1
|
Kumar S, Umair Z, Kumar V, Goutam RS, Park S, Lee U, Kim J. Xbra modulates the activity of linker region phosphorylated Smad1 during Xenopus development. Sci Rep 2024; 14:8922. [PMID: 38637565 PMCID: PMC11026473 DOI: 10.1038/s41598-024-59299-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/09/2024] [Indexed: 04/20/2024] Open
Abstract
The Bmp/Smad1 pathway plays a crucial role in developmental processes and tissue homeostasis. Mitogen-activated protein kinase (Mapk)/Erk mediated phosphorylation of Smad1 in the linker region leads to Smad1 degradation, cytoplasmic retention and inhibition of Bmp/Smad1 signaling. While Fgf/Erk pathway has been documented to inhibit Bmp/Smad1 signaling, several studies also suggests the cooperative interaction between these two pathways in different context. However, the precise role and molecular pathway of this collaborative interaction remain obscure. Here, we identified Xbra induced by Fgf/Erk signaling as a factor in a protective mechanism for Smad1. Xbra physically interacted with the linker region phosphorylated Smad1 to make Xbra/Smad1/Smad4 trimeric complex, leading to Smad1 nuclear localization and protecting it from ubiquitin-mediated proteasomal degradation. This interaction of Xbra/Smad1/Smad4 led to sustained nuclear localization of Smad1 and the upregulation of lateral mesoderm genes, while concurrently suppression of neural and blood forming genes. Taken together, the results suggests Xbra-dependent cooperative interplays between Fgf/Erk and Bmp/Smad1 signaling during lateral mesoderm specification in Xenopus embryos.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-Do, 24252, Republic of Korea
- ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Gosselies, B-6041, Belgium
| | - Zobia Umair
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-Do, 24252, Republic of Korea
| | - Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-Do, 24252, Republic of Korea
| | - Ravi Shankar Goutam
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-Do, 24252, Republic of Korea
| | - Soochul Park
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Unjoo Lee
- Department of Electrical Engineering, Hallym University, Chuncheon, Gangwon-Do, 24252, Republic of Korea.
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-Do, 24252, Republic of Korea.
| |
Collapse
|
2
|
Ventx Family and Its Functional Similarities with Nanog: Involvement in Embryonic Development and Cancer Progression. Int J Mol Sci 2022; 23:ijms23052741. [PMID: 35269883 PMCID: PMC8911082 DOI: 10.3390/ijms23052741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/21/2022] [Accepted: 02/27/2022] [Indexed: 12/27/2022] Open
Abstract
The Ventx family is one of the subfamilies of the ANTP (antennapedia) superfamily and belongs to the NK-like (NKL) subclass. Ventx is a homeobox transcription factor and has a DNA-interacting domain that is evolutionarily conserved throughout vertebrates. It has been extensively studied in Xenopus, zebrafish, and humans. The Ventx family contains transcriptional repressors widely involved in embryonic development and tumorigenesis in vertebrates. Several studies have documented that the Ventx family inhibited dorsal mesodermal formation, neural induction, and head formation in Xenopus and zebrafish. Moreover, Ventx2.2 showed functional similarities to Nanog and Barx1, leading to pluripotency and neural-crest migration in vertebrates. Among them, Ventx protein is an orthologue of the Ventx family in humans. Studies have demonstrated that human Ventx was strongly associated with myeloid-cell differentiation and acute myeloid leukemia. The therapeutic potential of Ventx family inhibition in combating cancer progression in humans is discussed. Additionally, we briefly discuss genome evolution, gene duplication, pseudo-allotetraploidy, and the homeobox family in Xenopus.
Collapse
|
3
|
Imai Y, Ishida K, Nemoto M, Nakata K, Kato T, Maéno M. Multiple origins of embryonic and tadpole myeloid cells in Xenopus laevis. Cell Tissue Res 2017; 369:341-352. [PMID: 28374149 DOI: 10.1007/s00441-017-2601-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 02/23/2017] [Indexed: 11/25/2022]
Abstract
Rabbit anti-serum against a myeloid-cell-specific peroxidase (Mpo) of Xenopus laevis was generated to identify myeloid cells in adult and larval animals. Smears of blood samples from adult hematopoietic organs were co-stained with Mpo and with XL-2, a mouse monoclonal antibody against a leukocyte common antigen. Lymphocytes found in the thymus and spleen were XL-2+Mpo- and granulocytes found in peripheral blood cells and the spleen were XL-2+Mpo+, indicating that double-staining with these two antibodies allowed classification of the leukocyte lineages. Immunohistochemical analysis of larval organs showed that XL-2+Mpo- cells were scattered throughout the liver, whereas XL-2+Mpo+ cells were present mainly in the cortex region. Interestingly, a cluster of XL-2+Mpo+ cells was found in the region of the larval mesonephric rudiment. The ratio of XL-2+Mpo+ cells to XL-2+ cells in the mesonephric region was approximately 80%, which was much higher than that found in other hematopoietic organs. In order to elucidate the embryonic origin of the myeloid cells in the tadpole mesonephros, grafting experiments between X. laevis and X. borealis embryos were performed to trace the X. borealis cells as donor cells. Among the embryonic tissues examined, the tailbud tissue at the early neurula stage contributed greatly to the myeloid cluster in the mesonephric region at stage 48. Therefore, at least four independent origins of the myeloid cell population can be traced in the Xenopus embryo.
