1
|
Taylor E, Corsini M, Heyland A. Shared regulatory function of non-genomic thyroid hormone signaling in echinoderm skeletogenesis. EvoDevo 2024; 15:10. [PMID: 39113104 PMCID: PMC11304627 DOI: 10.1186/s13227-024-00226-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/22/2024] [Indexed: 08/10/2024] Open
Abstract
Thyroid hormones are crucial regulators of metamorphosis and development in bilaterians, particularly in chordate deuterostomes. Recent evidence suggests a role for thyroid hormone signaling, principally via 3,5,3',5'-Tetraiodo-L-thyronine (T4), in the regulation of metamorphosis, programmed cell death and skeletogenesis in echinoids (sea urchins and sand dollars) and sea stars. Here, we test whether TH signaling in skeletogenesis is a shared trait of Echinozoa (Echinoida and Holothouroida) and Asterozoa (Ophiourida and Asteroida). We demonstrate dramatic acceleration of skeletogenesis after TH treatment in three classes of echinoderms: sea urchins, sea stars, and brittle stars (echinoids, asteroids, and ophiuroids). Fluorescently labeled thyroid hormone analogues reveal thyroid hormone binding to cells proximal to regions of skeletogenesis in the gut and juvenile rudiment. We also identify, for the first time, a potential source of thyroxine during gastrulation in sea urchin embryos. Thyroxine-positive cells are present in tip of the archenteron. In addition, we detect thyroid hormone binding to the cell membrane and nucleus during metamorphic development in echinoderms. Immunohistochemistry of phosphorylated MAPK in the presence and absence of TH-binding inhibitors suggests that THs may act via phosphorylation of MAPK (ERK1/2) to accelerate initiation of skeletogenesis in the three echinoderm groups. Together, these results indicate that TH regulation of mesenchyme cell activity via integrin-mediated MAPK signaling may be a conserved mechanism for the regulation of skeletogenesis in echinoderm development. In addition, TH action via a nuclear thyroid hormone receptor may regulate metamorphic development. Our findings shed light on potentially ancient pathways of thyroid hormone activity in echinoids, ophiuroids, and asteroids, or on a signaling system that has been repeatedly co-opted to coordinate metamorphic development in bilaterians.
Collapse
Affiliation(s)
- Elias Taylor
- College of Biological Sciences, University of Guelph, Integrative Biology, Guelph, ON, N1G-2W1, Canada.
| | - Megan Corsini
- College of Biological Sciences, University of Guelph, Integrative Biology, Guelph, ON, N1G-2W1, Canada
| | - Andreas Heyland
- College of Biological Sciences, University of Guelph, Integrative Biology, Guelph, ON, N1G-2W1, Canada
| |
Collapse
|
2
|
Cao Z, Bakumenko O, Vlasenko V, Li W, Cao J. Molecular characterization and functional analysis of the ecdysone receptor isoform (EcR) from the oriental fruit moth Grapholita molesta (Lepidoptera: Tortricidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 115:e22110. [PMID: 38605666 DOI: 10.1002/arch.22110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/20/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
20-Hydroxyecdysone (20E) plays a vital role in a series of biological processes, via the nuclear receptors, EcR/USP by activating the ecdysone regulatory cascade. To clarify the role of EcR during the development of Grapholita molesta, the complementary DNA of ecdysone receptor isoform B1 (GmEcR-B1) was obtained from the transcriptome of G. molesta and verified by PCR. Alignment analysis revealed that the deduced protein sequence of GmEcR-B1 was highly homologous to EcR proteins identified in other lepidopteran species, especially the EcR-B1 isoform in Spodoptera litura. Quantitative real-time PCR showed that GmEcRs was expressed at all test developmental stages, and the expression level of GmEcRs was relatively higher during the period of the 3rd day of fifth instar larvae to 2nd of pupa than those in other stages. Moreover, the messenger RNA of GmEcRs was much more strongly expressed in the Malpighian tubule and epidermis than those in other tissues, which suggests that this gene may function in a tissue-specific manner during larval development. Silencing of GmEcRs could significantly downregulate the transcriptional level of ecdysone-inducible genes and result in increased mortality during metamorphosis and prolonged prepupal duration. Taken together, the present results indicate that GmEcRs may directly or indirectly affect the development of G. molesta.
Collapse
Affiliation(s)
- Zhishan Cao
- Department of Plant Protection, International Joint Laboratory of Taxonomy and Systematic Evolution of Insecta, Henan Institute of Science and Technology, Xinxiang, Henan, China
- Department of Plant Protection, Sumy National Agrarian University, Sumy, Ukraine
| | - Olha Bakumenko
- Department of Plant Protection, Sumy National Agrarian University, Sumy, Ukraine
| | - Volodymyr Vlasenko
- Department of Plant Protection, Sumy National Agrarian University, Sumy, Ukraine
| | - Weihai Li
- Department of Plant Protection, International Joint Laboratory of Taxonomy and Systematic Evolution of Insecta, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Jinjun Cao
- Department of Plant Protection, International Joint Laboratory of Taxonomy and Systematic Evolution of Insecta, Henan Institute of Science and Technology, Xinxiang, Henan, China
| |
Collapse
|
3
|
Matsuka M, Otsune S, Sugimori S, Tsugita Y, Ueda H, Nakagoshi H. Fecundity is optimized by levels of nutrient signal-dependent expression of Dve and EcR in Drosophila male accessory gland. Dev Biol 2024; 508:8-23. [PMID: 38199580 DOI: 10.1016/j.ydbio.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/26/2023] [Accepted: 01/06/2024] [Indexed: 01/12/2024]
Abstract
Steroid hormones play various physiological roles including metabolism and reproduction. Steroid hormones in insects are ecdysteroids, and the major form in Drosophila melanogaster is ecdysone. In Drosophila males, the accessory gland is responsive to nutrient-dependent regulation of fertility/fecundity. The accessory gland is composed of two types of binucleated epithelial cells: a main cell and a secondary cell (SC). The transcription factors Defective proventriculus (Dve), Abdominal-B, and Ecdysone receptors (EcRs) are strongly expressed in adult SCs. We show that this EcR expression is regulated by parallel pathways of nutrient signaling and the Dve activity. Induction of Dve expression is also dependent on nutrient signaling, and it becomes nutrient signal-independent during a restricted period of development. Forced dve expression during the restricted period significantly increased the number of SCs. Here, we provide evidence that the level of nutrient signal-dependent Dve expression during the restricted period determines the number of SCs, and that ecdysone signaling is also crucial to optimize male fecundity through nutrient signal-dependent survival and maturation of SCs.
Collapse
Affiliation(s)
- Mirai Matsuka
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Shinichi Otsune
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Seiko Sugimori
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Yasuhiro Tsugita
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Hitoshi Ueda
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Hideki Nakagoshi
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.
| |
Collapse
|
4
|
Zhang S, Wu S, Yao R, Wei X, Ohlstein B, Guo Z. Eclosion muscles secrete ecdysteroids to initiate asymmetric intestinal stem cell division in Drosophila. Dev Cell 2024; 59:125-140.e12. [PMID: 38096823 DOI: 10.1016/j.devcel.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/05/2023] [Accepted: 11/14/2023] [Indexed: 01/11/2024]
Abstract
During organ development, tissue stem cells first expand via symmetric divisions and then switch to asymmetric divisions to minimize the time to obtain a mature tissue. In the Drosophila midgut, intestinal stem cells switch their divisions from symmetric to asymmetric at midpupal development to produce enteroendocrine cells. However, the signals that initiate this switch are unknown. Here, we identify the signal as ecdysteroids. In the presence of ecdysone, EcR and Usp promote the expression of E93 to suppress Br expression, resulting in asymmetric divisions. Surprisingly, the primary source of pupal ecdysone is not from the prothoracic gland but from dorsal internal oblique muscles (DIOMs), a group of transient skeletal muscles that are required for eclosion. Genetic analysis shows that DIOMs secrete ecdysteroids during mTOR-mediated muscle remodeling. Our findings identify sequential endocrine and mechanical roles for skeletal muscle, which ensure the timely asymmetric divisions of intestinal stem cells.
Collapse
Affiliation(s)
- Song Zhang
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Song Wu
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ruining Yao
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xueying Wei
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Benjamin Ohlstein
- Children's Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zheng Guo
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
5
|
Su Z, Zhao C, Huang X, Lv J, Zhao Z, Zheng K, Sun X, Qin S, Wang X, Jin BR, Wu Y. Bombyx mori Ecdysone Receptor B1 May Inhibit BmNPV Infection by Triggering Apoptosis. INSECTS 2023; 14:505. [PMID: 37367321 DOI: 10.3390/insects14060505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/05/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023]
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) is a serious threat to sericulture. Nevertheless, no effective control strategy is currently available. The innate immunity of silkworm is critical in the antiviral process. Exploring its molecular mechanism provides theoretical support for the prevention and treatment of BmNPV. Insect hormone receptors play an essential role in regulating host immunity. We found a correlation between Bombyx mori ecdysone receptor B1 (BmEcR-B1) and BmNPV infection, whereas the underlying mechanism remains unclear. In this study, the expression patterns and sequence characteristics of BmEcR-B1 and its isoform, BmEcR-A, were initially analyzed. BmEcR-B1 was found to be more critical than BmEcR-A in silkworm development and responses to BmNPV. Moreover, RNAi and an overexpression in BmN cells showed BmEcR-B1 had antiviral effects in the presence of 20-hydroxyecdysone (20E); Otherwise, it had no antiviral activity. Furthermore, BmEcR-B1 was required for 20E-induced apoptosis, which significantly suppressed virus infection. Finally, feeding 20E had no significant negative impacts on larval growth and the cocoon shell, suggesting the regulation of this pathway has practical value in controlling BmNPV in sericulture. The findings of this study provide important theoretical support for understanding the mechanism of the silkworm innate immune system in response to BmNPV infection.
Collapse
Affiliation(s)
- Zhihao Su
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Chunxiao Zhao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Xinming Huang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Junli Lv
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Ziqin Zhao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Kaiyi Zheng
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Xia Sun
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang 212100, China
| | - Sheng Qin
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang 212100, China
| | - Xueyang Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang 212100, China
| | - Byung-Rae Jin
- College of Natural Resources and Life Science, Dong-A University, Busan 49315, Republic of Korea
| | - Yangchun Wu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang 212100, China
| |
Collapse
|
6
|
Atli E. The effects of ethylparaben and propylparaben on the development and fecundity of Drosophila melanogaster. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 92:103856. [PMID: 35342011 DOI: 10.1016/j.etap.2022.103856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 12/01/2021] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Parabens are widely used as preservatives in pharmaceuticals, cosmetics, and food products. Ethylparaben (EP) and propylparaben (PP) are particularly preferred because of their bactericidal and fungicidal effects. Although generally described as safe compounds, many studies have reported that parabens have estrogenic and endocrine-disrupting properties. In the present study, the effects of EP and PP (50 mM, 100 mM and 200 mM) on Drosophila melanogaster development and fecundity were investigated. No differences were found in the pupation and maturation percentages in all concentrations of parabens (p > 0.05). However, it was found that the mean pupation and maturation times increased in all treatment groups (p < 0.05). A statistically significant decrease (p < 0.05) in the number of offspring of the 200 mM ethylparaben exposure group was observed. In all paraben groups, a significant reduction in mean fecundity was found compared to the control group (p < 0.05).
