1
|
Barlow LA. Development of ectodermal and endodermal taste buds. Dev Biol 2025; 518:20-27. [PMID: 39486632 PMCID: PMC11703678 DOI: 10.1016/j.ydbio.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/20/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
The sense of taste is mediated primarily by taste buds on the tongue. These multicellular sensory organs are induced, patterned and become innervated during embryogenesis such that a functional taste system is present at birth when animals begin to feed. While taste buds have been considered ectodermal appendages, this is only partly accurate as only fungiform taste buds in the anterior tongue arise from the ectoderm. Taste buds found in the posterior tongue actually derive from endoderm. Nonetheless, both anterior and posterior buds are functionally similar, despite their disparate embryonic origins. In this review, I compare the development of ectodermal vs endodermal taste buds, highlighting the many differences in the cellular and molecular genetic mechanisms governing their formation.
Collapse
Affiliation(s)
- Linda A Barlow
- Department of Cell and Developmental Biology, Rocky Mountain Taste and Smell Center, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
2
|
Barlow LA. The sense of taste: Development, regeneration, and dysfunction. WIREs Mech Dis 2022; 14:e1547. [PMID: 34850604 PMCID: PMC11152580 DOI: 10.1002/wsbm.1547] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/28/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022]
Abstract
Gustation or the sense of taste is a primary sense, which functions as a gatekeeper for substances that enter the body. Animals, including humans, ingest foods that contain appetitive taste stimuli, including those that have sweet, moderately salty and umami (glutamate) components, and tend to avoid bitter-tasting items, as many bitter compounds are toxic. Taste is mediated by clusters of heterogeneous taste receptors cells (TRCs) organized as taste buds on the tongue, and these convey taste information from the oral cavity to higher order brain centers via the gustatory sensory neurons of the seventh and ninth cranial ganglia. One remarkable aspect of taste is that taste perception is mostly uninterrupted throughout life yet TRCs within buds are constantly renewed; every 1-2 months all taste cells have been steadily replaced. In the past decades we have learned a substantial amount about the cellular and molecular regulation of taste bud cell renewal, and how taste buds are initially established during embryogenesis. Here I review more recent findings pertaining to taste development and regeneration, as well as discuss potential mechanisms underlying taste dysfunction that often occurs with disease or its treatment. This article is categorized under: Infectious Diseases > Stem Cells and Development Cancer > Stem Cells and Development Neurological Diseases > Stem Cells and Development.
Collapse
Affiliation(s)
- Linda A Barlow
- Department of Cell & Developmental Biology, Graduate Program in Cell Biology, Stem Cells & Development, and the Rocky Mountain Taste & Smell Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
3
|
Chen J, Jacox LA, Saldanha F, Sive H. Mouth development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 6. [PMID: 28514120 PMCID: PMC5574021 DOI: 10.1002/wdev.275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/28/2017] [Accepted: 04/03/2017] [Indexed: 12/12/2022]
Abstract
A mouth is present in all animals, and comprises an opening from the outside into the oral cavity and the beginnings of the digestive tract to allow eating. This review focuses on the earliest steps in mouth formation. In the first half, we conclude that the mouth arose once during evolution. In all animals, the mouth forms from ectoderm and endoderm. A direct association of oral ectoderm and digestive endoderm is present even in triploblastic animals, and in chordates, this region is known as the extreme anterior domain (EAD). Further support for a single origin of the mouth is a conserved set of genes that form a 'mouth gene program' including foxA and otx2. In the second half of this review, we discuss steps involved in vertebrate mouth formation, using the frog Xenopus as a model. The vertebrate mouth derives from oral ectoderm from the anterior neural ridge, pharyngeal endoderm and cranial neural crest (NC). Vertebrates form a mouth by breaking through the body covering in a precise sequence including specification of EAD ectoderm and endoderm as well as NC, formation of a 'pre-mouth array,' basement membrane dissolution, stomodeum formation, and buccopharyngeal membrane perforation. In Xenopus, the EAD is also a craniofacial organizer that guides NC, while reciprocally, the NC signals to the EAD to elicit its morphogenesis into a pre-mouth array. Human mouth anomalies are prevalent and are affected by genetic and environmental factors, with understanding guided in part by use of animal models. WIREs Dev Biol 2017, 6:e275. doi: 10.1002/wdev.275 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Justin Chen
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Laura A Jacox