Collapse
Affiliation(s)
- Yasutaka Imai
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata, 950-2181, Japan
| | - Keisuke Ishida
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata, 950-2181, Japan
| | - Maya Nemoto
- Department of Biology, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata, 950-2181, Japan
| | - Keisuke Nakata
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata, 950-2181, Japan
| | - Takashi Kato
- Department of Biology, School of Education, Center for Advanced Biomedical Science, Waseda University, TWIns building, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Mitsugu Maéno
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata, 950-2181, Japan.
| |
Collapse
|
4
|
Green YS, Kwon S, Mimoto MS, Xie Y, Christian JL. Tril targets Smad7 for degradation to allow hematopoietic specification in Xenopus embryos. Development 2016; 143:4016-4026. [PMID: 27633996 DOI: 10.1242/dev.141812] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/01/2016] [Indexed: 12/21/2022]
Abstract
In Xenopus laevis, bone morphogenetic proteins (Bmps) induce expression of the transcription factor Gata2 during gastrulation, and Gata2 is required in both ectodermal and mesodermal cells to enable mesoderm to commit to a hematopoietic fate. Here, we identify tril as a Gata2 target gene that is required in both ectoderm and mesoderm for primitive hematopoiesis to occur. Tril is a transmembrane protein that functions as a co-receptor for Toll-like receptors to mediate innate immune responses in the adult brain, but developmental roles for this molecule have not been identified. We show that Tril function is required both upstream and downstream of Bmp receptor-mediated Smad1 phosphorylation for induction of Bmp target genes. Mechanistically, Tril triggers degradation of the Bmp inhibitor Smad7. Tril-dependent downregulation of Smad7 relieves repression of endogenous Bmp signaling during gastrulation and this enables mesodermal progenitors to commit to a blood fate. Thus, Tril is a novel component of a Bmp-Gata2 positive-feedback loop that plays an essential role in hematopoietic specification.
Collapse
Affiliation(s)
- Yangsook Song Green
- Department of Neurobiology and Anatomy and Internal Medicine, Division of Hematology and Hematologic Malignancies, University of Utah, School of Medicine, Salt Lake City, UT 84132, USA
| | - Sunjong Kwon
- Department of Cell and Developmental Biology, Oregon Health and Sciences University, School of Medicine, Portland, OR 97239-3098, USA
| | - Mizuho S Mimoto
- Department of Cell and Developmental Biology, Oregon Health and Sciences University, School of Medicine, Portland, OR 97239-3098, USA
| | - Yuanyuan Xie
- Department of Neurobiology and Anatomy and Internal Medicine, Division of Hematology and Hematologic Malignancies, University of Utah, School of Medicine, Salt Lake City, UT 84132, USA
| | - Jan L Christian
- Department of Neurobiology and Anatomy and Internal Medicine, Division of Hematology and Hematologic Malignancies, University of Utah, School of Medicine, Salt Lake City, UT 84132, USA
| |
Collapse
|
5
|
Mimoto MS, Kwon S, Green YS, Goldman D, Christian JL. GATA2 regulates Wnt signaling to promote primitive red blood cell fate. Dev Biol 2015; 407:1-11. [PMID: 26365900 DOI: 10.1016/j.ydbio.2015.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 08/06/2015] [Accepted: 08/13/2015] [Indexed: 10/23/2022]
Abstract
Primitive erythropoiesis is regulated in a non cell-autonomous fashion across evolution from frogs to mammals. In Xenopus laevis, signals from the overlying ectoderm are required to induce the mesoderm to adopt an erythroid fate. Previous studies in our lab identified the transcription factor GATA2 as a key regulator of this ectodermal signal. To identify GATA2 target genes in the ectoderm required for red blood cell formation in the mesoderm, we used microarray analysis to compare gene expression in ectoderm from GATA2 depleted and wild type embryos. Our analysis identified components of the non-canonical and canonical Wnt pathways as being reciprocally up- and down-regulated downstream of GATA2 in both mesoderm and ectoderm. We show that up-regulation of canonical Wnt signaling during gastrulation blocks commitment to a hematopoietic fate while down-regulation of non-canonical Wnt signaling impairs erythroid differentiation. Our results are consistent with a model in which GATA2 contributes to inhibition of canonical Wnt signaling, thereby permitting progenitors to exit the cell cycle and commit to a hematopoietic fate. Subsequently, activation of non-canonical Wnt signaling plays a later role in enabling these progenitors to differentiate as mature red blood cells.
Collapse
Affiliation(s)
- Mizuho S Mimoto
- Department of Cell and Developmental Biology Oregon Health and Science University, School of Medicine, Portland, OR 97239-3098, USA
| | - Sunjong Kwon
- Department of Cell and Developmental Biology Oregon Health and Science University, School of Medicine, Portland, OR 97239-3098, USA
| | - Yangsook Song Green
- Department of Neurobiology and Anatomy and Internal Medicine, Division of Hematology and Hematologic Malignancies University of Utah, School of Medicine, Salt Lake City, UT 94132, USA
| | - Devorah Goldman
- Department of Cell and Developmental Biology Oregon Health and Science University, School of Medicine, Portland, OR 97239-3098, USA
| | - Jan L Christian
- Department of Neurobiology and Anatomy and Internal Medicine, Division of Hematology and Hematologic Malignancies University of Utah, School of Medicine, Salt Lake City, UT 94132, USA.
| |
Collapse
|
6
|
Shah RR, Koniski A, Shinde M, Blythe SA, Fass DM, Haggarty SJ, Palis J, Klein PS. Regulation of primitive hematopoiesis by class I histone deacetylases. Dev Dyn 2013; 242:108-21. [PMID: 23184530 PMCID: PMC3553261 DOI: 10.1002/dvdy.23906] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Revised: 10/16/2012] [Accepted: 11/08/2012] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Histone deacetylases (HDACs) regulate multiple developmental processes and cellular functions. However, their roles in blood development have not been determined, and in Xenopus laevis a specific function for HDACs has yet to be identified. Here, we employed the class I selective HDAC inhibitor, valproic acid (VPA), to show that HDAC activity is required for primitive hematopoiesis. RESULTS VPA treatment during gastrulation resulted in a complete absence of red blood cells (RBCs) in Xenopus tadpoles, but did not affect development of other mesodermal tissues, including myeloid and endothelial lineages. These effects of VPA were mimicked by Trichostatin A (TSA), a well-established pan-HDAC inhibitor, but not by valpromide, which is structurally similar to VPA but does not inhibit HDACs. VPA also caused a marked, dose-dependent loss of primitive erythroid progenitors in mouse yolk sac explants at clinically relevant concentrations. In addition, VPA treatment inhibited erythropoietic development downstream of bmp4 and gata1 in Xenopus ectodermal explants. CONCLUSIONS These findings suggest an important role for class I HDACs in primitive hematopoiesis. Our work also demonstrates that specific developmental defects associated with exposure to VPA, a significant teratogen in humans, arise through inhibition of class I HDACs.
