1
|
Guo X, Mutch M, Torres AY, Nano M, Rauth N, Harwood J, McDonald D, Chen Z, Montell C, Dai W, Montell DJ. The Zn 2+ transporter ZIP7 enhances endoplasmic-reticulum-associated protein degradation and prevents neurodegeneration in Drosophila. Dev Cell 2024; 59:1655-1667.e6. [PMID: 38670102 PMCID: PMC11233247 DOI: 10.1016/j.devcel.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/15/2023] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
Proteotoxic stress drives numerous degenerative diseases. Cells initially adapt to misfolded proteins by activating the unfolded protein response (UPR), including endoplasmic-reticulum-associated protein degradation (ERAD). However, persistent stress triggers apoptosis. Enhancing ERAD is a promising therapeutic approach for protein misfolding diseases. The ER-localized Zn2+ transporter ZIP7 is conserved from plants to humans and required for intestinal self-renewal, Notch signaling, cell motility, and survival. However, a unifying mechanism underlying these diverse phenotypes was unknown. In studying Drosophila border cell migration, we discovered that ZIP7-mediated Zn2+ transport enhances the obligatory deubiquitination of proteins by the Rpn11 Zn2+ metalloproteinase in the proteasome lid. In human cells, ZIP7 and Zn2+ are limiting for deubiquitination. In a Drosophila model of neurodegeneration caused by misfolded rhodopsin (Rh1), ZIP7 overexpression degrades misfolded Rh1 and rescues photoreceptor viability and fly vision. Thus, ZIP7-mediated Zn2+ transport is a previously unknown, rate-limiting step for ERAD in vivo with therapeutic potential in protein misfolding diseases.
Collapse
Affiliation(s)
- Xiaoran Guo
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110, USA
| | - Morgan Mutch
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110, USA
| | - Alba Yurani Torres
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110, USA
| | - Maddalena Nano
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110, USA
| | - Nishi Rauth
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110, USA
| | - Jacob Harwood
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110, USA
| | - Drew McDonald
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110, USA
| | - Zijing Chen
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110, USA
| | - Craig Montell
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110, USA
| | - Wei Dai
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110, USA; Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China.
| | - Denise J Montell
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110, USA.
| |
Collapse
|
2
|
Verma D, Singh A, Singh J, Mutsuddi M, Mukherjee A. Regulation of Notch signaling by non-muscle myosin II Zipper in Drosophila. Cell Mol Life Sci 2024; 81:195. [PMID: 38653877 PMCID: PMC11039529 DOI: 10.1007/s00018-024-05142-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/27/2023] [Accepted: 01/23/2024] [Indexed: 04/25/2024]
Abstract
The Notch pathway is an evolutionarily conserved signaling system that is intricately regulated at multiple levels and it influences different aspects of development. In an effort to identify novel components involved in Notch signaling and its regulation, we carried out protein interaction screens which identified non-muscle myosin II Zipper (Zip) as an interacting partner of Notch. Physical interaction between Notch and Zip was further validated by co-immunoprecipitation studies. Immunocytochemical analyses revealed that Notch and Zip co-localize within same cytoplasmic compartment. Different alleles of zip also showed strong genetic interactions with Notch pathway components. Downregulation of Zip resulted in wing phenotypes that were reminiscent of Notch loss-of-function phenotypes and a perturbed expression of Notch downstream targets, Cut and Deadpan. Further, synergistic interaction between Notch and Zip resulted in highly ectopic expression of these Notch targets. Activated Notch-induced tumorous phenotype of larval tissues was enhanced by over-expression of Zip. Notch-Zip synergy resulted in the activation of JNK pathway that consequently lead to MMP activation and proliferation. Taken together, our results suggest that Zip may play an important role in regulation of Notch signaling.
Collapse
Affiliation(s)
- Dipti Verma
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Ankita Singh
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Jyoti Singh
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Mousumi Mutsuddi
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Ashim Mukherjee
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
3
|
Zhang Q, Zhang P, Yang M, Tian Y, Feng C, Wei W. Identifications of three novel alleles of Serrate in Drosophila. Cells Dev 2024; 177:203908. [PMID: 38403117 DOI: 10.1016/j.cdev.2024.203908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
The Notch signaling pathway, an evolutionarily highly conserved pathway, participates in various essential physiological processes in organisms. Activation of Notch signaling in the canonical manner requires the combination of ligand and receptor. There are two ligands of Notch in Drosophila: Delta (Dl) and Serrate (Ser). A mutation mf157 is identified for causing nicks of fly wings in genetic analysis from a mutant library (unpublished) that was established previously. Immunofluorescent staining illustrates that mf157 represses the expression of Cut and Wingless (Wg), the targets of Notch signaling. MARCM cloning analysis reveals that mf157 functions at the same level or the upstream of ligands of Notch in signaling sending cells. Sequencing demonstrates that mf157 is a novel allele of the Ser gene. Subsequently, mf553 and mf167 are also identified as new alleles of Ser from our library. Furthermore, the complementary assays and the examination of transcripts confirm the sequencing results. Besides, the repressed phenotypes of Notch signaling were reverted by transposon excision experiments of mf157. In conclusion, we identify three fresh alleles of Ser. Our works supply additional genetic resources for further study of functions of Ser and Notch signaling regulation.
Collapse
Affiliation(s)
- Qinghai Zhang
- Key Laboratory of Medical Insects, College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China; Department of Biology, College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China; Research Center for Basic Sciences of Medicine, Guizhou Medical University, Guiyang 550025, China.
| | - Pei Zhang
- Key Laboratory of Medical Insects, College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China; Department of Biology, College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Min Yang
- Department of Biology, College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Yingxue Tian
- Department of Biology, College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Chunxia Feng
- Department of Biology, College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Wei Wei
- Multimedia Laboratory of Morphology, College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China.
| |
Collapse
|
4
|
Yu X, Xu B, Gao T, Fu X, Jiang B, Zhou N, Gao W, Wu T, Shen C, Huang X, Wu Y, Zheng B. E3 ubiquitin ligase RNF187 promotes growth of spermatogonia via lysine 48-linked polyubiquitination-mediated degradation of KRT36/KRT84. FASEB J 2023; 37:e23217. [PMID: 37738023 DOI: 10.1096/fj.202301120r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/25/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023]
Abstract
Ubiquitination is the most common post-translational modification and is essential for various cellular regulatory processes. RNF187, which is known as RING domain AP1 coactivator-1, is a member of the RING finger family. RNF187 can promote the proliferation and migration of various tumor cells. However, whether it has a similar role in regulating spermatogonia is not clear. This study explored the role and molecular mechanism of RNF187 in a mouse spermatogonia cell line (GC-1). We found that RNF187 knockdown reduced the proliferation and migration of GC-1 cells and promoted their apoptosis. RNF187 overexpression significantly increased the proliferation and migration of GC-1 cells. In addition, we identified Keratin36/Keratin84 (KRT36/KRT84) as interactors with RNF187 by co-immunoprecipitation and mass spectrometry analyses. RNF187 promoted GC-1 cell growth by degrading KRT36/KRT84 via lysine 48-linked polyubiquitination. Subsequently, we found that KRT36 or KRT84 overexpression significantly attenuated proliferation and migration of RNF187-overexpressing GC-1 cells. In summary, our study explored the involvement of RNF187 in regulating the growth of spermatogonia via lysine 48-linked polyubiquitination-mediated degradation of KRT36/KRT84. This may provide a promising new strategy for treating infertility caused by abnormal spermatogonia development.
Collapse
Affiliation(s)
- Xiangling Yu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Bingya Xu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Tingting Gao
- Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Xu Fu
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, China
| | - Bing Jiang
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Nianchao Zhou
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Wenxin Gao
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Tiantian Wu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Cong Shen
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, China
| | - Xiaoyan Huang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yibo Wu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Bo Zheng
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, China
| |
Collapse
|
5
|
Chen Y, Li H, Yi TC, Shen J, Zhang J. Notch Signaling in Insect Development: A Simple Pathway with Diverse Functions. Int J Mol Sci 2023; 24:14028. [PMID: 37762331 PMCID: PMC10530718 DOI: 10.3390/ijms241814028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Notch signaling is an evolutionarily conserved pathway which functions between adjacent cells to establish their distinct identities. Despite operating in a simple mechanism, Notch signaling plays remarkably diverse roles in development to regulate cell fate determination, organ growth and tissue patterning. While initially discovered and characterized in the model insect Drosophila melanogaster, recent studies across various insect species have revealed the broad involvement of Notch signaling in shaping insect tissues. This review focuses on providing a comprehensive picture regarding the roles of the Notch pathway in insect development. The roles of Notch in the formation and patterning of the insect embryo, wing, leg, ovary and several specific structures, as well as in physiological responses, are summarized. These results are discussed within the developmental context, aiming to deepen our understanding of the diversified functions of the Notch signaling pathway in different insect species.
Collapse
Affiliation(s)
- Yao Chen
- Department of Plant Biosecurity and MOA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Y.C.)
| | - Haomiao Li
- Department of Plant Biosecurity and MOA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Y.C.)
| | - Tian-Ci Yi
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang 550025, China
| | - Jie Shen
- Department of Plant Biosecurity and MOA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Y.C.)
| | - Junzheng Zhang
- Department of Plant Biosecurity and MOA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Y.C.)
| |
Collapse
|
6
|
Bing J, Sun J, Zhao R, Sun L, Xi C, Liu J, Zhang X, Zeng S. The effects of Wnt, BMP, and Notch signaling pathways on cell proliferation and neural differentiation in a song control nucleus (HVC) of Lonchura striata. Dev Neurobiol 2023; 83:157-166. [PMID: 37433016 DOI: 10.1002/dneu.22920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/06/2023] [Accepted: 06/24/2023] [Indexed: 07/13/2023]
Abstract
There is obvious sexual dimorphism in the song control system of songbirds. In the higher vocal center (HVC), cell proliferation and neuronal differentiation contribute to the net addition of neurons. However, the mechanism underlying these changes is unclear. Given that Wnt, Bmp, and Notch pathways are involved in cell proliferation and neuronal differentiation, no reports are available to study the role of the three pathways in the song control system. To address the issue, we studied cell proliferation in the ventricle zone overlying the developing HVC and neural differentiation within the HVC of Bengalese finches (Lonchura striata) at posthatching day 15 when HVC progenitor cells are generated on a large scale and differentiate into neurons, after Wnt and Bmp pathways were activated by using a pharmacological agonist (LiCl) or Bmp4, respectively, and the Notch pathway was inhibited by an inhibitor (N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester), DAPT). The results indicated that both cell proliferation and neural differentiation toward HVC neurons increased significantly after activation of the Wnt signaling pathway or inhibition of the Notch signaling pathway. Although cell proliferation was increased, neural differentiation was inhibited after treatment with Bmp4. There was obvious synergetic enhancement in the number of proliferating cells after the coregulation of two or three signaling pathways. In addition, synergetic enhancement was also found in the Wnt and Notch pathways in neural differentiation toward neurons within HVC. These results suggest that the three signaling pathways are involved in cell proliferation and neural differentiation of HVC.