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.,Harvard-MIT Health Sciences and Technology Program, Cambridge, MA, USA.,Harvard School of Dental Medicine, Boston, MA, USA
| | | | - Hazel Sive
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
4
|
Abstract
Taste is one of the fundamental senses, and it is essential for our ability to ingest nutritious substances and to detect and avoid potentially toxic ones. Taste buds, which are clusters of neuroepithelial receptor cells, are housed in highly organized structures called taste papillae in the oral cavity. Whereas the overall structure of the taste periphery is conserved in almost all vertebrates examined to date, the anatomical, histological, and cell biological, as well as potentially the molecular details of taste buds in the oral cavity are diverse across species and even among individuals. In mammals, several types of gustatory papillae reside on the tongue in highly ordered arrangements, and the patterning and distribution of the mature papillae depend on coordinated molecular events in embryogenesis. In this review, we highlight new findings in the field of taste development, including how taste buds are patterned and how taste cell fate is regulated. We discuss whether a specialized taste bud stem cell population exists and how extrinsic signals can define which cell lineages are generated. We also address the question of whether molecular regulation of taste cell renewal is analogous to that of taste bud development. Finally, we conclude with suggestions for future directions, including the potential influence of the maternal diet and maternal health on the sense of taste in utero.
Collapse
Affiliation(s)
- Linda A Barlow
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA; Graduate Program in Cell Biology, Stem Cells and Development, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA; Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA.
| | - Ophir D Klein
- Departments of Orofacial Sciences and Pediatrics, University of California San Francisco, San Francisco, California, USA; Program in Craniofacial and Mesenchymal Biology, University of California San Francisco, San Francisco, California, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
5
|
Abstract
Taste buds are found in a distributed array on the tongue surface, and are innervated by cranial nerves that convey taste information to the brain. For nearly a century, taste buds were thought to be induced by nerves late in embryonic development. However, this view has shifted dramatically. A host of studies now indicate that taste bud development is initiated and proceeds via processes that are nerve-independent, occur long before birth, and governed by cellular and molecular mechanisms intrinsic to the developing tongue. Here we review the state of our understanding of the molecular and cellular regulation of taste bud development, incorporating important new data obtained through the use of two powerful genetic systems, mouse and zebrafish.
Collapse
|
6
|
Yamamoto Y, Byerly MS, Jackman WR, Jeffery WR. Pleiotropic functions of embryonic sonic hedgehog expression link jaw and taste bud amplification with eye loss during cavefish evolution. Dev Biol 2009; 330:200-11. [PMID: 19285488 DOI: 10.1016/j.ydbio.2009.03.003] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 02/26/2009] [Accepted: 03/04/2009] [Indexed: 12/22/2022]
Abstract
This study addresses the role of sonic hedgehog (shh) in increasing oral-pharyngeal constructive traits (jaws and taste buds) at the expense of eyes in the blind cavefish Astyanax mexicanus. In cavefish embryos, eye primordia degenerate under the influence of hyperactive Shh signaling. In concert, cavefish show amplified jaw size and taste bud numbers as part of a change in feeding behavior. To determine whether pleiotropic effects of hyperactive Shh signaling link these regressive and constructive traits, shh expression was compared during late development of the surface-dwelling (surface fish) and cave-dwelling (cavefish) forms of Astyanax. After an initial expansion along the midline of early embryos, shh was elevated in the oral-pharyngeal region in cavefish and later was confined to taste buds. The results of shh inhibition and overexpression experiments indicate that Shh signaling has an important role in oral and taste bud development. Conditional overexpression of an injected shh transgene at specific times in development showed that taste bud amplification and eye degeneration are sensitive to shh overexpression during the same early developmental period, although taste buds are not formed until much later. Genetic crosses between cavefish and surface fish revealed an inverse relationship between eye size and jaw size/taste bud number, supporting a link between oral-pharyngeal constructive traits and eye degeneration. The results suggest that hyperactive Shh signaling increases oral and taste bud amplification in cavefish at the expense of eyes. Therefore, selection for constructive oral-pharyngeal traits may be responsible for eye loss during cavefish evolution via pleiotropic function of the Shh signaling pathway.