Collapse
Affiliation(s)
- Rishita R. Shah
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Philadelphia, PA USA 19104
| | - Anne Koniski
- Department of Pediatrics Center for Pediatric Biomedical Research University of Rochester Medical Center 601 Elmwood Ave. Rochester, NY 14642
| | - Mansi Shinde
- Pharmacology Graduate Group, University of Pennsylvania Philadelphia, PA USA 19104
| | - Shelby A. Blythe
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Philadelphia, PA USA 19104
| | - Daniel M. Fass
- Stanley Center for Psychiatric Research Broad Institute of Harvard and MIT Cambridge, MA USA 02142
- Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School Boston, MA USA 02114
| | - Stephen J. Haggarty
- Stanley Center for Psychiatric Research Broad Institute of Harvard and MIT Cambridge, MA USA 02142
- Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School Boston, MA USA 02114
| | - James Palis
- Department of Pediatrics Center for Pediatric Biomedical Research University of Rochester Medical Center 601 Elmwood Ave. Rochester, NY 14642
| | - Peter S. Klein
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Philadelphia, PA USA 19104
- Pharmacology Graduate Group, University of Pennsylvania Philadelphia, PA USA 19104
- Department of Medicine (Hematology/Oncology) University of Pennsylvania School of Medicine Philadelphia, PA USA 19104
| |
Collapse
|
7
|
Ventx factors function as Nanog-like guardians of developmental potential in Xenopus. PLoS One 2012; 7:e36855. [PMID: 22606298 PMCID: PMC3351468 DOI: 10.1371/journal.pone.0036855] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 04/10/2012] [Indexed: 11/23/2022] Open
Abstract
Vertebrate development requires progressive commitment of embryonic cells into specific lineages through a continuum of signals that play off differentiation versus multipotency. In mammals, Nanog is a key transcription factor that maintains cellular pluripotency by controlling competence to respond to differentiation cues. Nanog orthologs are known in most vertebrates examined to date, but absent from the Anuran amphibian Xenopus. Interestingly, in silico analyses and literature scanning reveal that basal vertebrate ventral homeobox (ventxs) and mammalian Nanog factors share extensive structural, evolutionary and functional properties. Here, we reassess the role of ventx activity in Xenopus laevis embryos and demonstrate that they play an unanticipated role as guardians of high developmental potential during early development. Joint over-expression of Xenopus ventx1.2 and ventx2.1-b (ventx1/2) counteracts lineage commitment towards both dorsal and ventral fates and prevents msx1-induced ventralization. Furthermore, ventx1/2 inactivation leads to down-regulation of the multipotency marker oct91 and to premature differentiation of blastula cells. Finally, supporting the key role of ventx1/2 in the control of developmental potential during development, mouse Nanog (mNanog) expression specifically rescues embryonic axis formation in ventx1/2 deficient embryos. We conclude that during Xenopus development ventx1/2 activity, reminiscent of that of Nanog in mammalian embryos, controls the switch of early embryonic cells from uncommitted to committed states.
Collapse
|
8
|
Lee SY, Lim SK, Cha SW, Yoon J, Lee SH, Lee HS, Park JB, Lee JY, Kim SC, Kim J. Inhibition of FGF signaling converts dorsal mesoderm to ventral mesoderm in early Xenopus embryos. Differentiation 2011; 82:99-107. [PMID: 21684060 DOI: 10.1016/j.diff.2011.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 05/20/2011] [Accepted: 05/24/2011] [Indexed: 11/16/2022]
Abstract
In early vertebrate development, mesoderm induction is a crucial event regulated by several factors including the activin, BMP and FGF signaling pathways. While the requirement of FGF in Nodal/activin-induced mesoderm formation has been reported, the fate of the tissue modulated by these signals is not fully understood. Here, we examined the fate of tissues when exogenous activin was added and FGF signaling was inhibited in animal cap explants of Xenopus embryos. Activin-induced dorsal mesoderm was converted to ventral mesoderm by inhibition of FGF signaling. We also found that inhibiting FGF signaling in the dorsal marginal zone, in vegetal-animal cap conjugates or in the presence of the activin signaling component Smad2, converted dorsal mesoderm to ventral mesoderm. The expression and promoter activities of a BMP responsive molecule, PV.1 and a Spemann organizer, noggin, were investigated while FGF signaling was inhibited. PV.1 expression increased, while noggin decreased. In addition, inhibiting BMP-4 signaling abolished ventral mesoderm formation induced by exogenous activin and FGF inhibition. Taken together, these results suggest that the formation of dorso-ventral mesoderm in early Xenopus embryos is regulated by a combination of FGF, activin and BMP signaling.
Collapse
Affiliation(s)
- Sung-Young Lee
- Department of Biochemistry, College of Medicine, Hallym University, ChunCheon, Kangwon-Do, 200-702, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Lengerke C, Schmitt S, Bowman TV, Jang IH, Maouche-Chretien L, McKinney-Freeman S, Davidson AJ, Hammerschmidt M, Rentzsch F, Green JBA, Zon LI, Daley GQ. BMP and Wnt specify hematopoietic fate by activation of the Cdx-Hox pathway. Cell Stem Cell 2009; 2:72-82. [PMID: 18371423 DOI: 10.1016/j.stem.2007.10.022] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 10/11/2007] [Accepted: 10/31/2007] [Indexed: 01/10/2023]
Abstract
The formation of blood in the embryo is dependent on bone morphogenetic protein (BMP), but how BMP signaling intersects with other regulators of hematopoietic development is unclear. Using embryonic stem (ES) cells, we show that BMP4 first induces ventral-posterior (V-P) mesoderm and subsequently directs mesodermal cells toward blood fate by activating Wnt3a and upregulating Cdx and Hox genes. When BMP signaling is blocked during this latter phase, enforced expression of either Cdx1 or Cdx4 rescues hematopoietic development, thereby placing BMP4 signaling upstream of the Cdx-Hox pathway. Wnt signaling cooperates in BMP-induced hemogenesis, and the Wnt effector LEF1 mediates BMP4 activation of Cdx genes. Our data suggest that BMP signaling plays two distinct and sequential roles during blood formation, initially as an inducer of mesoderm, and later to specify blood via activation of Wnt signaling and the Cdx-Hox pathway.