Collapse
Affiliation(s)
- Emel Atli
- Department of Mathematics and Science Education, Faculty of Education, Nevsehir Haci Bektas Veli University, Nevsehir 50300, Turkey.
| |
Collapse
|
7
|
Atli E, Tamtürk E. Investigation of developmental and reproductive effects of resveratrol in Drosophila melanogaster. Toxicol Res (Camb) 2021; 11:101-107. [PMID: 35237415 PMCID: PMC8882785 DOI: 10.1093/toxres/tfab123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/23/2021] [Accepted: 12/03/2021] [Indexed: 12/30/2022] Open
Abstract
Resveratrol is a chemical that attracts attention due to its antioxidative, anti-inflammatory, and estrogenic/antiestrogenic properties. In the present study, it was aimed to investigate developmental and reproductive effects (developmental periods, average numbers of offspring, sex ratios) of resveratrol in Drosophila melanogaster. Their larvae were exposed to 50, 100, and 200 μM of resveratrol. Resveratrol treatments did not affect pupation and maturation rate (P ˃ 0.05) statistically. But the pupation and maturation times were significantly extended at all doses (P ˂ 0.05). Also, 100 and 200 μM resveratrol treatments resulted in a significant decrease in the number of offspring (P ˂ 0.05). The results reveal that resveratrol, which is generally known for its positive effects, may have negative effects on the development and reproduction of invertebrates. The results of this study support the idea that resveratrol may act as an endocrine disruptor, as it is a phytoestrogen.
Collapse
Affiliation(s)
- Emel Atli
- Correspondence address. Nevşehir Hacı Bektas Veli University, Faculty of Education, Department of Mathematics and Science Education, Nevsehir, Turkey. Tel: +90 384 2281004; Fax: +90 384 2281040, E-mail:
| | - Erkut Tamtürk
- Department of Biology, Institute of Science, Erciyes University, 38280, Kayseri, Turkey
| |
Collapse
|
8
|
Zhou Z, Eichner C, Nilsen F, Jonassen I, Dondrup M. A novel approach to co-expression network analysis identifies modules and genes relevant for moulting and development in the Atlantic salmon louse (Lepeophtheirus salmonis). BMC Genomics 2021; 22:832. [PMID: 34789144 PMCID: PMC8600823 DOI: 10.1186/s12864-021-08054-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/04/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The salmon louse (Lepeophtheirus salmonis) is an obligate ectoparasitic copepod living on Atlantic salmon and other salmonids in the marine environment. Salmon lice cause a number of environmental problems and lead to large economical losses in aquaculture every year. In order to develop novel parasite control strategies, a better understanding of the mechanisms of moulting and development of the salmon louse at the transcriptional level is required. METHODS Three weighted gene co-expression networks were constructed based on the pairwise correlations of salmon louse gene expression profiles at different life stages. Network-based approaches and gene annotation information were applied to identify genes that might be important for the moulting and development of the salmon louse. RNA interference was performed for validation. Regulatory impact factors were calculated for all the transcription factor genes by examining the changes in co-expression patterns between transcription factor genes and deferentially expressed genes in middle stages and moulting stages. RESULTS Eight gene modules were predicted as important, and 10 genes from six of the eight modules have been found to show observable phenotypes in RNA interference experiments. We knocked down five hub genes from three modules and observed phenotypic consequences in all experiments. In the infection trial, no copepodids with a RAB1A-like gene knocked down were found on fish, while control samples developed to chalimus-1 larvae. Also, a FOXO-like transcription factor obtained highest scores in the regulatory impact factor calculation. CONCLUSIONS We propose a gene co-expression network-based approach to identify genes playing an important role in the moulting and development of salmon louse. The RNA interference experiments confirm the effectiveness of our approach and demonstrated the indispensable role of a RAB1A-like gene in the development of the salmon louse. We propose that our approach could be generalized to identify important genes associated with a phenotype of interest in other organisms.
Collapse
Affiliation(s)
- Zhaoran Zhou
- Department of Informatics & Sea Lice Research Centre, University of Bergen, Thormøhlensgate 55, Bergen, 5008 Norway
| | - Christiane Eichner
- Department of Biological Sciences & Sea Lice Research Centre, University of Bergen, Thormøhlensgate 55, Bergen, 5008 Norway
| | - Frank Nilsen
- Department of Biological Sciences & Sea Lice Research Centre, University of Bergen, Thormøhlensgate 55, Bergen, 5008 Norway
| | - Inge Jonassen
- Department of Informatics & Sea Lice Research Centre, University of Bergen, Thormøhlensgate 55, Bergen, 5008 Norway
| | - Michael Dondrup
- Department of Informatics & Sea Lice Research Centre, University of Bergen, Thormøhlensgate 55, Bergen, 5008 Norway
| |
Collapse
|
9
|
Empowering Melatonin Therapeutics with Drosophila Models. Diseases 2021; 9:diseases9040067. [PMID: 34698120 PMCID: PMC8544433 DOI: 10.3390/diseases9040067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/14/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
Melatonin functions as a central regulator of cell and organismal function as well as a neurohormone involved in several processes, e.g., the regulation of the circadian rhythm, sleep, aging, oxidative response, and more. As such, it holds immense pharmacological potential. Receptor-mediated melatonin function mainly occurs through MT1 and MT2, conserved amongst mammals. Other melatonin-binding proteins exist. Non-receptor-mediated activities involve regulating the mitochondrial function and antioxidant cascade, which are frequently affected by normal aging as well as disease. Several pathologies display diseased or dysfunctional mitochondria, suggesting melatonin may be used therapeutically. Drosophila models have extensively been employed to study disease pathogenesis and discover new drugs. Here, we review the multiple functions of melatonin through the lens of functional conservation and model organism research to empower potential melatonin therapeutics to treat neurodegenerative and renal diseases.
Collapse
|
10
|
Dib A, Zanet J, Mancheno-Ferris A, Gallois M, Markus D, Valenti P, Marques-Prieto S, Plaza S, Kageyama Y, Chanut-Delalande H, Payre F. Pri smORF Peptides Are Wide Mediators of Ecdysone Signaling, Contributing to Shape Spatiotemporal Responses. Front Genet 2021; 12:714152. [PMID: 34527021 DOI: 10.3389/fgene.2021.714152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/28/2021] [Indexed: 11/13/2022] Open
Abstract
There is growing evidence that peptides encoded by small open-reading frames (sORF or smORF) can fulfill various cellular functions and define a novel class regulatory molecules. To which extend transcripts encoding only smORF peptides compare with canonical protein-coding genes, yet remain poorly understood. In particular, little is known on whether and how smORF-encoding RNAs might need tightly regulated expression within a given tissue, at a given time during development. We addressed these questions through the analysis of Drosophila polished rice (pri, a.k.a. tarsal less or mille pattes), which encodes four smORF peptides (11-32 amino acids in length) required at several stages of development. Previous work has shown that the expression of pri during epidermal development is regulated in the response to ecdysone, the major steroid hormone in insects. Here, we show that pri transcription is strongly upregulated by ecdysone across a large panel of cell types, suggesting that pri is a core component of ecdysone response. Although pri is produced as an intron-less short transcript (1.5 kb), genetic assays reveal that the developmental functions of pri require an unexpectedly large array of enhancers (spanning over 50 kb), driving a variety of spatiotemporal patterns of pri expression across developing tissues. Furthermore, we found that separate pri enhancers are directly activated by the ecdysone nuclear receptor (EcR) and display distinct regulatory modes between developmental tissues and/or stages. Alike major developmental genes, the expression of pri in a given tissue often involves several enhancers driving apparently redundant (or shadow) expression, while individual pri enhancers can harbor pleiotropic functions across tissues. Taken together, these data reveal the broad role of Pri smORF peptides in ecdysone signaling and show that the cis-regulatory architecture of the pri gene contributes to shape distinct spatial and temporal patterns of ecdysone response throughout development.
Collapse
Affiliation(s)
- Azza Dib
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, University of Toulouse, Toulouse, France
| | - Jennifer Zanet
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, University of Toulouse, Toulouse, France
| | - Alexandra Mancheno-Ferris
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, University of Toulouse, Toulouse, France
| | - Maylis Gallois
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, University of Toulouse, Toulouse, France
| | - Damien Markus
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, University of Toulouse, Toulouse, France
| | - Philippe Valenti
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, University of Toulouse, Toulouse, France
| | - Simon Marques-Prieto
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, University of Toulouse, Toulouse, France
| | - Serge Plaza
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, University of Toulouse, Toulouse, France
| | - Yuji Kageyama
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan.,Biosignal Research Center, Kobe University, Kobe, Japan
| | - Hélène Chanut-Delalande
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, University of Toulouse, Toulouse, France
| | - François Payre
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, University of Toulouse, Toulouse, France
| |
Collapse
|
11
|
Okamoto N, Yamanaka N. Transporter-mediated ecdysteroid trafficking across cell membranes: A novel target for insect growth regulators. JOURNAL OF PESTICIDE SCIENCE 2021; 46:23-28. [PMID: 33746543 PMCID: PMC7953032 DOI: 10.1584/jpestics.d20-071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Ecdysteroids are a class of steroid hormones in arthropods that control molting and metamorphosis through interaction with intracellular nuclear receptors. In contrast to the extensive literature describing their biosynthetic pathways and signaling components, little has been known about how these hormones are traveling into and out of the cells through lipid bilayers of the cell membranes. Recently, a series of studies conducted in the fruit fly Drosophila melanogaster revealed that membrane transporters have critical functions in trafficking ecdysteroids across cell membranes, challenging the classical simple diffusion model of steroid hormone transport. Here we summarize recent advances in our understanding of membrane transporters involved in ecdysteroid signaling in Drosophila, with particular focus on Ecdysone Importer (EcI) that is involved in ecdysteroid uptake in peripheral tissues. We then discuss the potential advantage of EcI blockers as a novel pest management tool as compared to classical insect growth regulators.
Collapse
Affiliation(s)
- Naoki Okamoto
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki 305–8577, Japan
| | - Naoki Yamanaka
- Department of Entomology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
12
|
Okamoto N, Yamanaka N. Steroid Hormone Entry into the Brain Requires a Membrane Transporter in Drosophila. Curr Biol 2020; 30:359-366.e3. [PMID: 31928869 DOI: 10.1016/j.cub.2019.11.085] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/14/2019] [Accepted: 11/28/2019] [Indexed: 02/08/2023]
Abstract
Steroid hormones control various aspects of brain development and behavior in metazoans, but how they enter the central nervous system (CNS) through the blood-brain barrier (BBB) remains poorly understood. It is generally believed that steroid hormones freely diffuse through the plasma membrane of the BBB cells to reach the brain [1], because of the predominant "simple diffusion" model of steroid hormone transport across cell membranes. Recently, however, we challenged the simple diffusion model by showing that a Drosophila organic anion-transporting polypeptide (OATP), which we named Ecdysone Importer (EcI), is required for cellular uptake of the primary insect steroid hormone ecdysone [2]. As ecdysone is first secreted into the hemolymph before reaching the CNS [3], our finding raised the question of how ecdysone enters the CNS through the BBB to exert its diverse role in Drosophila brain development. Here, we demonstrate in the Drosophila BBB that EcI is indispensable for ecdysone entry into the CNS to facilitate brain development. EcI is highly expressed in surface glial cells that form the BBB, and EcI knockdown in the BBB suppresses ecdysone signaling within the CNS and blocks ecdysone-mediated neuronal events during development. In an ex vivo culture system, the CNS requires EcI in the BBB to incorporate ecdysone from the culture medium. Our results suggest a transporter-mediated mechanism of steroid hormone entry into the CNS, which may provide important implications in controlling brain development and behavior by regulating steroid hormone permeability across the BBB.
