1
|
Asashima M, Satou-Kobayashi Y. Spemann-Mangold organizer and mesoderm induction. Cells Dev 2024; 178:203903. [PMID: 38295873 DOI: 10.1016/j.cdev.2024.203903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/09/2024]
Abstract
The discovery of the Spemann-Mangold organizer strongly influenced subsequent research on embryonic induction, with research aiming to elucidate the molecular characteristics of organizer activity being currently underway. Herein, we review the history of research on embryonic induction, and describe how the mechanisms of induction phenomena and developmental processes have been investigated. Classical experiments investigating the differentiation capacity and inductive activity of various embryonic regions were conducted by many researchers, and important theories of region-specific induction and the concept for chain of induction were proposed. The transition from experimental embryology to developmental biology has enabled us to understand the mechanisms of embryonic induction at the molecular level. Consequently, many inducing substances and molecules such as transcriptional factors and peptide growth factors involved in the organizer formation were identified. One of peptide growth factors, activin, acts as a mesoderm- and endoderm-inducing substance. Activin induces several tissues and organs from the undifferentiated cell mass of amphibian embryos in a concentration-dependent manner. We review the extent to which we can control in vitro organogenesis from undifferentiated cells, and discuss the application to stem cell-based regenerative medicine based on insights gained from animal experiments, such as in amphibians.
Collapse
Affiliation(s)
- Makoto Asashima
- Advanced Comprehensive Research Organization, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-0003, Japan.
| | - Yumeko Satou-Kobayashi
- Advanced Comprehensive Research Organization, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-0003, Japan
| |
Collapse
|
2
|
Suzuki A, Yoshida H, van Heeringen SJ, Takebayashi-Suzuki K, Veenstra GJC, Taira M. Genomic organization and modulation of gene expression of the TGF-β and FGF pathways in the allotetraploid frog Xenopus laevis. Dev Biol 2017; 426:336-359. [DOI: 10.1016/j.ydbio.2016.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 06/10/2016] [Accepted: 09/19/2016] [Indexed: 12/13/2022]
|
3
|
Tseng WC, Munisha M, Gutierrez JB, Dougan ST. Establishment of the Vertebrate Germ Layers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:307-381. [PMID: 27975275 DOI: 10.1007/978-3-319-46095-6_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The process of germ layer formation is a universal feature of animal development. The germ layers separate the cells that produce the internal organs and tissues from those that produce the nervous system and outer tissues. Their discovery in the early nineteenth century transformed embryology from a purely descriptive field into a rigorous scientific discipline, in which hypotheses could be tested by observation and experimentation. By systematically addressing the questions of how the germ layers are formed and how they generate overall body plan, scientists have made fundamental contributions to the fields of evolution, cell signaling, morphogenesis, and stem cell biology. At each step, this work was advanced by the development of innovative methods of observing cell behavior in vivo and in culture. Here, we take an historical approach to describe our current understanding of vertebrate germ layer formation as it relates to the long-standing questions of developmental biology. By comparing how germ layers form in distantly related vertebrate species, we find that highly conserved molecular pathways can be adapted to perform the same function in dramatically different embryonic environments.
Collapse
Affiliation(s)
- Wei-Chia Tseng
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Mumingjiang Munisha
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Juan B Gutierrez
- Department of Mathematics, University of Georgia, Athens, GA, 30602, USA.,Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Scott T Dougan
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
4
|
Identification of new regulators of embryonic patterning and morphogenesis in Xenopus gastrulae by RNA sequencing. Dev Biol 2016; 426:429-441. [PMID: 27209239 DOI: 10.1016/j.ydbio.2016.05.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/11/2016] [Accepted: 05/11/2016] [Indexed: 12/19/2022]
Abstract
During early vertebrate embryogenesis, cell fate specification is often coupled with cell acquisition of specific adhesive, polar and/or motile behaviors. In Xenopus gastrulae, tissues fated to form different axial structures display distinct motility. The cells in the early organizer move collectively and directionally toward the animal pole and contribute to anterior mesendoderm, whereas the dorsal and the ventral-posterior trunk tissues surrounding the blastopore of mid-gastrula embryos undergo convergent extension and convergent thickening movements, respectively. While factors regulating cell lineage specification have been described in some detail, the molecular machinery that controls cell motility is not understood in depth. To gain insight into the gene battery that regulates both cell fates and motility in particular embryonic tissues, we performed RNA sequencing (RNA-seq) to investigate differentially expressed genes in the early organizer, the dorsal and the ventral marginal zone of Xenopus gastrulae. We uncovered many known signaling and transcription factors that have been reported to play roles in embryonic patterning during gastrulation. We also identified many uncharacterized genes as well as genes that encoded extracellular matrix (ECM) proteins or potential regulators of actin cytoskeleton. Co-expression of a selected subset of the differentially expressed genes with activin in animal caps revealed that they had distinct ability to block activin-induced animal cap elongation. Most of these factors did not interfere with mesodermal induction by activin, but an ECM protein, EFEMP2, inhibited activin signaling and acted downstream of the activated type I receptor. By focusing on a secreted protein kinase PKDCC1, we showed with overexpression and knockdown experiments that PKDCC1 regulated gastrulation movements as well as anterior neural patterning during early Xenopus development. Overall, our studies identify many differentially expressed signaling and cytoskeleton regulators in different embryonic regions of Xenopus gastrulae and imply their functions in regulating cell fates and/or behaviors during gastrulation.
Collapse
|
5
|
Wong KA, Trembley M, Abd Wahab S, Viczian AS. Efficient retina formation requires suppression of both Activin and BMP signaling pathways in pluripotent cells. Biol Open 2015; 4:573-83. [PMID: 25750435 PMCID: PMC4400599 DOI: 10.1242/bio.20149977] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Retina formation requires the correct spatiotemporal patterning of key regulatory factors. While it is known that repression of several signaling pathways lead to specification of retinal fates, addition of only Noggin, a known BMP antagonist, can convert pluripotent Xenopus laevis animal cap cells to functional retinal cells. The aim of this study is to determine the intracellular molecular events that occur during this conversion. Surprisingly, blocking BMP signaling alone failed to mimic Noggin treatment. Overexpressing Noggin in pluripotent cells resulted in a concentration-dependent suppression of both Smad1 and Smad2 phosphorylation, which act downstream of BMP and Activin signaling, respectively. This caused a decrease in downstream targets: endothelial marker, xk81, and mesodermal marker, xbra. We treated pluripotent cells with dominant-negative receptors or the chemical inhibitors, dorsomorphin and SB431542, which each target either the BMP or Activin signaling pathway. We determined the effect of these treatments on retina formation using the Animal Cap Transplant (ACT) assay; in which treated pluripotent cells were transplanted into the eye field of host embryos. We found that inhibition of Activin signaling, in the presence of BMP signaling inhibition, promotes efficient retinal specification in Xenopus tissue, mimicking the affect of adding Noggin alone. In whole embryos, we found that the eye field marker, rax, expanded when adding both dominant-negative Smad1 and Smad2, as did treating the cells with both dorsomorphin and SB431542. Future studies could translate these findings to a mammalian culture assay, in order to more efficiently produce retinal cells in culture.
Collapse
Affiliation(s)
- Kimberly A Wong
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA The Center for Vision Research, SUNY Eye Institute, Upstate Medical University, Syracuse, NY 13210, USA
| | - Michael Trembley
- Department of Pharmacology and Physiology, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Syafiq Abd Wahab
- Department of Molecular Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA
| | - Andrea S Viczian
- Department of Ophthalmology, SUNY Upstate Medical University, Syracuse, NY 13210, USA Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA The Center for Vision Research, SUNY Eye Institute, Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
6
|
Fleming BM, Yelin R, James RG, Schultheiss TM. A role for Vg1/Nodal signaling in specification of the intermediate mesoderm. Development 2013; 140:1819-29. [PMID: 23533180 PMCID: PMC3621495 DOI: 10.1242/dev.093740] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2013] [Indexed: 11/20/2022]
Abstract
The intermediate mesoderm (IM) is the embryonic source of all kidney tissue in vertebrates. The factors that regulate the formation of the IM are not yet well understood. Through investigations in the chick embryo, the current study identifies and characterizes Vg1/Nodal signaling (henceforth referred to as 'Nodal-like signaling') as a novel regulator of IM formation. Excess Nodal-like signaling at gastrulation stages resulted in expansion of the IM at the expense of the adjacent paraxial mesoderm, whereas inhibition of Nodal-like signaling caused repression of IM gene expression. IM formation was sensitive to levels of the Nodal-like pathway co-receptor Cripto and was inhibited by a truncated form of the secreted molecule cerberus, which specifically blocks Nodal, indicating that the observed effects are specific to the Nodal-like branch of the TGFβ signaling pathway. The IM-promoting effects of Nodal-like signaling were distinct from the known effects of this pathway on mesoderm formation and left-right patterning, a finding that can be attributed to specific time windows for the activities of these Nodal-like functions. Finally, a link was observed between Nodal-like and BMP signaling in the induction of IM. Activation of IM genes by Nodal-like signaling required an active BMP signaling pathway, and Nodal-like signals induced phosphorylation of Smad1/5/8, which is normally associated with activation of BMP signaling pathways. We postulate that Nodal-like signaling regulates IM formation by modulating the IM-inducing effects of BMP signaling.
Collapse
Affiliation(s)
- Britannia M. Fleming
- Department of Anatomy and Cell Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ronit Yelin
- Department of Anatomy and Cell Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Richard G. James
- Department of Pharmacology, University of Washington, Seattle, WA, 98195, USA
| | - Thomas M. Schultheiss
- Department of Anatomy and Cell Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
7
|
Kuo DH, Shankland M, Weisblat DA. Regional differences in BMP-dependence of dorsoventral patterning in the leech Helobdella. Dev Biol 2012; 368:86-94. [PMID: 22641012 PMCID: PMC3398150 DOI: 10.1016/j.ydbio.2012.05.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 05/17/2012] [Accepted: 05/20/2012] [Indexed: 11/26/2022]
Abstract
In the leech Helobdella, the ectoderm exhibits a high degree of morphological homonomy between body segments, but pattern elements in lateral ectoderm arise via distinct cell lineages in the segments of the rostral and midbody regions. In each of the four rostral segments, a complete set of ventrolateral (O fate) and dorsolateral (P fate) ectodermal pattern elements arises from a single founder cell, op. In the 28 midbody and caudal segments, however, there are two initially indeterminate o/p founder cells; the more dorsal of these is induced to adopt the P fate by BMP5-8 emanating from the dorsalmost ectoderm, while the more ventral cell assumes the O fate. Previous work has suggested that the dorsoventral patterning of O and P fates differs in the rostral region, but the role of BMP signaling in those segments has not been investigated. We show here that suppression of dorsal BMP5-8 signaling (which effects a P-to-O fate change in the midbody) has no effect on the patterning of O and P fates in the rostral region. Furthermore, ectopic expression of BMP5-8 in the ventral ectoderm (which induces an O-to-P fate change in the midbody) has no effect in the rostral region. Finally, expression of a dominant-negative BMP receptor (which induces a P-to-O fate change in the midbody) fails to affect O/P patterning in the rostral region. Thus, the rostral segments appear to use some mechanism other than BMP signaling to pattern O and P cell fates along the dorsoventral axis. From a mechanistic standpoint, the OP lineage of the rostral segments and the O-P equivalence group of the midbody and caudal segments constitute distinct developmental modules that rely to differing degrees on positional cues from surrounding ectoderm in order to specify homonomous cell fates.