Collapse
Affiliation(s)
- Jie Bing
- Beijing, Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Jing Sun
- Beijing, Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Rui Zhao
- Beijing, Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Lina Sun
- Beijing, Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Chao Xi
- Beijing, Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Jin Liu
- Beijing, Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Xinwen Zhang
- Hainan, Institute of Science and Technology, Haikou, China
- College of Life Sciences, Hainan Normal University, Haikou, China
| | - Shaoju Zeng
- Beijing, Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| |
Collapse
|
7
|
Mo D, Liu C, Chen Y, Cheng X, Shen J, Zhao L, Zhang J. The mitochondrial ribosomal protein mRpL4 regulates Notch signaling. EMBO Rep 2023; 24:e55764. [PMID: 37009823 PMCID: PMC10240210 DOI: 10.15252/embr.202255764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 03/07/2023] [Accepted: 03/18/2023] [Indexed: 04/04/2023] Open
Abstract
Mitochondrial ribosomal proteins (MRPs) assemble as specialized ribosome to synthesize mtDNA-encoded proteins, which are essential for mitochondrial bioenergetic and metabolic processes. MRPs are required for fundamental cellular activities during animal development, but their roles beyond mitochondrial protein translation are poorly understood. Here, we report a conserved role of the mitochondrial ribosomal protein L4 (mRpL4) in Notch signaling. Genetic analyses demonstrate that mRpL4 is required in the Notch signal-receiving cells to permit target gene transcription during Drosophila wing development. We find that mRpL4 physically and genetically interacts with the WD40 repeat protein wap and activates the transcription of Notch signaling targets. We show that human mRpL4 is capable of replacing fly mRpL4 during wing development. Furthermore, knockout of mRpL4 in zebrafish leads to downregulated expression of Notch signaling components. Thus, we have discovered a previously unknown function of mRpL4 during animal development.
Collapse
Affiliation(s)
- Dongqing Mo
- Department of Plant Biosecurity and MOA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Chenglin Liu
- Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
- College of FisheriesOcean University of ChinaQingdaoChina
- Key Laboratory of Mariculture (OUC)Ministry of EducationQingdaoChina
| | - Yao Chen
- Department of Plant Biosecurity and MOA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Xinkai Cheng
- Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
- College of FisheriesOcean University of ChinaQingdaoChina
- Key Laboratory of Mariculture (OUC)Ministry of EducationQingdaoChina
| | - Jie Shen
- Department of Plant Biosecurity and MOA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Long Zhao
- Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
- College of FisheriesOcean University of ChinaQingdaoChina
- Key Laboratory of Mariculture (OUC)Ministry of EducationQingdaoChina
| | - Junzheng Zhang
- Department of Plant Biosecurity and MOA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant ProtectionChina Agricultural UniversityBeijingChina
| |
Collapse
|
8
|
Guo X, Mutch M, Torres AY, Nano M, McDonald D, Chen Z, Montell C, Dai W, Montell DJ. Rescue of proteotoxic stress and neurodegeneration by the Zn 2+ transporter ZIP7. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541645. [PMID: 37292980 PMCID: PMC10245811 DOI: 10.1101/2023.05.22.541645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Proteotoxic stress drives numerous degenerative diseases. In response to misfolded proteins, cells adapt by activating the unfolded protein response (UPR), including endoplasmic reticulum-associated protein degradation (ERAD). However persistent stress triggers apoptosis. Enhancing ERAD is a promising therapeutic approach for protein misfolding diseases. From plants to humans, loss of the Zn2+ transporter ZIP7 causes ER stress, however the mechanism is unknown. Here we show that ZIP7 enhances ERAD and that cytosolic Zn2+ is limiting for deubiquitination of client proteins by the Rpn11 Zn2+ metalloproteinase as they enter the proteasome in Drosophila and human cells. ZIP7 overexpression rescues defective vision caused by misfolded rhodopsin in Drosophila. Thus ZIP7 overexpression may prevent diseases caused by proteotoxic stress, and existing ZIP inhibitors may be effective against proteasome-dependent cancers.
Collapse
Affiliation(s)
- Xiaoran Guo
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110
- present address: Biochemistry Department, Stanford University, Stanford, CA 94305
| | - Morgan Mutch
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110
| | - Alba Yurani Torres
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110
| | - Maddalena Nano
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110
| | - Drew McDonald
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110
| | - Zijing Chen
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110
| | - Craig Montell
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110
| | - Wei Dai
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Denise J. Montell
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110
| |
Collapse
|
9
|
Wee JLQ, Murugesan SN, Wheat CW, Monteiro A. The genetic basis of wing spots in Pieris canidia butterflies. BMC Genomics 2023; 24:169. [PMID: 37016295 PMCID: PMC10074818 DOI: 10.1186/s12864-023-09261-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/20/2023] [Indexed: 04/06/2023] Open
Abstract
Spots in pierid butterflies and eyespots in nymphalid butterflies are likely non-homologous wing colour pattern elements, yet they share a few features in common. Both develop black scales that depend on the function of the gene spalt, and both might have central signalling cells. This suggests that both pattern elements may be sharing common genetic circuitry. Hundreds of genes have already been associated with the development of nymphalid butterfly eyespot patterns, but the genetic basis of the simpler spot patterns on the wings of pierid butterflies has not been investigated. To facilitate studies of pierid wing patterns, we report a high-quality draft genome assembly for Pieris canidia, the Indian cabbage white. We then conducted transcriptomic analyses of pupal wing tissues sampled from the spot and non-spot regions of P. canidia at 3-6 h post-pupation. A total of 1352 genes were differentially regulated between wing tissues with and without the black spot, including spalt, Krüppel-like factor 10, genes from the Toll, Notch, TGF-β, and FGFR signalling pathways, and several genes involved in the melanin biosynthetic pathway. We identified 14 genes that are up-regulated in both pierid spots and nymphalid eyespots and propose that spots and eyespots share regulatory modules despite their likely independent origins.
Collapse
Affiliation(s)
- Jocelyn Liang Qi Wee
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.
| | - Suriya Narayanan Murugesan
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.
| | | | - Antónia Monteiro
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| |
Collapse
|
10
|
Saha B, Acharjee S, Ghosh G, Dasgupta P, Prasad M. Germline protein, Cup, non-cell autonomously limits migratory cell fate in Drosophila oogenesis. PLoS Genet 2023; 19:e1010631. [PMID: 36791149 PMCID: PMC9974129 DOI: 10.1371/journal.pgen.1010631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/28/2023] [Accepted: 01/22/2023] [Indexed: 02/16/2023] Open
Abstract
Specification of migratory cell fate from a stationary population is complex and indispensable both for metazoan development as well for the progression of the pathological condition like tumor metastasis. Though this cell fate transformation is widely prevalent, the molecular understanding of this phenomenon remains largely elusive. We have employed the model of border cells (BC) in Drosophila oogenesis and identified germline activity of an RNA binding protein, Cup that limits acquisition of migratory cell fate from the neighbouring follicle epithelial cells. As activation of JAK-STAT in the follicle cells is critical for BC specification, our data suggest that Cup, non-cell autonomously restricts the domain of JAK-STAT by activating Notch in the follicle cells. Employing genetics and Delta endocytosis assay, we demonstrate that Cup regulates Delta recycling in the nurse cells through Rab11GTPase thus facilitating Notch activation in the adjacent follicle cells. Since Notch and JAK-STAT are antagonistic, we propose that germline Cup functions through Notch and JAK-STAT to modulate BC fate specification from their static epithelial progenitors.
Collapse
Affiliation(s)
- Banhisikha Saha
- Department of Biological Sciences Indian Institute of Science Education & Research- Kolkata Mohanpur Campus Mohanpur, Nadia, West Bengal, India
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland, United States of America
| | - Sayan Acharjee
- Department of Biological Sciences Indian Institute of Science Education & Research- Kolkata Mohanpur Campus Mohanpur, Nadia, West Bengal, India
| | - Gaurab Ghosh
- Department of Biological Sciences Indian Institute of Science Education & Research- Kolkata Mohanpur Campus Mohanpur, Nadia, West Bengal, India
| | - Purbasa Dasgupta
- Department of Biological Sciences Indian Institute of Science Education & Research- Kolkata Mohanpur Campus Mohanpur, Nadia, West Bengal, India
| | - Mohit Prasad
- Department of Biological Sciences Indian Institute of Science Education & Research- Kolkata Mohanpur Campus Mohanpur, Nadia, West Bengal, India
| |
Collapse
|
11
|
Maier D, Bauer M, Boger M, Sanchez Jimenez A, Yuan Z, Fechner J, Scharpf J, Kovall RA, Preiss A, Nagel AC. Genetic and Molecular Interactions between HΔCT, a Novel Allele of the Notch Antagonist Hairless, and the Histone Chaperone Asf1 in Drosophila melanogaster. Genes (Basel) 2023; 14:205. [PMID: 36672946 PMCID: PMC9858708 DOI: 10.3390/genes14010205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Cellular differentiation relies on the highly conserved Notch signaling pathway. Notch activity induces gene expression changes that are highly sensitive to chromatin landscape. We address Notch gene regulation using Drosophila as a model, focusing on the genetic and molecular interactions between the Notch antagonist Hairless and the histone chaperone Asf1. Earlier work implied that Asf1 promotes the silencing of Notch target genes via Hairless (H). Here, we generate a novel HΔCT allele by genome engineering. Phenotypically, HΔCT behaves as a Hairless gain of function allele in several developmental contexts, indicating that the conserved CT domain of H has an attenuator role under native biological contexts. Using several independent methods to assay protein-protein interactions, we define the sequences of the CT domain that are involved in Hairless-Asf1 binding. Based on previous models, where Asf1 promotes Notch repression via Hairless, a loss of Asf1 binding should reduce Hairless repressive activity. However, tissue-specific Asf1 overexpression phenotypes are increased, not rescued, in the HΔCT background. Counterintuitively, Hairless protein binding mitigates the repressive activity of Asf1 in the context of eye development. These findings highlight the complex connections of Notch repressors and chromatin modulators during Notch target-gene regulation and open the avenue for further investigations.