Collapse
Affiliation(s)
- Naoki Okamoto
- Department of Entomology, Institute for Integrative Genome Biology, University of California, Riverside, 900 University Ave., Riverside, CA 92521, USA
| | - Naoki Yamanaka
- Department of Entomology, Institute for Integrative Genome Biology, University of California, Riverside, 900 University Ave., Riverside, CA 92521, USA.
| |
Collapse
|
13
|
Mazina MY, Vorobyeva NE. Mechanisms of transcriptional regulation of ecdysone response. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The mechanisms of ecdysone-dependent expression have been studied for many decades. Initially, the activation of individual genes under the influence of ecdysone was studied on the model of polythene chromosomes from salivary glands of Drosophila melanogaster. These works helped to investigate the many aspects of the Drosophila development. They also revealed plenty of valuable information regarding the fundamental mechanisms controlling the genes’ work. Many years ago, a model describing the process of gene activation by ecdysone, named after the author – Ashburner model – was proposed. This model is still considered an excellent description of the ecdysone cascade, which is implemented in the salivary glands during the formation of the Drosophila pupa. However, these days there is an opinion that the response of cells to the hormone ecdysone can develop with significant differences, depending on the type of cells. The same genes can be activated or repressed under the influence of ecdysone in different tissues. Likely, certain DNA-binding transcription factors that are involved in the ecdysonedependent response together with the EcR/Usp heterodimer are responsible for cell-type specificity. A number of transcriptional regulators involved in the ecdysone response have been described. Among them are several complexes responsible for chromatin remodeling and modification. It has been shown by various methods that ecdysone-dependent activation/repression of gene transcription develops with significant structural changes of chromatin on regulatory elements. The description of the molecular mechanism of this process, in particular, the role of individual proteins in it, as well as structural interactions between various regulatory elements is a matter of the future. This review is aimed to discuss the available information regarding the main regulators that interact with the ecdysone receptor. We provide a brief description of the regulator’s participation in the ecdysone response and links to the corresponding study. We also discuss general aspects of the mechanism of ecdysone-dependent regulation and highlight the most promising points for further research.
Collapse
Affiliation(s)
- M. Yu. Mazina
- Institute of Gene Biology, RAS, Group of transcriptional complexes dynamics
| | - N. E. Vorobyeva
- Institute of Gene Biology, RAS, Group of transcriptional complexes dynamics
| |
Collapse
|
14
|
Wang F, Zhou B. Molecular dynamics and free energy studies on the Drosophila melanogaster and Leptinotarsa decemlineata ecdysone receptor complexed with agonists: Mechanism for binding and selectivity. J Biomol Struct Dyn 2018; 37:2678-2694. [PMID: 30033856 DOI: 10.1080/07391102.2018.1494634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The ecdysone receptor is a nuclear hormone receptor that plays a pivotal role in the insect metamorphosis and development. To address the molecular mechanisms of binding and selectivity, the interactions of two typical agonists Ponasterone A and 20-Hydroxyecdysone with Drosophila melanogaster (DME) and Leptinotarsa decemlineata ecdysone (LDE) receptors were investigated by homology modeling, molecular docking, molecular dynamic simulation, and thermodynamic analysis. We discover that 1) the L5-loop, L11-loop, and H12 helix for DME, L7-loop, and L11-loop for LDE are more flexible, which affect the global dynamics of the ligand-binding pocket, thus facilitating the ligand recognition of ecdysone receptor; 2) several key residues (Thr55/Thr37, Phe109/Phe91, Arg95/Arg77, Arg99/Arg81, Phe108/Leu90, and Ala110/Val92) are responsible for the binding of the proteins; 3) the binding-free energy is mainly contributed by the van der Waals forces as well as the electrostatic interactions of ligand and receptor; 4) the computed binding-free energy difference between DME-C1 and LDE-C1 is -4.65 kcal/mol, explains that C1 can form many more interactions with the DME; 5) residues Phe108/Leu90 and Ala110/Val92 have relatively position and orientation difference in the two receptors, accounting most likely for the ligand selectivity of ecdysone receptor from different orders of insects. This study underscores the expectation that different insect pests should be able to discriminate among compounds from different as yet undiscovered compounds, and the results firstly show a structural and functional relay between the agonists and receptors (DME and LDE), which can provide an avenue for the development of target-specific insecticides. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fangfang Wang
- a School of Life Science , Linyi University , Linyi , 276000 , China
| | - Bo Zhou
- b State Key Laboratory of Functions and Applications of Medicinal Plants, College of Basic Medical , Guizhou Medical University , Guizhou , China
| |
Collapse
|
15
|
Qu Z, Bendena WG, Tobe SS, Hui JHL. Juvenile hormone and sesquiterpenoids in arthropods: Biosynthesis, signaling, and role of MicroRNA. J Steroid Biochem Mol Biol 2018; 184:69-76. [PMID: 29355708 DOI: 10.1016/j.jsbmb.2018.01.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/03/2018] [Accepted: 01/16/2018] [Indexed: 12/21/2022]
Abstract
Arthropod molting and reproduction are precisely controlled by the levels of sesquiterpenoids, a class of C15 hormones derived from three isoprene units. The two major functional arthropod sesquiterpenoids are juvenile hormone (JH) and methyl farnesoate (MF). In hemimetabolous insects (such as the aphids, bugs, and cockroaches) and holometabolous insects (such as beetles, bees, butterflies, and flies), dramatic decrease in the titers of JH and/or MF promote metamorphosis from larvae to adults either directly or through an intermediate pupal stage, respectively. JH is absent in crustaceans (lobster, shrimp, crab) and other arthropods (chelicerates such as ticks, mites, spiders, scorpions and myriapods such as millipede and centipedes). In some crustaceans, molting and reproduction is dependent on changing levels of MF. The regulation of sesquiterpenoid production is thus crucial in the life cycle of arthropods. Dynamic and complex mechanisms have evolved to regulate sesquiterpenoid production. Noncoding RNAs such as the microRNAs are primary regulators. This article provides an overview of microRNAs that are known to regulate sesquiterpenoid production in arthropods.
Collapse
Affiliation(s)
- Zhe Qu
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | | | - Stephen S Tobe
- Department of Cell and Systems Biology, University of Toronto, Canada.
| | - Jerome H L Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
16
|
Roy A, George S, Palli SR. Multiple functions of CREB-binding protein during postembryonic development: identification of target genes. BMC Genomics 2017; 18:996. [PMID: 29284404 PMCID: PMC5747157 DOI: 10.1186/s12864-017-4373-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/08/2017] [Indexed: 11/25/2022] Open
Abstract
Background Juvenile hormones (JH) and ecdysteroids control postembryonic development in insects. They serve as valuable targets for pest management. Hence, understanding the molecular mechanisms of their action is of crucial importance. CREB-binding protein (CBP) is a universal transcriptional co-regulator. It controls the expression of several genes including those from hormone signaling pathways through co-activation of many transcription factors. However, the role of CBP during postembryonic development in insects is not well understood. Therefore, we have studied the role of CBP in postembryonic development in Tribolium, a model coleopteran insect. Results CBP is ubiquitously expressed in the red flour beetle, Tribolium castaneum. RNA interference (RNAi) mediated knockdown of CBP resulted in a decrease in JH induction of Kr-h1 gene expression in Tribolium larvae and led to a block in their development. Moreover, the injection of CBP double-stranded RNA (dsRNA) showed lethal phenotypes within 8 days of injection. RNA-seq and subsequent differential gene expression analysis identified CBP target genes in Tribolium. Knockdown of CBP caused a decrease in the expression of 1306 genes coding for transcription factors and other proteins associated with growth and development. Depletion of CBP impaired the expression of several JH response genes (e.g., Kr-h1, Hairy, early trypsin) and ecdysone response genes (EcR, E74, E75, and broad complex). Further, GO enrichment analyses of the downregulated genes showed enrichment in different functions including developmental processes, pigmentation, anatomical structure development, regulation of biological and cellular processes, etc. Conclusion These data suggest diverse but crucial roles for CBP during postembryonic development in the coleopteran model insect, Tribolium. It can serve as a target for RNAi mediated pest management of this stored product pest. Electronic supplementary material The online version of this article (10.1186/s12864-017-4373-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amit Roy
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY, 40546, USA.,Present address, Faculty of Forestry and Wood Sciences, EXTEMIT-K, Czech University of Life Sciences, Kamýcká 1176, Prague 6, 165 21, Suchdol, Czech Republic
| | - Smitha George
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY, 40546, USA
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
17
|
Conceptual framework of the eco-physiological phases of insect diapause development justified by transcriptomic profiling. Proc Natl Acad Sci U S A 2017; 114:8532-8537. [PMID: 28720705 DOI: 10.1073/pnas.1707281114] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Insects often overcome unfavorable seasons in a hormonally regulated state of diapause during which their activity ceases, development is arrested, metabolic rate is suppressed, and tolerance of environmental stress is bolstered. Diapausing insects pass through a stereotypic succession of eco-physiological phases termed "diapause development." The phasing is varied in the literature, and the whole concept is sometimes criticized as being too artificial. Here we present the results of transcriptional profiling using custom microarrays representing 1,042 genes in the drosophilid fly, Chymomyza costata Fully grown, third-instar larvae programmed for diapause by a photoperiodic (short-day) signal were assayed as they traversed the diapause developmental program. When analyzing the gradual dynamics in the transcriptomic profile, we could readily distinguish distinct diapause developmental phases associated with induction/initiation, maintenance, cold acclimation, and termination by cold or by photoperiodic signal. Accordingly, each phase is characterized by a specific pattern of gene expression, supporting the physiological relevance of the concept of diapause phasing. Further, we have dissected in greater detail the changes in transcript levels of elements of several signaling pathways considered critical for diapause regulation. The phase of diapause termination is associated with enhanced transcript levels in several positive elements stimulating direct development (the 20-hydroxyecdysone pathway: Ecr, Shd, Broad; the Wnt pathway: basket, c-jun) that are countered by up-regulation in some negative elements (the insulin-signaling pathway: Ilp8, PI3k, Akt; the target of rapamycin pathway: Tsc2 and 4EBP; the Wnt pathway: shaggy). We speculate such up-regulations may represent the early steps linked to termination of diapause programming.
Collapse
|
18
|
Kreher J, Kovač K, Bouazoune K, Mačinković I, Ernst AL, Engelen E, Pahl R, Finkernagel F, Murawska M, Ullah I, Brehm A. EcR recruits dMi-2 and increases efficiency of dMi-2-mediated remodelling to constrain transcription of hormone-regulated genes. Nat Commun 2017; 8:14806. [PMID: 28378812 PMCID: PMC5382322 DOI: 10.1038/ncomms14806] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 01/30/2017] [Indexed: 12/27/2022] Open
Abstract
Gene regulation by steroid hormones plays important roles in health and disease. In Drosophila, the hormone ecdysone governs transitions between key developmental stages. Ecdysone-regulated genes are bound by a heterodimer of ecdysone receptor (EcR) and Ultraspiracle. According to the bimodal switch model, steroid hormone receptors recruit corepressors in the absence of hormone and coactivators in its presence. Here we show that the nucleosome remodeller dMi-2 is recruited to ecdysone-regulated genes to limit transcription. Contrary to the prevalent model, recruitment of the dMi-2 corepressor increases upon hormone addition to constrain gene activation through chromatin remodelling. Furthermore, EcR and dMi-2 form a complex that is devoid of Ultraspiracle. Unexpectedly, EcR contacts the dMi-2 ATPase domain and increases the efficiency of dMi-2-mediated nucleosome remodelling. This study identifies a non-canonical EcR-corepressor complex with the potential for a direct regulation of ATP-dependent nucleosome remodelling by a nuclear hormone receptor.
