 0.4 mM, whereas the K(m) values for NAD(+) are 0.5 and 2.0 mM, respectively. Compared with PA3559, PA2022 exhibits broader substrate specificity, utilizing TDP-glucose and UDP-N-acetylglucosamine with one-third the velocity of that with UDP-glucose. The PA2022 mutant and PA2022-PA3559 double mutant, but not the PA3559 mutant, are more susceptible to chloramphenicol, cefotaxime, and ampicillin. The PA3559 mutant, however, shows a reduced resistance to polymyxin B compared with wild type PAO1. Finally, real time PCR analysis indicates that PA3559 is expressed primarily in low concentrations of Mg(2+), which contrasts with the constitutive expression of PA2022. Although both the enzymes catalyze the same reaction, their enzymatic properties and gene expression profiles indicate that they play distinct physiological roles in P. aeruginosa, as reflected by different phenotypes displayed by the mutants.
Collapse
Affiliation(s)
- Ruei-Jiun Hung
- Institute of Molecular Medicine, National Tsing Hua University, Hsin Chu 300, Taiwan
| | | | | | | | | | | | | |
Collapse
|
40
|
Gorsi B, Stringer SE. Tinkering with heparan sulfate sulfation to steer development. Trends Cell Biol 2007; 17:173-7. [PMID: 17320398 DOI: 10.1016/j.tcb.2007.02.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Revised: 01/09/2007] [Accepted: 02/08/2007] [Indexed: 12/22/2022]
Abstract
Heparan sulfate (HS) proteoglycans, at the cell surface and extracellular matrix, facilitate ligand-receptor interactions crucial to many physiological processes. The distinct sulfation patterns of HS sugar chains presented by their protein core are key to HS proteoglycan activity. Tight regulation of several Golgi complex enzyme families is crucial to produce complex tissue-specific HS sequences. Several in vivo models deficient in HS biosynthesis enzymes demonstrate that developmental abnormalities result from modified HS structure. This review will discuss the plasticity of sulfation requirements on HS for activating protein ligands, which might reflect a flexible HS biosynthetic mechanism. In addition, the latest discovery of HS acting enzymes, the Sulfs, responsible for extracellular tweaking of HS sulfation levels subsequent to biosynthesis will be considered.
Collapse
Affiliation(s)
- Bushra Gorsi
- Division of Cardiac and Endocrine Sciences, University of Manchester, UK, M13 9NT
| | | |
Collapse
|
41
|
Gebhardt R, Baldysiak-Figiel A, Krügel V, Ueberham E, Gaunitz F. Hepatocellular expression of glutamine synthetase: an indicator of morphogen actions as master regulators of zonation in adult liver. ACTA ACUST UNITED AC 2007; 41:201-66. [PMID: 17368308 DOI: 10.1016/j.proghi.2006.12.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glutamine synthetase (GS) has long been known to be expressed exclusively in pericentral hepatocytes most proximal to the central veins of liver lobuli. This enzyme as well as its peculiar distribution complementary to the periportal compartment for ureogenesis plays an important role in nitrogen metabolism, particularly in homeostasis of blood levels of ammonium ions and glutamine. Despite this fact and intensive studies in vivo and in vitro, many aspects of the regulation of its activity on the protein and on the genetic level remained enigmatic. Recent experimental advances using transgenic mice and new analytic tools have revealed the fundamental role of morphogens such as wingless-type MMTV integration site family member signals (Wnt), beta-catenin, and adenomatous polyposis coli in the regulation of this particular enzyme. In addition, novel information concerning the structure of transcription factor binding sites within regulatory regions of the GS gene and their interactions with signalling pathways could be collected. In this review we focus on all aspects of the regulation of GS in the liver and demonstrate how the new findings have changed our view of the determinants of liver zonation. What appeared as a simple response of hepatocytes to blood-derived factors and local cellular interactions must now be perceived as a fundamental mechanism of adult tissue patterning by morphogens that were considered mainly as regulators of developmental processes. Though GS may be the most obvious indicator of morphogen action among many other targets, elucidation of the complex regulation of the expression of the GS gene could pave the road for a better understanding of the mechanisms involved in patterning of liver parenchyma. Based on current knowledge we propose a new concept of how morphogens, hormones and other factors may act in concert, in order to restrict gene expression to small subpopulations of one differentiated cell type, the hepatocyte, in different anatomical locations. Although many details of this regulatory network are still missing, and an era of exciting new discoveries is still about to come, it can already be envisioned that similar mechanisms may well be active in other organs contributing to the fine-tuning of organ-specific functions.
