1
|
Korim F, Kuricová M, Lipták T, Vilhanová Z, Eberlová L. Anomaly of the sixth cervical vertebra accompanied with atypical course of the vertebral artery in a dog. VETERINARY RECORD CASE REPORTS 2022. [DOI: 10.1002/vrc2.305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Filip Korim
- Equine Clinic University Veterinary Hospital University of Veterinary Medicine and Pharmacy in Košice Košice Slovak Republic
| | - Mária Kuricová
- Small Animal Clinic University Veterinary Hospital University of Veterinary Medicine and Pharmacy in Košice Košice Slovak Republic
| | - Tomáš Lipták
- Small Animal Clinic University Veterinary Hospital University of Veterinary Medicine and Pharmacy in Košice Košice Slovak Republic
| | - Zuzana Vilhanová
- Equine Clinic University Veterinary Hospital University of Veterinary Medicine and Pharmacy in Košice Košice Slovak Republic
| | - Lada Eberlová
- Department of Anatomy Faculty of Medicine in Pilsen Charles University Pilsen Czech Republic
| |
Collapse
|
2
|
From Bipotent Neuromesodermal Progenitors to Neural-Mesodermal Interactions during Embryonic Development. Int J Mol Sci 2021; 22:ijms22179141. [PMID: 34502050 PMCID: PMC8431582 DOI: 10.3390/ijms22179141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
To ensure the formation of a properly patterned embryo, multiple processes must operate harmoniously at sequential phases of development. This is implemented by mutual interactions between cells and tissues that together regulate the segregation and specification of cells, their growth and morphogenesis. The formation of the spinal cord and paraxial mesoderm derivatives exquisitely illustrate these processes. Following early gastrulation, while the vertebrate body elongates, a population of bipotent neuromesodermal progenitors resident in the posterior region of the embryo generate both neural and mesodermal lineages. At later stages, the somitic mesoderm regulates aspects of neural patterning and differentiation of both central and peripheral neural progenitors. Reciprocally, neural precursors influence the paraxial mesoderm to regulate somite-derived myogenesis and additional processes by distinct mechanisms. Central to this crosstalk is the activity of the axial notochord, which, via sonic hedgehog signaling, plays pivotal roles in neural, skeletal muscle and cartilage ontogeny. Here, we discuss the cellular and molecular basis underlying this complex developmental plan, with a focus on the logic of sonic hedgehog activities in the coordination of the neural-mesodermal axis.
Collapse
|
3
|
Matsutani K, Ikegami K, Aoyama H. An in vitro model of region-specific rib formation in chick axial skeleton: Intercellular interaction between somite and lateral plate cells. Mech Dev 2019; 159:103568. [PMID: 31493459 DOI: 10.1016/j.mod.2019.103568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 07/22/2019] [Accepted: 08/30/2019] [Indexed: 11/30/2022]
Abstract
The axial skeleton is divided into different regions based on its morphological features. In particular, in birds and mammals, ribs are present only in the thoracic region. The axial skeleton is derived from a series of somites. In the thoracic region of the axial skeleton, descendants of somites coherently penetrate into the somatic mesoderm to form ribs. In regions other than the thoracic, descendants of somites do not penetrate the somatic lateral plate mesoderm. We performed live-cell time-lapse imaging to investigate the difference in the migration of a somite cell after contact with the somatic lateral plate mesoderm obtained from different regions of anterior-posterior axis in vitro on cytophilic narrow paths. We found that a thoracic somite cell continues to migrate after contact with the thoracic somatic lateral plate mesoderm, whereas it ceases migration after contact with the lumbar somatic lateral plate mesoderm. This suggests that cell-cell interaction works as an important guidance cue that regulates migration of somite cells. We surmise that the thoracic somatic lateral plate mesoderm exhibits region-specific competence to allow penetration of somite cells, whereas the lumbosacral somatic lateral plate mesoderm repels somite cells by contact inhibition of locomotion. The differences in the behavior of the somatic lateral plate mesoderm toward somite cells may confirm the distinction between different regions of the axial skeleton.