Collapse
Affiliation(s)
- Dieter Maier
- Institute of Biology, Genetics Department 190g, University of Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
| | - Milena Bauer
- Institute of Biology, Genetics Department 190g, University of Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
- Biozentrum, University of Basel, Spitalstrasse 41, CH-4056 Basel, Switzerland
| | - Mike Boger
- Institute of Biology, Genetics Department 190g, University of Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Straße 13–17, D-68167 Mannheim, Germany
| | - Anna Sanchez Jimenez
- Institute of Biology, Genetics Department 190g, University of Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
| | - Zhenyu Yuan
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Medical Sciences Building 2201, Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Johannes Fechner
- Institute of Biology, Genetics Department 190g, University of Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
- Institute of Biomedical Genetics (IBMG), University of Stuttgart, Allmandring 31, D-70569 Stuttgart, Germany
| | - Janika Scharpf
- Institute of Biology, Genetics Department 190g, University of Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
| | - Rhett A. Kovall
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Medical Sciences Building 2201, Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Anette Preiss
- Institute of Biology, Genetics Department 190g, University of Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
| | - Anja C. Nagel
- Institute of Biology, Genetics Department 190g, University of Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
| |
Collapse
|
12
|
Mukherjee S, Calvi BR, Hundley HA, Sokol NS. MicroRNA mediated regulation of the onset of enteroblast differentiation in the Drosophila adult intestine. Cell Rep 2022; 41:111495. [DOI: 10.1016/j.celrep.2022.111495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 08/17/2022] [Accepted: 09/21/2022] [Indexed: 11/03/2022] Open
|
13
|
Ayukawa T, Akiyama M, Hozumi Y, Ishimoto K, Sasaki J, Senoo H, Sasaki T, Yamazaki M. Tissue flow regulates planar cell polarity independently of the Frizzled core pathway. Cell Rep 2022; 40:111388. [PMID: 36130497 DOI: 10.1016/j.celrep.2022.111388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 07/16/2022] [Accepted: 08/29/2022] [Indexed: 11/27/2022] Open
Abstract
Planar cell polarity (PCP) regulates the orientation of external structures. A core group of proteins that includes Frizzled forms the heart of the PCP regulatory system. Other PCP mechanisms that are independent of the core group likely exist, but their underlying mechanisms are elusive. Here, we show that tissue flow is a mechanism governing core group-independent PCP on the Drosophila notum. Loss of core group function only slightly affects bristle orientation in the adult central notum. This near-normal PCP results from tissue flow-mediated rescue of random bristle orientation during the pupal stage. Manipulation studies suggest that tissue flow can orient bristles in the opposite direction to the flow. This process is independent of the core group and implies that the apical extracellular matrix functions like a "comb" to align bristles. Our results reveal the significance of cooperation between tissue dynamics and extracellular substances in PCP establishment.
Collapse
Affiliation(s)
- Tomonori Ayukawa
- Department of Cell Biology and Morphology, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Masakazu Akiyama
- Meiji Institute for Advanced Study of Mathematical Sciences, Meiji University, Tokyo 164-8525, Japan; Faculty of Science, Academic Assembly, University of Toyama, Toyama 930-8555, Japan
| | - Yasukazu Hozumi
- Department of Cell Biology and Morphology, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Kenta Ishimoto
- Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan
| | - Junko Sasaki
- Department of Biochemical Pathophysiology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Haruki Senoo
- Department of Cell Biology and Morphology, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Takehiko Sasaki
- Department of Biochemical Pathophysiology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Masakazu Yamazaki
- Department of Cell Biology and Morphology, Akita University Graduate School of Medicine, Akita 010-8543, Japan; Japan Science and Technology Agency, PRESTO, Saitama 332-0012, Japan.
| |
Collapse
|
14
|
Ahmadi N, Kelly G, Low TH(H, Clark J, Gupta R. Molecular factors governing perineural invasion in malignancy. Surg Oncol 2022; 42:101770. [PMID: 35490532 DOI: 10.1016/j.suronc.2022.101770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/27/2022] [Accepted: 04/10/2022] [Indexed: 12/30/2022]
|
15
|
Nian FS, Hou PS. Evolving Roles of Notch Signaling in Cortical Development. Front Neurosci 2022; 16:844410. [PMID: 35422684 PMCID: PMC9001970 DOI: 10.3389/fnins.2022.844410] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/15/2022] [Indexed: 01/09/2023] Open
Abstract
Expansion of the neocortex is thought to pave the way toward acquisition of higher cognitive functions in mammals. The highly conserved Notch signaling pathway plays a crucial role in this process by regulating the size of the cortical progenitor pool, in part by controlling the balance between self-renewal and differentiation. In this review, we introduce the components of Notch signaling pathway as well as the different mode of molecular mechanisms, including trans- and cis-regulatory processes. We focused on the recent findings with regard to the expression pattern and levels in regulating neocortical formation in mammals and its interactions with other known signaling pathways, including Slit–Robo signaling and Shh signaling. Finally, we review the functions of Notch signaling pathway in different species as well as other developmental process, mainly somitogenesis, to discuss how modifications to the Notch signaling pathway can drive the evolution of the neocortex.
Collapse
Affiliation(s)
- Fang-Shin Nian
- Institute of Anatomy and Cell Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pei-Shan Hou
- Institute of Anatomy and Cell Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- *Correspondence: Pei-Shan Hou,
| |
Collapse
|
16
|
Li X, Zhang F, Coates B, Wei C, Zhu X, Zhang Y, Zhou X. Temporal analysis of microRNAs associated with wing development in the English grain aphid, Sitobion avenae (F.) (Homoptera: Aphidiae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 142:103579. [PMID: 33894361 DOI: 10.1016/j.ibmb.2021.103579] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Molecular mechanisms underlying wing evolution and development have been a point of scientific inquiry for decades. Phloem-feeding aphids are one of the most devastating global insect pests, where dispersal of winged morphs lead to annual movements, migrations, and range expansions. Aphids show a polyphenic wing dimorphism trait, and offer a model to study the role of environment in determining morphological plasticity of a single genotype. Despite recent progresses in the genetic understanding of wing polyphenism, the influence of environmental cues remains unclear. To investigate the involvement of miRNAs in wing development, we sequenced small RNA libraries of the English grain aphid, Sitobion avenae (F.) across six different developmental stages. As a result, we identified 113 conserved and 193 S. avenae-specific miRNAs. Gene Ontology and KEGG pathway analyses of putative target mRNAs for the six differentially expressed miRNAs are enriched for wing development processes. Dietary uptake of miR-263a, miR-316, and miR-184a agomirs and antagomirs led to significantly higher mortality (>70%) and a lower proportion of winged morphs (<5%). On the other hand, wing malformation was observed in miR-2 and miR-306 agomirs and miR-2 and miR-14 antagomirs, respectively, suggesting their involvement in S. avenae wing morphogenesis. These combined results not only shed light on the regulatory role of miRNAs in wing dimorphism, but also provide potential novel targets for the long-term sustainable management of S. avenae, a devastating global grain pest.
Collapse
Affiliation(s)
- Xiangrui Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Fangmei Zhang
- Henan Provincial South Henan Crop Pest Green Prevention and Control Academician Workstation, Xinyang Agriculture and Forestry University, Xinyang, 46400, China
| | - Brad Coates
- United States Department of Agriculture, Agricultural Research Service, Corn Insects & Crop Genetics Research Unit, Ames, IA, 50011, USA
| | - Changping Wei
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xun Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yunhui Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, 40546-0091, USA.
| |
Collapse
|
17
|
E3 Ubiquitin Ligase Regulators of Notch Receptor Endocytosis: From Flies to Humans. Biomolecules 2022; 12:biom12020224. [PMID: 35204725 PMCID: PMC8961608 DOI: 10.3390/biom12020224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Notch is a developmental receptor, conserved in the evolution of the metazoa, which regulates cell fate proliferation and survival in numerous developmental contexts, and also regulates tissue renewal and repair in adult organisms. Notch is activated by proteolytic removal of its extracellular domain and the subsequent release of its intracellular domain, which then acts in the nucleus as part of a transcription factor complex. Numerous regulatory mechanisms exist to tune the amplitude, duration and spatial patterning of this core signalling mechanism. In Drosophila, Deltex (Dx) and Suppressor of dx (Su(dx)) are E3 ubiquitin ligases which interact with the Notch intracellular domain to regulate its endocytic trafficking, with impacts on both ligand-dependent and ligand-independent signal activation. Homologues of Dx and Su(dx) have been shown to also interact with one or more of the four mammalian Notch proteins and other target substrates. Studies have shown similarities, specialisations and diversifications of the roles of these Notch regulators. This review collates together current research on vertebrate Dx and Su(dx)-related proteins, provides an overview of their various roles, and discusses their contributions to cell fate regulation and disease.
Collapse
|
18
|
Lam Wong KK, Verheyen EM. Metabolic reprogramming in cancer: mechanistic insights from Drosophila. Dis Model Mech 2021; 14:1-17. [PMID: 34240146 PMCID: PMC8277969 DOI: 10.1242/dmm.048934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cancer cells constantly reprogram their metabolism as the disease progresses. However, our understanding of the metabolic complexity of cancer remains incomplete. Extensive research in the fruit fly Drosophila has established numerous tumor models ranging from hyperplasia to neoplasia. These fly tumor models exhibit a broad range of metabolic profiles and varying nutrient sensitivity. Genetic studies show that fly tumors can use various alternative strategies, such as feedback circuits and nutrient-sensing machinery, to acquire and consolidate distinct metabolic profiles. These studies not only provide fresh insights into the causes and functional relevance of metabolic reprogramming but also identify metabolic vulnerabilities as potential targets for cancer therapy. Here, we review the conceptual advances in cancer metabolism derived from comparing and contrasting the metabolic profiles of fly tumor models, with a particular focus on the Warburg effect, mitochondrial metabolism, and the links between diet and cancer. Summary: Recent research in fruit flies has demonstrated that tumors rewire their metabolism by using diverse strategies that involve feedback regulation, nutrient sensing, intercellular or even inter-organ interactions, yielding new molecules as potential cancer markers or drug targets.