Collapse
Affiliation(s)
- Rolf Gebhardt
- Institut für Biochemie, Medizinische Fakultät, Universität Leipzig, Johannisallee 30, 04103 Leipzig, Germany.
| | | | | | | | | |
Collapse
|
42
|
Shortkroff S, Yates KE. Alteration of matrix glycosaminoglycans diminishes articular chondrocytes' response to a canonical Wnt signal. Osteoarthritis Cartilage 2007; 15:147-54. [PMID: 16908205 DOI: 10.1016/j.joca.2006.07.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Accepted: 07/09/2006] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Although Wnt signaling is a key regulator of the chondrocyte life cycle during embryonic development, little is known about Wnt activity in articular cartilage. Recent studies have suggested an association between excess signaling through the canonical Wnt pathway and osteoarthritis (OA). Genetic and in vitro studies with Drosophila have shown that signaling by the orthologous protein, Wingless (Wg), is regulated by glycosaminoglycans (GAGs) found at the cell surface. The objective of this study was to determine whether alteration in GAG sulfation or matrix content, such as that occurs in OA cartilage, would affect articular chondrocytes' response to a canonical Wnt stimulus. METHODS Cells were isolated from shoulder joints of young calves (bovine articular chondrocytes, bACs) and from human cartilage (human articular chondrocytes, hACs) discarded during total knee replacement for OA. Conditioned media from a cell line that is stably transfected with Wnt3a was used as a source of Wnt protein that activates the canonical signaling pathway. Conditioned media from the parental cell line was used as a control. beta-catenin levels were measured by immunoblot. In some experiments, chondrocyte cultures were treated with sodium chlorate (NaClO3) to inhibit GAG sulfation, or with chondroitinase ABC (ChABC) to digest chondroitin sulfate (CS) in the matrix. RESULTS Cultured bACs showed low steady-state levels of beta-catenin that increased upon stimulation with Wnt3a. A decrease in either GAG sulfation or CS content diminished bACs' response to Wnt3a (approximately 40% and 37% of control, respectively). Similar effects on the response to Wnt3a via beta-catenin were observed for cultured hACs with undersulfation of GAGs (16% of control) and decreased CS content (20% of control). CONCLUSION This study demonstrates that articular chondrocytes respond to canonical Wnt stimulation, and that reduced sulfation or CS content diminishes that response.
Collapse
Affiliation(s)
- S Shortkroff
- Department of Orthopedic Surgery, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | | |
Collapse
|
43
|
Jiao X, Billings PC, O'Connell MP, Kaplan FS, Shore EM, Glaser DL. Heparan Sulfate Proteoglycans (HSPGs) Modulate BMP2 Osteogenic Bioactivity in C2C12 Cells. J Biol Chem 2007; 282:1080-6. [PMID: 17020882 DOI: 10.1074/jbc.m513414200] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell surface heparan sulfate proteoglycans (HSPGs) have been implicated in bone morphogenetic protein (BMP)-mediated morphogenesis by regulating BMP activity and gradient formation. However, the direct role of HSPGs in BMP signaling is poorly understood. Here we show that HSPGs directly regulate BMP2-mediated transdifferentiation of C2C12 myoblasts into osteoblasts. HSPGs sequester BMP2 at the cell surface and mediate BMP2 internalization. Depletion of cell surface HSPGs by heparinase III treatment or decreased glycosaminoglycan chain sulfation with sodium chlorate enhances BMP2 morpho-genetic bioactivity. The addition of exogenous heparin, a widely used anticoagulant, reduced BMP2 signaling. Our results suggest that cell surface HSPGs mediate BMP2 internalization and modulate BMP2 osteogenic activity.