Collapse
Affiliation(s)
- Kaoru Matsutani
- Department of Anatomy and Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Koji Ikegami
- Department of Anatomy and Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Hirohiko Aoyama
- Department of Anatomy and Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan; Department of Medical Science and Technology, Faculty of Health Sciences, Hiroshima International University, 555-36 Kurosegakuendai, Higashihiroshima City, Hiroshima 739-2695, Japan.
| |
Collapse
|
4
|
Mohanty S, Dahia CL. Defects in intervertebral disc and spine during development, degeneration, and pain: New research directions for disc regeneration and therapy. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 8:e343. [PMID: 30977275 DOI: 10.1002/wdev.343] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 03/11/2019] [Accepted: 03/25/2019] [Indexed: 12/12/2022]
Abstract
Intervertebral discs are cartilaginous joints present between vertebrae. The centers of the intervertebral discs consist of a gelatinous nucleus pulposus derived from the embryonic notochord. With age or injury, intervertebral discs may degenerate, causing neurological symptoms including back pain, which affects millions of people worldwide. Back pain is a multifactorial disorder, and disc degeneration is one of the primary contributing factors. Recent studies in mice have identified the key molecules involved in the formation of intervertebral discs. Several of these key molecules including sonic hedgehog and Brachyury are not only expressed by notochord during development, but are also expressed by neonatal mouse nucleus pulposus cells, and are crucial for postnatal disc maintenance. These findings suggest that intrinsic signals in each disc may maintain the nucleus pulposus microenvironment. However, since expression of these developmental signals declines with age and degeneration, disc degeneration may be related to the loss of these intrinsic signals. In addition, findings from mouse and other mammalian models have identified similarities between the patterning capabilities of the embryonic notochord and young nucleus pulposus cells, suggesting that mouse is a suitable model system to understand disc development and aging. Future research aimed at understanding the upstream regulators of these developmental signals and the modes by which they regulate disc growth and maintenance will likely provide mechanistic insights into disc growth and aging. Further, such findings will likely provide insights relevant to the development of effective therapies for treatment of back pain and reversing the disc degenerative process. This article is categorized under: Birth Defects > Organ Anomalies Vertebrate Organogenesis > Musculoskeletal and Vascular Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cells and Aging.
Collapse
Affiliation(s)
- Sarthak Mohanty
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York
| | - Chitra L Dahia
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York.,Department of Cell and Developmental Biology, Weill Cornell Medicine, Graduate School of Medical Science, New York, New York
| |
Collapse
|
5
|
Abstract
Development of the axial skeleton is a complex, stepwise process that relies on intricate signaling and coordinated cellular differentiation. Disruptions to this process can result in a myriad of skeletal malformations that range in severity. The notochord and the sclerotome are embryonic tissues that give rise to the major components of the intervertebral discs and the vertebral bodies of the spinal column. Through a number of mouse models and characterization of congenital abnormalities in human patients, various growth factors, transcription factors, and other signaling proteins have been demonstrated to have critical roles in the development of the axial skeleton. Balance between opposing growth factors as well as other environmental cues allows for cell fate specification and divergence of tissue types during development. Furthermore, characterization of progenitor cells for specific cell lineages has furthered the understanding of specific spatiotemporal cues that cells need in order to initiate and complete development of distinct tissues. Identifying specific marker genes that can distinguish between the various embryonic and mature cell types is also of importance. Clinically, understanding developmental clues can aid in the generation of therapeutics for musculoskeletal disease through the process of developmental engineering. Studies into potential stem cell therapies are based on knowledge of the normal processes that occur in the embryo, which can then be applied to stepwise tissue engineering strategies.
Collapse
Affiliation(s)
| | | | - Rosa Serra
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
6
|
Séguin CA, Chan D, Dahia CL, Gazit Z. Latest advances in intervertebral disc development and progenitor cells. JOR Spine 2018; 1:e1030. [PMID: 30687811 PMCID: PMC6338208 DOI: 10.1002/jsp2.1030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/23/2018] [Accepted: 07/26/2018] [Indexed: 12/12/2022] Open
Abstract
This paper is a concise review aiming to assemble the most relevant topics presented by the authors at ORS-Philadelphia Spine Research Society Fourth International Spine Research Symposium. It centers on the latest advances in disc development, its main structural entities, and the populating cells, with emphasis on the advances in pivotal molecular pathways responsible for forming the intervertebral discs (IVD). The objective of finding and emphasizing pathways and mechanisms that function to control tissue formation is to identify and to explore modifications occurring during normal aging, disease, and tissue repair. Thus, to comprehend that the cellular and molecular basis of tissue degeneration are crucial in the study of the dynamic interplay that includes cell-cell communication, gene regulation, and growth factors required to form a healthy and functional tissue during normal development.
