1
|
Maltabe VA, Melidoni AN, Beis D, Kokkinopoulos I, Paschalidis N, Kouklis P. VE-CADHERIN is expressed transiently in early ISL1 + cardiovascular progenitor cells and facilitates cardiac differentiation. Stem Cell Reports 2023; 18:1827-1840. [PMID: 37541259 PMCID: PMC10545488 DOI: 10.1016/j.stemcr.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 08/06/2023] Open
Abstract
Adherens junctions (AJs) provide adhesive properties through cadherins and associated cytoplasmic catenins and participate in morphogenetic processes. We examined AJs formed between ISL1+ cardiovascular progenitor cells during differentiation of embryonic stem cells (ESCs) in vitro and in mouse embryogenesis in vivo. We found that, in addition to N-CADHERIN, a percentage of ISL1+ cells transiently formed vascular endothelial (VE)-CADHERIN-mediated AJs during in vitro differentiation on days 4 and 5, and the same pattern was observed in vivo. Fluorescence-activated cell sorting (FACS) analysis extended morphological data showing that VE-CADHERIN+/ISL1+ cells constitute a significant percentage of cardiac progenitors on days 4 and 5. The VE-CADHERIN+/ISL1+ cell population represented one-third of the emerging FLK1+/PDGFRa+ cardiac progenitor cells (CPCs) for a restricted time window (days 4-6). Ablation of VE-CADHERIN during ESC differentiation results in severe inhibition of cardiac differentiation. Disruption of all classic cadherins in the VE-CADHERIN+ population via a cadherin dominant-negative mutant's expression resulted in a dramatic decrease in the ISL1+ population and inhibition of cardiac differentiation.
Collapse
Affiliation(s)
- Violetta A Maltabe
- Laboratory of Biology, Department of Medicine, University of Ioannina, Ioannina, Greece; Division of Biomedical Research, Foundation for Research and Technology, Institute of Molecular Biology and Biotechnology, Ioannina, Greece
| | - Anna N Melidoni
- Laboratory of Biology, Department of Medicine, University of Ioannina, Ioannina, Greece
| | - Dimitris Beis
- Developmental Biology, Center for Experimental Surgery Clinical and Translational Research, Biomedical Research Foundation Academy of Athens (BRFAA), 11527 Athens, Greece; Laboratory of Biochemistry, Department of Medicine, University of Ioannina, Ioannina, Greece
| | - Ioannis Kokkinopoulos
- Developmental Biology and Immunobiology Laboratories, Center for Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Nikolaos Paschalidis
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece
| | - Panos Kouklis
- Laboratory of Biology, Department of Medicine, University of Ioannina, Ioannina, Greece; Division of Biomedical Research, Foundation for Research and Technology, Institute of Molecular Biology and Biotechnology, Ioannina, Greece.
| |
Collapse
|
2
|
Bishop D, Schwarz Q, Wiszniak S. Endothelial-derived angiocrine factors as instructors of embryonic development. Front Cell Dev Biol 2023; 11:1172114. [PMID: 37457293 PMCID: PMC10339107 DOI: 10.3389/fcell.2023.1172114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Blood vessels are well-known to play roles in organ development and repair, primarily owing to their fundamental function in delivering oxygen and nutrients to tissues to promote their growth and homeostasis. Endothelial cells however are not merely passive conduits for carrying blood. There is now evidence that endothelial cells of the vasculature actively regulate tissue-specific development, morphogenesis and organ function, as well as playing roles in disease and cancer. Angiocrine factors are growth factors, cytokines, signaling molecules or other regulators produced directly from endothelial cells to instruct a diverse range of signaling outcomes in the cellular microenvironment, and are critical mediators of the vascular control of organ function. The roles of angiocrine signaling are only beginning to be uncovered in diverse fields such as homeostasis, regeneration, organogenesis, stem-cell maintenance, cell differentiation and tumour growth. While in some cases the specific angiocrine factor involved in these processes has been identified, in many cases the molecular identity of the angiocrine factor(s) remain to be discovered, even though the importance of angiocrine signaling has been implicated. In this review, we will specifically focus on roles for endothelial-derived angiocrine signaling in instructing tissue morphogenesis and organogenesis during embryonic and perinatal development.