Collapse
Affiliation(s)
- Dian-Han Kuo
- Graduate Program in Zoology, School of Biological Sciences, The University of Texas at Austin, Austin, TX 78712, USA.
| | | | | |
Collapse
|
8
|
Bonacci G, Fletcher J, Devani M, Dwivedi H, Keller R, Chang C. The cytoplasmic tyrosine kinase Arg regulates gastrulation via control of actin organization. Dev Biol 2012; 364:42-55. [PMID: 22305799 DOI: 10.1016/j.ydbio.2012.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 01/11/2012] [Indexed: 10/14/2022]
Abstract
Coordinated cell movements are crucial for vertebrate gastrulation and are controlled by multiple signals. Although many factors are shown to mediate non-canonical Wnt pathways to regulate cell polarity and intercalation during gastrulation, signaling molecules acting in other pathways are less investigated and the connections between various signals and cytoskeleton are not well understood. In this study, we show that the cytoplasmic tyrosine kinase Arg modulates gastrulation movements through control of actin remodeling. Arg is expressed in the dorsal mesoderm at the onset of gastrulation, and both gain- and loss-of-function of Arg disrupted axial development in Xenopus embryos. Arg controlled migration of anterior mesendoderm, influenced cell decision on individual versus collective migration, and modulated spreading and protrusive activities of anterior mesendodermal cells. Arg also regulated convergent extension of the trunk mesoderm by influencing cell intercalation behaviors. Arg modulated actin organization to control dynamic F-actin distribution at the cell-cell contact or in membrane protrusions. The functions of Arg required an intact tyrosine kinase domain but not the actin-binding motifs in its carboxyl terminus. Arg acted downstream of receptor tyrosine kinases to regulate phosphorylation of endogenous CrkII and paxillin, adaptor proteins involved in activation of Rho family GTPases and actin reorganization. Our data demonstrate that Arg is a crucial cytoplasmic signaling molecule that controls dynamic actin remodeling and mesodermal cell behaviors during Xenopus gastrulation.
Collapse
Affiliation(s)
- Gustavo Bonacci
- Department of Cell Biology, University of Alabama at Birmingham, AL 35294, USA
| | | | | | | | | | | |
Collapse
|
9
|
Bayramov AV, Eroshkin FM, Martynova NY, Ermakova GV, Solovieva EA, Zaraisky AG. Novel functions of Noggin proteins: inhibition of Activin/Nodal and Wnt signaling. Development 2011; 138:5345-56. [PMID: 22071106 DOI: 10.1242/dev.068908] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The secreted protein Noggin1 is an embryonic inducer that can sequester TGFβ cytokines of the BMP family with extremely high affinity. Owing to this function, ectopic Noggin1 can induce formation of the headless secondary body axis in Xenopus embryos. Here, we show that Noggin1 and its homolog Noggin2 can also bind, albeit less effectively, to ActivinB, Nodal/Xnrs and XWnt8, inactivation of which, together with BMP, is essential for the head induction. In support of this, we show that both Noggin proteins, if ectopically produced in sufficient concentrations in Xenopus embryo, can induce a secondary head, including the forebrain. During normal development, however, Noggin1 mRNA is translated in the presumptive forebrain with low efficiency, which provides the sufficient protein concentration for only its BMP-antagonizing function. By contrast, Noggin2, which is produced in cells of the anterior margin of the neural plate at a higher concentration, also protects the developing forebrain from inhibition by ActivinB and XWnt8 signaling. Thus, besides revealing of novel functions of Noggin proteins, our findings demonstrate that specification of the forebrain requires isolation of its cells from BMP, Activin/Nodal and Wnt signaling not only during gastrulation but also at post-gastrulation stages.
Collapse
Affiliation(s)
- Andrey V Bayramov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
10
|
Nie S, Kee Y, Bronner-Fraser M. Caldesmon regulates actin dynamics to influence cranial neural crest migration in Xenopus. Mol Biol Cell 2011; 22:3355-65. [PMID: 21795398 PMCID: PMC3172261 DOI: 10.1091/mbc.e11-02-0165] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
A nonmuscle caldesmon (CaD) is highly expressed in premigratory and migrating Xenopus cranial neural crest cells. A loss-of-function approach shows that CaD is critical for neural crest migration. The results further suggest that CaD influences cell morphology and motility by modulating actin dynamics in neural crest cells. Caldesmon (CaD) is an important actin modulator that associates with actin filaments to regulate cell morphology and motility. Although extensively studied in cultured cells, there is little functional information regarding the role of CaD in migrating cells in vivo. Here we show that nonmuscle CaD is highly expressed in both premigratory and migrating cranial neural crest cells of Xenopus embryos. Depletion of CaD with antisense morpholino oligonucleotides causes cranial neural crest cells to migrate a significantly shorter distance, prevents their segregation into distinct migratory streams, and later results in severe defects in cartilage formation. Demonstrating specificity, these effects are rescued by adding back exogenous CaD. Interestingly, CaD proteins with mutations in the Ca2+-calmodulin–binding sites or ErK/Cdk1 phosphorylation sites fail to rescue the knockdown phenotypes, whereas mutation of the PAK phosphorylation site is able to rescue them. Analysis of neural crest explants reveals that CaD is required for the dynamic arrangements of actin and, thus, for cell shape changes and process formation. Taken together, these results suggest that the actin-modulating activity of CaD may underlie its critical function and is regulated by distinct signaling pathways during normal neural crest migration.
Collapse
Affiliation(s)
- Shuyi Nie
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | |
Collapse
|
11
|
Joo HY, Jones A, Yang C, Zhai L, Smith AD, Zhang Z, Chandrasekharan MB, Sun ZW, Renfrow MB, Wang Y, Chang C, Wang H. Regulation of histone H2A and H2B deubiquitination and Xenopus development by USP12 and USP46. J Biol Chem 2010; 286:7190-201. [PMID: 21183687 DOI: 10.1074/jbc.m110.158311] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Post-translational histone modifications play important roles in regulating gene expression programs, which in turn determine cell fate and lineage commitment during development. One such modification is histone ubiquitination, which primarily targets histone H2A and H2B. Although ubiquitination of H2A and H2B has been generally linked to gene silencing and gene activation, respectively, the functions of histone ubiquitination during eukaryote development are not well understood. Here, we identified USP12 and USP46 as histone H2A and H2B deubiquitinases that regulate Xenopus development. USP12 and USP46 prefer nucleosomal substrates and deubiquitinate both histone H2A and H2B in vitro and in vivo. WDR48, a WD40 repeat-containing protein, interacts with USP12 and USP46 and is required for the histone deubiquitination activity. Overexpression of either gene leads to gastrulation defects without affecting mesodermal cell fate, whereas knockdown of USP12 in Xenopus embryos results in reduction of a subset of mesodermal genes at gastrula stages. Immunohistochemical staining and chromatin immunoprecipitation assays revealed that USP12 regulates histone deubiquitination in the mesoderm and at specific gene promoters during Xenopus development. Taken together, this study identifies USP12 and USP46 as histone deubiquitinases for H2A and H2B and reveals that USP12 regulates Xenopus development during gastrula stages.
Collapse
Affiliation(s)
- Heui-Yun Joo
- Department of Biochemistry and Molecular Genetics, University of Alabama, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Jean S, Mikryukov A, Tremblay MG, Baril J, Guillou F, Bellenfant S, Moss T. Extended-synaptotagmin-2 mediates FGF receptor endocytosis and ERK activation in vivo. Dev Cell 2010; 19:426-39. [PMID: 20833364 DOI: 10.1016/j.devcel.2010.08.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 06/14/2010] [Accepted: 07/14/2010] [Indexed: 10/19/2022]
Abstract
Targeting of activated plasma membrane receptors to endocytic pathways is important in determining the outcome of growth factor signaling. However, the molecular mechanisms are still poorly understood. Here, we show that the synaptotagmin-related membrane protein E-Syt2 is essential for rapid endocytosis of the activated FGF receptor and for functional signal transduction during Xenopus development. E-Syt2 depletion prevents an early phase of activated FGF receptor endocytosis that we show is required for ERK activation and the induction of the mesoderm. E-Syt2 interacts selectively with the activated FGF receptor and with Adaptin-2, and is required upstream of Ras activation and of receptor autophosphorylation for ERK activation and the induction of the mesodermal marker Xbra. The data identify E-Syt2 as an endocytic adaptor for the clathrin-mediated pathway whose function is conserved in human and suggest a broader role for the E-Syt subfamily in growth factor signaling.
Collapse
Affiliation(s)
- Steve Jean
- Cancer Research Centre and Department of Medical Biology, Medical Biochemistry and Pathology, Laval University, Hôtel-Dieu de Québec, 9 rue McMahon, G1R 2J6 Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
13
|
Watanabe Y, Itoh S, Goto T, Ohnishi E, Inamitsu M, Itoh F, Satoh K, Wiercinska E, Yang W, Shi L, Tanaka A, Nakano N, Mommaas AM, Shibuya H, Ten Dijke P, Kato M. TMEPAI, a transmembrane TGF-beta-inducible protein, sequesters Smad proteins from active participation in TGF-beta signaling. Mol Cell 2010; 37:123-34. [PMID: 20129061 DOI: 10.1016/j.molcel.2009.10.028] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 06/18/2009] [Accepted: 10/30/2009] [Indexed: 01/30/2023]
Abstract
Transforming growth factor-beta (TGF-beta) is a multifunctional cytokine of key importance for controlling embryogenesis and tissue homeostasis. How TGF-beta signals are attenuated and terminated is not well understood. Here, we show that TMEPAI, a direct target gene of TGF-beta signaling, antagonizes TGF-beta signaling by interfering with TGF-beta type I receptor (TbetaRI)-induced R-Smad phosphorylation. TMEPAI can directly interact with R-Smads via a Smad interaction motif. TMEPAI competes with Smad anchor for receptor activation for R-Smad binding, thereby sequestering R-Smads from TbetaRI kinase activation. In mammalian cells, ectopic expression of TMEPAI inhibited TGF-beta-dependent regulation of plasminogen activator inhibitor-1, JunB, cyclin-dependent kinase inhibitors, and c-myc expression, whereas specific knockdown of TMEPAI expression prolonged duration of TGF-beta-induced Smad2 and Smad3 phosphorylation and concomitantly potentiated cellular responsiveness to TGF-beta. Consistently, TMEPAI inhibits activin-mediated mesoderm formation in Xenopus embryos. Therefore, TMEPAI participates in a negative feedback loop to control the duration and intensity of TGF-beta/Smad signaling.