Collapse
Affiliation(s)
- Cheryle A Séguin
- Schulich School of Medicine and Dentistry Bone and Joint Institute, The University of Western Ontario London ON Canada
| | - Danny Chan
- School of Biomedical Sciences LKS Faculty of Medicine, The University of Hong Kong Hong Kong China
| | - Chitra L Dahia
- Hospital for Special Surgery Weill Cornell Medical College New York New York
| | - Zulma Gazit
- Department of Surgery Regenerative Medicine Institute, Cedars-Sinai Medical Center Los Angeles California
| |
Collapse
|
7
|
Ziermann JM, Diogo R, Noden DM. Neural crest and the patterning of vertebrate craniofacial muscles. Genesis 2018; 56:e23097. [PMID: 29659153 DOI: 10.1002/dvg.23097] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/22/2018] [Accepted: 02/25/2018] [Indexed: 12/17/2022]
Abstract
Patterning of craniofacial muscles overtly begins with the activation of lineage-specific markers at precise, evolutionarily conserved locations within prechordal, lateral, and both unsegmented and somitic paraxial mesoderm populations. Although these initial programming events occur without influence of neural crest cells, the subsequent movements and differentiation stages of most head muscles are neural crest-dependent. Incorporating both descriptive and experimental studies, this review examines each stage of myogenesis up through the formation of attachments to their skeletal partners. We present the similarities among developing muscle groups, including comparisons with trunk myogenesis, but emphasize the morphogenetic processes that are unique to each group and sometimes subsets of muscles within a group. These groups include branchial (pharyngeal) arches, which encompass both those with clear homologues in all vertebrate classes and those unique to one, for example, mammalian facial muscles, and also extraocular, laryngeal, tongue, and neck muscles. The presence of several distinct processes underlying neural crest:myoblast/myocyte interactions and behaviors is not surprising, given the wide range of both quantitative and qualitative variations in craniofacial muscle organization achieved during vertebrate evolution.
Collapse
Affiliation(s)
- Janine M Ziermann
- Department of Anatomy, Howard University College of Medicine, Washington, DC
| | - Rui Diogo
- Department of Anatomy, Howard University College of Medicine, Washington, DC
| | - Drew M Noden
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| |
Collapse
|
8
|
Early development of the vertebral column. Semin Cell Dev Biol 2016; 49:83-91. [DOI: 10.1016/j.semcdb.2015.11.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 11/05/2015] [Indexed: 11/20/2022]
|
9
|
El-Magd MA, Allen S, McGonnell I, Mansour AA, Otto A, Patel K. Shh regulates chick Ebf1 gene expression in somite development. Gene 2015; 554:87-95. [DOI: 10.1016/j.gene.2014.10.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 10/09/2014] [Accepted: 10/13/2014] [Indexed: 11/16/2022]
|
10
|
El-Magd MA, Allen S, McGonnell I, Otto A, Patel K. Bmp4regulates chickEbf2andEbf3gene expression in somite development. Dev Growth Differ 2013; 55:710-22. [DOI: 10.1111/dgd.12077] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/12/2013] [Accepted: 08/13/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Mohammed A. El-Magd
- Department of Anatomy and Embryology; Faculty of Veterinary Medicine; Kafrelsheikh University; El-Geish Street Kafrelsheikh Post Box 33516 Egypt
- Department of Veterinary Basic Sciences; The Royal Veterinary College; Royal College Street Camden London NW1 0TU UK
| | - Steve Allen
- Department of Veterinary Basic Sciences; The Royal Veterinary College; Royal College Street Camden London NW1 0TU UK
| | - Imelda McGonnell
- Department of Veterinary Basic Sciences; The Royal Veterinary College; Royal College Street Camden London NW1 0TU UK
| | - Anthony Otto
- School of Biological Sciences; University of Reading; Whiteknights PO Box 228 Reading UK
| | - Ketan Patel
- School of Biological Sciences; University of Reading; Whiteknights PO Box 228 Reading UK
| |
Collapse
|
11
|
Stafford DA, Brunet LJ, Khokha MK, Economides AN, Harland RM. Cooperative activity of noggin and gremlin 1 in axial skeleton development. Development 2011; 138:1005-14. [PMID: 21303853 DOI: 10.1242/dev.051938] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Inductive signals from adjacent tissues initiate differentiation within the somite. In this study, we used mouse embryos mutant for the BMP antagonists noggin (Nog) and gremlin 1 (Grem1) to characterize the effects of BMP signaling on the specification of the sclerotome. We confirmed reduction of Pax1 and Pax9 expression in Nog mutants, but found that Nog;Grem1 double mutants completely fail to initiate sclerotome development. Furthermore, Nog mutants that also lack one allele of Grem1 exhibit a dramatic reduction in axial skeleton relative to animals mutant for Nog alone. By contrast, Pax3, Myf5 and Lbx1 expression indicates that dermomyotome induction occurs in Nog;Grem1 double mutants. Neither conditional Bmpr1a mutation nor treatment with the BMP type I receptor inhibitor dorsomorphin expands sclerotome marker expression, suggesting that BMP antagonists do not have an instructive function in sclerotome specification. Instead, we hypothesize that Nog- and Grem1-mediated inhibition of BMP is permissive for hedgehog (Hh) signal-mediated sclerotome specification. In support of this model, we found that culturing Nog;Grem1 double-mutant embryos with dorsomorphin restores sclerotome, whereas Pax1 expression in smoothened (Smo) mutants is not rescued, suggesting that inhibition of BMP is insufficient to induce sclerotome in the absence of Hh signaling. Confirming the dominant inhibitory effect of BMP signaling, Pax1 expression cannot be rescued in Nog;Grem1 double mutants by forced activation of Smo. We conclude that Nog and Grem1 cooperate to maintain a BMP signaling-free zone that is a crucial prerequisite for Hh-mediated sclerotome induction.