Collapse
|
3
|
László ZI, Lele Z. Flying under the radar: CDH2 (N-cadherin), an important hub molecule in neurodevelopmental and neurodegenerative diseases. Front Neurosci 2022; 16:972059. [PMID: 36213737 PMCID: PMC9539934 DOI: 10.3389/fnins.2022.972059] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/31/2022] [Indexed: 12/03/2022] Open
Abstract
CDH2 belongs to the classic cadherin family of Ca2+-dependent cell adhesion molecules with a meticulously described dual role in cell adhesion and β-catenin signaling. During CNS development, CDH2 is involved in a wide range of processes including maintenance of neuroepithelial integrity, neural tube closure (neurulation), confinement of radial glia progenitor cells (RGPCs) to the ventricular zone and maintaining their proliferation-differentiation balance, postmitotic neural precursor migration, axon guidance, synaptic development and maintenance. In the past few years, direct and indirect evidence linked CDH2 to various neurological diseases, and in this review, we summarize recent developments regarding CDH2 function and its involvement in pathological alterations of the CNS.
Collapse
Affiliation(s)
- Zsófia I. László
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Zsolt Lele
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
4
|
Kanjee M, Yuce Kahraman C, Ercoskun P, Tatar A, Kahraman M. A Novel nonsense variant in the CDH2 gene associated with ACOGS: A case report. Am J Med Genet A 2022; 188:2815-2818. [PMID: 35708058 DOI: 10.1002/ajmg.a.62861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/19/2022] [Accepted: 04/21/2022] [Indexed: 01/25/2023]
Abstract
Agenesis of Corpus Callosum, Cardiac, Ocular, and Genital Syndrome (ACOGS; OMIM #618929) is a rare genetic disorder characterized by global developmental delay, agenesis or hypoplasia of corpus callosum, craniofacial dysmorphism, ocular, cardiac, and genital anomalies. ACOGS is caused by variations in the CDH2 gene. Our patient had a novel finding besides the classical findings of ACOGS. To the best of our knowledge, only 14 patients with ACOGS have been reported. Here, we reported the fifteenth patient with ACOGS, having a novel de novo nonsense variant in the CDH2 gene, and the first patient from Turkey with a novel finding. Our patient was the first female to have a renal anomaly since only genital malformations were reported in male patients (cryptorchidism, micropenis) so far.
Collapse
Affiliation(s)
- Momen Kanjee
- Department of Medical Genetics, Ataturk University, Erzurum, Turkey
| | | | - Pelin Ercoskun
- Department of Medical Genetics, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Abdulgani Tatar
- Department of Medical Genetics, Ataturk University, Erzurum, Turkey
| | | |
Collapse
|
5
|
Gerber TS, Ridder DA, Schindeldecker M, Weinmann A, Duret D, Breuhahn K, Galle PR, Schirmacher P, Roth W, Lang H, Straub BK. Constitutive Occurrence of E:N-cadherin Heterodimers in Adherens Junctions of Hepatocytes and Derived Tumors. Cells 2022; 11:cells11162507. [PMID: 36010583 PMCID: PMC9406782 DOI: 10.3390/cells11162507] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 12/24/2022] Open
Abstract
Cell–cell junctions are pivotal for embryogenesis and tissue homeostasis but also play a major role in tumorigenesis, tumor invasion, and metastasis. E-cadherin (CDH1) and N-cadherin (CDH2) are two adherens junction’s transmembrane glycoproteins with tissue-specific expression patterns in epithelial and neural/mesenchymal cells. Aberrant expression has been implicated in the process of epithelial–mesenchymal transition (EMT) in malignant tumors. We could hitherto demonstrate cis-E:N-cadherin heterodimer in endoderm-derived cells. Using immunoprecipitation in cultured cells of the line PLC as well as in human hepatocellular carcinoma (HCC)-lysates, we isolated E-N-cadherin heterodimers