Collapse
Affiliation(s)
- Yukihide Watanabe
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Nie S, Kee Y, Bronner-Fraser M. Myosin-X is critical for migratory ability of Xenopus cranial neural crest cells. Dev Biol 2009; 335:132-42. [PMID: 19712673 DOI: 10.1016/j.ydbio.2009.08.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 08/18/2009] [Accepted: 08/18/2009] [Indexed: 01/26/2023]
Abstract
The neural crest is a highly migratory cell population, unique to vertebrates, that forms much of the craniofacial skeleton and peripheral nervous system. In exploring the cell biological basis underlying this behavior, we have identified an unconventional myosin, myosin-X (Myo10) that is required for neural crest migration. Myo10 is highly expressed in both premigratory and migrating cranial neural crest (CNC) cells in Xenopus embryos. Disrupting Myo10 expression using antisense morpholino oligonucleotides leads to impaired neural crest migration and subsequent cartilage formation, but only a slight delay in induction. In vivo grafting experiments reveal that Myo10-depleted CNC cells migrate a shorter distance and fail to segregate into distinct migratory streams. Finally, in vitro cultures and cell dissociation-reaggregation assays suggest that Myo10 may be critical for cell protrusion and cell-cell adhesion. These results demonstrate an essential role for Myo10 in normal cranial neural crest migration and suggest a link to cell-cell interactions and formation of processes.
Collapse
Affiliation(s)
- Shuyi Nie
- Division of Biology 139-74, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | |
Collapse
|
15
|
Dai F, Lin X, Chang C, Feng XH. Nuclear export of Smad2 and Smad3 by RanBP3 facilitates termination of TGF-beta signaling. Dev Cell 2009; 16:345-57. [PMID: 19289081 DOI: 10.1016/j.devcel.2009.01.022] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 12/31/2008] [Accepted: 01/30/2009] [Indexed: 10/21/2022]
Abstract
Smad2 and Smad3 (Smad2/3) are key intracellular signal transducers for TGF-beta signaling, and their transcriptional activities are controlled through reversible phosphorylation and nucleocytoplasmic shuttling. However, the precise mechanism underlying nuclear export of Smad2/3 remains elusive. Here we report the essential function of RanBP3 in selective nuclear export of Smad2/3 in the TGF-beta pathway. RanBP3 directly recognizes dephosphorylated Smad2/3, which results from the activity of nuclear Smad phosphatases, and mediates nuclear export of Smad2/3 in a Ran-dependent manner. As a result, increased expression of RanBP3 inhibits TGF-beta signaling in mammalian cells and Xenopus embryos. Conversely, depletion of RanBP3 expression or dominant-negative inhibition of RanBP3 enhances TGFbeta-induced antiproliferative and transcriptional responses. In conclusion, our study supports a definitive role for RanBP3 in mediating Smad2/3 nuclear export and terminating TGF-beta signaling.
Collapse
Affiliation(s)
- Fangyan Dai
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
16
|
Fletcher RB, Harland RM. The role of FGF signaling in the establishment and maintenance of mesodermal gene expression in Xenopus. Dev Dyn 2008; 237:1243-54. [PMID: 18386826 DOI: 10.1002/dvdy.21517] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
FGF signaling is important for the formation of mesoderm in vertebrates, and when it is perturbed in Xenopus, most trunk and tail mesoderm fails to form. Here we have further dissected the activities of FGF in patterning the embryo by addressing its inductive and maintenance roles. We show that FGF signaling is necessary for the establishment of xbra expression in addition to its well-characterized role in maintaining xbra expression. The role of FGF signaling in organizer formation is not clear in Xenopus. We find that FGF signaling is essential for the initial specification of paraxial mesoderm but not for activation of several pan-mesodermal and most organizer genes; however, early FGF signaling is necessary for the maintenance of organizer gene expression into the neurula stage. Inhibition of FGF signaling prevents VegT activation of specific mesodermal transcripts. These findings illuminate how FGF signaling contributes to the establishment of distinct types of mesoderm.
Collapse
Affiliation(s)
- Russell B Fletcher
- Department of Molecular and Cell Biology, Center for Integrative Genomics, University of California, Berkeley, California 94720-3200, USA
| | | |
Collapse
|
17
|
de Almeida I, Rolo A, Batut J, Hill C, Stern CD, Linker C. Unexpected activities of Smad7 in Xenopus mesodermal and neural induction. Mech Dev 2008; 125:421-31. [PMID: 18359614 DOI: 10.1016/j.mod.2008.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 02/01/2008] [Accepted: 02/04/2008] [Indexed: 11/24/2022]
Abstract
Neural induction is widely believed to be a direct consequence of inhibition of BMP pathways. Because of conflicting results and interpretations, we have re-examined this issue in Xenopus and chick embryos using the powerful and general TGFbeta inhibitor, Smad7, which inhibits both Smad1- (BMP) and Smad2- (Nodal/Activin) mediated pathways. We confirm that Smad7 efficiently inhibits phosphorylation of Smad1 and Smad2. Surprisingly, however, over-expression of Smad7 in Xenopus ventral epidermis induces expression of the dorsal mesodermal markers Chordin and Brachyury. Neural markers are induced, but in a non-cell-autonomous manner and only when Chordin and Brachyury are also induced. Simultaneous inhibition of Smad1 and Smad2 by different approaches does not account for all Smad7 effects, indicating that Smad7 has activities other than inhibition of the TGFbeta pathway. We provide evidence that these effects are independent of Wnt, FGF, Hedgehog and retinoid signalling. We also show that these effects are due to elements outside of the MH2 domain of Smad7. Together, these results indicate that BMP inhibition is not sufficient for neural induction even when Nodal/Activin is also blocked, and that Smad7 activity is considerably more complex than had previously been assumed. We suggest that experiments relying on Smad7 as an inhibitor of TGFbeta-pathways should be interpreted with considerable caution.
Collapse
Affiliation(s)
- Irene de Almeida
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | | | |
Collapse
|
18
|
Nie S, Chang C. PI3K and Erk MAPK mediate ErbB signaling in Xenopus gastrulation. Mech Dev 2007; 124:657-67. [PMID: 17716876 PMCID: PMC2098746 DOI: 10.1016/j.mod.2007.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 06/18/2007] [Accepted: 07/12/2007] [Indexed: 12/22/2022]
Abstract
ErbB signaling regulates cell adhesion and movements during Xenopus gastrulation, but the downstream pathways involved have not been elucidated. In this study, we show that phosphatidylinositol-3 kinase (PI3K) and Erk mitogen-activated protein kinase (MAPK) mediate ErbB signaling to regulate gastrulation. Both PI3K and MAPK function sequentially in mesoderm specification and movements, and ErbB signaling is important only for the late phase activation of these pathways to control cell behaviors. Activation of either PI3K or Erk MAPK rescues gastrulation defects in ErbB4 morphant embryos, and restores convergent extension in the trunk mesoderm as well as coherent cell migration in the head mesoderm. The two signals preferentially regulate different aspects of cell behaviors, with PI3K more efficient in rescuing cell adhesion and spreading and MAPK more effective in stimulating the formation of filopodia. PI3K and MAPK also weakly activate each other, and together they modulate gastrulation movements. Our results reveal that PI3K and Erk MAPK, which have previously been considered as mesodermal inducing signals, also act downstream of ErbB signaling to participate in regulation of gastrulation morphogenesis.
Collapse
Affiliation(s)
| | - Chenbei Chang
- correspondent, ; 205-975-7229 (phone); 205-975-5648 (fax)
| |
Collapse
|
19
|
Dai F, Chang C, Lin X, Dai P, Mei L, Feng XH. Erbin inhibits transforming growth factor beta signaling through a novel Smad-interacting domain. Mol Cell Biol 2007; 27:6183-94. [PMID: 17591701 PMCID: PMC1952163 DOI: 10.1128/mcb.00132-07] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Smad proteins are critical intracellular signaling mediators for the transforming growth factor beta (TGFbeta) superfamily. Here, we report that Erbin (for "ErbB2/Her2-interacting protein"), which contains leucine-rich repeats and a PDZ (PSD-95/DLG/ZO-1) domain, interacts specifically with Smad3 and, to a lesser extent, with Smad2 through a novel Smad-interacting domain (SID) adjacent to its PDZ domain. Increased expression of Erbin does not affect the level of TGFbeta-induced phosphorylation of Smad2/Smad3, but it physically sequesters Smad2/Smad3 from their association with Smad4 and hence negatively modulates TGFbeta-dependent transcriptional responses and cell growth inhibition. An isoform of Erbin encoded by an alternatively spliced transcript in human tissues lacks this SID and fails to inhibit TGFbeta responses. Consistently, knockdown of the endogenous Erbin gene with short hairpin RNA enhances TGFbeta-induced antiproliferative and transcriptional responses. In addition, Erbin suppresses activin/Smad2-dependent, but not BMP/Smad1-mediated, induction of endogenous gene expression in Xenopus embryos. Therefore, these results define Erbin as a novel negative modulator of Smad2/Smad3 functions and expand the physiological role of Erbin to the regulation of TGFbeta signaling.