Collapse
Affiliation(s)
- Claudia Lengerke
- Division of Pediatric Hematology/Oncology, Children's Hospital Boston and Dana Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Tomlinson ML, Garcia-Morales C, Abu-Elmagd M, Wheeler GN. Three matrix metalloproteinases are required in vivo for macrophage migration during embryonic development. Mech Dev 2008; 125:1059-70. [PMID: 18684398 DOI: 10.1016/j.mod.2008.07.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 07/08/2008] [Accepted: 07/09/2008] [Indexed: 11/19/2022]
Abstract
Macrophages are essential in development, repair and pathology of a variety of tissues via their roles in tissue remodelling, wound healing and inflammation. These biological functions are also associated with a number of human diseases, for example tumour associated macrophages have well defined functions in cancer progression. Xenopus embryonic macrophages arise from a haematopoietic stem cell population by direct differentiation and act as the main mechanism of host defence, before lymphoid cells and a circulatory system have developed. This function is conserved in mouse and human development. Macrophages express a number of matrix metalloproteinases (MMPs), which are central to their function. MMPs are a large family of zinc-dependent endoproteases with multiple roles in extracellular matrix remodelling and the modulation of signalling pathways. We have previously shown MMP-7 to be expressed by Xenopus embryonic macrophages. Here we investigate the role of MMP-7 and two other MMPs (MMP-18 and MMP-9) that are also expressed in the migrating macrophages. Using morpholino (MO) mediated knockdown of each of the MMPs we demonstrate that they are necessary for normal macrophage migration in vivo. The loss-of-function effect can be rescued using the specific MMPs, altered to be resistant to morpholinos but not by overexpression of the other MMPs. Double and triple morpholino knockdowns further suggest that these MMPs act combinatorily to promote embryonic macrophage migration. Thus, our results imply that these three MMPs have distinct functions, which together are crucial to mediate macrophage migration in the developing embryo. This demonstrates conclusively that MMPs are required for normal macrophage cell migration in the whole organism.
Collapse
Affiliation(s)
- Matthew L Tomlinson
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | | | | | | |
Collapse
|
11
|
Fibroblast growth factor controls the timing of Scl, Lmo2, and Runx1 expression during embryonic blood development. Blood 2008; 111:1157-66. [DOI: 10.1182/blood-2007-03-081323] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractTo program pluripotent cells into blood, a knowledge of the locations of precursors during their journey through the embryo and the signals they experience would be informative. The anterior (a) and posterior (p) ventral blood islands (VBIs) in Xenopus are derived from opposite sides of the pregastrula embryo. The aVBI goes through a “hemangioblast” state, characterized by coexpression of blood and endothelial genes at neurula stages, whereas the pVBI expresses these genes in a nonoverlapping fashion several hours later, after commitment to either a blood or an endothelial fate. We describe a novel role for fibroblast growth factor (FGF) in controlling the timing of Scl, Lmo2, and Runx1 expression in the 2 VBI compartments. Blocking FGF signaling during gastrulation expands expression at neurula stages into posterior regions. We show, by lineage labeling, explant analysis, and targeted blocking of FGF signaling, that this is due to the pVBI prematurely expressing these genes with the timing of the aVBI. In contrast, overexpression of FGF in aVBI precursors eliminates the anterior hemangioblast program. Using this information, we have recapitulated the anterior hemangioblast program in pluripotent cells in vitro by inhibiting FGF signaling in anterior mesoderm induced by activin and exposed to bone morphogenetic protein (BMP) signaling.
Collapse
|
12
|
Dalgin G, Goldman DC, Donley N, Ahmed R, Eide CA, Christian JL. GATA-2 functions downstream of BMPs and CaM KIV in ectodermal cells during primitive hematopoiesis. Dev Biol 2007; 310:454-69. [PMID: 17850784 PMCID: PMC2049090 DOI: 10.1016/j.ydbio.2007.08.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Revised: 07/26/2007] [Accepted: 08/06/2007] [Indexed: 01/12/2023]
Abstract
In Xenopus, primitive blood originates from the mesoderm, but extrinsic signals from the ectoderm are required during gastrulation to enable these cells to differentiate as erythrocytes. The nature of these signals, and how they are transcriptionally regulated, is not well understood. We have previously shown that bone morphogenetic proteins (BMPs) are required to signal to ectodermal cells to generate secondary non-cell-autonomous signal(s) necessary for primitive erythropoiesis, and that calmodulin-dependent protein kinase IV (CaM KIV) antagonizes BMP signaling. The current studies demonstrate that Gata-2 functions downstream of BMP receptor activation in these same cells, and is a direct target for antagonism by CaM KIV. We show, using loss of function analysis in whole embryos and in explants, that ectodermal Gata-2 is required for primitive erythropoiesis, and that BMP signals cannot rescue blood defects caused by ectoderm removal or loss of ectodermal GATA-2. Furthermore, we provide evidence that acetylation of GATA-2 is required for its function in primitive blood formation in vivo. Our data support a model in which Gata-2 is a transcriptional target downstream of BMPs within ectodermal cells, while activation of the CaM KIV signaling pathway alters GATA-2 function posttranslationally, by inhibiting its acetylation.
Collapse
Affiliation(s)
- Gokhan Dalgin
- Department of Cell and Developmental Biology Oregon Health and Science University, School of Medicine 3181 SW Sam Jackson Park Road Portland, OR 97239-3098
| | - Devorah C. Goldman
- Department of Cell and Developmental Biology Oregon Health and Science University, School of Medicine 3181 SW Sam Jackson Park Road Portland, OR 97239-3098
| | - Nathan Donley
- Department of Cell and Developmental Biology Oregon Health and Science University, School of Medicine 3181 SW Sam Jackson Park Road Portland, OR 97239-3098
| | - Riffat Ahmed
- Department of Cell and Developmental Biology Oregon Health and Science University, School of Medicine 3181 SW Sam Jackson Park Road Portland, OR 97239-3098
| | - Christopher A. Eide
- Department of Cell and Developmental Biology Oregon Health and Science University, School of Medicine 3181 SW Sam Jackson Park Road Portland, OR 97239-3098
| | - Jan L. Christian
- Department of Cell and Developmental Biology Oregon Health and Science University, School of Medicine 3181 SW Sam Jackson Park Road Portland, OR 97239-3098
| |
Collapse
|
13
|
Kumano G, Nishida H. Ascidian embryonic development: An emerging model system for the study of cell fate specification in chordates. Dev Dyn 2007; 236:1732-47. [PMID: 17366575 DOI: 10.1002/dvdy.21108] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The ascidian tadpole larva represents the basic body plan of all chordates in a relatively small number of cells and tissue types. Although it had been considered that ascidians develop largely in a determinative way, whereas vertebrates develop in an inductive way, recent studies at the molecular and cellular levels have uncovered several similarities in the way developmental fates are specified. In this review, we describe ascidian embryogenesis and its cell lineages, introduce several characteristics of ascidian embryos, describe recent advances in understanding of the mechanisms of cell fate specification, and discuss them in the context of what is known in vertebrates and other organisms.