in a complex with the plaque proteins α- and β-catenin, plakoglobin, and vinculin. In confocal laser scanning microscopy, E-cadherin co-localized with N-cadherin at the basolateral membrane of normal hepatocytes, hepatocellular adenoma (HCA), and in most cases of HCC. In addition, we analyzed E- and N-cadherin expression via immunohistochemistry in a large cohort of 868 HCCs from 570 patients, 25 HCA, and respective non-neoplastic liver tissue, and correlated our results with multiple prognostic markers. While E- or N-cadherin were similarly expressed in tumor sites with vascular invasion or HCC metastases, HCC with vascular encapsulated tumor clusters (VETC) displayed slightly reduced E-cadherin, and slightly increased N-cadherin expression. Analyzing The Cancer Genome Atlas patient cohort, we found that reduced mRNA levels of CDH1, but not CDH2 were significantly associated with unfavorable prognosis; however, in multivariate analysis, CDH1 did not correlate with prognosis. In summary, E- and N-cadherin are specific markers for hepatocytes and derived HCA and HCC. E:N-cadherin heterodimers are constitutively expressed in the hepatocytic lineage and only slightly altered in malignant progression, thereby not complying with the concept of EMT.
Collapse
Affiliation(s)
- Tiemo Sven Gerber
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Dirk Andreas Ridder
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Mario Schindeldecker
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Tissue Biobank, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Arndt Weinmann
- 1st Department of Internal Medicine, Gastroenterology and Hepatology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Diane Duret
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Kai Breuhahn
- Institute of Pathology, University Clinic Heidelberg, 69120 Heidelberg, Germany
| | - Peter R. Galle
- 1st Department of Internal Medicine, Gastroenterology and Hepatology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Clinic Heidelberg, 69120 Heidelberg, Germany
| | - Wilfried Roth
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Hauke Lang
- Department of General, Visceral and Transplant Surgery, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Beate Katharina Straub
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Correspondence:
| |
Collapse
|
6
|
Thomas K, Henley T, Rossi S, Costello MJ, Polacheck W, Griffith BE, Bressan M. Adherens junction engagement regulates functional patterning of the cardiac pacemaker cell lineage. Dev Cell 2021; 56:1498-1511.e7. [PMID: 33891897 PMCID: PMC8137639 DOI: 10.1016/j.devcel.2021.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 02/16/2021] [Accepted: 03/31/2021] [Indexed: 12/19/2022]
Abstract
Cardiac pacemaker cells (CPCs) rhythmically initiate the electrical impulses that drive heart contraction. CPCs display the highest rate of spontaneous depolarization in the heart despite being subjected to inhibitory electrochemical conditions that should theoretically suppress their activity. While several models have been proposed to explain this apparent paradox, the actual molecular mechanisms that allow CPCs to overcome electrogenic barriers to their function remain poorly understood. Here, we have traced CPC development at single-cell resolution and uncovered a series of cytoarchitectural patterning events that are critical for proper pacemaking. Specifically, our data reveal that CPCs dynamically modulate adherens junction (AJ) engagement to control characteristics including surface area, volume, and gap junctional coupling. This allows CPCs to adopt a structural configuration that supports their overall excitability. Thus, our data have identified a direct role for local cellular mechanics in patterning critical morphological features that are necessary for CPC electrical activity.