Collapse
Affiliation(s)
- David A Stafford
- Department of Molecular and Cell Biology and Center for Integrative Genomics, University of California, Berkeley, CA 94720, USA.
| | | | | | | | | |
Collapse
|
12
|
Zhang G. An evo-devo view on the origin of the backbone: evolutionary development of the vertebrae. Integr Comp Biol 2009; 49:178-86. [PMID: 21669856 DOI: 10.1093/icb/icp061] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Vertebral columns are a group of diverse axial structures that define the vertebrates and provide supportive, locomotive, protective, and other important functions. The embryonic origin of the first vertebral element in this subphylum, the lamprey arcualia, has remained a puzzle for more than a century although much developmental and genetic progress has been made. The comparative approach is a very powerful tool for studying vertebrate morphological variation and understanding how the novel structures were generated during evolution. Here, I first briefly describe the vertebral structures and their developmental processes in major taxa, and then analyze the most recently published data on the basal vertebrates. Finally, an ontogenetic and phylogenetic origin is proposed. The lamprey may have already evolved a sclerotome, which gave rise to arcualia ontogenetically; whole genome duplications likely promoted the establishment of sclerotomal core genetic program by gene co-options.
Collapse
Affiliation(s)
- Guangjun Zhang
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, E17-336, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
13
|
Cairns DM, Sato ME, Lee PG, Lassar AB, Zeng L. A gradient of Shh establishes mutually repressing somitic cell fates induced by Nkx3.2 and Pax3. Dev Biol 2008; 323:152-65. [PMID: 18796301 DOI: 10.1016/j.ydbio.2008.08.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 08/14/2008] [Accepted: 08/23/2008] [Indexed: 11/25/2022]
Abstract
Wnt and Sonic Hedgehog (Shh) signals are known to pattern the somite into dermomyotomal, myotomal and sclerotomal cell fates. By employing explants of presomitic mesoderm cultured with constant levels of Wnt3a conditioned medium and increasing levels of Shh, we found that differing levels of Shh signaling elicit differing responses from somitic cells: the lowest level of Shh signaling allows dermomyotomal gene expression, intermediate levels induce loss of dermomyotomal markers and activation of myogenic differentiation, and higher levels induce loss of myotomal markers and activation of sclerotomal gene expression. In addition, we have found that in the presence of high levels of Wnt signaling, instead of inducing sclerotomal markers, Shh signals act to maintain the expression of dermomyotomal and myotomal markers. One of the sclerotomal genes induced by high levels of Shh signaling is Nkx3.2. Forced expression of Nkx3.2 blocks somitic expression of the dermomyotomal marker Pax3 both in vitro and in vivo. Conversely, forced expression of Pax3 in somites can block Shh-mediated induction of sclerotomal gene expression and chondrocyte differentiation in vitro. Thus we propose that varying levels of Shh signaling act in a morphogen-like manner to elicit differing responses from somitic cells, and that Pax3 and Nkx3.2 set up mutually repressing cell fates that promote either dermomyotome/myotome or sclerotome differentiation, respectively.