Collapse
Affiliation(s)
- Gaku Kumano
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan.
| | | |
Collapse
|
14
|
Kumano G, Ezal C, Smith WC. ADMP2 is essential for primitive blood and heart development in Xenopus. Dev Biol 2006; 299:411-23. [PMID: 16959239 DOI: 10.1016/j.ydbio.2006.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Revised: 06/29/2006] [Accepted: 08/02/2006] [Indexed: 10/24/2022]
Abstract
We describe here the cloning of a new member of the TGF-beta family with similarity to the anti-dorsalizing morphogenetic proteins (ADMPs). This new gene, ADMP2, is expressed in a broad band of mesendoderm cells that appear to include the progenitors of the endoderm and the ventral mesoderm. Antisense morpholino oligonucleotide knockdown of ADMP2 results in near-complete disruption of primitive blood and heart development, while the development of other mesoderm derivatives, including pronephros, muscle and lateral plate is not disrupted. Moreover, the development of the primitive blood in ADMP2 knockdown embryos cannot be rescued by BMP. These results suggests that ADMP2 plays an early role in specifying presumptive ventral mesoderm in the leading edge mesoderm, and that ADMP2 activity may be necessary to respond to BMP signaling in the context of ventral mesoderm induction.
Collapse
Affiliation(s)
- Gaku Kumano
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | | | | |
Collapse
|
15
|
Schmerer M, Torregroza I, Pascal A, Umbhauer M, Evans T. STAT5 acts as a repressor to regulate early embryonic erythropoiesis. Blood 2006; 108:2989-97. [PMID: 16835375 PMCID: PMC1895518 DOI: 10.1182/blood-2006-05-022137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
STAT5 regulates definitive (adult stage) erythropoiesis through its ability to transduce signals from the erythropoietin receptor. A function for STAT-dependent signaling during primitive (embryonic) erythropoiesis has not been analyzed. We tested this in the Xenopus system, because STAT5 is expressed at the right time and place to regulate development of the embryonic primitive ventral blood island. Depletion of STAT5 activity results in delayed accumulation of the first globin-expressing cells, indicating that the gene does regulate primitive erythropoiesis. Our results suggest that in this context STAT5 functions as a repressor, since forced expression of an activator isoform blocks erythropoiesis, while embryos expressing a repressor isoform develop normally. The erythroid phenotype caused by the activator isoform of STAT5 resembles that caused by overexpression of fibroblast growth factor (FGF). We show that STAT5 isoforms can function epistatic to FGF and can be phosphorylated in response to hyperactivated FGF signaling in Xenopus embryos. Therefore, our data indicate that STAT5 functions in both primitive and definitive erythropoiesis, but by different mechanisms.
Collapse
Affiliation(s)
- Matthew Schmerer
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
16
|
Goldman DC, Berg LK, Heinrich MC, Christian JL. Ectodermally derived steel/stem cell factor functions non-cell autonomously during primitive erythropoiesis in Xenopus. Blood 2006; 107:3114-21. [PMID: 16357321 PMCID: PMC1432098 DOI: 10.1182/blood-2005-09-3930] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Accepted: 12/04/2005] [Indexed: 01/04/2023] Open
Abstract
Signals derived from nonhematopoietic tissues are essential for normal primitive erythropoiesis in vertebrates, but little is known about the nature of these signals. In Xenopus, unidentified factors secreted by ectodermal cells during gastrulation are required to enable the underlying ventral mesoderm to form blood. Steel is expressed in the ectoderm of early Xenopus embryos and is known to regulate definitive erythroid progenitor survival and differentiation in other organisms, making it an excellent candidate regulator of primitive erythropoiesis. In this study, we tested whether steel signaling is required for primitive red blood cell differentiation in mice and frogs. We show that Xsl is expressed in the ectoderm in Xenopus gastrulae and that c-kit homologs are expressed in the underlying mesoderm at the same stages of development. We present loss of function data in whole Xenopus embryos and explants that demonstrate a requirement for ectodermally derived steel to signal through c-kit in the mesoderm to support early steps in the differentiation of primitive erythroid but not myeloid cells. Finally, we show that primitive erythropoiesis is not disrupted in mouse embryos that lack c-kit function. Our data suggest a previously unrecognized and unique function of steel/c-kit during primitive erythropoiesis in Xenopus.
Collapse
Affiliation(s)
- Devorah C Goldman
- Department of Cell and Developmental Biology, OHSU 3181 SW Sam Jackson Park Rd, Portland, OR 97239-3098, USA
| | | | | | | |
Collapse
|
17
|
Kourakis MJ, Smith WC. Did the first chordates organize without the organizer? Trends Genet 2005; 21:506-10. [PMID: 16023252 DOI: 10.1016/j.tig.2005.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Revised: 05/11/2005] [Accepted: 07/03/2005] [Indexed: 11/21/2022]
Abstract
Models of vertebrate development frequently portray the organizer as acting on a largely unpatterned embryo to induce major components of the body plan, such as the neural plate and somites. Recent experiments examining the molecular and genetic basis of major inductive events of vertebrate embryogenesis force a re-examination of this view. These newer observations, along with a proposed revised fate map for the frog Xenopus laevis, suggest a possible reconciliation between the seemingly disparate mechanisms present in the ontogeny of the common chordate body plan of vertebrate and invertebrate chordates. Here, we review data from vertebrates and from an ascidian urochordate and propose that the organizer was not present at the base of the chordate lineage, but could have been a later innovation in the lineage leading to vertebrates, where its role was more permissive than instructive.