Collapse
Affiliation(s)
- Kandace Thomas
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Trevor Henley
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Simone Rossi
- Department of Mathematics, University of North Carolina, Chapel Hill, NC, USA
| | - M Joseph Costello
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - William Polacheck
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; University of North Carolina at Chapel Hill and North Carolina State University, Joint Department of Biomedical Engineering, Chapel Hill, NC 27599, USA
| | - Boyce E Griffith
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Departments of Mathematics, Applied Physical Sciences, and Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA; Carolina Center for Interdisciplinary Applied Mathematics, University of North Carolina, Chapel Hill, NC, USA; Computational Medicine Program, University of North Carolina, Chapel Hill, NC, USA
| | - Michael Bressan
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
7
|
Cardiomyocyte orientation modulated by the Numb family proteins-N-cadherin axis is essential for ventricular wall morphogenesis. Proc Natl Acad Sci U S A 2019; 116:15560-15569. [PMID: 31300538 PMCID: PMC6681736 DOI: 10.1073/pnas.1904684116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The roles of cellular orientation during trabecular and ventricular wall morphogenesis are unknown, and so are the underlying mechanisms that regulate cellular orientation. Myocardial-specific Numb and Numblike double-knockout (MDKO) hearts display a variety of defects, including in cellular orientation, patterns of mitotic spindle orientation, trabeculation, and ventricular compaction. Furthermore, Numb- and Numblike-null cardiomyocytes exhibit cellular behaviors distinct from those of control cells during trabecular morphogenesis based on single-cell lineage tracing. We investigated how Numb regulates cellular orientation and behaviors and determined that N-cadherin levels and membrane localization are reduced in MDKO hearts. To determine how Numb regulates N-cadherin membrane localization, we generated an mCherry:Numb knockin line and found that Numb localized to diverse endocytic organelles but mainly to the recycling endosome. Consistent with this localization, cardiomyocytes in MDKO did not display defects in N-cadherin internalization but rather in postendocytic recycling to the plasma membrane. Furthermore, N-cadherin overexpression via a mosaic model partially rescued the defects in cellular orientation and trabeculation of MDKO hearts. Our study unravels a phenomenon that cardiomyocytes display spatiotemporal cellular orientation during ventricular wall morphogenesis, and its disruption leads to abnormal trabecular and ventricular wall morphogenesis. Furthermore, we established a mechanism by which Numb modulates cellular orientation and consequently trabecular and ventricular wall morphogenesis by regulating N-cadherin recycling to the plasma membrane.
Collapse
|
8
|
Li Y, Merkel CD, Zeng X, Heier JA, Cantrell PS, Sun M, Stolz DB, Watkins SC, Yates NA, Kwiatkowski AV. The N-cadherin interactome in primary cardiomyocytes as defined using quantitative proximity proteomics. J Cell Sci 2019; 132:jcs.221606. [PMID: 30630894 PMCID: PMC6382013 DOI: 10.1242/jcs.221606] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 12/24/2018] [Indexed: 12/11/2022] Open
Abstract
The junctional complexes that couple cardiomyocytes must transmit the mechanical forces of contraction while maintaining adhesive homeostasis. The adherens junction (AJ) connects the actomyosin networks of neighboring cardiomyocytes and is required for proper heart function. Yet little is known about the molecular composition of the cardiomyocyte AJ or how it is organized to function under mechanical load. Here, we define the architecture, dynamics and proteome of the cardiomyocyte AJ. Mouse neonatal cardiomyocytes assemble stable AJs along intercellular contacts with organizational and structural hallmarks similar to mature contacts. We combine quantitative mass spectrometry with proximity labeling to identify the N-cadherin (CDH2) interactome. We define over 350 proteins in this interactome, nearly 200 of which are unique to CDH2 and not part of the E-cadherin (CDH1) interactome. CDH2-specific interactors comprise primarily adaptor and adhesion proteins that promote junction specialization. Our results provide novel insight into the cardiomyocyte AJ and offer a proteomic atlas for defining the molecular complexes that regulate cardiomyocyte intercellular adhesion. This article has an associated First Person interview with the first authors of the paper.