Collapse
Affiliation(s)
- Xiangyang Jiao
- Center For Research in Fibrodysplasia Ossificans Progressiva (FOP) and Related Disorders and the Department of Orthopaedics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
44
|
Lopes CC, Toma L, Pinhal MAS, Porcionatto MA, Sogayar MC, Dietrich CP, Nader HB. EJ-ras oncogene transfection of endothelial cells upregulates the expression of syndecan-4 and downregulates heparan sulfate sulfotransferases and epimerase. Biochimie 2006; 88:1493-504. [PMID: 16793191 DOI: 10.1016/j.biochi.2006.04.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Accepted: 04/21/2006] [Indexed: 10/24/2022]
Abstract
The EC rabbit endothelial cell line was transfected with the EJ-ras oncogene (EJ-ras EC). EJ-ras EC cells display over expression of the Ras oncogene, morphological changes and deregulation of the cell cycle, becoming more densely populated and serum-independent. In addition, EJ-ras-transfectant cells show higher levels of the syndecan-4 mRNA. In addition to the increase in the core protein, a parallel increase in the glycosylation of the syndecan-4 protein, a proteoglycan that bears heparan sulfate chains, also occurs. This increase is observed both for the heparan sulfate proteoglycan synthesized by the cells and for that secreted to the culture medium. This enhancement in heparan sulfate synthesis was observed through metabolic labeling of the cells, immunoprecipitation of syndecan-4 and heparitinases treatment. Furthermore, the EJ-ras-transfectant cells do not exhibit decreased synthesis of heparan sulfate during the G(1)-S phase transition, as observed for the parental cell line. Also, heparan sulfate synthesis is not stimulated by PMA as displayed by parental endothelial cells. Significant structural changes of heparan sulfate, such as decreased O-sulfation, were observed in the EJ-ras-transfected cells. Decreases in the mRNA levels of some enzymes (glucuronosyl C-5 epimerase, iduronosyl-2-O-sulfotransferase, glucosaminyl-6-O-sulfotransferase-1 and N-deacetylase/N-sulfotransferase-1), involved in the biosynthetic pathway of heparan sulfate, were also observed. The results suggest that overexpression of the EJ-ras oncogene alters the cell cycle, through signal transduction cascades, upregulates the expression of syndecan-4, and downregulates enzymes involved in the heparan sulfate biosynthesis related to chain modification, leading to the structural changes of the heparan sulfate syndecan-4 proteoglycan in endothelial cells.
Collapse
Affiliation(s)
- C C Lopes
- Disciplina de Biologia Molecular, Universidade Federal de São Paulo, Rua Três de Maio 100, CEP 04044-020 São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
The presence of HS (heparan sulphate) proteoglycans on the cell surface and in the extracellular environment is critical to many physiological processes including the growth of new blood vessels from pre-existing vasculature (angiogenesis). A plethora of growth factors and their receptors, extracellular matrix molecules and enzymes bind to specific sites on the HS sugar chain. For example, HS proteoglycans have profound effects on the bioactivity of the key angiogenic factor VEGF (vascular endothelial growth factor) (VEGF165), affecting its diffusion, half-life and interaction with its tyrosine kinase receptors. A number of HS structural features that mediate the specific binding of VEGF165, including sulphation requirements, have been determined. In parallel, zebrafish embryos were used as a vertebrate model system to study the role in vascular development of the biosynthetic enzymes that create these specific binding sites on HS. It was discovered that knockdown of one of the HS 6-O-sulphotransferases in zebrafish with morpholino antisense oligonucleotides reduced vascular branching and corresponded to changes in the HS structure. The roles of the extracellular 6-O-sulphatase enzymes, the sulfs, in vascular development are now being investigated. Both oligosaccharides and small molecule biosynthetic enzyme inhibitors could be valuable HS-based strategies for controlling aberrant angiogenesis in diseases as diverse as cancer and heart disease.
Collapse
Affiliation(s)
- S E Stringer
- Division of Cardiovascular and Endocrine Sciences, School of Medicine, University of Manchester, Core Technologies Facility, UK.
| |
Collapse
|
46
|
Häcker U, Nybakken K, Perrimon N. Heparan sulphate proteoglycans: the sweet side of development. Nat Rev Mol Cell Biol 2005; 6:530-41. [PMID: 16072037 DOI: 10.1038/nrm1681] [Citation(s) in RCA: 513] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Pattern formation during development is controlled to a great extent by a small number of conserved signal transduction pathways that are activated by extracellular ligands such as Hedgehog, Wingless or Decapentaplegic. Genetic experiments have identified heparan sulphate proteoglycans (HSPGs) as important regulators of the tissue distribution of these extracellular signalling molecules. Several recent reports provide important new insights into the mechanisms by which HSPGs function during development.
Collapse
Affiliation(s)
- Udo Häcker
- Department of Experimental Medical Science, Lund Center for Stem Cell Biology and Cell Therapy, Lund University, Sweden.