Collapse
Affiliation(s)
- Fangyan Dai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Room 137D, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
20
|
Herpin A, Cunningham C. Cross-talk between the bone morphogenetic protein pathway and other major signaling pathways results in tightly regulated cell-specific outcomes. FEBS J 2007; 274:2977-85. [PMID: 17521337 DOI: 10.1111/j.1742-4658.2007.05840.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Members of the bone morphogenetic protein (BMP) family of ligands have been identified in a variety of vertebrate and invertebrate species and have been shown to play an essential role in a range of biological processes, including mesodermal patterning and organ development, as well as the formation of bone and cartilage. Although the interaction of BMP ligands with specific type I and II serine-threonine kinase receptor complexes is crucial to the initiation of signaling, it is the interaction of intracellular signaling molecules, called Smads, with receptor complexes and other transcription factors that defines the repertoire of biological responses associated with the BMPs. But although all BMP ligands appear to interact with specific type I and II receptors, growing biochemical and developmental evidence supports the notion that alternative non-Smad pathways also participates in BMP signaling. Here, we review the interaction or 'cross-talk' between the BMP and other major signaling pathways (transforming growth factor beta/activin, Notch, p38 mitogen-activated protein kinase and Toll) that results in tightly regulated cell-specific outcomes.
Collapse
Affiliation(s)
- Amaury Herpin
- Department of Physiological Chemistry I, University of Wuerzburg, Germany.
| | | |
Collapse
|
21
|
Nie S, Chang C. Regulation of Xenopus gastrulation by ErbB signaling. Dev Biol 2006; 303:93-107. [PMID: 17134691 PMCID: PMC4939279 DOI: 10.1016/j.ydbio.2006.10.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Revised: 10/18/2006] [Accepted: 10/25/2006] [Indexed: 12/15/2022]
Abstract
During Xenopus gastrulation, mesendodermal cells are internalized and display different movements. Head mesoderm migrates along the blastocoel roof, while trunk mesoderm undergoes convergent extension (C&E). Different signals are implicated in these processes. Our previous studies reveal that signals through ErbB receptor tyrosine kinases modulate Xenopus gastrulation, but the mechanisms employed are not understood. Here we report that ErbB signals control both C&E and head mesoderm migration. Inhibition of ErbB pathway blocks elongation of dorsal marginal zone explants and activin-treated animal caps without removing mesodermal gene expression. Bipolar cell shape and cell mixing in the dorsal region are impaired. Inhibition of ErbB signaling also interferes with migration of prechordal mesoderm on fibronectin. Cell-cell and cell-matrix interaction and cell spreading are reduced when ErbB signaling is blocked. Using antisense morpholino oligonucleotides, we show that ErbB4 is involved in Xenopus gastrulation morphogenesis, and it partially regulates cell movements through modulation of cell adhesion and membrane protrusions. Our results reveal for the first time that vertebrate ErbB signaling modulates gastrulation movements, thus providing a novel pathway, in addition to non-canonical Wnt and FGF signals, that controls gastrulation. We further demonstrate that regulation of cell adhesive properties and cell morphology may underlie the functions of ErbBs in gastrulation.
Collapse
Affiliation(s)
| | - Chenbei Chang
- Corresponding author. Fax: +1 205 975 5648. (C. Chang)
| |
Collapse
|
22
|
Vonica A, Brivanlou AH. The left-right axis is regulated by the interplay of Coco, Xnr1 and derrière in Xenopus embryos. Dev Biol 2006; 303:281-94. [PMID: 17239842 DOI: 10.1016/j.ydbio.2006.09.039] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 09/15/2006] [Accepted: 09/20/2006] [Indexed: 11/22/2022]
Abstract
Formation of the left-right axis involves a symmetry-breaking signal originating in the node or its equivalents, which increases TGF-beta signaling on the left side of the embryo and ultimately leads to asymmetric patterning of the viscera. DAN domain proteins are extracellular inhibitors of TGF-beta ligands, and are involved in regulating the left-right axis in chick, mouse and zebrafish. We find that Coco, a Xenopus DAN family member, and two TGF-beta ligands, Xnr1 and derrière, are coexpressed in the posterior paraxial mesoderm at neurula stage. Side-specific protein depletion demonstrated that left-right patterning requires Coco exclusively on the right side, and Xnr1 and derrière exclusively on the left, despite their bilateral expression pattern. In the absence of Coco, the TGF-beta signal is bilateral. Interactions among the three proteins show that derrière is required for normal levels of Xnr1 expression, while Coco directly inhibits both ligands. We conclude that derrière, Xnr1, and Coco define a posttranscriptionally regulated signaling center, which is a necessary link in the signaling chain leading to an increased TGF-beta signal on the left side of the embryo.
Collapse
Affiliation(s)
- Alin Vonica
- The Laboratory of Vertebrate Embryology, The Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
23
|
Szeto DP, Kimelman D. The regulation of mesodermal progenitor cell commitment to somitogenesis subdivides the zebrafish body musculature into distinct domains. Genes Dev 2006; 20:1923-32. [PMID: 16847349 PMCID: PMC1522088 DOI: 10.1101/gad.1435306] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The vertebrate musculature is produced from a visually uniform population of mesodermal progenitor cells (MPCs) that progressively bud off somites populating the trunk and tail. How the MPCs are regulated to continuously release cells into the presomitic mesoderm throughout somitogenesis is not understood. Using a genetic approach to study the MPCs, we show that a subset of MPCs are set aside very early in zebrafish development, and programmed to cell-autonomously enter the tail domain beginning with the 16th somite. Moreover, we show that the trunk is subdivided into two domains, and that entry into the anterior trunk, posterior trunk, and tail is regulated by interactions between the Nodal and bone morphogenetic protein (Bmp) pathways. Finally, we show that the tail MPCs are held in a state we previously called the Maturation Zone as they wait for the signal to begin entering somitogenesis.
Collapse
Affiliation(s)
- Daniel P Szeto
- Department of Biochemistry, University of Washington, Seattle, 98195, USA
| | | |
Collapse
|
24
|
Chang C, Brivanlou AH, Harland RM. Function of the two Xenopus smad4s in early frog development. J Biol Chem 2006; 281:30794-803. [PMID: 16908518 DOI: 10.1074/jbc.m607054200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Signals from the transforming growth factor beta family members are transmitted in the cell through specific receptor-activated Smads and a common partner Smad4. Two Smad4 genes (alpha and beta/10, or smad4 and smad4.2) have been isolated from Xenopus, and conflicting data are reported for Smad4beta/10 actions in mesodermal and neural induction. To further understand the functions of the Smad4s in early frog development, we analyzed their activities in detail. We report that Smad10 is a mutant form of Smad4beta that harbors a missense mutation of a conserved arginine to histidine in the MH1 domain. The mutation results in enhanced association of Smad10 with the nuclear transcription corepressor Ski and leads to its neural inducing activity through inhibition of bone morphogenetic protein (BMP) signaling. In contrast to Smad10, both Smad4alpha and Smad4beta enhanced BMP signals in ectodermal explants. Using antisense morpholino oligonucleotides (MOs) to knockdown endogenous Smad4 protein levels, we discovered that Smad4beta was required for both activin- and BMP-mediated mesodermal induction in animal caps, whereas Smad4alpha affected only the BMP signals. Neither Smad4 was involved directly in neural induction. Expression of Smad4beta-MO in early frog embryos resulted in reduction of mesodermal markers and defects in axial structures, which were rescued by either Smad4alpha or Smad4beta. Smad4alpha-MO induced only minor deficiency at late stages. As Smad4beta, but not Smad4alpha, is expressed at high levels maternally and during early gastrulation, our data suggest that although Smad4alpha and Smad4beta may have similar activities, they are differentially utilized during frog embryogenesis, with only Smad4beta being essential for mesoderm induction.
Collapse
Affiliation(s)
- Chenbei Chang
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0005, USA.
| | | | | |
Collapse
|
25
|
Ho DM, Chan J, Bayliss P, Whitman M. Inhibitor-resistant type I receptors reveal specific requirements for TGF-beta signaling in vivo. Dev Biol 2006; 295:730-42. [PMID: 16684517 DOI: 10.1016/j.ydbio.2006.03.050] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 03/29/2006] [Accepted: 03/31/2006] [Indexed: 11/22/2022]
Abstract
Activin/nodal-like TGF-beta superfamily ligands signal through the type I receptors Alk4, Alk5, and Alk7, and are responsible for mediating a number of essential processes in development. SB-431542, a chemical inhibitor of activin/nodal signaling, acts by specifically interfering with type I receptors. Here, we use inhibitor-resistant mutant receptors to examine the efficacy and specificity of SB-431542 in Xenopus and zebrafish embryos. Treatment with SB-431542 eliminates Smad2 phosphorylation in vivo and generates a phenotype very similar to those observed in genetic mutants in the nodal signaling pathway. Inhibitor-resistant Alk4 efficiently rescues Smad2 signaling, developmental phenotype, and marker gene expression after inhibitor treatment. This system was used to examine type I receptor specificity for several activin/nodal ligands. We find that Alk4 can efficiently rescue signaling by a wide range of ligands, while Alk7 can only weakly rescue signaling by the same ligands. In whole embryos, nodal signaling during gastrulation can be rescued with Alk4, but not Alk7, while Alk5 can only mediate signaling by ligands expressed later in development. The combination of the ALK inhibitor SB-431542 with inhibitor-resistant ALKs provides a powerful set of tools for examining nodal/activin signaling during embryogenesis.
Collapse
Affiliation(s)
- Diana M Ho
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
26
|
Sun Z, Jin P, Tian T, Gu Y, Chen YG, Meng A. Activation and roles of ALK4/ALK7-mediated maternal TGFbeta signals in zebrafish embryo. Biochem Biophys Res Commun 2006; 345:694-703. [PMID: 16696945 DOI: 10.1016/j.bbrc.2006.04.148] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Accepted: 04/25/2006] [Indexed: 10/24/2022]
Abstract
Activin, Nodal, and Vg1, members of the transforming growth factor beta (TGFbeta) superfamily, transduce signal through type I receptors ALK4 or ALK7 and play important roles in mesoderm induction and patterning during vertebrate embryogenesis. However, the timing and magnitude of the ALK4/ALK7-mediated maternal TGFbeta signals are not clear. SB-431542 is identified as an inhibitor of the ALK4/ALK5/ALK7-mediated TGFbeta signals and its specificity in vertebrate embryos has not been reported. We demonstrate that SB-431542 is able to specifically and reproducibly block the Smad2/3-mediated TGFbeta signals in zebrafish embryo. Embryos exposed to SB-431542 exhibit various defects phenocopying Nodal-deficient mutants. SB-431542 treatments starting at different cell cycles before the midblastula transition lead to different degrees of developmental defects in mesoderm induction and patterning, suggesting that maternal TGFbeta signals are activated right after fertilization and required for mesoderm formation and patterning.