Collapse
Affiliation(s)
- Yang Li
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Chelsea D Merkel
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Xuemei Zeng
- Biomedical Mass Spectrometry Center, University of Pittsburgh Schools of the Health Sciences, Pittsburgh, PA 15261, USA
| | - Jonathon A Heier
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Pamela S Cantrell
- Biomedical Mass Spectrometry Center, University of Pittsburgh Schools of the Health Sciences, Pittsburgh, PA 15261, USA
| | - Mai Sun
- Biomedical Mass Spectrometry Center, University of Pittsburgh Schools of the Health Sciences, Pittsburgh, PA 15261, USA
| | - Donna B Stolz
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Simon C Watkins
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Nathan A Yates
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.,Biomedical Mass Spectrometry Center, University of Pittsburgh Schools of the Health Sciences, Pittsburgh, PA 15261, USA.,University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Adam V Kwiatkowski
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
9
|
Cui C, Wang J, Qian D, Huang J, Lin J, Kingshott P, Wang PY, Chen M. Binary Colloidal Crystals Drive Spheroid Formation and Accelerate Maturation of Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:3679-3689. [PMID: 30614683 DOI: 10.1021/acsami.8b17090] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The development of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) provides significant advances to cell therapy, disease modeling, and drug screening applications. However, the current differentiation protocol is inefficient in mimicking biophysical and biochemical characteristics of cardiac niche. Hence, immature cardiomyocytes are often generated. In this study, hiPSC-CMs were generated on a new family of substrates called monolayer binary colloidal crystals (BCCs). Four BCCs were fabricated with different sizes (2 or 5 or 0.4 or 0.2 μm) and materials [Si or polystyrene (PS) or poly(methyl methacrylate)] abbreviated as 2PS, 5PS, 2PM, and 5PM. BCCs have complex surface micro-/nanotopographies and heterogeneous chemistries which are important modulators in microenvironments in vitro. The results showed that hiPSCs formed adhered spheroids with strong pluripotent markers ( Oct4, Nanog, and Sox2) on PM surfaces compared to PS and flat surfaces. After 30-day differentiation, hiPSC-CMs on PM surfaces showed markedly improved myofibril ultrastructures, Ca2+ handling, and electrophysiological properties, indicating that more mature hiPSC-CMs were generated. hiPSC-CMs generated on 5PM are more similar to adult heart tissue compared to other surfaces in terms of genes ( ACTC1, TNNT2, RYR2, SERCA2a, SCN5a, KCNJ2, CACNA1c, ITGB1, GJA1, MYH6, and MYH7) and protein (ssTnI and cTnI) expressions. We further demonstrated that 5PM surfaces facilitated cadherin switching (from E- to N-) during cardiac differentiation and mature N-cadherin expression, which were positively correlated with the cardiogensis markers ( GATA4, MEF2c, and NKX2.5). This study illuminated that a tailored surface nanotopography was beneficial in hiPSC culture and in situ cardiac differentiation. This one-step approach and BCCs can be a next-generation tool for hiPSC expansion and CM differentiation.
Collapse
Affiliation(s)
- Chang Cui
- Division of Cardiology , The First Affiliated Hospital of Nanjing Medical University , Nanjing 210029 , China
| | - Jiaxian Wang
- Division of Cardiology , The First Affiliated Hospital of Nanjing Medical University , Nanjing 210029 , China
- Department of R&D , HELP Stem Cell Therapeutics , Nanjing 210010 , China
| | - Duoduo Qian
- Division of Cardiology , The First Affiliated Hospital of Nanjing Medical University , Nanjing 210029 , China
| | - Jiayi Huang
- Division of Cardiology , The First Affiliated Hospital of Nanjing Medical University , Nanjing 210029 , China
| | - Jiao Lin
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology , Chinese Academy of Sciences , Shenzhen 518055 , China
| | - Peter Kingshott
- Department of Chemistry and Biotechnology , Swinburne University of Technology , Victoria 3122 , Australia
| | - Peng-Yuan Wang
- Department of Chemistry and Biotechnology , Swinburne University of Technology , Victoria 3122 , Australia