Collapse
Affiliation(s)
- Yoshiyuki Yamamoto
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | | | | | |
Collapse
|
7
|
Matsushita S, Urase K, Komatsu A, Scotting PJ, Kuroiwa A, Yasugi S. Foregut endoderm is specified early in avian development through signal(s) emanating from Hensen's node or its derivatives. Mech Dev 2008; 125:377-95. [PMID: 18374547 DOI: 10.1016/j.mod.2008.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Revised: 02/13/2008] [Accepted: 02/13/2008] [Indexed: 12/21/2022]
Abstract
In this study, the initial specification of foregut endoderm in the chick embryo was analyzed. A fate map constructed for the area pellucida endoderm at definitive streak-stage showed centrally-located presumptive cells of foregut-derived organs around Hensen's node. Intracoelomic cultivation of the area pellucida endoderm at this stage combined with somatic mesoderm resulted in the differentiation predominantly into intestinal epithelium, suggesting that this endoderm may not yet be regionally specified. In vitro cultivation of this endoderm for 1-1.5 day combined with Hensen's node or its derivatives but not with other embryonic structures/tissues elicited endodermal expression of cSox2 but not of cHoxb9, which is characteristic of specified foregut endoderm. When the anteriormost or posteriormost part of the area pellucida endoderm at this stage, whose fate is extraembryonic, was combined with Hensen's node or its derivatives for 1 day, then enwrapped with somatic mesoderm and cultivated for a long period intracoelomically, differentiation of various foregut organ epithelia was observed. Such epithelia never appeared in the endoderm associated with other embryonic structures/tissues and cultured similarly. Thus, Hensen's node and its derivatives that lie centrally in the presumptive endodermal area of the foregut are likely to play an important role in the initial specification of the foregut. Chordin-expressing COS cells or noggin-producing CHO cells transplanted into the anteriormost area pellucida of the definitve streak-stage embryo could induce endodermal expression of cSox2 but not of cHoxb9, suggesting that chordin and noggin that emanate from Hensen's node and its derivatives, may be involved in this process.
Collapse
Affiliation(s)
- Susumu Matsushita
- Department of Biology, School of Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan.
| | | | | | | | | | | |
Collapse
|
8
|
Krimm R, Barlow L. Development of the Taste System. THE SENSES: A COMPREHENSIVE REFERENCE 2008:157-181. [DOI: 10.1016/b978-012370880-9.00076-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Gresens J. An introduction to the Mexican axolotl (Ambystoma mexicanum). Lab Anim (NY) 2004; 33:41-7. [PMID: 15457201 DOI: 10.1038/laban1004-41] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2003] [Accepted: 06/15/2004] [Indexed: 11/08/2022]
Abstract
A number of unusual traits, including a remarkable capacity for wound healing and limb regeneration, make the axolotl an interesting animal model. The author provides an overview of axolotl care and use in biomedical research.
Collapse
Affiliation(s)
- Jill Gresens
- Indiana University Axolotl Colony, Department of Biology, Jordan Hall 142, 1001 E. Third St., Bloomington, IN 47405, USA.
| |
Collapse
|
10
|
Parker MA, Bell ML, Barlow LA. Cell contact-dependent mechanisms specify taste bud pattern during a critical period early in embryonic development. Dev Dyn 2004; 230:630-42. [PMID: 15254897 DOI: 10.1002/dvdy.20086] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
After gastrulation, the pharyngeal endoderm is specified to give rise to taste receptor organs without further signaling from other embryonic tissues. We hypothesized that intercellular signaling might be responsible for the specification of taste buds. To test if and when this signaling was occurring, intercellular contacts were transiently disrupted in cultures of pharyngeal endoderm from axolotl embryos, and the number, size, and distribution of taste buds analyzed. Disruption of cell contacts at progressive time points, from neurula to late tail bud stages, revealed a critical period, during mid-tail bud stages, when disruption of cell contacts resulted in a significant increase in taste bud number and size. The spatial distribution of taste buds was also altered; taste buds were more clustered in explants disrupted during the critical period. These effects were not due to general alterations in mitosis and apoptosis. Rather, at least three aspects of taste bud patterning, i.e., number, size, and distribution, are governed by mechanisms dependent on normal cell contacts during a concise time window. Furthermore, our findings are consistent with specification of taste buds by means of lateral inhibitory signaling, which we hypothesize results from cell contact-dependent or short-range diffusible signals.