Collapse
Affiliation(s)
- Zhihui Sun
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | |
Collapse
|
27
|
Ramsdell AF, Bernanke JM, Johnson J, Trusk TC. Left-right lineage analysis of AV cushion tissue in normal and laterality defective Xenopus hearts. ACTA ACUST UNITED AC 2006; 287:1176-82. [PMID: 16294330 DOI: 10.1002/ar.a.20269] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The majority of complex congenital heart defects occur in individuals who are afflicted by laterality disease. We hypothesize that the prevalence of valvuloseptal defects in this population is due to defective left-right patterning of the embryonic atrioventricular (AV) canal cushions, which are the progenitor tissue for valve and septal structures in the mature heart. Using embryos of the frog Xenopus laevis, this hypothesis was tested by performing left-right lineage analysis of myocytes and cushion mesenchyme cells of the superior and inferior cushion regions of the AV canal. Lineage analyses were conducted in both wild-type and laterality mutant embryos experimentally induced by misexpression of ALK4, a type I TGF-beta receptor previously shown to modulate left-right axis determination in Xenopus. We find that abnormalities in overall amount and left-right cell lineage composition are present in a majority of ALK4-induced laterality mutant embryos and that much variation in the nature of these abnormalities exists in embryos that exhibit the same overall body situs. We propose that these two parameters of cushion tissue formation-amount and left-right lineage origin-are important for normal processes of valvuloseptal morphogenesis and that defective allocation of cells in the AV canal might be causatively linked to the high incidence of valvuloseptal defects associated with laterality disease.
Collapse
Affiliation(s)
- Ann F Ramsdell
- Department of Cell and Developmental Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, South Carolina, USA.
| | | | | | | |
Collapse
|
28
|
Abstract
ErbB signaling has long been implicated in cancer formation and progression and is shown to regulate cell division, migration, and death during tumorigenesis. The functions of the ErbB pathway during early vertebrate embryogenesis, however, are not well understood. Here we report characterization of ErbB activities during early frog development. Gain-of-function analyses show that EGFR, ErbB2, and ErbB4 induce ectopic tumor-like cell mass that contains increased numbers of mitotic cells. Both the muscle and the neural markers are expressed in these ectopic protrusions. ErbBs also induce mesodermal markers in ectodermal explants. Loss-of-function studies using carboxyl terminal-truncated dominant-negative ErbB receptors demonstrate that blocking ErbB signals leads to defective gastrulation movements and malformation of the embryonic axis with a reduction in the head structures in early frog embryos. These data, together with the observation that ErbBs are expressed early during frog embryogenesis, suggest that ErbBs regulate cell proliferation, movements, and embryonic patterning during early Xenopus development.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Biomarkers
- Cell Proliferation
- Embryo, Nonmammalian/abnormalities
- Embryo, Nonmammalian/cytology
- Embryo, Nonmammalian/embryology
- Embryo, Nonmammalian/metabolism
- ErbB Receptors/chemistry
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Gene Expression Regulation, Developmental/genetics
- Head/abnormalities
- Head/embryology
- Humans
- Molecular Sequence Data
- Phylogeny
- Receptor, ErbB-2/chemistry
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-3/chemistry
- Receptor, ErbB-3/genetics
- Receptor, ErbB-3/metabolism
- Receptor, ErbB-4
- Sequence Alignment
- Sequence Homology, Amino Acid
- Signal Transduction
- Time Factors
- Xenopus laevis/abnormalities
- Xenopus laevis/embryology
- Xenopus laevis/metabolism
Collapse
Affiliation(s)
| | - Chenbei Chang
- Corresponding author. ; Phone: 205-975-7229; Fax: 205-975-5648
| |
Collapse
|
29
|
Cha YR, Takahashi S, Wright CVE. Cooperative non-cell and cell autonomous regulation of Nodal gene expression and signaling by Lefty/Antivin and Brachyury in Xenopus. Dev Biol 2006; 290:246-64. [PMID: 16405884 DOI: 10.1016/j.ydbio.2005.10.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 10/20/2005] [Accepted: 10/28/2005] [Indexed: 11/25/2022]
Abstract
Dynamic spatiotemporal expression of the nodal gene and its orthologs is involved in the dose-dependent induction and patterning of mesendoderm during early vertebrate embryogenesis. We report loss-of-function studies that define a high degree of synergistic negative regulation on the Xenopus nodal-related genes (Xnrs) by extracellular Xenopus antivin/lefty (Xatv/Xlefty)-mediated functional antagonism and Brachyury-mediated transcriptional suppression. A strong knockdown of Xlefty/Xatv function was achieved by mixing translation- and splicing-blocking morpholino oligonucleotides that target both the A and B alloalleles of Xatv. Secreted and cell-autonomous inhibitors of Xnr signaling were used to provide evidence that Xnr-mediated induction was inherently long-range in this situation in the large amphibian embryo, essentially being capable of spreading over the entire animal hemisphere. There was a greater expansion of the Organizer and mesendoderm tissues associated with dorsal specification than noted in previous Xatv knockdown experiments in Xenopus, with consequent exogastrulation and long-term maintenance of expanded axial tissues. Xatv deficiency caused a modest animal-ward expansion of the marginal zone expression territory of the Xnr1 and Xnr2 genes. In contrast, introducing inhibitory Xbra-En(R) fusion constructs into Xatv-deficient embryos caused a much larger increase in the level and spatial extent of Xnr expression. However, in both cases (Xatv/Xlefty-deficiency alone, or combined with Xbra interference), Xnr2 expression was constrained to the superficial cell layer, suggesting a fundamental tissue-specific competence in the ability to express Xnrs, an observation with direct implications regarding the induction of endodermal vs. mesodermal fates. Our experiments reveal a two-level suppressive mechanism for restricting the level, range, and duration of Xnr signaling via extracellular inhibition by Xatv/Xlefty coupled with potent indirect transcriptional repression by Xbra.
Collapse
Affiliation(s)
- Young Ryun Cha
- Department of Cell and Developmental Biology, Program in Developmental Biology, Vanderbilt University School of Medicine, 465 21st Avenue South, Nashville, TN 37232, USA
| | | | | |
Collapse
|
30
|
Timmer J, Chesnutt C, Niswander L. The Activin signaling pathway promotes differentiation of dI3 interneurons in the spinal neural tube. Dev Biol 2005; 285:1-10. [PMID: 16039645 DOI: 10.1016/j.ydbio.2005.05.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2004] [Revised: 05/04/2005] [Accepted: 05/20/2005] [Indexed: 12/21/2022]
Abstract
The generation of the appropriate types and numbers of mature neurons during the development of the spinal cord requires the careful coordination of patterning, proliferation, and differentiation. In the dorsal neural tube, this coordination is achieved by the combined action of multiple ligands of both the Wnt and TGF-beta families, and their effectors, such as the bHLH proteins. TGF-beta signaling acting through the BMP receptors is necessary for the generation of several dorsal interneuron types. Other TGF-beta ligands expressed in the dorsal neural tube interact with the Activin receptors, which signal via a different set of SMAD proteins than BMPs. The effects of Activin signaling on the developing neural tube have not been described. Here we have activated the Activin signal transduction pathway in a cell-autonomous manner in the developing chick neural tube. We find that a constitutively active Activin receptor promotes differentiation throughout the neural tube. Although most differentiated cell populations are unaffected by Activin signaling, the number of dorsal interneuron 3 (dI3) cells is specifically increased. Our data suggest that Activin signaling may promote the formation of the dI3 precursor cells within a region circumscribed by BMP signaling and that this function is not dependent upon BMP signaling.
Collapse
Affiliation(s)
- John Timmer
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10021, USA
| | | | | |
Collapse
|
31
|
Gamer LW, Nove J, Levin M, Rosen V. BMP-3 is a novel inhibitor of both activin and BMP-4 signaling in Xenopus embryos. Dev Biol 2005; 285:156-68. [PMID: 16054124 DOI: 10.1016/j.ydbio.2005.06.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Revised: 06/09/2005] [Accepted: 06/13/2005] [Indexed: 10/25/2022]
Abstract
In Xenopus, the biological effects of BMP-3 oppose those of ventralizing BMPs, but the mechanism for this antagonism remains unclear. Here, we demonstrate that BMP-3 is a dorso-anteriorizing factor in Xenopus embryos that interferes with both activin and BMP signaling. BMP-3 acts by binding to ActRIIB, the common type II receptor for these proteins. Once BMP-3 binds to ActRIIB, it cannot be competed off by excess ligand making a receptor complex that is unable to activate R-Smads and transduce signal. Consistent with a model where BMP-3 interferes with activin and BMPs through a shared receptor, we show that overexpression of BMP-3 can only be rescued by co-injection of xActRIIB. Our results identify BMP-3 as a novel antagonist of both activin and BMPs and uncover how some of the diverse developmental processes that are regulated by both activin and BMP signaling can be modulated during embryogenesis.
Collapse
Affiliation(s)
- Laura W Gamer
- Department of Oral and Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
32
|
Chen Y, Whitaker LL, Ramsdell AF. Developmental analysis of activin-like kinase receptor-4 (ALK4) expression in Xenopus laevis. Dev Dyn 2005; 232:393-8. [PMID: 15614766 DOI: 10.1002/dvdy.20232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The type I transforming growth factor-beta (TGFbeta) receptor, activin-like kinase-4 (ALK4), is an important regulator of vertebrate development, with roles in mesoderm induction, primitive streak formation, gastrulation, dorsoanterior patterning, and left-right axis determination. To complement previous ALK4 functional studies, we have analyzed ALK4 expression in embryos of the frog, Xenopus laevis. Results obtained with reverse transcriptase-polymerase chain reaction indicate that ALK4 is present in both the animal and vegetal poles of blastula stage embryos and that expression levels are relatively constant amongst embryos examined at blastula, gastrula, neurula, and early tail bud stages. However, the tissue distribution of ALK4 mRNA, as assessed by whole-mount in situ hybridization, was found to change over this range of developmental stages. In the blastula stage embryo, ALK4 is detected in cells of the animal pole and the marginal zone. During gastrulation, ALK4 is detected in the outer ectoderm, involuting mesoderm, blastocoele roof, dorsal lip, and to a lesser extent, in the endoderm. At the onset of neurulation, ALK4 expression is prominent in the dorsoanterior region of the developing head, the paraxial mesoderm, and midline structures, including the prechordal plate and neural folds. Expression in older neurula stage embryos resolves to the developing brain, somites, notochord, and neural crest; thereafter, additional sites of ALK4 expression in tail bud stage embryos include the spinal cord, otic placode, developing eye, lateral plate mesoderm, branchial arches, and the bilateral heart fields. Together, these results not only reflect the multiple developmental roles that have been proposed for this TGFbeta receptor but also define spatiotemporal windows in which ALK4 may function to modulate fundamental embryological events.