Collapse
Affiliation(s)
- Dana M Cairns
- Program in Cellular, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA
| | | | | | | | | |
Collapse
|
14
|
Venters SJ, Hultner ML, Ordahl CP. Somite cell cycle analysis using somite-staging to measure intrinsic developmental time. Dev Dyn 2008; 237:377-92. [PMID: 18213588 DOI: 10.1002/dvdy.21424] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Somite stages were employed as units of intrinsic developmental time to measure cell doubling rate and other cell cycle parameters of chick forelimb level somites. Somite cell nuclei doubled over an interval corresponding to approximately 7+ somite stages (7+ ss; approximately 11 hr) and approximately 24 new primary myotome cells are born per somite stage ( approximately 16/hr). FACS analysis of DNA content in dissociated paraxial mesoderm cells indicated that slightly more than half are in G1/G0 phase of the cell cycle and that the average combined length of the S phase and G2 phase intervals is approximately 3 ss ( approximately 4.5 hr). A wavefront of increased mitotic nuclei per segment coincident with somite budding potentially reflects a surge in the number of cells entering S phase 3 ss earlier as each PSM segment becomes unresponsive to FGF signaling as it passes through the determination front.
Collapse
Affiliation(s)
- Sara J Venters
- Department of Anatomy, UCSF, HSW 1330, San Francisco, California 94143-0452, USA
| | | | | |
Collapse
|
15
|
Abstract
We describe recent advances in the understanding of patterning in the vertebrate post-cranial mesoderm. Specifically, we discuss the integration of local information into global level information that results in the overall coordination along the anterioposterior axis. Experiments related to the integration of the axial and appendicular musculoskeletal systems are considered, and examples of genetic interactions between these systems are outlined. We emphasize the utility of the terms primaxial and abaxial as an aid to understanding development of the vertebrate musculoskeletal system, and hypothesize that the lateral somitic frontier is a catalyst for evolutionary change.
Collapse
|
16
|
Gerhart J, Neely C, Elder J, Pfautz J, Perlman J, Narciso L, Linask KK, Knudsen K, George-Weinstein M. Cells that express MyoD mRNA in the epiblast are stably committed to the skeletal muscle lineage. ACTA ACUST UNITED AC 2007; 178:649-60. [PMID: 17698608 PMCID: PMC2064471 DOI: 10.1083/jcb.200703060] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The epiblast of the chick embryo contains cells that express MyoD mRNA but not MyoD protein. We investigated whether MyoD-positive (MyoDpos) epiblast cells are stably committed to the skeletal muscle lineage or whether their fate can be altered in different environments. A small number of MyoDpos epiblast cells were tracked into the heart and nervous system. In these locations, they expressed MyoD mRNA and some synthesized MyoD protein. No MyoDpos epiblast cells differentiated into cardiac muscle or neurons. Similar results were obtained when MyoDpos cells were isolated from the epiblast and microinjected into the precardiac mesoderm or neural plate. In contrast, epiblast cells lacking MyoD differentiated according to their environment. These results demonstrate that the epiblast contains both multipotent cells and a subpopulation of cells that are stably committed to the skeletal muscle lineage before the onset of gastrulation. Stable programming in the epiblast may ensure that MyoDpos cells express similar signaling molecules in a variety of environments.
Collapse
Affiliation(s)
- Jacquelyn Gerhart
- Center for Chronic Disorders of Aging, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Yusuf F, Brand-Saberi B. The eventful somite: patterning, fate determination and cell division in the somite. ACTA ACUST UNITED AC 2006; 211 Suppl 1:21-30. [PMID: 17024302 DOI: 10.1007/s00429-006-0119-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 08/18/2006] [Indexed: 11/29/2022]
Abstract
The segmental somites not only determine the vertebrate body plan, but also represent turntables of cell fates. The somite is initially naive in terms of its fate restriction as shown by grafting and rotation experiments whereby ectopically grafted or rotated tissue of newly formed somites yielded the same pattern of normal derivatives. Somitic derivatives are determined by local signalling between adjacent embryonic tissues, in particular the neural tube, notochord, surface ectoderm and the somitic compartments themselves. The correct spatio-temporal specification of the deriving tissues, skeletal muscle, cartilage, endothelia and connective tissue is achieved by a sequence of morphogenetic changes of the paraxial mesoderm, eventually leading to the three transitory somitic compartments: dermomyotome, myotome and sclerotome. These structures are specified along a double gradient from dorsal to ventral and from medial to lateral. The establishment and controlled disruption of the epithelial state of the somitic compartments are crucial for development. In this article, we give a synopsis of some of the most important signalling events involved in somite patterning and cell fate decisions. Particular emphasis has been laid on the issue of epithelio-mesenchymal transition and different types of cell division in the somite.