Collapse
Affiliation(s)
- Kenneth Kin Lam Wong
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.,Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Esther M Verheyen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.,Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| |
Collapse
|
19
|
Li Z, Zhang Q, Su H, Li HY, Cao G, Xu JK, Wang JL, Niu CZ, Zhang F, Yang J, Chen W. miR-5191 acts as a tumor suppressor in salivary adenoid cystic carcinoma by targeting Notch-2. Oral Dis 2021; 28:1871-1881. [PMID: 33694237 DOI: 10.1111/odi.13841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/16/2021] [Accepted: 02/25/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE This study sought to investigate the effect of miR-5191 on proliferation, invasion and metastasis in salivary adenoid cystic carcinoma (SACC). MATERIALS AND METHODS The differential expression level of miR-5191 between 5 primary tumor and adjacent non-neoplastic samples, and in two SACC cell lines was detected by quantitative real-time PCR. Cell proliferation, invasion, and migration were performed, followed by luciferase reporter assay and western analysis. The effect of miR-5191 on cell proliferation and apoptosis was evaluated by cell growth and apoptosis assay. The function of miR-5191 in SACC tumorigenesis and metastasis in vivo was investigated by nude mice experiment. The associations between miR-5191/Notch-2 expression and clinicopathological features were analyzed. RESULTS miR-5191 was downregulated in primary tumor tissues and SACC-LM cells. By targeting Notch-2, miR-5191 expression level affected the migration, invasion, and proliferation of SACC cells. Overexpression of miR-5191 inhibited the expression levels of Notch-2, followed by the decreased expression of c-Myc, Bcl-2, Hes-1, Hey-1, and Cyclin D1. In vivo, miR-5191 overexpression suppressed the SACC tumorigenesis and pulmonary metastasis in mice. In SACC patients, higher expression of miR-5191 was related to better prognoses and lower possibility of metastasis. CONCLUSIONS miR-5191 acts as a tumor suppressor in SACC by targeting Notch-2.
Collapse
Affiliation(s)
- Zhi Li
- Department of Stomatology, Jinling Hospital, Jinling Clinical College of Nanjing Medical University, Nanjing, China
| | - Qian Zhang
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Han Su
- Department of Stomatology, Jinling Hospital, Jinling Clinical College of Nanjing Medical University, Nanjing, China
| | - Hu-Yue Li
- Faculty of Computer Science, University of Alberta, Edmonton, Alberta, Canada
| | - Gang Cao
- Department of Stomatology, Jinling Hospital, Jinling Clinical College of Nanjing Medical University, Nanjing, China
| | - Jin-Ke Xu
- Department of Stomatology, Jinling Hospital, Jinling Clinical College of Nanjing Medical University, Nanjing, China
| | - Jun-Lan Wang
- Department of Stomatology, Jinling Hospital, Jinling Clinical College of Nanjing Medical University, Nanjing, China
| | - Chun-Zi Niu
- Department of Stomatology, Jinling Hospital, Jinling Clinical College of Nanjing Medical University, Nanjing, China
| | - Feimin Zhang
- Jiangsu Key Laboratory of Oral Disease, Department of Prosthodontics, Nanjing Medical University, Nanjing, China
| | - Jian Yang
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Wei Chen
- Department of Stomatology, Jinling Hospital, Jinling Clinical College of Nanjing Medical University, Nanjing, China
| |
Collapse
|
20
|
Chang X, Zhang F, Li H, Mo D, Shen J, Zhang J. Characterization of a new mastermind allele identified from somatic mosaic screen. Cells Dev 2021; 165:203664. [PMID: 33993981 DOI: 10.1016/j.cdev.2021.203664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 01/07/2021] [Accepted: 01/22/2021] [Indexed: 11/18/2022]
Abstract
The Notch signaling pathway is highly conserved and regulates various fundamental development events. Activation of Notch signaling relies on production of the Notch intracellular domain (NICD), which assembles a transcription factor complex to turn on down-stream targets expression. The mastermind (mam) gene encodes an essential co-activator that permits NICD activity in the cell nucleus. During a somatic mosaic screen in Drosophila, an uncharacterized gene l(2)S9998 is identified as a positive regulator of the Notch signaling pathway. Genetic analysis demonstrates that l(2)S9998 functions at the level of transcriptional activation of Notch targets in the signal receiving cells. Whole genome sequencing reveals that l(2)S9998 is a novel allele of the mam gene, which is further confirmed by complementation tests. Along with three molecularly defined transposon insertions isolated from the screen, four mutants of mam are shown to modulate Notch signaling during fly wing development. Our analysis provides additional genetic resources for understanding mam function and Notch signaling regulation.
Collapse
Affiliation(s)
- Xinyue Chang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Fengchao Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Haomiao Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Dongqing Mo
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jie Shen
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Junzheng Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China.
| |
Collapse
|
21
|
Arefin B, Parvin F, Bahrampour S, Stadler CB, Thor S. Drosophila Neuroblast Selection Is Gated by Notch, Snail, SoxB, and EMT Gene Interplay. Cell Rep 2020; 29:3636-3651.e3. [PMID: 31825841 DOI: 10.1016/j.celrep.2019.11.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/20/2019] [Accepted: 11/08/2019] [Indexed: 12/14/2022] Open
Abstract
In the developing Drosophila central nervous system (CNS), neural progenitor (neuroblast [NB]) selection is gated by lateral inhibition, controlled by Notch signaling and proneural genes. However, proneural mutants still generate many NBs, indicating the existence of additional proneural genes. Moreover, recent studies reveal involvement of key epithelial-mesenchymal transition (EMT) genes in NB selection, but the regulatory interplay between Notch signaling and the EMT machinery is unclear. We find that SoxNeuro (SoxB family) and worniu (Snail family) are integrated with the Notch pathway, and constitute the missing proneural genes. Notch signaling, the proneural, SoxNeuro, and worniu genes regulate key EMT genes to orchestrate the NB selection process. Hence, we uncover an expanded lateral inhibition network for NB selection and demonstrate its link to key players in the EMT machinery. The evolutionary conservation of the genes involved suggests that the Notch-SoxB-Snail-EMT network may control neural progenitor selection in many other systems.
Collapse
Affiliation(s)
- Badrul Arefin
- Department of Clinical and Experimental Medicine, Linkoping University, 58185 Linkoping, Sweden
| | - Farjana Parvin
- Department of Clinical and Experimental Medicine, Linkoping University, 58185 Linkoping, Sweden
| | - Shahrzad Bahrampour
- Department of Clinical and Experimental Medicine, Linkoping University, 58185 Linkoping, Sweden
| | - Caroline Bivik Stadler
- Department of Clinical and Experimental Medicine, Linkoping University, 58185 Linkoping, Sweden
| | - Stefan Thor
- Department of Clinical and Experimental Medicine, Linkoping University, 58185 Linkoping, Sweden; School of Biomedical Sciences, University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
22
|
Wang Z, Nan W, Si H, Wang S, Zhang H, Li G. Pantothenic acid promotes dermal papilla cell proliferation in hair follicles of American minks via inhibitor of DNA Binding 3/Notch signaling pathway. Life Sci 2020; 252:117667. [PMID: 32304761 DOI: 10.1016/j.lfs.2020.117667] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 03/31/2020] [Accepted: 04/09/2020] [Indexed: 11/18/2022]
Abstract
AIMS Pantothenic acid (PA) has been applied to treat alopecia, but the underlying mechanism is still unclear. Our study aims to explore the underlying mechanism of PA in regulating hair follicle (HF) growth. MAIN METHODS Mink HFs and dermal papilla (DP) cells were isolated and cultured in vitro. HFs and DP cells were treated with 0, 10, 20, 40 μg/ml PA. The effect of PA on HF growth, DP cell proliferation, cell cycle distribution, cell migration, and insulin-like growth factor-1 (IGF-1) and vascular endothelial growth factor (VEGF) expressions in DP cells was measured. Moreover, the effect of PA on inhibitor of DNA binding 3 (ID3)/Notch signaling pathway was analyzed. Subsequently, ID3 was silenced to validate whether ID3/Notch signaling pathway was involved in regulating DP cell proliferation by PA. KEY FINDINGS Both 20 μg/ml and 40 μg/ml PA promoted HF growth, G1/S transition of DP cells and IGF-1 and VEGF expressions in DP cells, while only 20 μg/ml PA promoted cell viability and the migration of DP cells. Thus 20 μg/ml PA was chosen for the following experiments. PA treatment was found to up-regulate ID3 expression but down-regulate Notch receptor 1 (Notch1) and Notch signaling targets expressions. Furthermore, ID3 knockdown reversed PA-induced cell proliferation and inhibition of Notch1 and Notch signaling targets expressions, indicating that PA-induced DP cell proliferation and inhibition of Notch signaling were mediated via up-regulation of ID3. SIGNIFICANCE This study provides an underlying mechanism related to the effect of PA on stimulating DP cell proliferation.