Collapse
Affiliation(s)
- Yumei Chen
- Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | |
Collapse
|
33
|
Alliston T, Ko TC, Cao Y, Liang YY, Feng XH, Chang C, Derynck R. Repression of Bone Morphogenetic Protein and Activin-inducible Transcription by Evi-1. J Biol Chem 2005; 280:24227-37. [PMID: 15849193 DOI: 10.1074/jbc.m414305200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Smads, key effectors of transforming growth factor (TGF)-beta, activin, and bone morphogenetic protein (BMP) signaling, regulate gene expression and interact with coactivators and corepressors that modulate Smad activity. The corepressor Evi-1 exerts its oncogenic effects by repressing TGF-beta/Smad3-mediated transcription, thereby blocking TGF-beta-induced growth arrest. Because Evi-1 interacts with the highly conserved MH2 domain of Smad3, we investigated the physical and functional interaction of Evi-1 with Smad1 and Smad2, downstream targets of BMP and activin signaling, respectively. Evi-1 interacted with and repressed the receptor-activated transcription through Smad1 and Smad2, similarly to Smad3. In addition, Evi-1 repressed BMP/Smad1- and activin/Smad2-mediated induction of endogenous Xenopus gene expression, suggesting a role of repression of BMP and activin signals by Evi-1 in vertebrate embryogenesis. Evi-1 also repressed the induction of endogenous Smad7 expression by TGF-beta family ligands. In the course of these studies, we observed Evi-1 repression of Smad transactivation even when Smad binding to DNA was kept constant. We therefore explored the mechanism of Evi-1 repression of TGF-beta family-inducible transcription. Evi-1 repression did not result from displacement of Smad binding to DNA or to CREB-binding protein but from the recruitment of Evi-1 by Smad3 and CREB-binding protein to DNA. Following TGF-beta stimulation, Evi-1 and the associated corepressor CtBP were recruited to the endogenous Smad7 promoter. Evi-1 recruitment to the promoter decreased TGF-beta-induced histone acetylation, coincident with its repression of Smad7 gene expression. In this way, Evi-1 acts as a general Smad corepressor to inhibit TGF-beta-, activin-, and BMP-inducible transcription.
Collapse
Affiliation(s)
- Tamara Alliston
- Department of Cell and Tissue Biology, University of California at San Francisco, San Francisco, California 94143-0512, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Abe T, Furue M, Kondow A, Matsuzaki K, Asashima M. Notch signaling modulates the nuclear localization of carboxy-terminal-phosphorylated smad2 and controls the competence of ectodermal cells for activin A. Mech Dev 2005; 122:671-80. [PMID: 15817224 DOI: 10.1016/j.mod.2004.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Revised: 12/11/2004] [Accepted: 12/11/2004] [Indexed: 11/18/2022]
Abstract
Loss of mesodermal competence (LMC) during Xenopus development is a well known but little understood phenomenon that prospective ectodermal cells (animal caps) lose their competence for inductive signals, such as activin A, to induce mesodermal genes and tissues after the start of gastrulation. Notch signaling can delay the onset of LMC for activin A in animal caps [Coffman, C.R., Skoglund, P., Harris, W.A., Kintner, C.R., 1993. Expression of an extracellular deletion of Xotch diverts cell fate in Xenopus embryos. Cell 73, 659-671], although the mechanism by which this modulation occurs remains unknown. Here, we show that Notch signaling also delays the onset of LMC in whole embryos, as it did in animal caps. To better understand this effect and the mechanism of LMC itself, we investigated at which step of activin signal transduction pathway the Notch signaling act to affect the timing of the LMC. In our system, ALK4 (activin type I receptor) maintained the ability to phosphorylate the C-terminal region of smad2 upon activin A stimulus after the onset of LMC in both control- and Notch-activated animal caps. However, C-terminal-phosphorylated smad2 could bind to smad4 and accumulate in the nucleus only in Notch-activated animal caps. We conclude that LMC was induced because C-terminal-phosphorylated smad2 lost its ability to bind to smad4, and consequently could not accumulate in the nucleus. Notch signal activation restored the ability of C-terminal-phosphorylated smad2 to bind to smad4, resulting in a delay in the onset of LMC.
Collapse
Affiliation(s)
- Takanori Abe
- Department of Biological Science, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
35
|
Takeda M, Kurauchi T, Yamazaki T, Izutsu Y, Maéno M. Neptune is involved in posterior axis and tail formation inXenopus embryogenesis. Dev Dyn 2005; 234:63-73. [PMID: 16059925 DOI: 10.1002/dvdy.20518] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In order to elucidate the molecular mechanisms underlying the posterior axis and tail formation in embryogenesis, the function of Neptune, a zinc-finger transcription factor, in Xenopus laevis embryos was investigated. Injection of neptune mRNA into the animal pole area of embryos resulted in the formation of an additional tail structure that included a neural tube and muscle tissue. This activity required FGF signaling since coinjection of a dominant-negative FGF receptor RNA (XFD) completely blocked the formation of a tail structure. A loss-of-function experiment using a fusion construct of neptune and Drosophila engrailed (en-neptune) RNA showed that endogenous Neptune is necessary for formation of the posterior trunk and tail. Furthermore, activity of Neptune was necessary for the endogenous expression of brachyury and fgf-8 at the late gastrula stage. These findings demonstrate a novel function of Neptune in the process of anterior-posterior axis formation through the FGF and brachyury signaling cascades. An experiment using a combination explant with ventral and dorsal marginal tissues showed that cooperation of these two distinct tissues is important for the tail formation and that expression of Neptune in prospective ventral cells may be involved in the activation of the process of tail formation.
Collapse
Affiliation(s)
- Masatoshi Takeda
- Graduate School of Science and Technology, Niigata University, Japan
| | | | | | | | | |
Collapse
|
36
|
Jörnvall H, Reissmann E, Andersson O, Mehrkash M, Ibáñez CF. ALK7, a receptor for nodal, is dispensable for embryogenesis and left-right patterning in the mouse. Mol Cell Biol 2004; 24:9383-9. [PMID: 15485907 PMCID: PMC522223 DOI: 10.1128/mcb.24.21.9383-9389.2004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mesendoderm formation and left-right patterning during vertebrate development depend upon selected members of the transforming growth factor beta superfamily, particularly Nodal and Nodal-related ligands. Two type I serine/threonine kinase receptors have been identified for Nodal, ALK4 and ALK7. Mouse embryos lacking ALK4 fail to produce mesendoderm and die shortly after gastrulation, resembling the phenotype of Nodal knockout mice. Whether ALK4 contributes to left-right patterning is still unknown. Here we report the generation and initial characterization of mice lacking ALK7. Homozygous mutant mice were born at the expected frequency and remained viable and fertile. Viability at weaning was not different from that of the wild type in ALK7(-/-); Nodal(+/-) and ALK7(-/-); ALK4(+/-) compound mutants. ALK7 and ALK4 were highly expressed in interdigital regions of the developing limb bud. However, ALK7 mutant mice displayed no skeletal abnormalities or limb malformations. None of the left-right patterning abnormalities and organogenesis defects identified in mice carrying mutations in Nodal or in genes encoding ActRIIA and ActRIIB coreceptors, including heart malformations, pulmonary isomerism, right-sided gut, and spleen hypoplasia, were observed in mice lacking ALK7. Finally, the histological organization of the cerebellum, cortex, and hippocampus, all sites of significant ALK7 expression in the rodent brain, appeared normal in ALK7 mutant mice. We conclude that ALK7 is not an essential mediator of Nodal signaling during mesendoderm formation and left-right patterning in the mouse but may instead mediate other activities of Nodal and related ligands in the development or function of particular tissues and organs.
Collapse
Affiliation(s)
- Henrik Jörnvall
- Department of Neuroscience, Karolinska Institute, Retzius väg 8, S-17177 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
37
|
Chen Y, Mironova E, Whitaker LL, Edwards L, Yost HJ, Ramsdell AF. ALK4 functions as a receptor for multiple TGF beta-related ligands to regulate left-right axis determination and mesoderm induction in Xenopus. Dev Biol 2004; 268:280-94. [PMID: 15063168 DOI: 10.1016/j.ydbio.2003.12.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2003] [Revised: 12/16/2003] [Accepted: 12/16/2003] [Indexed: 10/26/2022]
Abstract
In Xenopus, several TGF betas, including nodal-related 1 (Xnr1), derriere, and chimeric forms of Vg1, elicit cardiac and visceral organ left-right (LR) defects when ectopically targeted to right mesendoderm cell lineages, suggesting that LR axis determination may require activity of one or more TGF betas. However, it is not known which, if any, of these ligands is required for LR axis determination, nor is it known which type I TGF beta receptor(s) are involved in mediating left-side TGF beta signaling. We report here that similar to effects of ectopic TGF betas, right-side expression of constitutively active activin-like kinase (ALK) 4 results in LR organ reversals as well as altered Pitx2 expression in the lateral plate mesoderm. Moreover, left-side expression of a kinase-deficient, dominant-negative ALK4 (DN-ALK4) or an ALK4 antisense morpholino also results in abnormal embryonic body situs, demonstrating a left-side requirement for ALK4 signaling. To determine which TGF beta(s) utilize the ALK4 pathway to mediate LR development, biochemical and functional assays were performed using an Activin-Vg1 chimera (AVg), Xnr1, and derriere. Whereas ALK4 can co-immunoprecipitate all of these TGF betas, including endogenous Vg1 protein from embryo homogenates, functional assays demonstrate that not all of these ligands require an intact ALK4 signaling pathway to modulate LR asymmetry. When AVg and DN-ALK4 are co-expressed, LR defects otherwise induced by AVg alone are attenuated by DN-ALK4; however, when functional assays are performed with Xnr1 or derriere, LR defects otherwise elicited by these ligands alone still occur in the presence of DN-ALK4. Intriguingly, when any of these TGF betas is expressed at a higher concentration to elicit primary axis defects, DN-ALK4 blocks gastrulation and dorsoanterior/ventroposterior defects that otherwise occur following ligand-only expression. Together, these results suggest not only that ALK4 interacts with multiple TGF betas to generate embryonic pattern, but also that ALK4 ligands differentially utilize the ALK4 pathway to regulate distinct aspects of axial pattern, with Vg1 as a modulator of ALK4 function in LR axis determination and Vg1, Xnr1, and derriere as modulators of ALK4 function in mesoderm induction during primary axis formation.