Collapse
Affiliation(s)
- Judith Kreher
- Institute of Molecular Biology and Tumour Research, Philipps University Marburg, Marburg 35037, Germany
| | - Kristina Kovač
- Institute of Molecular Biology and Tumour Research, Philipps University Marburg, Marburg 35037, Germany
| | - Karim Bouazoune
- Institute of Molecular Biology and Tumour Research, Philipps University Marburg, Marburg 35037, Germany
| | - Igor Mačinković
- Institute of Molecular Biology and Tumour Research, Philipps University Marburg, Marburg 35037, Germany
| | - Anna Luise Ernst
- Institute of Molecular Biology and Tumour Research, Philipps University Marburg, Marburg 35037, Germany
| | - Erik Engelen
- Institute of Molecular Biology and Tumour Research, Philipps University Marburg, Marburg 35037, Germany
| | - Roman Pahl
- Institute of Medical Biometry and Epidemiology, Philipps University Marburg, Marburg 35037, Germany
| | - Florian Finkernagel
- Center for Tumour Biology and Immunology, Philipps University Marburg, Marburg 35043, Germany
| | - Magdalena Murawska
- Institute of Molecular Biology and Tumour Research, Philipps University Marburg, Marburg 35037, Germany
| | - Ikram Ullah
- Institute of Molecular Biology and Tumour Research, Philipps University Marburg, Marburg 35037, Germany
| | - Alexander Brehm
- Institute of Molecular Biology and Tumour Research, Philipps University Marburg, Marburg 35037, Germany
| |
Collapse
|
19
|
Bodofsky S, Koitz F, Wightman B. CONSERVED AND EXAPTED FUNCTIONS OF NUCLEAR RECEPTORS IN ANIMAL DEVELOPMENT. NUCLEAR RECEPTOR RESEARCH 2017; 4:101305. [PMID: 29333434 PMCID: PMC5761748 DOI: 10.11131/2017/101305] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The nuclear receptor gene family includes 18 members that are broadly conserved among multiple disparate animal phyla, indicating that they trace their evolutionary origins to the time at which animal life arose. Typical nuclear receptors contain two major domains: a DNA-binding domain and a C-terminal domain that may bind a lipophilic hormone. Many of these nuclear receptors play varied roles in animal development, including coordination of life cycle events and cellular differentiation. The well-studied genetic model systems of Drosophila, C. elegans, and mouse permit an evaluation of the extent to which nuclear receptor function in development is conserved or exapted (repurposed) over animal evolution. While there are some specific examples of conserved functions and pathways, there are many clear examples of exaptation. Overall, the evolutionary theme of exaptation appears to be favored over strict functional conservation. Despite strong conservation of DNA-binding domain sequences and activity, the nuclear receptors prove to be highly-flexible regulators of animal development.
Collapse
Affiliation(s)
- Shari Bodofsky
- Biology Department, Muhlenberg College, 2400 Chew St., Allentown, PA 18104
| | - Francine Koitz
- Biology Department, Muhlenberg College, 2400 Chew St., Allentown, PA 18104
| | - Bruce Wightman
- Biology Department, Muhlenberg College, 2400 Chew St., Allentown, PA 18104
| |
Collapse
|
20
|
Horváth B, Betancourt AJ, Kalinka AT. A novel method for quantifying the rate of embryogenesis uncovers considerable genetic variation for the duration of embryonic development in Drosophila melanogaster. BMC Evol Biol 2016; 16:200. [PMID: 27717305 PMCID: PMC5054588 DOI: 10.1186/s12862-016-0776-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/29/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Embryogenesis is a highly conserved, canalized process, and variation in the duration of embryogenesis (DOE), i.e., time from egg lay to hatching, has a potentially profound effect on the outcome of within- and between-species competition. There is both intra- and inter-specific variation in this trait, which may provide important fuel for evolutionary processes, particularly adaptation. However, while genetic variation underlying simpler morphological traits, or with large phenotypic effects is well described in the literature, less is known about the underlying genetics of traits, such as DOE, partly due to a lack of tools with which to study them. RESULTS Here, we establish a novel microscope-based assay to survey genetic variation for the duration of embryogenesis (DOE). First, to establish the potential importance of DOE in competitive fitness, we performed a set of experiments where we experimentally manipulated the time until hatching, and show that short hatching times result in priority effect in the form of improved larval competitive ability. We then use our assay to measure DOE for 43 strains from the Drosophila Genetic Reference Panel (DGRP). Our assay greatly simplifies the measurement of DOE, making it possible to precisely quantify this trait for 59,295 individual embryos (mean ± S.D. of 1103 ± 293 per DGRP strain, and 1002 ± 203 per control). We find extensive genetic variation in DOE, with a 15 % difference in rate between the slowest and fastest strains measured, and 89 % of phenotypic variation due to DGRP strain. Using sequence information from the DGRP, we perform a genome-wide association study, which suggests that some well-known developmental genes affect the speed of embryonic development. CONCLUSIONS We showed that the duration of embryogenesis (DOE) can be efficiently and precisely measured in Drosophila, and that the DGRP strains show remarkable variation in DOE. A genome-wide analysis suggests that some well-known developmental genes are potentially associated with DOE. Further functional assays, or transcriptomic analysis of embryos from the DGRP, can validate the role of our candidates in early developmental processes.
Collapse
Affiliation(s)
- Barbara Horváth
- Institut für Populationsgenetik, Veterinärmedizinische Universität Wien, Veterinärplatz 1, A-1210, Vienna, Austria. .,Vienna Graduate School of Population Genetics, Veterinärmedizinische Universität Wien, Veterinärplatz 1, Vienna, A-1210, Austria.
| | - Andrea J Betancourt
- Institut für Populationsgenetik, Veterinärmedizinische Universität Wien, Veterinärplatz 1, A-1210, Vienna, Austria
| | - Alex T Kalinka
- Institut für Populationsgenetik, Veterinärmedizinische Universität Wien, Veterinärplatz 1, A-1210, Vienna, Austria
| |
Collapse
|
21
|
Lenaerts C, Van Wielendaele P, Peeters P, Vanden Broeck J, Marchal E. Ecdysteroid signalling components in metamorphosis and development of the desert locust, Schistocerca gregaria. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 75:10-23. [PMID: 27180725 DOI: 10.1016/j.ibmb.2016.05.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 06/05/2023]
Abstract
The arthropod-specific hormone family of ecdysteroids plays an important role in regulating diverse physiological processes, such as moulting and metamorphosis, reproduction, diapause and innate immunity. Ecdysteroids mediate their response by binding to a heterodimeric complex of two nuclear receptors, the ecdysone receptor (EcR) and the retinoid-X-receptor/ultraspiracle (RXR/USP). In this study we investigated the role of EcR and RXR in metamorphosis and development of the desert locust, Schistocerca gregaria. The desert locust is a voracious, phytophagous, swarming pest that can ruin crops and harvests in some of the world's poorest countries. A profound knowledge of the ecdysteroid signalling pathway can be used in the development of more target-specific insecticides to combat this harmful plague insect. Here we report an in-depth profiling study of the transcript levels of EcR and RXR, as well as its downstream response genes, in different tissues isolated throughout the last larval stage of a hemimetabolous insect, showing a clear correlation with circulating ecdysteroid titres. Using RNA interference (RNAi), the role of SgEcR/SgRXR in moulting and development was investigated. We have proven the importance of the receptor components for successful moulting of locust nymphs into the adult stage. Some SgEcR/SgRXR knockdown females were arrested in the last larval stage, and 65 % of them initiated vitellogenesis and oocyte maturation, which normally only occurs in adults. Furthermore, our results clearly indicate that at the peak of ecdysteroid synthesis, on day six of the last larval stage, knockdown of SgEcR/SgRXR is affecting the transcript levels of the Halloween genes, Spook, Shadow and Shade.
Collapse
Affiliation(s)
- Cynthia Lenaerts
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium
| | - Pieter Van Wielendaele
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium
| | - Paulien Peeters
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium.
| | - Elisabeth Marchal
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium
| |
Collapse
|
22
|
Cao J, Liu Y, Yang Y, Zhang H, Li Z, Yang Q, Zhang S, Zhang Q, Liu X. Molecular characterization and functional analysis of the ultraspiracle (USP) in the oriental fruit moth Grapholita molesta (Lepidoptera: Olethreutidae). Comp Biochem Physiol B Biochem Mol Biol 2015; 190:54-62. [DOI: 10.1016/j.cbpb.2015.08.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 08/13/2015] [Accepted: 08/24/2015] [Indexed: 11/30/2022]
|
23
|
Hult EF, Huang J, Marchal E, Lam J, Tobe SS. RXR/USP and EcR are critical for the regulation of reproduction and the control of JH biosynthesis in Diploptera punctata. JOURNAL OF INSECT PHYSIOLOGY 2015; 80:48-60. [PMID: 25917982 DOI: 10.1016/j.jinsphys.2015.04.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 04/17/2015] [Accepted: 04/22/2015] [Indexed: 05/24/2023]
Abstract
During development and reproduction the response to ecdysteroids is mediated by a heterodimeric receptor complex comprising the retinoid X receptor/ultraspiracle (RXR/USP) and the ecdysone receptor (EcR). Here, the role of these receptors in the endocrine control of reproduction is examined in the cockroach Diploptera punctata. We report the sequence of four DpRXR and three DpEcR splice variants, including the first description of a Drosophila EcRB2-like isoform in a hemimetabolous insect. DpRXR and DpEcR are broadly expressed in the tissues of adult females, with relatively high transcript levels in the corpora allata (CA), nervous tissue and ovary. Developmental profiling revealed an inverse correlation between DpRXR and DpEcR expression and the activity of the CA. RNAi-mediated depletion of DpRXR and DpEcR did not affect oocyte growth, but inhibited oviposition and impaired chorion formation. Retained oocytes exhibited a degenerating follicular epithelium and were slowly resorbed. Treated animals showed significantly higher rates of JH biosynthesis and a decrease in ecdysteroid titers at the end of vitellogenesis. Reduction of DpRXR and DpEcR expression resulted in an upregulation of genes involved in JH production and a downregulation of allatostatin receptor mRNA in the CA. Treatment with dsRNA also affected the expression of genes downstream of JH in target tissues including vitellogenin and Krüppel-homolog 1 as well as Broad-Complex, an early ecdysone response gene. Overall, results suggest that DpRXR and DpEcR are not required early in the reproductive cycle when events are JH-dependent, but do mediate critical ecdysteroid feedback to the CA late in the gonadotropic cycle.
Collapse
Affiliation(s)
- Ekaterina F Hult
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Juan Huang
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Elisabeth Marchal
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada; Department of Biology, Zoological Institute, KU Leuven, B-3000 Leuven, Belgium
| | - Jennifer Lam
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Stephen S Tobe
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada.