Collapse
Affiliation(s)
- Zhuo Wang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin 130112, People's Republic of China
| | - Weixiao Nan
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin 130112, People's Republic of China
| | - Huazhe Si
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin 130112, People's Republic of China
| | - Shiyong Wang
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, People's Republic of China
| | - Haihua Zhang
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, People's Republic of China.
| | - Guangyu Li
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin 130112, People's Republic of China.
| |
Collapse
|
23
|
Tamamouna V, Panagi M, Theophanous A, Demosthenous M, Michail M, Papadopoulou M, Teloni S, Pitsouli C, Apidianakis Y. Evidence of two types of balance between stem cell mitosis and enterocyte nucleus growth in the Drosophila midgut. Development 2020; 147:147/11/dev189472. [PMID: 32513656 DOI: 10.1242/dev.189472] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/17/2020] [Indexed: 12/21/2022]
Abstract
Systemic and stem cell niche-emanating cytokines and growth factors can promote regeneration, through mitosis. High mitosis, however, predisposes for all types of cancer and, thus, a trade-off exists between regeneration capacity and tissue homeostasis. Here, we study the role of tissue-intrinsic regenerative signaling in stem cell mitosis of adult Drosophila midgut of different genetic backgrounds. We provide evidence of two naturally occurring types of balance between mitosis and enterocyte nucleus growth: one based mostly on stem cell mitosis producing new cells and the other based mostly on the degree of young enterocyte nucleus size increase. Mitosis promotes intestinal host defense to infection, but predisposes for dysplasia in the form of stem cell-like clusters. Enterocyte nucleus growth also promotes host defense, without the drawback of promoting dysplasia. Through quantitative genetics, we identified eiger as an autocrine and paracrine inducer of stem cell mitosis. eiger expression in immature epithelial cells tilts the balance towards mitosis and dysplasia via a positive-feedback loop of highly mitotic stem cells sustaining more small nucleus enterocytes, which in turn supply more Eiger.
Collapse
Affiliation(s)
- Vasilia Tamamouna
- Department of Biological Sciences, University of Cyprus, 2109 Nicosia, Cyprus
| | - Myrofora Panagi
- Department of Biological Sciences, University of Cyprus, 2109 Nicosia, Cyprus
| | - Andria Theophanous
- Department of Biological Sciences, University of Cyprus, 2109 Nicosia, Cyprus
| | - Maria Demosthenous
- Department of Biological Sciences, University of Cyprus, 2109 Nicosia, Cyprus
| | - Maria Michail
- Department of Biological Sciences, University of Cyprus, 2109 Nicosia, Cyprus
| | | | - Savvas Teloni
- Department of Biological Sciences, University of Cyprus, 2109 Nicosia, Cyprus
| | - Chrysoula Pitsouli
- Department of Biological Sciences, University of Cyprus, 2109 Nicosia, Cyprus
| | - Yiorgos Apidianakis
- Department of Biological Sciences, University of Cyprus, 2109 Nicosia, Cyprus
| |
Collapse
|
24
|
Insulin-dependent Non-canonical Activation of Notch in Drosophila: A Story of Notch-Induced Muscle Stem Cell Proliferation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1227:131-144. [PMID: 32072503 DOI: 10.1007/978-3-030-36422-9_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Notch plays multiple roles both in development and in adult tissue homeostasis. Notch was first identified in Drosophila in which it has then been extensively studied. Among the flag-ship Notch functions we could mention its capacity to keep precursor and stem cells in a nondifferentiated state but also its ability to activate cell proliferation that in some contexts could led to cancer. In general, both these functions involve, canonical, ligand-dependent Notch activation. However, a ligand-independent Notch activation has also been described in a few cellular contexts. Here, we focus on one of such contexts, Drosophila muscle stem cells, called AMPs, and discuss how insulin-dependent noncanonical activation of Notch pushes quiescent AMPs to proliferation.
Collapse
|
25
|
Abstract
ABSTRACT
There is now compelling evidence that many arthropods pattern their segments using a clock-and-wavefront mechanism, analogous to that operating during vertebrate somitogenesis. In this Review, we discuss how the arthropod segmentation clock generates a repeating sequence of pair-rule gene expression, and how this is converted into a segment-polarity pattern by ‘timing factor’ wavefronts associated with axial extension. We argue that the gene regulatory network that patterns segments may be relatively conserved, although the timing of segmentation varies widely, and double-segment periodicity appears to have evolved at least twice. Finally, we describe how the repeated evolution of a simultaneous (Drosophila-like) mode of segmentation within holometabolan insects can be explained by heterochronic shifts in timing factor expression plus extensive pre-patterning of the pair-rule genes.
Collapse
Affiliation(s)
- Erik Clark
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - Andrew D. Peel
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Michael Akam
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| |
Collapse
|
26
|
Sander M, Herranz H. MicroRNAs in Drosophila Cancer Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1167:157-173. [PMID: 31520354 DOI: 10.1007/978-3-030-23629-8_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
MiRNAs are post-transcriptional regulators of gene expression which have been implicated in virtually all biological processes. MiRNAs are frequently dysregulated in human cancers. However, the functional consequences of aberrant miRNA levels are not well understood. Drosophila is emerging as an important in vivo tumor model, especially in the identification of novel cancer genes. Here, we review Drosophila studies which functionally dissect the roles of miRNAs in tumorigenesis. Ultimately, these advances help to understand the implications of miRNA dysregulation in human cancers.
Collapse
Affiliation(s)
- Moritz Sander
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Héctor Herranz
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
27
|
Wolf D, Smylla TK, Reichmuth J, Hoffmeister P, Kober L, Zimmermann M, Turkiewicz A, Borggrefe T, Nagel AC, Oswald F, Preiss A, Maier D. Nucleo-cytoplasmic shuttling of Drosophila Hairless/Su(H) heterodimer as a means of regulating Notch dependent transcription. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1520-1532. [PMID: 31326540 DOI: 10.1016/j.bbamcr.2019.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/02/2019] [Accepted: 07/16/2019] [Indexed: 12/21/2022]
Abstract
Activation and repression of Notch target genes is mediated by transcription factor CSL, known as Suppressor of Hairless (Su(H)) in Drosophila and CBF1 or RBPJ in human. CSL associates either with co-activator Notch or with co-repressors such as Drosophila Hairless. The nuclear translocation of transcription factor CSL relies on co-factor association, both in mammals and in Drosophila. The Drosophila CSL orthologue Su(H) requires Hairless for repressor complex formation. Based on its role in transcriptional silencing, H protein would be expected to be strictly nuclear. However, H protein is also cytosolic, which may relate to its role in the stabilization and nuclear translocation of Su(H) protein. Here, we investigate the function of the predicted nuclear localization signals (NLS 1-3) and single nuclear export signal (NES) of co-repressor Hairless using GFP-fusion proteins, reporter assays and in vivo analyses using Hairless wild type and shuttling-defective Hairless mutants. We identify NLS3 and NES to be critical for Hairless function. In fact, H⁎NLS3 mutant flies match H null mutants, whereas H⁎NLS3⁎NES double mutants display weaker phenotypes in agreement with a crucial role for NES in H export. As expected for a transcriptional repressor, Notch target genes are deregulated in H⁎NLS3 mutant cells, demonstrating nuclear requirement for its activity. Importantly, we reveal that Su(H) protein strictly follows Hairless protein localization. Together, we propose that shuttling between the nucleo-cytoplasmic compartments provides the possibility to fine tune the regulation of Notch target gene expression by balancing of Su(H) protein availability for Notch activation.
Collapse
Affiliation(s)
- Dorina Wolf
- University of Hohenheim, Institute of Genetics (240a), Garbenstr. 30, 70599 Stuttgart, Germany
| | - Thomas K Smylla
- University of Hohenheim, Institute of Genetics (240a), Garbenstr. 30, 70599 Stuttgart, Germany
| | - Jan Reichmuth
- University of Hohenheim, Institute of Genetics (240a), Garbenstr. 30, 70599 Stuttgart, Germany
| | - Philipp Hoffmeister
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine I, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Ludmilla Kober
- University of Hohenheim, Institute of Genetics (240a), Garbenstr. 30, 70599 Stuttgart, Germany
| | - Mirjam Zimmermann
- University of Hohenheim, Institute of Genetics (240a), Garbenstr. 30, 70599 Stuttgart, Germany
| | - Aleksandra Turkiewicz
- Justus-Liebig University of Giessen Institute of Biochemistry, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Tilman Borggrefe
- Justus-Liebig University of Giessen Institute of Biochemistry, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Anja C Nagel
- University of Hohenheim, Institute of Genetics (240a), Garbenstr. 30, 70599 Stuttgart, Germany
| | - Franz Oswald
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine I, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Anette Preiss
- University of Hohenheim, Institute of Genetics (240a), Garbenstr. 30, 70599 Stuttgart, Germany
| | - Dieter Maier
- University of Hohenheim, Institute of Genetics (240a), Garbenstr. 30, 70599 Stuttgart, Germany.
| |
Collapse
|
28
|
Fic W, Faria C, St Johnston D. IMP regulates Kuzbanian to control the timing of Notch signalling in Drosophila follicle cells. Development 2019; 146:dev.168963. [PMID: 30635283 PMCID: PMC6361131 DOI: 10.1242/dev.168963] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 12/19/2018] [Indexed: 12/31/2022]
Abstract
The timing of Drosophila egg chamber development is controlled by a germline Delta signal that activates Notch in the follicle cells to induce them to cease proliferation and differentiate. Here, we report that follicle cells lacking the RNA-binding protein IMP go through one extra division owing to a delay in the Delta-dependent S2 cleavage of Notch. The timing of Notch activation has previously been shown to be controlled by cis-inhibition by Delta in the follicle cells, which is relieved when the miRNA pathway represses Delta expression. imp mutants are epistatic to Delta mutants and give an additive phenotype with belle and Dicer-1 mutants, indicating that IMP functions independently of both cis-inhibition and the miRNA pathway. We find that the imp phenotype is rescued by overexpression of Kuzbanian, the metalloprotease that mediates the Notch S2 cleavage. Furthermore, Kuzbanian is not enriched at the apical membrane in imp mutants, accumulating instead in late endosomes. Thus, IMP regulates Notch signalling by controlling the localisation of Kuzbanian to the apical domain, where Notch cleavage occurs, revealing a novel regulatory step in the Notch pathway.