Collapse
Affiliation(s)
- Yumei Chen
- Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | |
Collapse
|
38
|
Cheng SK, Olale F, Brivanlou AH, Schier AF. Lefty blocks a subset of TGFbeta signals by antagonizing EGF-CFC coreceptors. PLoS Biol 2004; 2:E30. [PMID: 14966532 PMCID: PMC340941 DOI: 10.1371/journal.pbio.0020030] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2003] [Accepted: 11/24/2003] [Indexed: 01/09/2023] Open
Abstract
Members of the EGF-CFC family play essential roles in embryonic development and have been implicated in tumorigenesis. The TGFβ signals Nodal and Vg1/GDF1, but not Activin, require EGF-CFC coreceptors to activate Activin receptors. We report that the TGFβ signaling antagonist Lefty also acts through an EGF-CFC-dependent mechanism. Lefty inhibits Nodal and Vg1 signaling, but not Activin signaling. Lefty genetically interacts with EGF-CFC proteins and competes with Nodal for binding to these coreceptors. Chimeras between Activin and Nodal or Vg1 identify a 14 amino acid region that confers independence from EGF-CFC coreceptors and resistance to Lefty. These results indicate that coreceptors are targets for both TGFβ agonists and antagonists and suggest that subtle sequence variations in TGFβ signals result in greater ligand diversity. TGFβ family members and their receptors are involved in setting up the left-right body axis early in development. This article clarifies the role of Lefty and elucidates the molecular basis for signaling diversity between the family members
Collapse
Affiliation(s)
- Simon K Cheng
- 1Developmental Genetics Program, Skirball Institute of Biomolecular Medicineand Department of Cell Biology, New York University School of Medicine, New York, New YorkUnited States of America
| | - Felix Olale
- 1Developmental Genetics Program, Skirball Institute of Biomolecular Medicineand Department of Cell Biology, New York University School of Medicine, New York, New YorkUnited States of America
| | - Ali H Brivanlou
- 2Laboratory of Molecular Vertebrate Embryology, The Rockefeller UniversityNew York, New YorkUnited States of America
| | - Alexander F Schier
- 1Developmental Genetics Program, Skirball Institute of Biomolecular Medicineand Department of Cell Biology, New York University School of Medicine, New York, New YorkUnited States of America
| |
Collapse
|
39
|
Harms PW, Chang C. Tomoregulin-1 (TMEFF1) inhibits nodal signaling through direct binding to the nodal coreceptor Cripto. Genes Dev 2003; 17:2624-9. [PMID: 14563676 PMCID: PMC280611 DOI: 10.1101/gad.1127703] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Transforming growth factor beta (TGF-beta) signals regulate multiple processes during development and in adult. We recently showed that tomoregulin-1 (TMEFF1), a transmembrane protein, selectively inhibits nodal but not activin in early Xenopus embryos. Here we report that TMEFF1 binds to the nodal coreceptor Cripto, but does not associate with either nodal or the type I ALK (activin receptor-like kinase) 4 receptor in coimmunoprecipitation assays. The inhibition of the nodal signaling by TMEFF1 in Xenopus ectodermal explants is rescued with wild-type but not mutant forms of Cripto. Furthermore, we show that the Cripto-FRL1-Cryptic (CFC) domain in Cripto, which is essential for its binding to ALK4, is also important for its interaction with TMEFF1. Our results demonstrate for the first time that nodal signaling can be regulated by a novel mechanism of blocking the Cripto coreceptor.
Collapse
Affiliation(s)
- Paul W Harms
- Department of Cell Biology, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | |
Collapse
|
40
|
Gilbert-Barness E, Debich-Spicer D, Opitz JM. Conjoined twins: morphogenesis of the heart and a review. Am J Med Genet A 2003; 120A:568-82. [PMID: 12884443 DOI: 10.1002/ajmg.a.10195] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Five cases of conjoined twins have been studied. These included three thoracopagus twins, one monocephalus diprosopus (prosop = face), and one dicephalus dipus dibrachus. The thoracopagus twins were conjoined only from the upper thorax to the umbilicus with a normal foregut. These three cases shared a single complex multiventricular heart, one with a four chambered heart with one atrium and one ventricle belonging to each twin with complex venous and arterial connection; two had a seven chambered heart with four atria and three ventricles. The mono-cephalus diprosopus twins had a single heart with tetralogy of Fallot. The dicephalus twins had two separate axial skeletons to the sacrum, two separate hearts were connected between the right atria with a shared inferior vena cava. Thoracopagus twinning is associated with complex cardiac malformations. The cardiac anlagen in cephalopagus or diprosopus are diverted and divided along with the entire rostral end of the embryonic disc and result in two relatively normal shared hearts. However, in thoracopagus twins the single heart is multiventricular and suggests very early union with fusion of the cardiac anlagen before significant differentiation. Cardiac morphogenesis in conjoined twins therefore appears to depend on the site of the conjoined fusion and the temporal and spatial influence that determines morphogenesis as well as abnormally oriented embryonic axes.
Collapse
Affiliation(s)
- Enid Gilbert-Barness
- Department of Pathology and Laboratory Medicine, University of South Florida, Tampa General Hospital, Davis Island, Tampa, Florida 33601, USA.
| | | | | |
Collapse
|
41
|
Lee PSW, Chang C, Liu D, Derynck R. Sumoylation of Smad4, the common Smad mediator of transforming growth factor-beta family signaling. J Biol Chem 2003; 278:27853-63. [PMID: 12740389 DOI: 10.1074/jbc.m301755200] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Transforming growth factor-beta (TGF-beta) and TGF-beta-related factors regulate cell growth, differentiation, and apoptosis, and play key roles in normal development and tumorigenesis. TGF-beta family-induced changes in gene expression are mediated by serine/threonine kinase receptors at the cell surface and Smads as intracellular effectors. Receptor-activated Smads combine with a common Smad4 to translocate into the nucleus where they cooperate with other transcription factors to activate or repress transcription. The activities of the receptor-activated Smads are controlled by post-translational modifications such as phosphorylation and ubiquitylation. Here we show that Smad4 is modified by sumoylation. Sumoylation of Smad4 was enhanced by the conjugating enzyme Ubc9 and members of the PIAS family of SUMO ligases. A major sumoylation site in Smad4 was localized to Lys-159 in its linker segment with an additional site at Lys-113 in the MH-1 domain. Increased sumoylation in the presence of the PIASy E3 ligase correlated with targeting of Smad4 to subnuclear speckles that contain SUMO-1 and PIASy. Replacement of lysines 159 and 113 by arginines or increased sumoylation enhanced the stability of Smad4, and transcription in mammalian cells and Xenopus embryos. These observations suggest a role for Smad4 sumoylation in the regulation of TGF-beta signaling through Smads.
Collapse
Affiliation(s)
- Pierre S W Lee
- Department of Growth and Development, University of California, San Francisco, California 94143-0640, USA
| | | | | | | |
Collapse
|
42
|
Chang C, Eggen BJL, Weinstein DC, Brivanlou AH. Regulation of nodal and BMP signaling by tomoregulin-1 (X7365) through novel mechanisms. Dev Biol 2003; 255:1-11. [PMID: 12618130 DOI: 10.1016/s0012-1606(02)00075-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
During early vertebrate development, members of the transforming growth factor beta (TGFbeta) family play important roles in a variety of processes, including germ layer specification, patterning, cell differentiation, migration, and organogenesis. The activities of TGFbetas need to be tightly controlled to ensure their function at the right time and place. Despite identification of multiple regulators of Bone Morphogenetic Protein (BMP) subfamily ligands, modulators of the activin/nodal class of TGFbeta ligands are limited, and include follistatin, Cerberus, and Lefty. Recently, a membrane protein, tomoregulin-1 (TMEFF1, originally named X7365), was isolated and found to contain two follistatin modules in addition to an Epidermal Growth Factor (EGF) domain, suggesting that TMEFF1 may participate in regulation of TGFbeta function. Here, we show that, unlike follistatin and follistatin-related gene (FLRG), TMEFF1 inhibits nodal but not activin in Xenopus. Interestingly, both the follistatin modules and the EGF motif contribute to nodal inhibition. A soluble protein containing the follistatin and the EGF domains, however, is not sufficient for nodal inhibition; the location of TMEFF1 at the membrane is essential for its function. These results suggest that TMEFF1 inhibits nodal through a novel mechanism. TMEFF1 also blocks mesodermal, but not epidermal induction by BMP2. Unlike nodal inhibition, regulation of BMP activities by TMEFF1 requires the latter's cytoplasmic tail, while deletion of either the follistatin modules or the EGF motif does not interfere with the BMP inhibitory function of TMEFF1. These results imply that TMEFF1 may employ different mechanisms in the regulation of nodal and BMP signals. In Xenopus, TMEFF1 is expressed from midgastrula stages onward and is enriched in neural tissue derivatives. This expression pattern suggests that TMEFF1 may modulate nodal and BMP activities during neural patterning. In summary, our data demonstrate that tomoregulin-1 is a novel regulator of nodal and BMP signaling during early vertebrate embryogenesis.
Collapse
Affiliation(s)
- Chenbei Chang
- Laboratory of Vertebrate Molecular Embryology, The Rockefeller University, New York, NY 10021, USA
| | | | | | | |
Collapse
|
43
|
Pandur PD, Sullivan SA, Moody SA. Multiple maternal influences on dorsal-ventral fate of Xenopus animal blastomeres. Dev Dyn 2002; 225:581-7. [PMID: 12454934 DOI: 10.1002/dvdy.10181] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Molecular asymmetries in the animal-vegetal axis of the Xenopus oocyte are well known to regulate the formation of gametes and germ layers. Likewise, many transplantation and explant studies demonstrate that maternal dorsalizing activities are localized to the future dorsal side of the embryo after fertilization, but to date only a few of the molecules involved in this process have been shown to be asymmetrically distributed. In this report, we identify two new aspects of the maternal regulation of dorsal-ventral fate asymmetry in Xenopus blastomeres: cytoplasmic polyadenylation of dorsal maternal mRNAs and localized Wnt8b signaling. Previous studies demonstrated that there are maternal, dorsal axis-inducing RNAs localized to dorsal animal blastomeres that become activated between the 8- and 16-cell stage (Hainski and Moody [1992] Development 116:347-355; Hainski and Moody [1996] Dev. Genet. 19:210-221). We report herein that the activation of these axis-inducing dorsal mRNAs is regulated by cytoplasmic polyadenylation. We also show that maternal wnt8b mRNA is concentrated in ventral animal blastomeres. These ventral cells and exogenous Wnt8b both inhibit the dorsal fate of neighboring blastomeres in culture, indicating that a maternal Wnt signal also contributes to segregating dorsal and ventral fates.