| |
Collapse
|
24
|
Xie XJ, Hsu FN, Gao X, Xu W, Ni JQ, Xing Y, Huang L, Hsiao HC, Zheng H, Wang C, Zheng Y, Xiaoli AM, Yang F, Bondos SE, Ji JY. CDK8-Cyclin C Mediates Nutritional Regulation of Developmental Transitions through the Ecdysone Receptor in Drosophila. PLoS Biol 2015. [PMID: 26222308 PMCID: PMC4519132 DOI: 10.1371/journal.pbio.1002207] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The steroid hormone ecdysone and its receptor (EcR) play critical roles in orchestrating developmental transitions in arthropods. However, the mechanism by which EcR integrates nutritional and developmental cues to correctly activate transcription remains poorly understood. Here, we show that EcR-dependent transcription, and thus, developmental timing in Drosophila, is regulated by CDK8 and its regulatory partner Cyclin C (CycC), and the level of CDK8 is affected by nutrient availability. We observed that cdk8 and cycC mutants resemble EcR mutants and EcR-target genes are systematically down-regulated in both mutants. Indeed, the ability of the EcR-Ultraspiracle (USP) heterodimer to bind to polytene chromosomes and the promoters of EcR target genes is also diminished. Mass spectrometry analysis of proteins that co-immunoprecipitate with EcR and USP identified multiple Mediator subunits, including CDK8 and CycC. Consistently, CDK8-CycC interacts with EcR-USP in vivo; in particular, CDK8 and Med14 can directly interact with the AF1 domain of EcR. These results suggest that CDK8-CycC may serve as transcriptional cofactors for EcR-dependent transcription. During the larval–pupal transition, the levels of CDK8 protein positively correlate with EcR and USP levels, but inversely correlate with the activity of sterol regulatory element binding protein (SREBP), the master regulator of intracellular lipid homeostasis. Likewise, starvation of early third instar larvae precociously increases the levels of CDK8, EcR and USP, yet down-regulates SREBP activity. Conversely, refeeding the starved larvae strongly reduces CDK8 levels but increases SREBP activity. Importantly, these changes correlate with the timing for the larval–pupal transition. Taken together, these results suggest that CDK8-CycC links nutrient intake to developmental transitions (EcR activity) and fat metabolism (SREBP activity) during the larval–pupal transition. During the larval-pupal transition in Drosophila, CDK8-CycC helps to link nutrient intake to development by activating ecdysone receptor-dependent transcription and to fat metabolism by inhibiting SREBP-activated gene expression. Arthropods are estimated to account for over 80% of animal species on earth. Characterized by their rigid exoskeletons, juvenile arthropods must periodically shed their thick outer cuticles by molting in order to grow. The steroid hormone ecdysone plays an essential role in regulating the timing of developmental transitions, but exactly how ecdysone and its receptor EcR activates transcription correctly after integrating nutritional and developmental cues remains unknown. Our developmental genetic analyses of two Drosophila mutants, cdk8 and cycC, show that they are lethal during the prepupal stage, with aberrant accumulation of fat and a severely delayed larval–pupal transition. As we have reported previously, CDK8-CycC inhibits fat accumulation by directly inactivating SREBP, a master transcription factor that controls the expression of lipogenic genes, which explains the abnormal fat accumulation in the cdk8 and cycC mutants. We find that CDK8 and CycC are required for EcR to bind to its target genes, serving as transcriptional cofactors for EcR-dependent gene expression. The expression of EcR target genes is compromised in cdk8 and cycC mutants and underpins the retarded pupariation phenotype. Starvation of feeding larvae precociously up-regulates CDK8 and EcR, prematurely down-regulates SREBP activity, and leads to early pupariation, whereas re-feeding starved larvae has opposite effects. Taken together, these results suggest that CDK8 and CycC play important roles in coordinating nutrition intake with fat metabolism by directly inhibiting SREBP-dependent gene expression and regulating developmental timing by activating EcR-dependent transcription in Drosophila.
Collapse
Affiliation(s)
- Xiao-Jun Xie
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Fu-Ning Hsu
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Xinsheng Gao
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, Los Angeles, United States of America
| | - Jian-Quan Ni
- Gene Regulatory Laboratory, School of Medicine, Tsinghua University, Beijing, China
| | - Yue Xing
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Liying Huang
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, Los Angeles, United States of America
| | - Hao-Ching Hsiao
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Haiyan Zheng
- Biological Mass Spectrometry Facility, Robert Wood Johnson Medical School and Rutgers, the State University of New Jersey, Frelinghuysen Road, Piscataway, New Jersey, United States of America
| | - Chenguang Wang
- Key Laboratory of Tianjin Radiation and Molecular Nuclear Medicine; Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, China
| | - Yani Zheng
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Alus M. Xiaoli
- Department of Medicine, Division of Endocrinology, Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Fajun Yang
- Department of Medicine, Division of Endocrinology, Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Sarah E. Bondos
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
- Department of Biosciences, Rice University, Houston, Texas, United States of America
| | - Jun-Yuan Ji
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
25
|
Eichner C, Dalvin S, Skern-Mauritzen R, Malde K, Kongshaug H, Nilsen F. Characterization of a novel RXR receptor in the salmon louse (Lepeophtheirus salmonis, Copepoda) regulating growth and female reproduction. BMC Genomics 2015; 16:81. [PMID: 25765704 PMCID: PMC4333900 DOI: 10.1186/s12864-015-1277-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/22/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nuclear receptors have crucial roles in all metazoan animals as regulators of gene transcription. A wide range of studies have elucidated molecular and biological significance of nuclear receptors but there are still a large number of animals where the knowledge is very limited. In the present study we have identified an RXR type of nuclear receptor in the salmon louse (Lepeophtheirus salmonis) (i.e. LsRXR). RXR is one of the two partners of the Ecdysteroid receptor in arthropods, the receptor for the main molting hormone 20-hydroxyecdysone (E20) with a wide array of effects in arthropods. RESULTS Five different LsRXR transcripts were identified by RACE showing large differences in domain structure. The largest isoforms contained complete DNA binding domain (DBD) and ligand binding domain (LBD), whereas some variants had incomplete or no DBD. LsRXR is transcribed in several tissues in the salmon louse including ovary, subcuticular tissue, intestine and glands. By using Q-PCR it is evident that the LsRXR mRNA levels vary throughout the L. salmonis life cycle. We also show that the truncated LsRXR transcript comprise about 50% in all examined samples. We used RNAi to knock-down the transcription in adult reproducing female lice. This resulted in close to zero viable offspring. We also assessed the LsRXR RNAi effects using a L. salmonis microarray and saw significant effects on transcription in the female lice. Transcription of the major yolk proteins was strongly reduced by knock-down of LsRXR. Genes involved in lipid metabolism and transport were also down regulated. Furthermore, different types of growth processes were up regulated and many cuticle proteins were present in this group. CONCLUSIONS The present study demonstrates the significance of LsRXR in adult female L. salmonis and discusses the functional aspects in relation to other arthropods. LsRXR has a unique structure that should be elucidated in the future.
Collapse
Affiliation(s)
- Christiane Eichner
- Department of Biology, Sea Lice Research Centre, University of Bergen, Bergen, Norway.
| | - Sussie Dalvin
- Department of Biology, Sea Lice Research Centre, University of Bergen, Bergen, Norway. .,Institute of Marine Research, Bergen, Norway.
| | | | - Ketil Malde
- Institute of Marine Research, Bergen, Norway.
| | - Heidi Kongshaug
- Department of Biology, Sea Lice Research Centre, University of Bergen, Bergen, Norway.
| | - Frank Nilsen
- Department of Biology, Sea Lice Research Centre, University of Bergen, Bergen, Norway.
| |
Collapse
|
26
|
André A, Ruivo R, Gesto M, Castro LFC, Santos MM. Retinoid metabolism in invertebrates: when evolution meets endocrine disruption. Gen Comp Endocrinol 2014; 208:134-45. [PMID: 25132059 DOI: 10.1016/j.ygcen.2014.08.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/20/2014] [Accepted: 08/07/2014] [Indexed: 02/07/2023]
Abstract
Recent genomic and biochemical evidence in invertebrate species pushes back the origin of the retinoid metabolic and signaling modules to the last common ancestor of all bilaterians. However, the evolution of retinoid pathways are far from fully understood. In the majority of non-chordate invertebrate lineages, the ongoing functional characterization of retinoid-related genes (metabolism and signaling pathways), as well as the characterization of the endogenous retinoid content (precursors and active retinoids), is still incomplete. Despite limited, the available data supports the presence of biologically active retinoid pathways in invertebrates. Yet, the mechanisms controlling the spatial and temporal distribution of retinoids as well as their physiological significance share similarities and differences with vertebrates. For instance, retinol storage in the form of retinyl esters, a key feature for the maintenance of retinoid homeostatic balance in vertebrates, was only recently demonstrated in some mollusk species, suggesting that such ability is older than previously anticipated. In contrast, the enzymatic repertoire involved in this process is probably unlike that of vertebrates. The suggested ancestry of active retinoid pathways implies that many more metazoan species might be potential targets for endocrine disrupting chemicals. Here, we review the current knowledge about the occurrence and functionality of retinoid metabolic and signaling pathways in invertebrate lineages, paying special attention to the evolutionary origin of retinoid storage mechanisms. Additionally, we summarize existing information on the endocrine disruption of invertebrate retinoid modules by environmental chemicals. Research priorities in the field are highlighted.
Collapse
Affiliation(s)
- A André
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - R Ruivo
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal.
| | - M Gesto
- Laboratorio de Fisioloxía Animal, Facultade de Bioloxía, Universidade de Vigo, 36310 Vigo, Spain.
| | - L Filipe C Castro
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| | - M M Santos
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| |
Collapse
|
27
|
Huang MX, Du J, Su BJ, Zhao GD, Shen WD, Wei ZG. The expression profile and promoter analysis of ultraspiracle gene in the silkworm Bombyx mori. Mol Biol Rep 2014; 41:7955-65. [DOI: 10.1007/s11033-014-3690-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 08/21/2014] [Indexed: 12/01/2022]
|
28
|
Ecdysone signaling opposes epidermal growth factor signaling in regulating cyst differentiation in the male gonad of Drosophila melanogaster. Dev Biol 2014; 394:217-27. [PMID: 25169192 DOI: 10.1016/j.ydbio.2014.08.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 08/14/2014] [Accepted: 08/19/2014] [Indexed: 11/21/2022]
Abstract
The development of stem cell daughters into the differentiated state normally requires a cascade of proliferation and differentiation steps that are typically regulated by external signals. The germline cells of most animals, in specific, are associated with somatic support cells and depend on them for normal development. In the male gonad of Drosophila melanogaster, germline cells are completely enclosed by cytoplasmic extensions of somatic cyst cells, and these cysts form a functional unit. Signaling from the germline to the cyst cells via the Epidermal Growth Factor Receptor (EGFR) is required for germline enclosure and has been proposed to provide a temporal signature promoting early steps of differentiation. A temperature-sensitive allele of the EGFR ligand Spitz (Spi) provides a powerful tool for probing the function of the EGRF pathway in this context and for identifying other pathways regulating cyst differentiation via genetic interaction studies. Using this tool, we show that signaling via the Ecdysone Receptor (EcR), a known regulator of developmental timing during larval and pupal development, opposes EGF signaling in testes. In spi mutant animals, reducing either Ecdysone synthesis or the expression of Ecdysone signal transducers or targets in the cyst cells resulted in a rescue of cyst formation and cyst differentiation. Despite of this striking effect in the spi mutant background and the expression of EcR signaling components within the cyst cells, activity of the EcR pathway appears to be dispensable in a wildtype background. We propose that EcR signaling modulates the effects of EGFR signaling by promoting an undifferentiated state in early stage cyst cells.
Collapse
|
29
|
Nuclear receptors in nematode development: Natural experiments made by a phylum. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:224-37. [PMID: 24984201 DOI: 10.1016/j.bbagrm.2014.06.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 06/21/2014] [Accepted: 06/23/2014] [Indexed: 11/21/2022]
Abstract
The development of complex multicellular organisms is dependent on regulatory decisions that are necessary for the establishment of specific differentiation and metabolic cellular states. Nuclear receptors (NRs) form a large family of transcription factors that play critical roles in the regulation of development and metabolism of Metazoa. Based on their DNA binding and ligand binding domains, NRs are divided into eight NR subfamilies from which representatives of six subfamilies are present in both deuterostomes and protostomes indicating their early evolutionary origin. In some nematode species, especially in Caenorhabditis, the family of NRs expanded to a large number of genes strikingly exceeding the number of NR genes in vertebrates or insects. Nematode NRs, including the multiplied Caenorhabditis genes, show clear relation to vertebrate and insect homologues belonging to six of the eight main NR subfamilies. This review summarizes advances in research of nematode NRs and their developmental functions. Nematode NRs can reveal evolutionarily conserved mechanisms that regulate specific developmental and metabolic processes as well as new regulatory adaptations. They represent the results of a large number of natural experiments with structural and functional potential of NRs for the evolution of the phylum. The conserved and divergent character of nematode NRs adds a new dimension to our understanding of the general biology of regulation by NRs. This article is part of a Special Issue entitled: Nuclear receptors in animal development.