Collapse
Affiliation(s)
| | | | - Daniel St Johnston
- The Gurdon Institute and The Department of Genetics, University of Cambridge, Tennis Court Rd, Cambridge CB2 1QN, UK
| |
Collapse
|
29
|
Smylla TK, Meier M, Preiss A, Maier D. The Notch repressor complex in Drosophila: in vivo analysis of Hairless mutants using overexpression experiments. Dev Genes Evol 2019; 229:13-24. [PMID: 30612166 DOI: 10.1007/s00427-018-00624-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/17/2018] [Indexed: 10/27/2022]
Abstract
During development of higher animals, the Notch signalling pathway governs cell type specification by mediating appropriate gene expression responses. In the absence of signalling, Notch target genes are silenced by repressor complexes. In the model organism Drosophila melanogaster, the repressor complex includes the transcription factor Suppressor of Hairless [Su(H)] and Hairless (H) plus general co-repressors. Recent crystal structure analysis of the Drosophila Notch repressor revealed details of the Su(H)-H complex. They were confirmed by mutational analyses of either protein; however, only Su(H) mutants have been further studied in vivo. Here, we analyse three H variants predicted to affect Su(H) binding. To this end, amino acid replacements Phenylalanine 237, Leucines 245 and 247, as well as Tryptophan 258 to Alanine were introduced into the H protein. A cell-based reporter assay indicates substantial loss of Su(H) binding to the respective mutant proteins HFA, HLLAA and HWA. For in vivo analysis, UAS-lines HFA, HLLAA and HWA were generated to allow spatially restricted overexpression. In these assays, all three mutants resembled the HLD control, shown before to lack Su(H) binding, indicating a strong reduction of H activity. For example, the H variants were impaired in wing margin formation, but unexpectedly induced ectopic wing venation. Concurrent overexpression with Su(H), however, suggests that all mutant H protein isoforms are still able to bind Su(H) in vivo. We conclude that a weakening of the cohesion in the H-Su(H) repressor complex is sufficient for disrupting its in vivo functionality.
Collapse
Affiliation(s)
- Thomas K Smylla
- Institut für Genetik, Universität Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany
| | - Markus Meier
- Institut für Genetik, Universität Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany
| | - Anette Preiss
- Institut für Genetik, Universität Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany
| | - Dieter Maier
- Institut für Genetik, Universität Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany.
| |
Collapse
|
30
|
Paul MS, Dutta D, Singh A, Mutsuddi M, Mukherjee A. Regulation of Notch signaling in the developing
Drosophila
eye by a T‐box containing transcription factor, Dorsocross. Genesis 2018; 56:e23251. [DOI: 10.1002/dvg.23251] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/11/2018] [Accepted: 09/16/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Maimuna S. Paul
- Department of Molecular and Human GeneticsBanaras Hindu University Varanasi India
| | - Debdeep Dutta
- Department of Molecular and Human GeneticsBanaras Hindu University Varanasi India
| | - Ankita Singh
- Department of Molecular and Human GeneticsBanaras Hindu University Varanasi India
| | - Mousumi Mutsuddi
- Department of Molecular and Human GeneticsBanaras Hindu University Varanasi India
| | - Ashim Mukherjee
- Department of Molecular and Human GeneticsBanaras Hindu University Varanasi India
| |
Collapse
|
31
|
Eichenlaub T, Villadsen R, Freitas FCP, Andrejeva D, Aldana BI, Nguyen HT, Petersen OW, Gorodkin J, Herranz H, Cohen SM. Warburg Effect Metabolism Drives Neoplasia in a Drosophila Genetic Model of Epithelial Cancer. Curr Biol 2018; 28:3220-3228.e6. [PMID: 30293715 DOI: 10.1016/j.cub.2018.08.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 05/21/2018] [Accepted: 08/15/2018] [Indexed: 01/08/2023]
Abstract
Cancers develop in a complex mutational landscape. Genetic models of tumor formation have been used to explore how combinations of mutations cooperate to promote tumor formation in vivo. Here, we identify lactate dehydrogenase (LDH), a key enzyme in Warburg effect metabolism, as a cooperating factor that is both necessary and sufficient for epidermal growth factor receptor (EGFR)-driven epithelial neoplasia and metastasis in a Drosophila model. LDH is upregulated during the transition from hyperplasia to neoplasia, and neoplasia is prevented by LDH depletion. Elevated LDH is sufficient to drive this transition. Notably, genetic alterations that increase glucose flux, or a high-sugar diet, are also sufficient to promote EGFR-driven neoplasia, and this depends on LDH activity. We provide evidence that increased LDHA expression promotes a transformed phenotype in a human primary breast cell culture model. Furthermore, analysis of publically available cancer data showed evidence of synergy between elevated EGFR and LDHA activity linked to poor clinical outcome in a number of human cancers. Altered metabolism has generally been assumed to be an enabling feature that accelerates cancer cell proliferation. Our findings provide evidence that sugar metabolism may have a more profound role in driving neoplasia than previously appreciated.
Collapse
Affiliation(s)
- Teresa Eichenlaub
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200 N, Denmark
| | - René Villadsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200 N, Denmark
| | - Flávia C P Freitas
- Center for Non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 61, 1870 Frederiksberg C, Denmark
| | - Diana Andrejeva
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200 N, Denmark
| | - Blanca I Aldana
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Hung Than Nguyen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200 N, Denmark
| | - Ole William Petersen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200 N, Denmark
| | - Jan Gorodkin
- Center for Non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 61, 1870 Frederiksberg C, Denmark
| | - Héctor Herranz
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200 N, Denmark.
| | - Stephen M Cohen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200 N, Denmark.
| |
Collapse
|
32
|
Ren Q, Awasaki T, Wang YC, Huang YF, Lee T. Lineage-guided Notch-dependent gliogenesis by Drosophila multi-potent progenitors. Development 2018; 145:dev.160127. [PMID: 29764857 DOI: 10.1242/dev.160127] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 05/08/2018] [Indexed: 12/27/2022]
Abstract
Macroglial cells in the central nervous system exhibit regional specialization and carry out region-specific functions. Diverse glial cells arise from specific progenitors in specific spatiotemporal patterns. This raises an interesting possibility that glial precursors with distinct developmental fates exist that govern region-specific gliogenesis. Here, we have mapped the glial progeny produced by the Drosophila type II neuroblasts, which, like vertebrate radial glia cells, yield both neurons and glia via intermediate neural progenitors (INPs). Distinct type II neuroblasts produce different characteristic sets of glia. A single INP can make both astrocyte-like and ensheathing glia, which co-occupy a relatively restrictive subdomain. Blocking apoptosis uncovers further lineage distinctions in the specification, proliferation and survival of glial precursors. Both the switch from neurogenesis to gliogenesis and the subsequent glial expansion depend on Notch signaling. Taken together, lineage origins preconfigure the development of individual glial precursors with involvement of serial Notch actions in promoting gliogenesis.
Collapse
Affiliation(s)
- Qingzhong Ren
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Takeshi Awasaki
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Yu-Chun Wang
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Yu-Fen Huang
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Tzumin Lee
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| |
Collapse
|
33
|
Insight into Notch Signaling Steps That Involve pecanex from Dominant-Modifier Screens in Drosophila. Genetics 2018; 209:1099-1119. [PMID: 29853475 DOI: 10.1534/genetics.118.300935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/22/2018] [Indexed: 12/14/2022] Open
Abstract
Notch signaling plays crucial roles in intercellular communications. In Drosophila, the pecanex (pcx) gene, which encodes an evolutionarily conserved multi-pass transmembrane protein, appears to be required to activate Notch signaling in some contexts, especially during neuroblast segregation in the neuroectoderm. Although Pcx has been suggested to contribute to endoplasmic reticulum homeostasis, its functions remain unknown. Here, to elucidate these roles, we performed genetic modifier screens of pcx We found that pcx heterozygotes lacking its maternal contribution exhibit cold-sensitive lethality, which is attributed to a reduction in Notch signaling at decreased temperatures. Using sets of deletions that uncover most of the second and third chromosomes, we identified four enhancers and two suppressors of the pcx cold-sensitive lethality. Among these, five genes encode known Notch-signaling components: big brain, Delta (Dl), neuralized (neur), Brother of Bearded A (BobA), a member of the Bearded (Brd) family, and N-ethylmaleimide-sensitive factor 2 (Nsf2). We showed that BobA suppresses Dl endocytosis during neuroblast segregation in the neuroectoderm, as Brd family genes reportedly do in the mesoderm for mesectoderm specification. Analyses of Nsf2, a key regulator of vesicular fusion, suggested a novel role in neuroblast segregation, which is distinct from Nsf2's previously reported role in imaginal tissues. Finally, jim lovell, which encodes a potential transcription factor, may play a role in Notch signaling during neuroblast segregation. These results reveal new research avenues for Pcx functions and Notch signaling.
Collapse
|
34
|
Beira JV, Torres J, Paro R. Signalling crosstalk during early tumorigenesis in the absence of Polycomb silencing. PLoS Genet 2018; 14:e1007187. [PMID: 29357360 PMCID: PMC5794193 DOI: 10.1371/journal.pgen.1007187] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/01/2018] [Accepted: 01/04/2018] [Indexed: 12/19/2022] Open
Abstract
In response to stress and injury a coordinated activation of conserved signalling modules, such as JNK and JAK/STAT, is critical to trigger regenerative tissue restoration. While these pathways rebuild homeostasis and promote faithful organ recovery, it is intriguing that they also become activated in various tumour conditions. Therefore, it is crucial to understand how similar pathways can achieve context-dependent functional outputs, likely depending on cellular states. Compromised chromatin regulation, upon removal of the Polycomb group member polyhomeotic, leads to tumour formation with ectopic activation of JNK signalling, mediated by egr/grnd, in addition to JAK/STAT and Notch. Employing quantitative analyses, we show that blocking ectopic signalling impairs ph tumour growth. Furthermore, JAK/STAT functions in parallel to JNK, while Notch relies on JNK. Here, we reveal a signalling hierarchy in ph tumours that is distinct from the regenerative processes regulated by these pathways. Absence of ph renders a permissive state for expression of target genes, but our results suggest that both loss of repression and the presence of activators may collectively regulate gene expression during tumorigenesis. Further dissecting the effect of signalling, developmental or stress-induced factors will thus elucidate the regulation of physiological responses and the contribution of context-specific cellular states.