Collapse
Affiliation(s)
- Matthew J Kourakis
- Molecular, Cell and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | | |
Collapse
|
18
|
Sadlon TJ, Lewis ID, D'Andrea RJ. BMP4: Its Role in Development of the Hematopoietic System and Potential as a Hematopoietic Growth Factor. Stem Cells 2004; 22:457-74. [PMID: 15277693 DOI: 10.1634/stemcells.22-4-457] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Blood formation occurs throughout the life of an individual in a process driven by hematopoietic stem cells (HSCs). The ability of bone marrow (BM) and cord blood (CB) HSC to undergo self-renewal and develop into multiple blood lineages has made these cells an important clinical resource. Transplantation with BM- and CB-derived HSCs is now used extensively for treatment of hematological disorders, malignancies, and immunodeficiencies. An understanding of the embryonic origin of HSC and the factors regulating their generation and expansion in vivo will provide important information for the manipulation of these cells ex vivo. This is critical for the further development of CB transplantation, the potential of which is limited by small numbers of HSC in the donor population. Although the origins of HSCs have become clearer and progress has been made in identifying genes that are critical for the formation and maintenance of HSCs, less is known about the signals that commit specific populations of mesodermal precursors to hematopoietic cell fate. Critical signals acting on these precursor cells are likely to be derived from visceral endoderm in yolk sac and from underlying stroma in the aorta-gonad-mesonephros region. Here we summarize briefly the origin of yolk sac and embryonic HSCs before detailing evidence that bone morphogenic protein-4 (BMP4) has a crucial role in Xenopus and mammalian HSC development. We discuss evidence that BMP4 acts as a hematopoietic growth factor and review its potential to modulate HSC in ex vivo expansion cultures from cord blood.
Collapse
Affiliation(s)
- Timothy J Sadlon
- Immunology Program, Child Health Research Institute, North Adelaide, South Australia
| | | | | |
Collapse
|
19
|
Schmerer M, Evans T. Primitive erythropoiesis is regulated by Smad-dependent signaling in postgastrulation mesoderm. Blood 2003; 102:3196-205. [PMID: 12855559 DOI: 10.1182/blood-2003-04-1094] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The bone morphogenetic proteins (BMPs) are required for the development of ventral mesoderm, which contributes to the ventral blood island and primitive (yolk sac stage) hematopoiesis. Primitive erythropoiesis is defective when BMP signaling is blocked during gastrulation of Xenopus embryos. This phenotype might be attributed to changes in mesoderm patterning leading indirectly to altered erythropoiesis. We developed an inducible system in order to block BMP signaling in a controlled fashion at later time points in development. For this purpose, an inhibitory Smad, xSmad6, was fused to the estrogen receptor ligand-binding domain. We show that ER-xSmad6 is inactive when expressed in developing embryos, but its activity is induced by estradiol. When induced early in development, ER-xSmad6 causes a dorsalized phenotype, equivalent to overexpression of native xSmad6. When ER-xSmad6 is induced after gastrulation, there is a specific defect in primitive erythropoiesis without any apparent effect on axial patterning. Our results identify an embryonic signal that is Smad-dependent, is required for maintaining expression of GATA-1, and functions within mesoderm and not the overlying ectoderm. Thus, BMP signaling is necessary both during mesoderm patterning and also following early specification events for proper regulation of the primitive erythroid lineage.
Collapse
Affiliation(s)
- Matthew Schmerer
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | |
Collapse
|
20
|
Steer WM, Abu-Daya A, Brickwood SJ, Mumford KL, Jordanaires N, Mitchell J, Robinson C, Thorne AW, Guille MJ. Xenopus nucleosome assembly protein becomes tissue-restricted during development and can alter the expression of specific genes. Mech Dev 2003; 120:1045-57. [PMID: 14550533 DOI: 10.1016/s0925-4773(03)00176-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Nucleosome assembly proteins have been identified in all eukaryotic species investigated to date and their suggested roles include histone shuttle, histone acceptor during transcriptional chromatin remodelling and cell cycle regulator. To examine the role of these proteins during early development we have isolated the cDNA encoding Xenopus NAP1L, raised an antibody against recombinant xNAP1L and examined the expression pattern of this mRNA and protein. Expression in adults is predominantly in ovaries. This maternal protein remains a major component of xNAP1L within the embryo until swimming tadpole stages. xNAP1L mRNA is initially throughout the embryo but by gastrula stages it is predominantly in the presumptive ectoderm. Later, mRNA is detected in the neural crest, neural tube, eyes, tailbud and ventral blood islands. In order to test whether xNAP1L has a potential role in gene regulation we overexpressed this protein in animal pole explants and tested the effect on expression of a series of potential target genes. The mRNA encoding the transcription factor GATA-2 was markedly up-regulated by this overexpression. These data support a role for xNAP1L in tissue-restricted gene regulation.
Collapse
Affiliation(s)
- Wendy M Steer
- Genes and Development, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, King Henry Building, King Henry 1st Street, Portsmouth PO1 2DY, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kumano G, Smith WC. Revisions to the Xenopus gastrula fate map: implications for mesoderm induction and patterning. Dev Dyn 2002; 225:409-21. [PMID: 12454919 DOI: 10.1002/dvdy.10177] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
A revised fate map of the gastrula Xenopus embryo predicts the existence of patterning mechanisms that operate within the animal/vegetal axis of the mesoderm-forming marginal zone. We review here molecular and embryologic data that demonstrate that such mechanisms are present and that they operate independently of the Spemann organizer. Evidence suggests that polarized fibroblast growth factor activity in the animal/vegetal axis patterns this axis. We present a model of mesoderm induction and patterning that integrates the new data on Spemann organizer-independent animal/vegetal patterning with data on other inductive pathways known to act on the gastrula marginal zone.