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology , Chinese Academy of Sciences , Shenzhen 518055 , China
| | - Minglong Chen
- Division of Cardiology , The First Affiliated Hospital of Nanjing Medical University , Nanjing 210029 , China
| |
Collapse
|
10
|
Bachg AC, Horsthemke M, Skryabin BV, Klasen T, Nagelmann N, Faber C, Woodham E, Machesky LM, Bachg S, Stange R, Jeong HW, Adams RH, Bähler M, Hanley PJ. Phenotypic analysis of Myo10 knockout (Myo10 tm2/tm2) mice lacking full-length (motorized) but not brain-specific headless myosin X. Sci Rep 2019; 9:597. [PMID: 30679680 PMCID: PMC6345916 DOI: 10.1038/s41598-018-37160-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/04/2018] [Indexed: 01/04/2023] Open
Abstract
We investigated the physiological functions of Myo10 (myosin X) using Myo10 reporter knockout (Myo10tm2) mice. Full-length (motorized) Myo10 protein was deleted, but the brain-specific headless (Hdl) isoform (Hdl-Myo10) was still expressed in homozygous mutants. In vitro, we confirmed that Hdl-Myo10 does not induce filopodia, but it strongly localized to the plasma membrane independent of the MyTH4-FERM domain. Filopodia-inducing Myo10 is implicated in axon guidance and mice lacking the Myo10 cargo protein DCC (deleted in colorectal cancer) have severe commissural defects, whereas MRI (magnetic resonance imaging) of isolated brains revealed intact commissures in Myo10tm2/tm2 mice. However, reminiscent of Waardenburg syndrome, a neural crest disorder, Myo10tm2/tm2 mice exhibited pigmentation defects (white belly spots) and simple syndactyly with high penetrance (>95%), and 24% of mutant embryos developed exencephalus, a neural tube closure defect. Furthermore, Myo10tm2/tm2 mice consistently displayed bilateral persistence of the hyaloid vasculature, revealed by MRI and retinal whole-mount preparations. In principle, impaired tissue clearance could contribute to persistence of hyaloid vasculature and syndactyly. However, Myo10-deficient macrophages exhibited no defects in the phagocytosis of apoptotic or IgG-opsonized cells. RNA sequence analysis showed that Myo10 was the most strongly expressed unconventional myosin in retinal vascular endothelial cells and expression levels increased 4-fold between P6 and P15, when vertical sprouting angiogenesis gives rise to deeper layers. Nevertheless, imaging of isolated adult mutant retinas did not reveal vascularization defects. In summary, Myo10 is important for both prenatal (neural tube closure and digit formation) and postnatal development (hyaloid regression, but not retinal vascularization).
Collapse
Affiliation(s)
- Anne C Bachg
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Markus Horsthemke
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Boris V Skryabin
- Department of Medicine, Transgenic Animal and Genetic Engineering Models (TRAM), Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Tim Klasen
- Department of Clinical Radiology, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Nina Nagelmann
- Department of Clinical Radiology, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Cornelius Faber
- Department of Clinical Radiology, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Emma Woodham
- Cancer Research UK Beatson Institute, Glasgow University College of Medical, Veterinary and Life Sciences Garscube Estate, Glasgow, G61 1BD, United Kingdom
| | - Laura M Machesky
- Cancer Research UK Beatson Institute, Glasgow University College of Medical, Veterinary and Life Sciences Garscube Estate, Glasgow, G61 1BD, United Kingdom
| | - Sandra Bachg
- Department of Regenerative Musculoskeletal Medicine, Institute of Musculoskeletal Medicine (IMM), University Hospital Münster, 48149, Münster, Germany
| | - Richard Stange
- Department of Regenerative Musculoskeletal Medicine, Institute of Musculoskeletal Medicine (IMM), University Hospital Münster, 48149, Münster, Germany
| | - Hyun-Woo Jeong
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, 48149, Münster, Germany
| | - Ralf H Adams
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, 48149, Münster, Germany
| | - Martin Bähler
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Peter J Hanley
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany.