Collapse
Affiliation(s)
- Jorge V. Beira
- ETH Zürich, Department of Biosystems Science and Engineering, MattenstrasseBasel, Switzerland
- * E-mail: (JVB); (RP)
| | - Joana Torres
- ETH Zürich, Department of Biosystems Science and Engineering, MattenstrasseBasel, Switzerland
| | - Renato Paro
- ETH Zürich, Department of Biosystems Science and Engineering, MattenstrasseBasel, Switzerland
- Faculty of Science, University of Basel, KlingelbergstrasseBasel, Switzerland
- * E-mail: (JVB); (RP)
| |
Collapse
|
35
|
Adnani L, Han S, Li S, Mattar P, Schuurmans C. Mechanisms of Cortical Differentiation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 336:223-320. [DOI: 10.1016/bs.ircmb.2017.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
36
|
Herranz H, Cohen SM. Drosophila as a Model to Study the Link between Metabolism and Cancer. J Dev Biol 2017; 5:E15. [PMID: 29615570 PMCID: PMC5831792 DOI: 10.3390/jdb5040015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 11/27/2017] [Accepted: 11/30/2017] [Indexed: 12/15/2022] Open
Abstract
Cellular metabolism has recently been recognized as a hallmark of cancer. Investigating the origin and effects of the reprogrammed metabolism of tumor cells, and identifying its genetic mediators, will improve our understanding of how these changes contribute to disease progression and may suggest new approaches to therapy. Drosophila melanogaster is emerging as a valuable model to study multiple aspects of tumor formation and malignant transformation. In this review, we discuss the use of Drosophila as model to study how changes in cellular metabolism, as well as metabolic disease, contribute to cancer.
Collapse
Affiliation(s)
- Héctor Herranz
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, 2200 N Copenhagen, Denmark.
| | - Stephen M Cohen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, 2200 N Copenhagen, Denmark.
| |
Collapse
|
37
|
Wang N, Liu W, Tan T, Dong CQ, Lin DY, Zhao J, Yu C, Luo XJ. Notch signaling negatively regulates BMP9-induced osteogenic differentiation of mesenchymal progenitor cells by inhibiting JunB expression. Oncotarget 2017; 8:109661-109674. [PMID: 29312637 PMCID: PMC5752550 DOI: 10.18632/oncotarget.22763] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/16/2017] [Indexed: 02/01/2023] Open
Abstract
Although interaction between BMP and Notch signaling has been demonstrated to be crucial for osteogenic differentiation of mesenchymal stem cells (MSCs), the precise molecular mechanism remains unknown. Here, we show that Notch intracellular domain (NICD) overexpression inhibits BMP9-induced C3H10T1/2 cell osteogenesis in vivo and in vitro. Our results show that activated Notch signaling results in down-regulation of Runx2 and early osteogenesis differentiation factors, without affecting p-Smad1/5/8 expression, and that blocking Notch signaling with DAPT (N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester) significantly increases p-Smad1/5/8 expression. Interestingly, Notch signaling also regulates the cell cycle by increasing PCNA (proliferation cell nuclear antigen) and CyclinD1 expression. Furthermore, similar results were obtained by ectopic bone formation and histological analyses, indicating that Notch signaling activation significantly inhibits BMP9-induced MSC osteogenic, cartilage and adipogenic differentiation. Moreover, we are the first to show that Notch regulates by suppressing JunB synthesis and that the negative effect of Notch is partially reversed by treatment with the JunB activator TPA (12-O-tetradeca-noylphorbol-13-acetate). Our findings demonstrate that Notch signaling significantly enhances cell proliferation but inhibits MSC osteogenic differentiation induced by BMP9 via JunB protein suppression rather than by BMP/Smad signaling regulation.
Collapse
Affiliation(s)
- Nan Wang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wei Liu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Tao Tan
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Chao-Qun Dong
- Department of Orthopedics, The Affiliated Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Duan-Yang Lin
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jun Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Chang Yu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiao-Ji Luo
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
38
|
Xu T, Park SS, Giaimo BD, Hall D, Ferrante F, Ho DM, Hori K, Anhezini L, Ertl I, Bartkuhn M, Zhang H, Milon E, Ha K, Conlon KP, Kuick R, Govindarajoo B, Zhang Y, Sun Y, Dou Y, Basrur V, Elenitoba-Johnson KS, Nesvizhskii AI, Ceron J, Lee CY, Borggrefe T, Kovall RA, Rual JF. RBPJ/CBF1 interacts with L3MBTL3/MBT1 to promote repression of Notch signaling via histone demethylase KDM1A/LSD1. EMBO J 2017; 36:3232-3249. [PMID: 29030483 PMCID: PMC5666606 DOI: 10.15252/embj.201796525] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 08/31/2017] [Accepted: 09/12/2017] [Indexed: 12/21/2022] Open
Abstract
Notch signaling is an evolutionarily conserved signal transduction pathway that is essential for metazoan development. Upon ligand binding, the Notch intracellular domain (NOTCH ICD) translocates into the nucleus and forms a complex with the transcription factor RBPJ (also known as CBF1 or CSL) to activate expression of Notch target genes. In the absence of a Notch signal, RBPJ acts as a transcriptional repressor. Using a proteomic approach, we identified L3MBTL3 (also known as MBT1) as a novel RBPJ interactor. L3MBTL3 competes with NOTCH ICD for binding to RBPJ. In the absence of NOTCH ICD, RBPJ recruits L3MBTL3 and the histone demethylase KDM1A (also known as LSD1) to the enhancers of Notch target genes, leading to H3K4me2 demethylation and to transcriptional repression. Importantly, in vivo analyses of the homologs of RBPJ and L3MBTL3 in Drosophila melanogaster and Caenorhabditis elegans demonstrate that the functional link between RBPJ and L3MBTL3 is evolutionarily conserved, thus identifying L3MBTL3 as a universal modulator of Notch signaling in metazoans.
Collapse
Affiliation(s)
- Tao Xu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sung-Soo Park
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Daniel Hall
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Diana M Ho
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Kazuya Hori
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Lucas Anhezini
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Iris Ertl
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Marek Bartkuhn
- Institute for Genetics, University of Giessen, Giessen, Germany
| | - Honglai Zhang
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Eléna Milon
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kimberly Ha
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kevin P Conlon
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Rork Kuick
- Center for Cancer Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Brandon Govindarajoo
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Yang Zhang
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Yuqing Sun
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yali Dou
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Venkatesha Basrur
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Julian Ceron
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Cheng-Yu Lee
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Tilman Borggrefe
- Institute of Biochemistry, University of Giessen, Giessen, Germany
| | - Rhett A Kovall
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jean-François Rual
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
39
|
Hall ET, Pradhan-Sundd T, Samnani F, Verheyen EM. The protein phosphatase 4 complex promotes the Notch pathway and wingless transcription. Biol Open 2017; 6:1165-1173. [PMID: 28652317 PMCID: PMC5576076 DOI: 10.1242/bio.025221] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The Wnt/Wingless (Wg) pathway controls cell fate specification, tissue differentiation and organ development across organisms. Using an in vivo RNAi screen to identify novel kinase and phosphatase regulators of the Wg pathway, we identified subunits of the serine threonine phosphatase Protein Phosphatase 4 (PP4). Knockdown of the catalytic and regulatory subunits of PP4 cause reductions in the Wg pathway targets Senseless and Distal-less. We find that PP4 regulates the Wg pathway by controlling Notch-driven wg transcription. Genetic interaction experiments identified that PP4 likely promotes Notch signaling within the nucleus of the Notch-receiving cell. Although the PP4 complex is implicated in various cellular processes, its role in the regulation of Wg and Notch pathways was previously uncharacterized. Our study identifies a novel role of PP4 in regulating Notch pathway, resulting in aberrations in Notch-mediated transcriptional regulation of the Wingless ligand. Furthermore, we show that PP4 regulates proliferation independent of its interaction with Notch. Summary: The protein phosphatase 4 complex promotes Notch signaling and target gene expression during Drosophila wing development.
Collapse
Affiliation(s)
- Eric T Hall
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, British Columbia V5A 1S6, Canada
| | - Tirthadipa Pradhan-Sundd
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, British Columbia V5A 1S6, Canada
| | - Faaria Samnani
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, British Columbia V5A 1S6, Canada
| | - Esther M Verheyen
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, British Columbia V5A 1S6, Canada
| |
Collapse
|
40
|
Ku HY, Sun YH. Notch-dependent epithelial fold determines boundary formation between developmental fields in the Drosophila antenna. PLoS Genet 2017; 13:e1006898. [PMID: 28708823 PMCID: PMC5533456 DOI: 10.1371/journal.pgen.1006898] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 07/28/2017] [Accepted: 06/26/2017] [Indexed: 12/19/2022] Open
Abstract
Compartment boundary formation plays an important role in development by separating adjacent developmental fields. Drosophila imaginal discs have proven valuable for studying the mechanisms of boundary formation. We studied the boundary separating the proximal A1 segment and the distal segments, defined respectively by Lim1 and Dll expression in the eye-antenna disc. Sharp segregation of the Lim1 and Dll expression domains precedes activation of Notch at the Dll/Lim1 interface. By repressing bantam miRNA and elevating the actin regulator Enable, Notch signaling then induces actomyosin-dependent apical constriction and epithelial fold. Disruption of Notch signaling or the actomyosin network reduces apical constriction and epithelial fold, so that Dll and Lim1 cells become intermingled. Our results demonstrate a new mechanism of boundary formation by actomyosin-dependent tissue folding, which provides a physical barrier to prevent mixing of cells from adjacent developmental fields. During development, boundary formation between adjacent developmental fields is important to maintain the integrity of complex organs and tissues. We examined how boundaries become established between adjacent developmental fields—which are defined by expression of distinct selector genes and developmental fates—using the Drosophila eye-antennal disc as a model. We show that boundary formation is a progressive process. We focused our analysis on the antennal A1 fold that separates the A1 and A2-Ar segments, corresponding to the evolutionarily conserved segregation between coxopodite and telopodite segments of arthropod appendages. We describe a clear temporal and causal sequence of events from selector gene expression to establishment of a lineage-restricting boundary. We found that Notch activation at the boundary between adjacent fields of selector gene expression triggers actomyosin-mediated cell apical constriction, which induces the formation of an epithelial fold and prevents intermixing of cells from adjacent fields. Our findings describe a novel mechanism by which epithelial fold provides a physical barrier for cell segregation.