Collapse
Affiliation(s)
- Faisal Yusuf
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, University of Freiburg, Albertstrasse 17, 79104, Freiburg, Germany.
| | | |
Collapse
|
18
|
Abstract
The embryonic head is populated by two robust mesenchymal populations, paraxial mesoderm and neural crest cells. Although the developmental histories of each are distinct and separate, they quickly establish intimate relations that are variably important for the histogenesis and morphogenesis of musculoskeletal components of the calvaria, midface and branchial regions. This review will focus first on the genesis and organization within nascent mesodermal and crest populations, emphasizing interactions that probably initiate or augment the establishment of lineages within each. The principal goal is an analysis of the interactions between crest and mesoderm populations, from their first contacts through their concerted movements into peripheral domains, particularly the branchial arches, and continuing to stages at which both the differentiation and the integrated three-dimensional assembly of vascular, connective and muscular tissues is evident. Current views on unresolved or contentious issues, including the relevance of head somitomeres, the processes by which crest cells change locations and constancy of cell-cell relations at the crest-mesoderm interface, are addressed.
Collapse
Affiliation(s)
- Drew M Noden
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca 14853, USA.
| | | |
Collapse
|
19
|
Galli LM, Willert K, Nusse R, Yablonka-Reuveni Z, Nohno T, Denetclaw W, Burrus LW. A proliferative role for Wnt-3a in chick somites. Dev Biol 2004; 269:489-504. [PMID: 15110715 DOI: 10.1016/j.ydbio.2004.01.041] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Revised: 01/23/2004] [Accepted: 01/30/2004] [Indexed: 11/30/2022]
Abstract
The proper patterning of somites to give rise to sclerotome, dermomyotome, and myotome involves the coordination of many different cellular processes, including lineage specification, cell proliferation, cell death, and differentiation, by intercellular signals. One such family of secreted signaling proteins known to influence somite patterning is the Wnt family. Although the participation of Wnt-3a in the patterning of dorsal structures in the somite is well established, no clear consensus has emerged about the cellular processes that are governed by Wnt-3a in the somite. The recent demonstration that Wnt-3a has a proliferative role in the neural tube [Development 129 (2002) 2087] suggested that Wnt-3a might also act to regulate proliferation in somites. To test this hypothesis, we first analyzed the effects of Wnt-3a on segmental plate and somite explants (from Hamburger and Hamilton stage 10 chick embryos) grown in culture. These studies indicate that Wnt-3a is capable of maintaining and/or inducing expression of both Pax-3 and Pax-7, transcription factors that have been implicated in proliferation. To directly test for a role in proliferation, explants were immunostained with antibodies against phospho-histone H3. Explants treated with Wnt-3a show an increase in the percentage of cells expressing phospho-histone H3 as compared to controls. To test the proliferative effect of Wnt-3a in vivo, we ectopically expressed Wnt-3a in chick neural tubes via electroporation. Consistent with previous studies, ectopic expression of Wnt-3a in vivo results in a mediolateral expansion of the dermomyotome and myotome. We now show that proliferation of dorsal/dermomyotomal cells is significantly enhanced by ectopic Wnt-3a. Collectively, our explant and in vivo studies indicate that an increase in proliferation plays an important role in the expansion of the dermomyotome and myotome in Wnt-3a-treated embryos. Furthermore, our results demonstrate that small changes in proliferation can dramatically influence patterning and morphogenesis.
Collapse
Affiliation(s)
- Lisa M Galli
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Bladt F, Aippersbach E, Gelkop S, Strasser GA, Nash P, Tafuri A, Gertler FB, Pawson T. The murine Nck SH2/SH3 adaptors are important for the development of mesoderm-derived embryonic structures and for regulating the cellular actin network. Mol Cell Biol 2003; 23:4586-97. [PMID: 12808099 PMCID: PMC164855 DOI: 10.1128/mcb.23.13.4586-4597.2003] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2002] [Revised: 01/14/2003] [Accepted: 03/24/2003] [Indexed: 01/02/2023] Open
Abstract
Mammalian Nck1 and Nck2 are closely related adaptor proteins that possess three SH3 domains, followed by an SH2 domain, and are implicated in coupling phosphotyrosine signals to polypeptides that regulate the actin cytoskeleton. However, the in vivo functions of Nck1 and Nck2 have not been defined. We have mutated the murine Nck1 and Nck2 genes and incorporated beta-galactosidase reporters into the mutant loci. In mouse embryos, the two Nck genes have broad and overlapping expression patterns. They are functionally redundant in the sense that mice deficient for either Nck1 or Nck2 are viable, whereas inactivation of both Nck1 and Nck2 results in profound defects in mesoderm-derived notochord and embryonic lethality at embryonic day 9.5. Fibroblast cell lines derived from Nck1(-/-) Nck2(-/-) embryos have defects in cell motility and in the organization of the lamellipodial actin network. These data suggest that the Nck SH2/SH3 adaptors have important functions in the development of mesodermal structures during embryogenesis, potentially linked to a role in cell movement and cytoskeletal organization.