Collapse
|
30
|
The POU factor ventral veins lacking/Drifter directs the timing of metamorphosis through ecdysteroid and juvenile hormone signaling. PLoS Genet 2014; 10:e1004425. [PMID: 24945490 PMCID: PMC4063743 DOI: 10.1371/journal.pgen.1004425] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 04/20/2014] [Indexed: 12/22/2022] Open
Abstract
Although endocrine changes are known to modulate the timing of major developmental transitions, the genetic mechanisms underlying these changes remain poorly understood. In insects, two developmental hormones, juvenile hormone (JH) and ecdysteroids, are coordinated with each other to induce developmental changes associated with metamorphosis. However, the regulation underlying the coordination of JH and ecdysteroid synthesis remains elusive. Here, we examined the function of a homolog of the vertebrate POU domain protein, Ventral veins lacking (Vvl)/Drifter, in regulating both of these hormonal pathways in the red flour beetle, Tribolium castaneum (Tenebrionidae). RNA interference-mediated silencing of vvl expression led to both precocious metamorphosis and inhibition of molting in the larva. Ectopic application of a JH analog on vvl knockdown larvae delayed the onset of metamorphosis and led to a prolonged larval stage, indicating that Vvl acts upstream of JH signaling. Accordingly, vvl knockdown also reduced the expression of a JH biosynthesis gene, JH acid methyltransferase 3 (jhamt3). In addition, ecdysone titer and the expression of the ecdysone response gene, hormone receptor 3 (HR3), were reduced in vvl knockdown larvae. The expression of the ecdysone biosynthesis gene phantom (phm) and spook (spo) were reduced in vvl knockdown larvae in the anterior and posterior halves, respectively, indicating that Vvl might influence ecdysone biosynthesis in both the prothoracic gland and additional endocrine sources. Injection of 20-hydroxyecdysone (20E) into vvl knockdown larvae could restore the expression of HR3 although molting was never restored. These findings suggest that Vvl coordinates both JH and ecdysteroid biosynthesis as well as molting behavior to influence molting and the timing of metamorphosis. Thus, in both vertebrates and insects, POU factors modulate the production of major neuroendocrine regulators during sexual maturation. Hormones play major roles in initiating major developmental transitions, such as puberty and metamorphosis. However, how organisms coordinate changes across multiple hormones remains unclear. In this study, we show that silencing the POU domain transcription factor Ventral veins lacking (Vvl)/Drifter in the red flour beetle Tribolium castaneum leads to precocious metamorphosis and an inability to molt. We show that Vvl regulates the biosynthesis and signaling of two key insect developmental hormones, juvenile hormone (JH) and ecdysteroids. Vvl therefore appears to act as a potential central regulator of developmental timing by influencing two major hormones. Because POU factors are known as a major regulator of the onset of puberty, POU factors play a major role during sexual maturation in both vertebrates and insects.
Collapse
|
31
|
Géminard C, González-Morales N, Coutelis JB, Noselli S. The myosin ID pathway and left-right asymmetry in Drosophila. Genesis 2014; 52:471-80. [PMID: 24585718 DOI: 10.1002/dvg.22763] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 02/20/2014] [Accepted: 02/21/2014] [Indexed: 11/12/2022]
Abstract
Drosophila is a classical model to study body patterning, however left-right (L/R) asymmetry had remained unexplored, until recently. The discovery of the conserved myosin ID gene as a major determinant of L/R asymmetry has revealed a novel L/R pathway involving the actin cytoskeleton and the adherens junction. In this process, the HOX gene Abdominal-B plays a major role through the control of myosin ID expression and therefore symmetry breaking. In this review, we present organs and markers showing L/R asymmetry in Drosophila and discuss our current understanding of the underlying molecular genetic mechanisms. Drosophila represents a valuable model system revealing novel strategies to establish L/R asymmetry in invertebrates and providing an evolutionary perspective to the problem of laterality in bilateria.
Collapse
Affiliation(s)
- Charles Géminard
- Université de Nice Sophia Antipolis, institut de Biologie Valrose, iBV, Parc Valrose, Nice cedex 2, France; CNRS, institut de Biologie Valrose, iBV, UMR 7277, Parc Valrose, Nice cedex 2, France; INSERM, institut de Biologie Valrose, iBV, U1091, Parc Valrose, Nice cedex 2, France
| | | | | | | |
Collapse
|
32
|
Abstract
Many organs respond to physiological challenges by changing tissue size or composition. Such changes may originate from tissue-specific stem cells and their supportive environment (niche). The endocrine system is a major effector and conveyor of physiological changes and as such could alter stem cell behavior in various ways. In this review, we examine how hormones affect stem cell biology in four different organs: the ovary, intestine, hematopoietic system, and mammary gland. Hormones control every stage of stem cell life, including establishment, expansion, maintenance, and differentiation. The effects can be cell autonomous or non-cell autonomous through the niche. Moreover, a single hormone can affect different stem cells in different ways or affect the same stem cell differently at various developmental times. The vast complexity and diversity of stem cell responses to hormonal cues allow hormones to coordinate the body's reaction to physiological challenges.
Collapse
Affiliation(s)
- Dana Gancz
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 76100 Israel; ,
| | | |
Collapse
|
33
|
Molecular Cloning, Characterization, and Expression Pattern of the Ultraspiracle Gene Homolog (RXR/USP) from the Hemimetabolous Insect Periplaneta americana (Dictyoptera, Blattidae) During Vitellogenesis. Mol Biotechnol 2013; 56:126-35. [DOI: 10.1007/s12033-013-9688-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Jones G, Teal P, Henrich VC, Krzywonos A, Sapa A, Wozniak M, Smolka J, Jones D. Ligand binding pocket function of Drosophila USP is necessary for metamorphosis. Gen Comp Endocrinol 2013; 182:73-82. [PMID: 23211750 DOI: 10.1016/j.ygcen.2012.11.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 10/22/2012] [Accepted: 11/05/2012] [Indexed: 10/27/2022]
Abstract
The widely accepted paradigm that epoxidized methyl farnesoates ("juvenile hormones," JHs) are the principal sesquiterpenoid hormones regulating insect metamorphosis was assessed in Drosophila melanogaster. GC-MS analysis of circulating methyl farnesoids during the mid to late 3rd instar showed that methyl farnesoate is predominant over methyl epoxyfarnesoate (=JH III). The circulating concentration of methyl farnesoate (reaching nearly 500 nM), was easily high enough on a kinetic basis to load the Drosophila ortholog of the nuclear hormone receptor RXR (also known as "ultraspiracle," USP), whereas the circulating concentrations of JH III and methyl bisepoxyfarnesoate (bisepoxyJH III) were not. The hypothesis that the ligand pocket of USP necessarily binds an endogenous ligand for differentiation of the immature to the adult was tested with USP mutated at residue that normally extends a side chain into the ligand binding pocket. An equilibrium binding assay confirmed that the mutation (Q288A) strongly altered methyl farnesoate interaction with USP, while a heterologous cell-line transfection assay confirmed that the mutation did not allosterically alter the transcriptional response of the ultraspiracle/ecdysone receptor heterodimer to ecdysteroid signaling. Transgenic wildtype USP driven by the cognate natural promoter rescued null animals to develop to the adult inside a normally formed puparium, while in contrast animals transgenically expressing instead the ligand pocket mutant exhibited developmental derangement at the larval to pupal transition, including failure to form a properly shaped or sclerotized puparium. Other point mutations to the pocket strongly reducing affinity for methyl farnesoate similarly disrupted the larval to pupal metamorphosis. These results suggest that normal larval to pupal maturation in this mecopteran model insect requires the involvement of a distinct endocrine axis of USP binding to its own endogenous terpenoid ligand.
Collapse
Affiliation(s)
- Grace Jones
- Department of Biology, University of Kentucky, Lexington, KY 40504, USA.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Yamanaka N, Rewitz KF, O’Connor MB. Ecdysone control of developmental transitions: lessons from Drosophila research. ANNUAL REVIEW OF ENTOMOLOGY 2013; 58:497-516. [PMID: 23072462 PMCID: PMC4060523 DOI: 10.1146/annurev-ento-120811-153608] [Citation(s) in RCA: 414] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The steroid hormone ecdysone is the central regulator of insect developmental transitions. Recent new advances in our understanding of ecdysone action have relied heavily on the application of Drosophila melanogaster molecular genetic tools to study insect metamorphosis. In this review, we focus on three major aspects of Drosophila ecdysone biology: (a) factors that regulate the timing of ecdysone release, (b) molecular basis of stage- and tissue-specific responses to ecdysone, and (c) feedback regulation and coordination of ecdysone signaling.
Collapse
Affiliation(s)
- Naoki Yamanaka
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Kim F. Rewitz
- Department of Science, Systems and Models, Roskilde University, 4000 Roskilde, Denmark
| | - Michael B. O’Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
36
|
Ou Q, King-Jones K. What goes up must come down: transcription factors have their say in making ecdysone pulses. Curr Top Dev Biol 2013; 103:35-71. [PMID: 23347515 DOI: 10.1016/b978-0-12-385979-2.00002-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Insect metamorphosis is one of the most fascinating biological processes in the animal kingdom. The dramatic transition from an immature juvenile to a reproductive adult is under the control of the steroid hormone ecdysone, also known as the insect molting hormone. During Drosophila development, periodic pulses of ecdysone are released from the prothoracic glands, upon which the hormone is rapidly converted in peripheral tissues to its biologically active form, 20-hydroxyecdysone. Each hormone pulse has a unique profile and causes different developmental events, but we only have a rudimentary understanding of how the timing, amplitude, and duration of a given pulse are controlled. A key component involved in the timing of ecdysone pulses is PTTH, a brain-derived neuropeptide. PTTH stimulates ecdysone production through a Ras/Raf/ERK signaling cascade; however, comparatively little is known about the downstream targets of this pathway. In recent years, it has become apparent that transcriptional regulation plays a critical role in regulating the synthesis of ecdysone, but only one transcription factor has a well-defined link to PTTH. Interestingly, many of the ecdysteroidogenic transcription factors were originally characterized as primary response genes in the ecdysone signaling cascade that elicits the biological responses to the hormone in target tissues. To review these developments, we will first provide an overview of the transcription factors that act in the Drosophila ecdysone regulatory hierarchy. We will then discuss the roles of these transcriptional regulators in controlling ecdysone synthesis. In the last section, we will briefly outline transcription factors that likely have roles in regulating ecdysone synthesis but have not been formally identified as downstream effectors of ecdysone.
Collapse
Affiliation(s)
- Qiuxiang Ou
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
37
|
Carbonell A, Mazo A, Serras F, Corominas M. Ash2 acts as an ecdysone receptor coactivator by stabilizing the histone methyltransferase Trr. Mol Biol Cell 2012. [PMID: 23197473 PMCID: PMC3565548 DOI: 10.1091/mbc.e12-04-0267] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The molting hormone ecdysone triggers chromatin changes via histone modifications that are important for gene regulation. On hormone activation, the ecdysone receptor (EcR) binds to the SET domain-containing histone H3 methyltransferase trithorax-related protein (Trr). Methylation of histone H3 at lysine 4 (H3K4me), which is associated with transcriptional activation, requires several cofactors, including Ash2. We find that ash2 mutants have severe defects in pupariation and metamorphosis due to a lack of activation of ecdysone-responsive genes. This transcriptional defect is caused by the absence of the H3K4me3 marks set by Trr in these genes. We present evidence that Ash2 interacts with Trr and is required for its stabilization. Thus we propose that Ash2 functions together with Trr as an ecdysone receptor coactivator.