Collapse
Affiliation(s)
- Hui-Yu Ku
- Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Y. Henry Sun
- Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
41
|
Praxenthaler H, Nagel AC, Schulz A, Zimmermann M, Meier M, Schmid H, Preiss A, Maier D. Hairless-binding deficient Suppressor of Hairless alleles reveal Su(H) protein levels are dependent on complex formation with Hairless. PLoS Genet 2017; 13:e1006774. [PMID: 28475577 PMCID: PMC5438185 DOI: 10.1371/journal.pgen.1006774] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 05/19/2017] [Accepted: 04/21/2017] [Indexed: 11/19/2022] Open
Abstract
Cell fate choices during metazoan development are driven by the highly conserved Notch signalling pathway. Notch receptor activation results in release of the Notch intracellular domain (NICD) that acts as transcriptional co-activator of the DNA-binding protein CSL. In the absence of signal, a repressor complex consisting of CSL bound to co-repressors silences Notch target genes. The Drosophila repressor complex contains the fly CSL orthologue Suppressor of Hairless [Su(H)] and Hairless (H). The Su(H)-H crystal structure revealed a large conformational change within Su(H) upon H binding, precluding interactions with NICD. Based on the structure, several sites in Su(H) and H were determined to specifically engage in complex formation. In particular, three mutations in Su(H) were identified that affect interactions with the repressor H but not the activator NICD. To analyse the effects these mutants have on normal fly development, we introduced these mutations into the native Su(H) locus by genome engineering. We show that the three H-binding deficient Su(H) alleles behave similarly. As these mutants lack the ability to form the repressor complex, Notch signalling activity is strongly increased in homozygotes, comparable to a complete loss of H activity. Unexpectedly, we find that the abundance of the three mutant Su(H) protein variants is altered, as is that of wild type Su(H) protein in the absence of H protein. In the presence of NICD, however, Su(H) mutant protein persists. Apparently, Su(H) protein levels depend on the interactions with H as well as with NICD. Based on these results, we propose that in vivo levels of Su(H) protein are stabilised by interactions with transcription-regulator complexes.
Collapse
Affiliation(s)
- Heiko Praxenthaler
- Institute of Genetics (240), University of Hohenheim, Stuttgart, Germany
| | - Anja C. Nagel
- Institute of Genetics (240), University of Hohenheim, Stuttgart, Germany
| | - Adriana Schulz
- Institute of Genetics (240), University of Hohenheim, Stuttgart, Germany
| | - Mirjam Zimmermann
- Institute of Genetics (240), University of Hohenheim, Stuttgart, Germany
| | - Markus Meier
- Institute of Genetics (240), University of Hohenheim, Stuttgart, Germany
| | - Hannes Schmid
- Institute of Genetics (240), University of Hohenheim, Stuttgart, Germany
| | - Anette Preiss
- Institute of Genetics (240), University of Hohenheim, Stuttgart, Germany
| | - Dieter Maier
- Institute of Genetics (240), University of Hohenheim, Stuttgart, Germany
- * E-mail:
| |
Collapse
|
42
|
Gokhale RH, Hayashi T, Mirque CD, Shingleton AW. Intra-organ growth coordination in Drosophila is mediated by systemic ecdysone signaling. Dev Biol 2016; 418:135-145. [DOI: 10.1016/j.ydbio.2016.07.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 07/17/2016] [Accepted: 07/17/2016] [Indexed: 12/21/2022]
|
43
|
Koenig KM, Sun P, Meyer E, Gross JM. Eye development and photoreceptor differentiation in the cephalopod Doryteuthis pealeii. Development 2016; 143:3168-81. [PMID: 27510978 DOI: 10.1242/dev.134254] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 07/25/2016] [Indexed: 12/11/2022]
Abstract
Photoreception is a ubiquitous sensory ability found across the Metazoa, and photoreceptive organs are intricate and diverse in their structure. Although the morphology of the compound eye in Drosophila and the single-chambered eye in vertebrates have elaborated independently, the amount of conservation within the 'eye' gene regulatory network remains controversial, with few taxa studied. To better understand the evolution of photoreceptive organs, we established the cephalopod Doryteuthis pealeii as a lophotrochozoan model for eye development. Utilizing histological, transcriptomic and molecular assays, we characterize eye formation in Doryteuthis pealeii Through lineage tracing and gene expression analyses, we demonstrate that cells expressing Pax and Six genes incorporate into the lens, cornea and iris, and the eye placode is the sole source of retinal tissue. Functional assays demonstrate that Notch signaling is required for photoreceptor cell differentiation and retinal organization. This comparative approach places the canon of eye research in traditional models into perspective, highlighting complexity as a result of both conserved and convergent mechanisms.
Collapse
Affiliation(s)
- Kristen M Koenig
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Peter Sun
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Eli Meyer
- Department of Zoology, Oregon State University, Cordley Hall 3029, Corvallis, OR 97331, USA
| | - Jeffrey M Gross
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
44
|
Peco E, Davla S, Camp D, Stacey SM, Landgraf M, van Meyel DJ. Drosophila astrocytes cover specific territories of the CNS neuropil and are instructed to differentiate by Prospero, a key effector of Notch. Development 2016; 143:1170-81. [PMID: 26893340 DOI: 10.1242/dev.133165] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/08/2016] [Indexed: 01/13/2023]
Abstract
Astrocytes are crucial in the formation, fine-tuning, function and plasticity of neural circuits in the central nervous system. However, important questions remain about the mechanisms instructing astrocyte cell fate. We have studied astrogenesis in the ventral nerve cord of Drosophila larvae, where astrocytes exhibit remarkable morphological and molecular similarities to those in mammals. We reveal the births of larval astrocytes from a multipotent glial lineage, their allocation to reproducible positions, and their deployment of ramified arbors to cover specific neuropil territories to form a stereotyped astroglial map. Finally, we unraveled a molecular pathway for astrocyte differentiation in which the Ets protein Pointed and the Notch signaling pathway are required for astrogenesis; however, only Notch is sufficient to direct non-astrocytic progenitors toward astrocytic fate. We found that Prospero is a key effector of Notch in this process. Our data identify an instructive astrogenic program that acts as a binary switch to distinguish astrocytes from other glial cells.
Collapse
Affiliation(s)
- Emilie Peco
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada H3G 1A4 Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada H3G 1A4
| | - Sejal Davla
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada H3G 1A4 McGill Integrated Program in Neuroscience McGill University, Montreal, Quebec, Canada H3A 2B4
| | - Darius Camp
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada H3G 1A4 Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada H3A 1A3
| | - Stephanie M Stacey
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada H3G 1A4 McGill Integrated Program in Neuroscience McGill University, Montreal, Quebec, Canada H3A 2B4
| | - Matthias Landgraf
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Don J van Meyel
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada H3G 1A4 Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada H3G 1A4
| |
Collapse
|
45
|
|
46
|
|
47
|
GATAe regulates intestinal stem cell maintenance and differentiation in Drosophila adult midgut. Dev Biol 2015; 410:24-35. [PMID: 26719127 DOI: 10.1016/j.ydbio.2015.12.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 11/30/2015] [Accepted: 12/19/2015] [Indexed: 12/24/2022]
Abstract
Adult intestinal tissues, exposed to the external environment, play important roles including barrier and nutrient-absorption functions. These functions are ensured by adequately controlled rapid-cell metabolism. GATA transcription factors play essential roles in the development and maintenance of adult intestinal tissues both in vertebrates and invertebrates. We investigated the roles of GATAe, the Drosophila intestinal GATA factor, in adult midgut homeostasis with its first-generated knock-out mutant as well as cell type-specific RNAi and overexpression experiments. Our results indicate that GATAe is essential for proliferation and maintenance of intestinal stem cells (ISCs). Also, GATAe is involved in the differentiation of enterocyte (EC) and enteroendocrine (ee) cells in both Notch (N)-dependent and -independent manner. The results also indicate that GATAe has pivotal roles in maintaining normal epithelial homeostasis of the Drosophila adult midgut through interaction of N signaling. Since recent reports showed that mammalian GATA-6 regulates normal and cancer stem cells in the adult intestinal tract, our data also provide information on the evolutionally conserved roles of GATA factors in stem-cell regulation.
Collapse
|
48
|
Notch signaling induces cell proliferation in the labrum in a regulatory network different from the thoracic legs. Dev Biol 2015; 408:164-77. [DOI: 10.1016/j.ydbio.2015.09.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/25/2015] [Accepted: 09/26/2015] [Indexed: 11/18/2022]
|
49
|
Reimels TA, Pfleger CM. Drosophila Rabex-5 restricts Notch activity in hematopoietic cells and maintains hematopoietic homeostasis. J Cell Sci 2015; 128:4512-25. [PMID: 26567216 PMCID: PMC4696494 DOI: 10.1242/jcs.174433] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 11/04/2015] [Indexed: 11/20/2022] Open
Abstract
Hematopoietic homeostasis requires the maintenance of a reservoir of undifferentiated blood cell progenitors and the ability to replace or expand differentiated blood cell lineages when necessary. Multiple signaling pathways function in these processes, but how their spatiotemporal control is established and their activity is coordinated in the context of the entire hematopoietic network are still poorly understood. We report here that loss of the gene Rabex-5 in Drosophila causes several hematopoietic abnormalities, including blood cell (hemocyte) overproliferation, increased size of the hematopoietic organ (the lymph gland), lamellocyte differentiation and melanotic mass formation. Hemocyte-specific Rabex-5 knockdown was sufficient to increase hemocyte populations, increase lymph gland size and induce melanotic masses. Rabex-5 negatively regulates Ras, and we show that Ras activity is responsible for specific Rabex-5 hematopoietic phenotypes. Surprisingly, Ras-independent Notch protein accumulation and transcriptional activity in the lymph gland underlie multiple distinct hematopoietic phenotypes of Rabex-5 loss. Thus, Rabex-5 plays an important role in Drosophila hematopoiesis and might serve as an axis coordinating Ras and Notch signaling in the lymph gland.
Collapse
Affiliation(s)
- Theresa A Reimels
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA The Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Cathie M Pfleger
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA The Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
50
|
Kinase active Misshapen regulates Notch signaling in Drosophila melanogaster. Exp Cell Res 2015; 339:51-60. [DOI: 10.1016/j.yexcr.2015.09.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 08/26/2015] [Accepted: 09/26/2015] [Indexed: 01/15/2023]
|