Collapse
Affiliation(s)
- Gaku Kumano
- Neuroscience Research Institute, and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, USA
| | | |
Collapse
|
22
|
Iraha F, Saito Y, Yoshida K, Kawakami M, Izutsu Y, Daar IO, Maéno M. Common and distinct signals specify the distribution of blood and vascular cell lineages in Xenopus laevis embryos. Dev Growth Differ 2002; 44:395-407. [PMID: 12392573 DOI: 10.1046/j.1440-169x.2002.00653.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In an effort to elucidate the regulatory mechanisms that determine the fate of blood cells and vascular cells in the ventral blood island mesoderm, the embryonic expression of Xtie-2, a Xenopus homolog of the tie-2 receptor tyrosine kinase, was examined. Whole-mount in situ hybridization analysis revealed that Xtie-2 mRNA is expressed at the late tailbud stage within the regions where endothelial precursor cells exist. On the ventral side of embryos, Xtie-2-positive cells are predominantly present just outside the boundary of alpha-globin-positive cells, thus the expression pattern of these two markers seems mutually exclusive. Further experiments revealed that there is a consistent and strong correlation between the induction of Xtie-2 and alpha-globin expression in embryos and explant tissues. First, these two markers displayed overlapping expression in embryos ventralized by the removal of a "dorsal determinant" from the vegetal cytoplasm at the 1-cell stage. Second, expression of both Xtie-2 and alpha-globin were markedly induced in ectodermal explants (animal caps) from embryos co-injected with activin and bone morphogenetic protein (BMP)-4 RNA. Furthermore, both Xtie-2 and alpha-globin messages were strongly positive in dorsal marginal zone explants that had been injected with BMP-4 RNA. In contrast, however, there was a clear distinction in the localization of these two transcripts in embryos dorsalized by LiCl treatment. Distinct localization was also found in the ventral marginal zone (VMZ) explants. Using the VMZ explant system, we demonstrate a role of fibroblast growth factor (FGF) signaling in enhancing the vascular cell marker and reducing the blood cell marker. The present study suggests that the early steps of blood and vascular cell differentiation are regulated by a common BMP-4-dependent signaling; however, distinct factor(s) such as FGF are involved in different distribution of these two cell lineages.
Collapse
Affiliation(s)
- Fumie Iraha
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi-2, Niigata 950-2181, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Kumano G, Smith WC. The nodal target gene Xmenf is a component of an FGF-independent pathway of ventral mesoderm induction in Xenopus. Mech Dev 2002; 118:45-56. [PMID: 12351169 DOI: 10.1016/s0925-4773(02)00186-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The interplay of fibroblast growth factor (FGF) and nodal signaling in the Xenopus gastrula marginal zone specifies distinct populations of presumptive mesodermal cells. Cells in the vegetal marginal zone, making up the presumptive leading edge mesoderm, are exposed to nodal signaling, as evidenced by SMAD2 activation, but do not appear to be exposed to FGF signaling, as evidenced by the lack of MAP kinase (MAPK) activation. However, in the animal marginal zone, activation of both SMAD2 and MAPK occurs. The differential activation of these two signaling pathways in the marginal zone results in the vegetal and animal marginal zones expressing different genes at gastrulation, and subsequently having different fates, with the vegetal marginal zone contributing to ventral mesoderm (e.g. ventral blood island) and the animal marginal zone giving rise to dorsal fates (e.g. notochord and somite). We report here the cloning of a cDNA encoding a novel nuclear protein, Xmenf, that is expressed in the vegetal marginal zone. The expression of Xmenf is induced by nodal signaling and negatively regulated by FGF signaling. Results from animal cap studies indicate that Xmenf plays a role in the pathway of ventral mesoderm induction in the vegetal marginal zone.
Collapse
Affiliation(s)
- Gaku Kumano
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| | | |
Collapse
|
24
|
Callebaut M, Van Nueten E, Bortier H, Harrisson F. In the absence of Rauber's sickle material, no blood islands are formed in the avian blastoderm. J Morphol 2002; 253:132-47. [PMID: 12112128 DOI: 10.1002/jmor.1116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Using the quail-chick chimera technique, we followed the fate of Rauber's sickle cells in older whole blastoderms (cultured for approximately 2 days): after removal of the autochthonous Rauber's sickle from an unincubated chicken blastoderm, a quail Rauber's sickle was grafted isotopically and isochronically in its place. In transverse sections through these chimeras, the grafted quail Rauber's sickle cells were seen to have transformed into a broad row or ridge of quail junctional endoblast cells extending at the inner border of the area containing blood islands. After unilateral removal of the junctional endoblast from an intermediate streak chicken blastoderm (Stage 3; Hamburger and Hamilton [1951] J Morphol 88:49-92), we observed during further in vitro culture that at the operated side, in the area previously occupied by this junctional endoblast, blood islands no longer developed. If after such a unilateral removal of the chicken junctional endoblast quail junctional endoblast was apposed in its place, then blood islands reappeared in the operated area. The intimate contact between the apposed quail junctional endoblast and the recently formed blood islands, derived from peripherally migrating mesoderm, was very obvious on sections through such chimeras. We further demonstrate that Rauber's sickle vs. junctional endoblast is indispensable for the anlage of blood islands in avian blastoderms. Indeed, in the absence of Rauber's sickle material no blood islands develop (even when mesoderm is present after ingression of the upper layer via a primitive streak) in the isolated central region of the area centralis of unincubated chicken blastoderms after culture in vitro. Also, no junctional endoblast and no sickle canal appear in these explants. By contrast, if a Rauber's sickle fragment is placed on such an isolated central blastoderm region, then blood islands develop. These blood islands start to develop from peripherally migrating mesoderm in the neighborhood of the Rauber's sickle-derived junctional endoblast.
Collapse
Affiliation(s)
- Marc Callebaut
- Laboratory of Human Anatomy and Embryology UA RUCA, B-2020 Antwerpen, Belgium.
| | | | | | | |
Collapse
|
25
|
Muñoz-Sanjuán I, H-Brivanlou A. Early posterior/ventral fate specification in the vertebrate embryo. Dev Biol 2001; 237:1-17. [PMID: 11518501 DOI: 10.1006/dbio.2001.0350] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
One of the central questions in developmental biology is that of how one cell can give rise to all specialized cell types and organs in the organism. Within the embryo, all tissues are composed of cells derived from one or more of the three germ layers, the ectoderm, the mesoderm, and the endoderm. Understanding the molecular events that underlie both the specification and patterning of the germ layers has been a long-standing interest for developmental biologists. Recent years have seen a rapid advancement in the elucidation of the molecular players implicated in patterning the vertebrate embryo. In this review, we will focus solely on the ventral and posterior fate acquisition in the ventral-lateral domains of the pregastrula embryo. We will address the embryonic origins of various tissues and will present embryological and experimental evidence to illustrate how "classically defined" ventral and posterior structures develop in all three germ layers. We will discuss the status of our current knowledge by focusing on the African frog Xenopus laevis, although we will also gather evidence from other vertebrates, where available. In particular, genetic studies in the zebrafish and mouse have been very informative in addressing the requirement for individual genes in these processes. The amphibian system has enjoyed great interest since the early days of experimental embryology, and constitutes the best understood system in terms of early patterning signals and axis specification. We want to draw interest to the embryological origins of cells that will develop into what we have collectively termed "posterior" and "ventral" cells/tissues, and we will address the involvement of the major signaling pathways implicated in posterior/ventral fate specification. Particular emphasis is given as to how these signaling pathways are integrated during early development for the specification of posterior and ventral fates.