Collapse
Affiliation(s)
- Friedhelm Bladt
- Programme in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Marcelle C, Lesbros C, Linker C. Somite patterning: a few more pieces of the puzzle. Results Probl Cell Differ 2003; 38:81-108. [PMID: 12132400 DOI: 10.1007/978-3-540-45686-5_4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Christophe Marcelle
- University Aix-Marseille II, LGPD, CNRS UMR 6545, Developmental Biology Institute of Marseille, Campus de Luminy, Case 907, 13288 Marseille, France
| | | | | |
Collapse
|
22
|
Abstract
Research in the past year has added to our understanding of the signalling systems that specify myogenic identity in the embryo and of the regulation and roles of MyoD family members. New insights into the movement of muscle precursor cells include the demonstration that Lbx1 is essential for their migration from the somite to some but not all sites of muscle formation elsewhere. Later in development, ras as well as calcineurin signalling is now implicated in the definition of slow versus fast fibre types. The myogenic identity of precursor cells in the adult depends on Pax7, the orthologue of Pax3 which is required for early myogenesis; this finding is of major importance for muscle regeneration and the active field of stem cell research.
Collapse
Affiliation(s)
- M Buckingham
- Unité de Génétique Moléculaire du Développement, CNRS URA1947, Département de Biologie Moléculaire, Institut Pasteur, 25 rue du Dr.Roux, 75724 Cedex 15, Paris, France.
| |
Collapse
|
23
|
Ordahl CP, Berdougo E, Venters SJ, Denetclaw WF. The dermomyotome dorsomedial lip drives growth and morphogenesis of both the primary myotome and dermomyotome epithelium. Development 2001; 128:1731-44. [PMID: 11311155 DOI: 10.1242/dev.128.10.1731] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cellular and molecular mechanisms that govern early muscle patterning in vertebrate development are unknown. The earliest skeletal muscle to organize, the primary myotome of the epaxial domain, is a thin sheet of muscle tissue that expands in each somite segment in a lateral-to-medial direction in concert with the overlying dermomyotome epithelium. Several mutually contradictory models have been proposed to explain how myotome precursor cells, which are known to reside within the dermomyotome, translocate to the subjacent myotome layer to form this first segmented muscle tissue of the body. Using experimental embryology to discriminate among these models, we show here that ablation of the dorsomedial lip (DML) of the dermomyotome epithelium blocks further primary myotome growth while ablation of other dermomyotome regions does not. Myotome growth and morphogenesis can be restored in a DML-ablated somite of a host embryo by transplantation of a second DML from a donor embryo. Chick-quail marking experiments show that new myotome cells in such recombinant somites are derived from the donor DML and that cells from other regions of the somite are neither present nor required. In addition to the myotome, the transplanted DML also gives rise to the dermomyotome epithelium overlying the new myotome growth region and from which the mesenchymal dermatome will later emerge. These results demonstrate that the DML is a cellular growth engine that is both necessary and sufficient to drive the growth and morphogenesis of the primary myotome and simultaneously drive that of the dermomyotome, an epithelium containing muscle, dermis and possibly other potentialities.