Collapse
Affiliation(s)
- Mark A Parker
- Department of Cell and Developmental Biology and Rocky Mountain Taste and Smell Center, University of Colorado Health Sciences Center, Denver, 80262, USA
| | | | | |
Collapse
|
11
|
Hino J, Nishimatsu SI, Nagai T, Matsuo H, Kangawa K, Nohno T. Coordination of BMP-3b and cerberus is required for head formation of Xenopus embryos. Dev Biol 2003; 260:138-57. [PMID: 12885561 DOI: 10.1016/s0012-1606(03)00223-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Bone morphogenetic proteins (BMPs) and their antagonists are involved in the axial patterning of vertebrate embryos. We report that both BMP-3b and BMP-3 dorsalize Xenopus embryos, but act as dissimilar antagonists within the BMP family. BMP-3b injected into Xenopus embryos triggered secondary head formation in an autonomous manner, whereas BMP-3 induced aberrant tail formation. At the molecular level, BMP-3b antagonized nodal-like proteins and ventralizing BMPs, whereas BMP-3 antagonized only the latter. These differences are due to divergence of their pro-domains. Less BMP-3b than BMP-3 precursor is proteolytically processed in embryos. BMP-3b protein associated with a monomeric form of Xnrl, a nodal-like protein, whereas BMP-3 did not. These molecular features are consistent with their expression profiles during Xenopus development. XBMP-3b is expressed in the prechordal plate, while xBMP-3 is expressed in the notochord. Using antisense morpholino oligonucleotides, we found that the depletion of both xBMP-3b and cerberus, a head inducer, caused headless Xenopus embryos, whereas the depletion of both xBMP-3 and cerberus affected the size of the somite. These results revealed that xBMP-3b and cerberus are essential for head formation regulated by the Spemann organizer, and that xBMP-3b and perhaps xBMP-3 are involved in the axial patterning of Xenopus embryos.
Collapse
Affiliation(s)
- Jun Hino
- Department of Biochemistry, National Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Bishop KM, Garel S, Nakagawa Y, Rubenstein JLR, O'Leary DDM. Emx1 and Emx2 cooperate to regulate cortical size, lamination, neuronal differentiation, development of cortical efferents, and thalamocortical pathfinding. J Comp Neurol 2003; 457:345-60. [PMID: 12561075 DOI: 10.1002/cne.10549] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The homeobox transcription factors Emx1 and Emx2 are expressed in overlapping patterns that include cortical progenitors in the dorsal telencephalic neuroepithelium. We have addressed cooperation of Emx1 and Emx2 in cortical development by comparing phenotypes in Emx1; Emx2 double mutant mice with wild-type and Emx1 and Emx2 single mutants. Emx double mutant cortex is greatly reduced compared with wild types and Emx single mutants; the hippocampus and dentate gyrus are absent, and growth and lamination of the olfactory bulbs are defective. Cell proliferation and death are relatively normal early in cortical neurogenesis, suggesting that hypoplasia of the double mutant cortex is primarily due to earlier patterning defects. Expression of cortical markers persists in the reduced double mutant neocortex, but the laminar patterns exhibited are less sharp than normal, consistent with deficient cytoarchitecture, probably due in part to reduced numbers of preplate and Reelin-positive Cajal-Retzius neurons. Subplate neurons also exhibit abnormal differentiation in double mutants. Cortical efferent axons fail to exit the double mutant cortex, and TCAs pass through the striatum and approach the cortex but do not enter it. This TCA pathfinding defect appears to be non-cell autonomous and supports the hypothesis that cortical efferents are required scaffolds to guide TCAs into cortex. In double mutants, some TCAs fail to turn into ventral telencephalon and take an aberrant ventral trajectory; this pathfinding defect correlates with an Emx2 expression domain in ventral telencephalon. The more severe phenotypes in Emx double mutants suggest that Emx1 and Emx2 cooperate to regulate multiple features of cortical development.
Collapse
Affiliation(s)
- Kathie M Bishop
- Molecular Neurobiology Lab, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|