Collapse
Affiliation(s)
- I Muñoz-Sanjuán
- Laboratory of Vertebrate Embryology, The Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
26
|
Kumano G, Ezal C, Smith WC. Boundaries and functional domains in the animal/vegetal axis of Xenopus gastrula mesoderm. Dev Biol 2001; 236:465-77. [PMID: 11476585 DOI: 10.1006/dbio.2001.0341] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Patterning of the Xenopus gastrula marginal zone in the axis running equatorially from the Spemann organizer-the so--called "dorsal/ventral axis"--has been extensively studied. It is now evident that patterning in the animal/vegetal axis also needs to be taken into consideration. We have shown that an animal/vegetal pattern is apparent in the marginal zone by midgastrulation in the polarized expression domains of Xenopus brachyury (Xbra) and Xenopus nodal-related factor 2 (Xnr2). In this report, we have followed cells expressing Xbra in the presumptive trunk and tail at the gastrula stage, and find that they fate to presumptive somite, but not to ventrolateral mesoderm of the tailbud embryo. From this, we speculate that the boundary between the Xbra- and Xnr2-expressing cells at gastrula corresponds to a future tissue boundary. In further experiments, we show that the level of mitogen-activated protein kinase (MAPK) activation is polarized along the animal/vegetal axis, with the Xnr2-expressing cells in the vegetal marginal zone having no detectable activated MAPK. We show that inhibition of MAPK activation in Xenopus animal caps results in the conversion of Xnr2 from a dorsal mesoderm inducer to a ventral mesoderm inducer, supporting a role for Xnr2 in induction of ventral mesoderm.
Collapse
Affiliation(s)
- G Kumano
- Neuroscience Research Institute, University of California, Santa Barbara, California 93106, USA
| | | | | |
Collapse
|
27
|
Kozmik Z, Holland LZ, Schubert M, Lacalli TC, Kreslova J, Vlcek C, Holland ND. Characterization of Amphioxus AmphiVent, an evolutionarily conserved marker for chordate ventral mesoderm. Genesis 2001; 29:172-9. [PMID: 11309850 DOI: 10.1002/gene.1021] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Structure and developmental expression are described for amphioxus AmphiVent, a homolog of vertebrate Vent genes. In amphioxus, AmphiVent-expressing ventral mesoderm arises at midneurula by outgrowth from the paraxial mesoderm, but in vertebrates, Vent-expressing ventral mesoderm originates earlier, at the gastrula stage. In other embryonic tissues (nascent paraxial mesoderm, neural plate, endoderm, and tailbud), AmphiVent and its vertebrate homologs are expressed in similar spatiotemporal domains, indicating conservation of many Vent gene functions during chordate evolution. The ventral mesoderm evidently develops precociously in vertebrates because their relatively large embryos probably require an early and extensive deployment of the mesoderm-derived circulatory system. The vertebrate ventral mesoderm, in spite of its strikingly early advent, still resembles the nascent ventral mesoderm of amphioxus in expressing Vent homologs. This coincidence may indicate that Vent homologs in vertebrates and amphioxus play comparable roles in ventral mesoderm specification.
Collapse
Affiliation(s)
- Z Kozmik
- Institute for Molecular Genetics, Academy of Science of the Czech Republic, Prague
| | | | | | | | | | | | | |
Collapse
|
28
|
Davidson AJ, Zon LI. Turning mesoderm into blood: the formation of hematopoietic stem cells during embryogenesis. Curr Top Dev Biol 2001; 50:45-60. [PMID: 10948449 DOI: 10.1016/s0070-2153(00)50003-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The formation of hematopoietic stem cells during development occurs by a multistep process that begins with the induction of ventral mesoderm. This mesoderm is patterned during gastrulation by a bone morphogenetic protein (BMP) signaling pathway that is mediated, at least in part, by members of the Mix and Vent families of homeobox transcription factors. Following gastrulation, a subset of ventral mesoderm is specified to become hematopoietic stem cells. Key determinants of hematopoietic fate include the product of the zebrafish cloche gene and the basic helix-loop-helix transcription factor SCL. Future studies in Xenopus and zebrafish should reveal other critical factors in this developmental pathway.
Collapse
Affiliation(s)
- A J Davidson
- Division of Hematology/Oncology, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
29
|
Abstract
According to the three-signal model of mesoderm patterning in Xenopus, all mesoderm, with the exception of the Spemann organizer, is originally specified as ventral type, such as lateral plate and primary blood islands. It is proposed that the blood islands become restricted to the ventralmost mesoderm because they are not exposed to the BMP-inhibiting activity of the Spemann organizer. We present evidence here that, contrary to predictions of this model, the blood islands remain ventrally restricted even in the absence of Spemann organizer signaling. We further observed that inhibition of FGF signaling with a dominant negative receptor resulted in the expansion of the blood island-forming territory with a concomitant loss of somite. The requirement for FGF signaling in specifying somite versus blood island territories was observed as early as midgastrulation. The nonoverlapping expression domains of Xnr-2 and Xbra in the gastrula marginal zone appear to mark presumptive blood island and somite, respectively. Inhibition of FGF signaling with dominant negative receptor leads to an expansion of Xnr-2 expression and to a corresponding reduction in Xbra expression. On the other hand, we found no evidence that manipulation of BMP signaling, either positively or negatively, altered the expression domains of Xnr-2 and Xbra. These results suggest that FGF signaling, rather than BMP-inhibiting activity, is essential for restriction of the ventral blood islands to ventral mesoderm.
Collapse
Affiliation(s)
- G Kumano
- Department of Molecular, Cellular and Developmental Biology, University of California at Santa Barbara, Santa Barbara, California 93106, USA
| | | |
Collapse
|