Collapse
Affiliation(s)
- Albert Carbonell
- Departament de Genètica and Institut de Biomedicina, Universitat de Barcelona, 08028 Barcelona, Spain
| | | | | | | |
Collapse
|
38
|
Bielska K, Seliga J, Wieczorek E, Kędracka-Krok S, Niedenthal R, Ożyhar A. Alternative sumoylation sites in the Drosophila nuclear receptor Usp. J Steroid Biochem Mol Biol 2012; 132:227-38. [PMID: 22676916 DOI: 10.1016/j.jsbmb.2012.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 05/24/2012] [Accepted: 05/28/2012] [Indexed: 01/09/2023]
Abstract
The ultraspiracle protein (Usp), together with an ecdysone receptor (EcR) forms a heterodimeric ecdysteroid receptor complex, which controls metamorphosis in Drosophila melanogaster. Although the ecdysteroid receptor is considered to be a source of elements for ecdysteroid inducible gene switches in mammals, nothing is known about posttranslational modifications of the receptor constituents in mammalian cells. Up until now there has been no study about Usp sumoylation. Using Ubc9 fusion-directed sumoylation system, we identified Usp as a new target of SUMO1 and SUMO3 modification. Mutagenesis studies on the fragments of Usp indicated that sumoylation can occur alternatively on several defined Lys residues, i.e. three (Lys16, Lys20, Lys37) in A/B region, one (Lys424) in E region and one (Lys506) in F region. However, sumoylation of one Lys residue within A/B region prevents modification of other residues in this region. This was also observed for Lys residues in carboxyl-terminal fragment of Usp, i.e. comprising E and F regions. Mass spectrometry analysis of the full-length Usp indicated that the main SUMO attachment site is at Lys20. EcR, the heterodimerization partner of Usp, and muristerone A, the EcR ligand, do not influence sumoylation patterns of Usp. Another heterodimerization partner of Usp - HR38 fused with Ubc9 interacts with Usp in HEK293 cells and allows sumoylation of Usp independent of the direct fusion to Ubc9. Taken together, we propose that sumoylation of DmUsp can be an important factor in modulating its activity by changing molecular interactions.
Collapse
Affiliation(s)
- Katarzyna Bielska
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | | | | | | | | | | |
Collapse
|
39
|
Zhu JQ, Liu S, Ma Y, Zhang JQ, Qi HS, Wei ZJ, Yao Q, Zhang WQ, Li S. Improvement of pest resistance in transgenic tobacco plants expressing dsRNA of an insect-associated gene EcR. PLoS One 2012; 7:e38572. [PMID: 22685585 PMCID: PMC3369839 DOI: 10.1371/journal.pone.0038572] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 05/07/2012] [Indexed: 11/18/2022] Open
Abstract
The adoption of pest-resistant transgenic plants to reduce yield loss and pesticide utilization has been successful in the past three decades. Recently, transgenic plant expressing double-stranded RNA (dsRNA) targeting pest genes emerges as a promising strategy for improving pest resistance in crops. The steroid hormone, 20-hydroxyecdysone (20E), predominately controls insect molting via its nuclear receptor complex, EcR-USP. Here we report that pest resistance is improved in transgenic tobacco plants expressing dsRNA of EcR from the cotton bollworm, Helicoverpa armigera, a serious lepidopteran pest for a variety of crops. When H. armigera larvae were fed with the whole transgenic tobacco plants expressing EcR dsRNA, resistance to H. armigera was significantly improved in transgenic plants. Meanwhile, when H. armigera larvae were fed with leaves of transgenic tobacco plants expressing EcR dsRNA, its EcR mRNA level was dramatically decreased causing molting defects and larval lethality. In addition, the transgenic tobacco plants expressing H. armigera EcR dsRNA were also resistant to another lepidopteran pest, the beet armyworm, Spodoptera exigua, due to the high similarity in the nucleotide sequences of their EcR genes. This study provides additional evidence that transgenic plant expressing dsRNA targeting insect-associated genes is able to improve pest resistance.
Collapse
Affiliation(s)
- Jin-Qi Zhu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shumin Liu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yao Ma
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jia-Qi Zhang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, China
| | - Hai-Sheng Qi
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, China
| | - Zhao-Jun Wei
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, China
| | - Qiong Yao
- State Key Laboratory of Biocontrol and Institute of Entomology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wen-Qing Zhang
- State Key Laboratory of Biocontrol and Institute of Entomology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Sheng Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
40
|
Control of target gene specificity during metamorphosis by the steroid response gene E93. Proc Natl Acad Sci U S A 2012; 109:2949-54. [PMID: 22308414 DOI: 10.1073/pnas.1117559109] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hormonal control of sexual maturation is a common feature in animal development. A particularly dramatic example is the metamorphosis of insects, in which pulses of the steroid hormone ecdysone drive the wholesale transformation of the larva into an adult. The mechanisms responsible for this transformation are not well understood. Work in Drosophila indicates that the larval and adult forms are patterned by the same underlying sets of developmental regulators, but it is not understood how the same regulators pattern two distinct forms. Recent studies indicate that this ability is facilitated by a global change in the responsiveness of target genes during metamorphosis. Here we show that this shift is controlled in part by the ecdysone-induced transcription factor E93. Although long considered a dedicated regulator of larval cell death, we find that E93 is expressed widely in adult cells at the pupal stage and is required for many patterning processes at this time. To understand the role of E93 in adult patterning, we focused on a simple E93-dependent process, the induction of the Dll gene within bract cells of the pupal leg by EGF receptor signaling. In this system, we show that E93 functions to cause Dll to become responsive to EGF receptor signaling. We demonstrate that E93 is both necessary and sufficient for directing this switch. E93 likely controls the responsiveness of many other target genes because it is required broadly for patterning during metamorphosis. The wide conservation of E93 orthologs suggests that similar mechanisms control life-cycle transitions in other organisms, including vertebrates.
Collapse
|
41
|
Micchelli CA. The origin of intestinal stem cells in Drosophila. Dev Dyn 2011; 241:85-91. [PMID: 21972080 DOI: 10.1002/dvdy.22759] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2011] [Indexed: 11/08/2022] Open
Abstract
Renewing tissues in the adult organism such as the gastrointestinal (GI) epithelium depend on stem cells for epithelial maintenance and repair. Yet, little is known about the developmental origins of adult stem cells and their niches. Studies of Drosophila adult midgut precursors (AMPs), a population of endodermal progenitors, demonstrate that adult intestinal stem cells (ISCs) arise from the AMP lineage and provide insight into the stepwise process by which the adult midgut epithelium is established during development. Here, I review the current literature on AMPs, where local, inductive and long-range humoral signals have been found to control progenitor cell behavior. Future studies will be necessary to determine the precise mechanism by which adult intestinal stem cells are established in the endodermal lineage.
Collapse
Affiliation(s)
- Craig A Micchelli
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| |
Collapse
|
42
|
Hult EF, Tobe SS, Chang BSW. Molecular evolution of ultraspiracle protein (USP/RXR) in insects. PLoS One 2011; 6:e23416. [PMID: 21901121 PMCID: PMC3162005 DOI: 10.1371/journal.pone.0023416] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 07/16/2011] [Indexed: 12/20/2022] Open
Abstract
Ultraspiracle protein/retinoid X receptor (USP/RXR) is a nuclear receptor and transcription factor which is an essential component of a heterodimeric receptor complex with the ecdysone receptor (EcR). In insects this complex binds ecdysteroids and plays an important role in the regulation of growth, development, metamorphosis and reproduction. In some holometabolous insects, including Lepidoptera and Diptera, USP/RXR is thought to have experienced several important shifts in function. These include the acquisition of novel ligand-binding properties and an expanded dimerization interface with EcR. In light of these recent hypotheses, we implemented codon-based likelihood methods to investigate if the proposed shifts in function are reflected in changes in site-specific evolutionary rates across functional and structural motifs in insect USP/RXR sequences, and if there is any evidence for positive selection at functionally important sites. Our results reveal evidence of positive selection acting on sites within the loop connecting helices H1 and H3, the ligand-binding pocket, and the dimer interface in the holometabolous lineage leading to the Lepidoptera/Diptera/Trichoptera. Similar analyses conducted using EcR sequences did not indicate positive selection. However, analyses allowing for variation across sites demonstrated elevated non-synonymous/synonymous rate ratios (d(N)/d(S)), suggesting relaxed constraint, within the dimerization interface of both USP/RXR and EcR as well as within the coactivator binding groove and helix H12 of USP/RXR. Since the above methods are based on the assumption that d(S) is constant among sites, we also used more recent models which relax this assumption and obtained results consistent with traditional random-sites models. Overall our findings support the evolution of novel function in USP/RXR of more derived holometabolous insects, and are consistent with shifts in structure and function which may have increased USP/RXR reliance on EcR for cofactor recruitment. Moreover, these findings raise important questions regarding hypotheses which suggest the independent activation of USP/RXR by its own ligand.
Collapse
Affiliation(s)
- Ekaterina F. Hult
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Stephen S. Tobe
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Belinda S. W. Chang
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
43
|
Schauer S, Callender J, Henrich VC, Spindler-Barth M. The N-terminus of ecdysteroid receptor isoforms and ultraspiracle interacts with different ecdysteroid response elements in a sequence specific manner to modulate transcriptional activity. J Steroid Biochem Mol Biol 2011; 124:84-92. [PMID: 21316451 DOI: 10.1016/j.jsbmb.2011.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 01/26/2011] [Accepted: 01/27/2011] [Indexed: 12/23/2022]
Abstract
The functional insect ecdysteroid receptor is comprised of two nuclear receptors, the ecdysteroid receptor (EcR) and the RXR homologue, ultraspiracle (USP), which form a heterodimer. The dimer recognizes various hormone response elements and the effect of these elements on transcriptional activity of EcR isoforms was determined in vertebrate cells transfected with EcR and USP. Only constitutive activity mediated by the core response elements was preserved after elimination of nonspecific binding sites on the DNA of the vector. The constitutive transcriptional activity was regulated in a complex manner by the N-termini of both EcR and USP, the DBD of USP and the type and number of hormone response elements (HRE). Cooperative effects at oligomeric response elements particularly DR1 depended on the type of ecdysteroid response element and the N-termini of EcR and USP. The DBD of USP abolishes or attenuates synergistic effects. The data show that in the absence of hormone, transcriptional activity is regulated in a complex manner that offers additional possibilities for ecdysteroid receptor mediated gene regulation during development.
Collapse
Affiliation(s)
- Sebastian Schauer
- Institute of General Zoology and Endocrinology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | | | | | |
Collapse
|
44
|
Tremmel C, Schaefer M, Azoitei A, Ruff H, Spindler-Barth M. Interaction of the N-terminus of ecdysone receptor isoforms with the ligand-binding domain. Mol Cell Endocrinol 2011; 332:293-300. [PMID: 21094674 DOI: 10.1016/j.mce.2010.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 11/09/2010] [Accepted: 11/11/2010] [Indexed: 10/18/2022]
Abstract
Ecdysone receptor (EcR) isoforms exert different biological functions, although they vary only in their N-terminal domain. Despite identical C-termini, which mediate hormone-induced activity, the influence of ligand is isoform specific, which indicates an N/C-interaction. The position of helix 12 with and without hormone varies among isoforms and modifies N/C-interaction determined by fluorescence resonance-energy transfer (FRET), which depends on the salt bridge between helices 4 and 12 of the ligand-binding domain (LBD). Disruption of the salt bridge by mutation of K497 (helix 4) had no effect on basal N/C-interaction, but prevented the hormone-induced increase, which was partially restored by a salt bridge with reversed polarity. The heterodimerization partner Ultraspiracle (Usp) can compensate for the disruption of the salt bridge. Without ligand the AB-domains of EcR-A and EcR-B1, but not EcR-B2, interact with the LBD via K497 and repress transcriptional activity. This intramolecular cross talk between N- and C-terminus along with the position of helix 12 stabilized by K497 regulates transcriptional activity of EcR isoforms.