Collapse
Affiliation(s)
- C P Ordahl
- Department of Anatomy and Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94143, USA.
| | | | | | | |
Collapse
|
24
|
Denetclaw WF, Berdougo E, Venters SJ, Ordahl CP. Morphogenetic cell movements in the middle region of the dermomyotome dorsomedial lip associated with patterning and growth of the primary epaxial myotome. Development 2001; 128:1745-55. [PMID: 11311156 DOI: 10.1242/dev.128.10.1745] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The morphogenetic cell movements responsible for growth and morphogenesis in vertebrate embryos are poorly understood. Myotome precursor cells undergo myotomal translocation; a key morphogenetic cell movement whereby myotomal precursor cells leave the dermomyotome epithelium and enter the subjacent myotome layer where myogenic differentiation ensues. The precursors to the embryonic epaxial myotome are concentrated in the dorsomedial lip (DML) of the somite dermomyotome (W. F. Denetclaw, B. Christ and C. P. Ordahl (1997) Development 124, 1601–1610), a finding recently substantiated through surgical transplantation studies (C. P. Ordahl, E. Berdougo, S. J. Venters and W. F. Denetclaw, Jr (2001) Development 128, 1731–1744). Confocal microscopy was used here to analyze the location and pattern of myotome cells whose precursors had earlier been labeled by fluorescent dye injection into the middle region of the DML, a site that maximizes the potential to discriminate among experimental outcomes. Double-dye injection experiments conducted at this site demonstrate that cells fated to form myotome do not involute around the recurved epithelium of the DML but rather are displaced laterally where they transiently intermingle with cells fated to enter the central epithelial sheet region of the dermomyotome. Time- and position-dependent labeling experiments demonstrated that myotome precursor cells translocate directly from the middle region of the DML without prior intra-epithelial ‘translational’ movements of precursor cells to either the cranial or caudal lips of the dermomyotome epithelium, nor were any such translational movements evident in these experiments. The morphogenetic cell movements demonstrated here to be involved in the directional growth and segmental patterning of the myotome and dermomyotome bear interesting similarities with those of other morphogenetic systems.
Collapse
Affiliation(s)
- W F Denetclaw
- Department of Anatomy and Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94143, USA.
| | | | | | | |
Collapse
|
25
|
Kiefer JC, Hauschka SD. Myf-5 is transiently expressed in nonmuscle mesoderm and exhibits dynamic regional changes within the presegmented mesoderm and somites I-IV. Dev Biol 2001; 232:77-90. [PMID: 11254349 DOI: 10.1006/dbio.2000.0114] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myf-5 is one of four myogenic regulatory factors that play important roles in skeletal muscle development. This study provides detailed analysis of Myf-5 expression during early chick development using an in situ hybridization technique that has been optimized to detect low level Myf-5 transcripts. This facilitated detection of heretofore unrecognized dynamic changes in Myf-5 expression patterns. Myf-5 expression is first detected at stage 3 in the primitive streak and exhibits transient low-level expression in nonmyogenic mesoderm. Myf-5 is later expressed in the presegmented mesoderm (psm) in a reiterating pattern that is coordinated with somitogenesis and also colocalizes with the Notch ligand C-Delta-1. In somites (S) I-IV, Myf-5 expression exhibits dynamic regional changes, and in somites rostral to S IV, Myf-5 is expressed at higher levels in muscle precursors in the dorsomedial somite. Semiquantitative comparison of Myf-5 mRNA levels in the psm and in myotome-containing somites indicates about a 10-fold difference. The expression pattern of Myf-5 differs from that of MyoD, which we find is expressed only in the dorsomedial somite. These data reveal that Myf-5 is expressed at low levels several stages before muscle differentiation occurs and suggest that only a subset of cells that initially express Myf-5 will upregulate its expression and differentiate as muscle.
Collapse
Affiliation(s)
- J C Kiefer
- Department of Biochemistry, University of Washington, Seattle, Washington, 98195, USA
| | | |
Collapse
|
26
|
Abstract
A full understanding of somite development requires knowledge of the molecular genetic pathways for cell determination as well as the cellular behaviors that underlie segmentation, somite epithelialization, and somite patterning. The zebrafish has long been recognized as an ideal organism for cellular and histological studies of somite patterning. In recent years, genetics has proven to be a very powerful complementary approach to these embryological studies, as genetic screens for zebrafish mutants defective in somitogenesis have identified over 50 genes that are necessary for normal somite development. Zebrafish is thus an ideal system in which to analyze the role of specific gene products in regulating the cell behaviors that underlie somite development. We review what is currently known about zebrafish somite development and compare it where appropriate to somite development in chick and mouse. We discuss the processes of segmentation and somite epithelialization, and then review the patterning of cell types within the somite. We show directly, for the first time, that muscle cell and sclerotome migrations occur at the same time. We end with a look at the many questions about somitogenesis that are still unanswered.
Collapse
Affiliation(s)
- H L Stickney
- Biology Department, Wesleyan University, Middletown, Connecticut 06459, USA
| | | | | |
Collapse
|