| | | | | |
Collapse
|
47
|
Jordan KC, Hatfield SD, Tworoger M, Ward EJ, Fischer KA, Bowers S, Ruohola-Baker H. Genome wide analysis of transcript levels after perturbation of the EGFR pathway in the Drosophila ovary. Dev Dyn 2005; 232:709-24. [PMID: 15704171 DOI: 10.1002/dvdy.20318] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Defects in the epidermal growth factor receptor (EGFR) pathway can lead to aggressive tumor formation. Activation of this pathway during normal development produces multiple outcomes at the cellular level, leading to cellular differentiation and cell cycle activation. To elucidate the downstream events induced by this pathway, we used genome-wide cDNA microarray technology to identify potential EGFR targets in Drosophila oogenesis. We focused on genes for which the transcriptional responses due to EGFR pathway activation and inactivation were in opposite directions, as this is expected for genes that are directly regulated by the pathway in this tissue type. We perturbed the EGFR pathway in epithelial follicle cells using seven different genetic backgrounds. To activate the pathway, we overexpressed an activated form of the EGFR (UAS-caEGFR), and an activated form of the signal transducer Raf (UAS-caRaf); we also over- or ectopically expressed the downstream homeobox transcription factor Mirror (UAS-mirr) and the ligand-activating serine protease Rhomboid (UAS-rho). To reduce pathway activity we used loss-of-function mutations in the ligand (gurken) and receptor (torpedo). From microarrays containing 6,255 genes, we found 454 genes that responded in an opposite manner in gain-of-function and loss-of-function conditions among which are many Wingless signaling pathway components. Further analysis of two such components, sugarless and pangolin, revealed a function for these genes in late follicle cell patterning. Of interest, components of other signaling pathways were also enriched in the EGFR target group, suggesting that one reason for the pleiotropic effects seen with EGFR activity in cancer progression and development may be its ability to regulate many other signaling pathways.
Collapse
Affiliation(s)
- Katherine C Jordan
- Department of Biochemistry, University of Washington, Seattle, Washington 98195-7350, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
How developmental signaling proteins traverse tissue during animal development, through or around tightly packed cells, remains an incompletely resolved mystery. Signaling protein movement is regulated to create gradients, control amounts, impose barriers, or provide direction. Signaling can be controlled by the rate of signal production, modification, active transport, trapping along the path, or by the properties of the receptor apparatus. Signals may move by diffusion outside cells, attached to migrating cells, attached to carrier molecules, through cells by transcytosis, along cell extensions, or in released membrane packets. Recent findings about the movement of Hedgehog, Wingless (Wnt), and TGF-beta signaling proteins have helped to clarify the molecular mechanisms used to ensure that developmental signals carry only good news.
Collapse
Affiliation(s)
- Alan Jian Zhu
- Department of Developmental Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305-5439, USA
| | | |
Collapse
|
49
|
Baeg GH, Selva EM, Goodman RM, Dasgupta R, Perrimon N. The Wingless morphogen gradient is established by the cooperative action of Frizzled and Heparan Sulfate Proteoglycan receptors. Dev Biol 2004; 276:89-100. [PMID: 15531366 DOI: 10.1016/j.ydbio.2004.08.023] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Revised: 08/18/2004] [Accepted: 08/18/2004] [Indexed: 11/23/2022]
Abstract
We have examined the respective contribution of Heparan Sulfate Proteoglycans (HSPGs) and Frizzled (Fz) proteins in the establishment of the Wingless (Wg) morphogen gradient. From the analysis of mutant clones of sulfateless/N-deacetylase-sulphotransferase in the wing imaginal disc, we find that lack of Heparan Sulfate (HS) causes a dramatic reduction of both extracellular and intracellular Wg in receiving cells. Our studies, together with others [Kirkpatrick, C.A., Dimitroff, B.D., Rawson, J.M., Selleck, S.B., 2004. Spatial regulation of Wingless morphogen distribution and signalling by Dally-like protein. Dev. Cell (in press)], reveals that the Glypican molecule Dally-like Protein (Dlp) is associated with both negative and positive roles in Wg short- and long-range signaling, respectively. In addition, analyses of the two Fz proteins indicate that the Fz and DFz2 receptors, in addition to transducing the signal, modulate the slope of the Wg gradient by regulating the amount of extracellular Wg. Taken together, our analysis illustrates how the coordinated activities of HSPGs and Fz/DFz2 shape the Wg morphogen gradient.
Collapse
Affiliation(s)
- Gyeong-Hun Baeg
- Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
50
|
Weber K, Johnson N, Champlin D, Patty A. Many P-element insertions affect wing shape in Drosophila melanogaster. Genetics 2004; 169:1461-75. [PMID: 15545659 PMCID: PMC1449561 DOI: 10.1534/genetics.104.027748] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A screen of random, autosomal, homozygous-viable P-element insertions in D. melanogaster found small effects on wing shape in 11 of 50 lines. The effects were due to single insertions and remained stable and significant for over 5 years, in repeated, high-resolution measurements. All 11 insertions were within or near protein-coding transcription units, none of which were previously known to affect wing shape. Many sites in the genome can affect wing shape.
Collapse
Affiliation(s)
- Kenneth Weber
- Department of Biological Sciences, University of Southern Maine, Portland, 04104-9300, USA.
| | | | | | | |
Collapse
|