Collapse
Affiliation(s)
- Ch Tremmel
- Institute of General Zoology and Endocrinology, Ulm University, 89069 Ulm, Germany
| | | | | | | | | |
Collapse
|
45
|
Micchelli CA, Sudmeier L, Perrimon N, Tang S, Beehler-Evans R. Identification of adult midgut precursors in Drosophila. Gene Expr Patterns 2010; 11:12-21. [PMID: 20804858 DOI: 10.1016/j.gep.2010.08.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 08/18/2010] [Accepted: 08/19/2010] [Indexed: 01/19/2023]
Abstract
The adult Drosophila midgut is thought to arise from an endodermal rudiment specified during embryogenesis. Previous studies have reported the presence of individual cells termed adult midgut precursors (AMPs) as well as "midgut islands" or "islets" in embryonic and larval midgut tissue. Yet the precise relationship between progenitor cell populations and the cells of the adult midgut has not been characterized. Using a combination of molecular markers and directed cell lineage tracing, we provide evidence that the adult midgut arises from a molecularly distinct population of single cells present by the embryonic/larval transition. AMPs reside in a distinct basal position in the larval midgut where they remain through all subsequent larval and pupal stages and into adulthood. At least five phases of AMP activity are associated with the stepwise process of midgut formation. Our data shows that during larval stages AMPs give rise to the presumptive adult epithelium; during pupal stages AMPs contribute to the final size, cell number and form. Finally, a genetic screen has led to the identification of the Ecdysone receptor as a regulator of AMP expansion.
Collapse
Affiliation(s)
- Craig A Micchelli
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
46
|
Horigane M, Shinoda T, Honda H, Taylor D. Characterization of a vitellogenin gene reveals two phase regulation of vitellogenesis by engorgement and mating in the soft tick Ornithodoros moubata (Acari: Argasidae). INSECT MOLECULAR BIOLOGY 2010; 19:501-515. [PMID: 20456507 DOI: 10.1111/j.1365-2583.2010.01007.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Synthesis of the precursor yolk protein vitellogenin (Vg) occurs after engorgement in haematophagous arthropods. We identified the Vg cDNA of the soft tick Ornithodoros moubata (OmVg) and compared its expression in mated and virgin females. Both mated and virgin females showed increases in OmVg expression after engorgement but expression was higher in mated females than virgin females particularly as time advanced. Delayed mating in virgin females induced an increase in OmVg expression. OmVg expression was observed in the midgut and fat body by whole mount in situ hybridization, but enlarged fat body with high expression occurred in only mated females during the late phase of vitellogenesis. Therefore, engorgement initially induces OmVg expression but mating is necessary for continued Vg expression to produce mature eggs.
Collapse
Affiliation(s)
- M Horigane
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | | | | |
Collapse
|
47
|
Genes of the ecdysone biosynthesis pathway are regulated by the dATAC histone acetyltransferase complex in Drosophila. Mol Cell Biol 2010; 30:4254-66. [PMID: 20584983 DOI: 10.1128/mcb.00142-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Uncovering mechanisms that regulate ecdysone production is an important step toward understanding the regulation of insect metamorphosis and processes in steroid-related pathologies. We report here the transcriptome analysis of Drosophila melanogaster dAda2a and dAda3 mutants, in which subunits of the ATAC acetyltransferase complex are affected. In agreement with the fact that these mutations lead to lethality at the start of metamorphosis, both the ecdysone levels and the ecdysone receptor binding to polytene chromosomes are reduced in these flies. The cytochrome genes (spookier, phantom, disembodied, and shadow) involved in steroid conversion in the ring gland are downregulated, while the gene shade, which is involved in converting ecdysone into its active form in the periphery, is upregulated in these dATAC subunit mutants. Moreover, driven expression of dAda3 at the site of ecdysone synthesis partially rescues dAda3 mutants. Mutants of dAda2b, a subunit of the dSAGA histone acetyltransferase complex, do not share phenotype characteristics and RNA profile alterations with dAda2a mutants, indicating that the ecdysone biosynthesis genes are regulated by dATAC, but not by dSAGA. Thus, we provide one of the first examples of the coordinated regulation of a functionally linked set of genes by the metazoan-specific ATAC complex.
Collapse
|
48
|
Molecular evidence for a functional ecdysone signaling system in Brugia malayi. PLoS Negl Trop Dis 2010; 4:e625. [PMID: 20231890 PMCID: PMC2834746 DOI: 10.1371/journal.pntd.0000625] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 01/22/2010] [Indexed: 11/20/2022] Open
Abstract
Background Filarial nematodes, including Brugia malayi, the causative agent of lymphatic filariasis, undergo molting in both arthropod and mammalian hosts to complete their life cycles. An understanding of how these parasites cross developmental checkpoints may reveal potential targets for intervention. Pharmacological evidence suggests that ecdysteroids play a role in parasitic nematode molting and fertility although their specific function remains unknown. In insects, ecdysone triggers molting through the activation of the ecdysone receptor: a heterodimer of EcR (ecdysone receptor) and USP (Ultraspiracle). Methods and Findings We report the cloning and characterization of a B. malayi EcR homologue (Bma-EcR). Bma-EcR dimerizes with insect and nematode USP/RXRs and binds to DNA encoding a canonical ecdysone response element (EcRE). In support of the existence of an active ecdysone receptor in Brugia we also cloned a Brugia rxr (retinoid X receptor) homolog (Bma-RXR) and demonstrate that Bma-EcR and Bma-RXR interact to form an active heterodimer using a mammalian two-hybrid activation assay. The Bma-EcR ligand-binding domain (LBD) exhibits ligand-dependent transactivation via a GAL4 fusion protein combined with a chimeric RXR in mammalian cells treated with Ponasterone-A or a synthetic ecdysone agonist. Furthermore, we demonstrate specific up-regulation of reporter gene activity in transgenic B. malayi embryos transfected with a luciferase construct controlled by an EcRE engineered in a B. malayi promoter, in the presence of 20-hydroxy-ecdysone. Conclusions Our study identifies and characterizes the two components (Bma-EcR and Bma-RXR) necessary for constituting a functional ecdysteroid receptor in B. malayi. Importantly, the ligand binding domain of BmaEcR is shown to be capable of responding to ecdysteroid ligands, and conversely, ecdysteroids can activate transcription of genes downstream of an EcRE in live B. malayi embryos. These results together confirm that an ecdysone signaling system operates in B. malayi and strongly suggest that Bma-EcR plays a central role in it. Furthermore, our study proposes that existing compounds targeting the insect ecdysone signaling pathway should be considered as potential pharmacological agents against filarial parasites. Filarial parasites such as Brugia malayi and Onchocerca volvulus are the causative agents of the tropical diseases lymphatic filariasis and onchocerciasis, which infect 150 million people, mainly in Africa and Southeast Asia. Filarial nematodes have a complex life cycle that involves transmission and development within both mammalian and insect hosts. The successful completion of the life cycle includes four molts, two of which are triggered upon transmission from one host to the other, human and mosquito, respectively. Elucidation of the molecular mechanisms involved in the molting processes in filarial nematodes may yield a new set of targets for drug intervention. In insects and other arthropods molting transitions are regulated by the steroid hormone ecdysone that interacts with a specialized hormone receptor composed of two different proteins belonging to the family of nuclear receptors. We have cloned from B. malayi two members of the nuclear receptor family that show many sequence and biochemical properties consistent with the ecdysone receptor of insects. This finding represents the first report of a functional ecdysone receptor homolog in nematodes. We have also established a transgenic hormone induction assay in B. malayi that can be used to discover ecdysone responsive genes and potentially lead to screening assays for active compounds for pharmaceutical development.
Collapse
|
49
|
Zheng WW, Yang DT, Wang JX, Song QS, Gilbert LI, Zhao XF. Hsc70 binds to ultraspiracle resulting in the upregulation of 20-hydroxyecdsone-responsive genes in Helicoverpa armigera. Mol Cell Endocrinol 2010; 315:282-91. [PMID: 19897013 DOI: 10.1016/j.mce.2009.10.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Revised: 10/29/2009] [Accepted: 10/30/2009] [Indexed: 10/20/2022]
Abstract
To probe the specific functions of the chaperone protein Hsc70 in 20-hydroxyecdysone signaling, we report on the roles of the Hsc70 from Helicoverpa armigera. RT-PCR analysis revealed that the genes for HaEcRB1 and HaUSP1 were upregulated in 5th molting and metamorphic molting larvae, whereas HaHsc70 maintained a constitutive expression level throughout larval development. Silencing HaEcRB1, HaUSP1 or HaHsc70 by RNAi inhibited the expression of a set of 20E-responsive genes. Immunocytochemical assay demonstrated that HaHsc70 is located predominantly in the cytoplasm of unstimulated cells and partially translocated to the nucleus after stimulation by 20E. Knockdown of HaHsc70 by RNAi decreased the amount of both HaEcRB1 and HaUSP1 in the nucleus. HaHsc70 was capable of binding to HaUSP1 in pull-down assays. These data suggest that Hsc70 participates in the 20E signal transduction pathway via binding to USP1 and mediating the expression of EcRB1, USP1 and then a set of 20E-responsive genes.
Collapse
Affiliation(s)
- Wei-Wei Zheng
- School of Life Sciences, the Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, Shandong University, Shanda Road 27, Jinan 250100, Shandong, China
| | | | | | | | | | | |
Collapse
|
50
|
Jones D, Jones G, Teal P, Hammac C, Messmer L, Osborne K, Belgacem YH, Martin JR. Suppressed production of methyl farnesoid hormones yields developmental defects and lethality in Drosophila larvae. Gen Comp Endocrinol 2010; 165:244-54. [PMID: 19595690 PMCID: PMC3277837 DOI: 10.1016/j.ygcen.2009.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 06/22/2009] [Accepted: 07/03/2009] [Indexed: 10/20/2022]
Abstract
A long-unresolved question in the developmental biology of Drosophila melanogaster has been whether methyl farnesoid hormones secreted by the ring gland are necessary for larval maturation and metamorphosis. In this study, we have used RNAi techniques to inhibit 3-Hydroxy-3-Methylglutaryl CoA Reductase (HMGCR) expression selectively in the corpora allatal cells that produce the circulating farnesoid hormones. The developing larvae manifest a number of developmental, metabolic and morphogenetic derangements. These defects included the exhibition of an "ultraspiracle" death phenotype at the 1st to 2nd instar larval molt, similar to that exhibited by animals that are null for the farnesoid receptor ultraspiracle. The few larvae surviving past a second lethal period at the 2nd to 3rd instar larval molt, again with "ultraspiracle" phenotype, often became developmentally arrested after either attaining a misformed puparium or after formation of the white pupa. Survival past the "ultraspiracle" lethal phenotype could be rescued by dietary provision of an endogenous dedicated precursor to the three naturally secreted methyl farnesoid hormones. In addition to these developmental and morphogenetic defects, most larvae that survived to the late second instar exhibited a posterior-originating melanization of the tracheal system. These results support the hypothesis that larval methyl farnesoid hormones are necessary for larval survival and morphogenetic transformation through the larval and pupal metamorphic processes.
Collapse
Affiliation(s)
- Davy Jones
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40506
- Corresponding authors: Davy Jones, ; Grace Jones, ; fax 859-257-1717; phone 859-257-3795
| | - Grace Jones
- Dept. of Biology, University of Kentucky, Lexington, KY 40506
- Corresponding authors: Davy Jones, ; Grace Jones, ; fax 859-257-1717; phone 859-257-3795
| | - Peter Teal
- U.S. Department of Agriculture, Agricultural Research Service, Chemistry Research Unit, Gainesville, FL 32608, USA
| | - Courey Hammac
- Dept. of Biology, University of Kentucky, Lexington, KY 40506
| | - Lexa Messmer
- Dept. of Biology, University of Kentucky, Lexington, KY 40506
| | - Kara Osborne
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40506
| | - Yasser Hadj Belgacem
- Laboratoire de Neurobiologie Cellulaire et Moleculaire (NBCM) CNRS, UOR-9040, Gif-sur-Yvette Cedex, France
| | - Jean-Rene Martin
- Laboratoire de Neurobiologie Cellulaire et Moleculaire (NBCM) CNRS, UOR-9040, Gif-sur-Yvette Cedex, France
| |
Collapse
|