Collapse
Affiliation(s)
- Petra D Pandur
- Department of Anatomy and Cell Biology, The George Washington University Medical Center, Washington, DC 20037, USA
| | | | | |
Collapse
|
44
|
Green J. Morphogen gradients, positional information, and Xenopus: interplay of theory and experiment. Dev Dyn 2002; 225:392-408. [PMID: 12454918 DOI: 10.1002/dvdy.10170] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The idea of morphogen gradients has long been an important one in developmental biology. Studies with amphibians and with Xenopus in particular have made significant contributions to demonstrating the existence, identity, and mechanisms of action of morphogens. Mesoderm induction and patterning by activin, nodals, bone morphogenetic proteins, and fibroblast growth factors have been analyzed thoroughly and reveal recurrent and combinatorial roles for these protein growth factor morphogens and their antagonists. The dynamics of nodal-type signaling and the intersection of VegT and beta-catenin intracellular gradients reveal detailed steps in early long-range patterning. Interpretation of gradients requires sophisticated mechanisms for sharpening thresholds, and the activin-Xbra-Gsc system provides an example of this. The understanding of growth factor signal transduction has elucidated growth factor morphogen action and provided tools for dissecting their direct long-range action and distribution. The physical mechanisms of morphogen gradient establishment are the focus of new interest at both the experimental and theoretical level. General themes and emerging trends in morphogen gradient studies are discussed.
Collapse
Affiliation(s)
- Jeremy Green
- Dana Farber Cancer Institute, Harvard Medical School Department of Genetics, Boston, Massachusetts 02115, USA.
| |
Collapse
|
45
|
Vonica A, Gumbiner BM. Zygotic Wnt Activity Is Required for Brachyury Expression in the Early Xenopus laevis Embryo. Dev Biol 2002; 250:112-27. [PMID: 12297100 DOI: 10.1006/dbio.2002.0786] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The canonical, beta-catenin-dependent Wnt pathway is a crucial player in the early events of Xenopus development. Dorsal axis formation and mesoderm patterning are accepted effects of this pathway, but the regulation of expression of genes involved in mesoderm specification is not. This conclusion is based largely on the inability of the Wnt pathway to induce mesoderm in animal cap explants. Using injections of inhibitors of canonical Wnt signaling, we demonstrate that expression of the general mesodermal marker Brachyury (Xbra) requires a zygotic, ligand-dependent Wnt activity throughout the marginal zone. Analysis of the Xbra promoter reveals that putative TCF-binding sites mediate Wnt activation, the first sites in this well-studied promoter to which an activation role can be ascribed. However, established mesoderm inducers like eFGF and activin can bypass the Wnt requirement for Xbra expression. Another mesoderm promoting factor, VegT, activates Xbra in a Wnt-dependent manner. We also show that the activin/nodal signaling is necessary for ectopic Xbra induction by the Wnt pathway, but not by VegT. Our data significantly change the understanding of Brachyury regulation in Xenopus, implying the existence of an unknown zygotic Wnt ligand in Spemann's organizer. Since Brachyury is considered to have a major role in mesoderm formation, it is possible that Wnts might play a role in mesoderm specification, in addition to patterning.
Collapse
Affiliation(s)
- Alin Vonica
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | |
Collapse
|
46
|
Domingos PM, Obukhanych TV, Altmann CR, Hemmati-Brivanlou A. Cloning and developmental expression of Baf57 in Xenopus laevis. Mech Dev 2002; 116:177-81. [PMID: 12128220 DOI: 10.1016/s0925-4773(02)00129-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mammalian and Drosophila homologues of Baf57 have been previously isolated as being a subunit of SWI/SNF-like chromatin remodeling complexes. Here, we report the cloning and developmental expression of Xenopus Baf57. We isolated XBaf57 by using an expression cloning approach to identify novel modulators of Xenopus Smad7. XBaf57 co-operates with XSmad7 by increasing the expression of neural markers in ectodermal explants. XBaf57 is expressed in the ectoderm and pre-involuting mesoderm during gastrula stages and in the central nervous system during neurula and tailbud stages. These results raise the possibility that XBaf57 (or XBaf57-containing chromatin remodelling complexes) may be involved in the process of neural induction during Xenopus embryonic development.
Collapse
Affiliation(s)
- Pedro M Domingos
- Laboratory of Molecular Embryology, The Rockefeller University, 1230 York Avenue, New York, NY 10021-6399, USA
| | | | | | | |
Collapse
|
47
|
Yamashita S, Miyagi C, Carmany-Rampey A, Shimizu T, Fujii R, Schier AF, Hirano T. Stat3 Controls Cell Movements during Zebrafish Gastrulation. Dev Cell 2002; 2:363-75. [PMID: 11879641 DOI: 10.1016/s1534-5807(02)00126-0] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Vertebrate axis formation requires both the correct specification of cell fates and the coordination of gastrulation movements. We report that the zebrafish signal transducer and activator of transcription 3 (Stat3) is activated on the dorsal side by the maternal Wnt/beta-catenin pathway. Zebrafish embryos lacking Stat3 activity display abnormal cell movements during gastrulation, resulting in a mispositioned head and a shortened anterior-posterior axis, but show no defects in early cell fate specification. Time course analysis, cell tracing, and transplantation experiments revealed that Stat3 activity is required cell autonomously for the anterior migration of dorsal mesendodermal cells and non-cell autonomously for the convergence of neighboring paraxial cells. These results reveal a role for Stat3 in controlling cell movements during gastrulation.
Collapse
Affiliation(s)
- Susumu Yamashita
- Department of Molecular Oncology (C-7), Osaka University Graduate School of Medicine, 2-2 Yamada-oka, 565-0871, Suita Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Zohn IE, Brivanlou AH. Expression cloning of Xenopus Os4, an evolutionarily conserved gene, which induces mesoderm and dorsal axis. Dev Biol 2001; 239:118-31. [PMID: 11784023 DOI: 10.1006/dbio.2001.0420] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Multiple factors, including members of the FGF, TGF beta, and Wnt family of proteins, are important mediators in the regulation of dorsal-ventral pattern formation during vertebrate development. By using an expression cloning approach to identify novel factors that could regulate dorsal-ventral patterning in the Xenopus embryo, we isolated the Xenopus homologue of the human Os4 gene by virtue of its ability to induce a secondary dorsal axis. While Os4 homologues have been identified in a variety of species, and human Os4 is overexpressed in human tumors, the biological function of Os4 is unknown. To explore the mechanism by which Xenopus Os4 (XOs4) induces a secondary dorsal axis, we used Xenopus explant and whole-embryo assays. The secondary axis induced by XOs4 is distinct from that induced by activation of Wnt or FGF pathways but similar to that induced by inhibition of BMP signaling or activation of an Activin pathway. However, XOs4 did not inhibit BMP signaling in dissociated animal cap explants, indicating that XOs4 does not inhibit BMP signaling. Similar to activation of an Activin-like pathway, expression of XOs4 induces molecular markers for mesoderm in animal cap explants, although expression of gastrula-stage mesodermal markers was very weak and substantially delayed. Yet, XOs4 does not require activity of the Activin signal-transduction pathway for mesoderm induction as dominant-negative components of the Activin/Nodal/Vg1 pathway did not prevent XOs4-mediated induction of mesodermal derivatives. Finally, like Activin/Nodal/Vg1 pathways, XOs4 requires FGF signaling for expression of mesoderm markers. Results presented in this study demonstrate that XOs4 can induce mesoderm and dorsalize ventral mesoderm resulting in ectopic dorsal axis formation, suggesting a role for this large evolutionarily conserved gene family in early development.
Collapse
Affiliation(s)
- I E Zohn
- Laboratory of Molecular Embryology, The Rockefeller University, 1230 York Avenue, New York, New York 10021-6399, USA
| | | |
Collapse
|
49
|
Tiedemann H, Asashima M, Grunz H, Knöchel W. Pluripotent cells (stem cells) and their determination and differentiation in early vertebrate embryogenesis. Dev Growth Differ 2001; 43:469-502. [PMID: 11576166 DOI: 10.1046/j.1440-169x.2001.00599.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mammalian embryonic stem cells can be obtained from the inner cell mass of blastocysts or from primordial germ cells. These stem cells are pluripotent and can develop into all three germ cell layers of the embryo. Somatic mammalian stem cells, derived from adult or fetal tissues, are more restricted in their developmental potency. Amphibian ectodermal and endodermal cells lose their pluripotency at the early gastrula stage. The dorsal mesoderm of the marginal zone is determined before the mid-blastula transition by factors located after cortical rotation in the marginal zone, without induction by the endoderm. Secreted maternal factors (BMP, FGF and activins), maternal receptors and maternal nuclear factors (beta-catenin, Smad and Fast proteins), which form multiprotein transcriptional complexes, act together to initiate pattern formation. Following mid-blastula transition in Xenopus laevis (Daudin) embryos, secreted nodal-related (Xnr) factors become important for endoderm and mesoderm differentiation to maintain and enhance mesoderm induction. Endoderm can be induced by high concentrations of activin (vegetalizing factor) or nodal-related factors, especially Xnr5 and Xnr6, which depend on Wnt/beta-catenin signaling and on VegT, a vegetal maternal transcription factor. Together, these and other factors regulate the equilibrium between endoderm and mesoderm development. Many genes are activated and/or repressed by more than one signaling pathway and by regulatory loops to refine the tuning of gene expression. The nodal related factors, BMP, activins and Vg1 belong to the TGF-beta superfamily. The homeogenetic neural induction by the neural plate probably reinforces neural induction and differentiation. Medical and ethical problems of future stem cell therapy are briefly discussed.
Collapse
Affiliation(s)
- H Tiedemann
- Institut für Molekularbiologie und Biochemie der Freien Universtität Berlin, Arnimallee 22, D-14195 Berlin, Germany.
| | | | | | | |
Collapse
|
50
|
Abstract
Many different ligands of the TGF-beta superfamily signal in the early Xenopus embryo and are required for the specification and patterning of the three germ layers as well as for gastrulation. Recent advances in the field are helping us understand how ligand activity is regulated both spatially and temporally, the mechanism by which the signals are transduced to the nucleus and how essentially the same signalling pathway can activate completely different sets of genes in different regions of the embryo.
Collapse
Affiliation(s)
- C S Hill
- Laboratory of Developmental Signalling, Imperial Cancer Research Fund, 44 Lincoln's Inn Fields, WC2A 3PX, London, UK.
| |
Collapse
|