| |
Collapse
|
11
|
Wu M. Mechanisms of Trabecular Formation and Specification During Cardiogenesis. Pediatr Cardiol 2018; 39:1082-1089. [PMID: 29594501 PMCID: PMC6164162 DOI: 10.1007/s00246-018-1868-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/14/2018] [Indexed: 01/08/2023]
Abstract
Trabecular morphogenesis is a key morphologic event during cardiogenesis and contributes to the formation of a competent ventricular wall. Lack of trabeculation results in embryonic lethality. The trabecular morphogenesis is a multistep process that includes, but is not limited to, trabecular initiation, proliferation/growth, specification, and compaction. Although a number of signaling molecules have been implicated in regulating trabeculation, the cellular processes underlying mammalian trabecular formation are not fully understood. Recent works show that the myocardium displays polarity, and oriented cell division (OCD) and directional migration of the cardiomyocytes in the monolayer myocardium are required for trabecular initiation and formation. Furthermore, perpendicular OCD is an extrinsic asymmetric cell division that contributes to trabecular specification, and is a mechanism that causes the trabecular cardiomyocytes to be distinct from the cardiomyocytes in compact zone. Once the coronary vasculature system starts to function in the embryonic heart, the trabeculae will coalesce with the compact zone to thicken the heart wall, and abnormal compaction will lead to left ventricular non-compaction (LVNC) and heart failure. There are many reviews about compaction and LVNC. In this review, we will focus on the roles of myocardial polarity and OCD in trabecular initiation, formation, and specification.
Collapse
Affiliation(s)
- Mingfu Wu
- Department of Molecular and Cellular Physiology, Albany Medical College, 43 New Scotland Ave, Albany, NY, 12208, USA.
| |
Collapse
|
12
|
Li J, Liu Y, Jin Y, Wang R, Wang J, Lu S, VanBuren V, Dostal DE, Zhang SL, Peng X. Essential role of Cdc42 in cardiomyocyte proliferation and cell-cell adhesion during heart development. Dev Biol 2016; 421:271-283. [PMID: 27986432 DOI: 10.1016/j.ydbio.2016.12.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 11/02/2016] [Accepted: 12/08/2016] [Indexed: 12/12/2022]
Abstract
Cdc42 is a member of the Rho GTPase family and functions as a molecular switch in regulating cell migration, proliferation, differentiation and survival. However, the role of Cdc42 in heart development remains largely unknown. To determine the function of Cdc42 in heart formation, we have generated a Cdc42 cardiomyocyte knockout (CCKO) mouse line by crossing Cdc42 flox mice with myosin light chain (MLC) 2a-Cre mice. The inactivation of Cdc42 in embryonic cardiomyocytes induced lethality after embryonic day 12.5. Histological analysis of CCKO embryos showed cardiac developmental defects that included thin ventricular walls and ventricular septum defects. Microarray and real-time PCR data also revealed that the expression level of p21 was significantly increased and cyclin B1 was dramatically decreased, suggesting that Cdc42 is required for cardiomyocyte proliferation. Phosphorylated Histone H3 staining confirmed that the inactivation of Cdc42 inhibited cardiomyocytes proliferation. In addition, transmission electron microscope studies showed disorganized sarcomere structure and disruption of cell-cell contact among cardiomyocytes in CCKO hearts. Accordingly, we found that the distribution of N-cadherin/β-Catenin in CCKO cardiomyocytes was impaired. Taken together, our data indicate that Cdc42 is essential for cardiomyocyte proliferation, sarcomere organization and cell-cell adhesion during heart development.
Collapse
Affiliation(s)
- Jieli Li
- Department of Medical Physiology, College of Medicine, Texas A&M University, USA
| | - Yang Liu
- Department of Medical Physiology, College of Medicine, Texas A&M University, USA
| | - Yixin Jin
- Department of Medical Physiology, College of Medicine, Texas A&M University, USA
| | - Rui Wang
- Department of Medical Physiology, College of Medicine, Texas A&M University, USA; Department of Cardiology, Yangpu District Central Hospital, Tongji University, China
| | - Jian Wang
- Department of Medical Physiology, College of Medicine, Texas A&M University, USA
| | - Sarah Lu
- Department of Medical Physiology, College of Medicine, Texas A&M University, USA
| | - Vincent VanBuren
- Department of Medical Physiology, College of Medicine, Texas A&M University, USA
| | - David E Dostal
- Department of Medical Physiology, College of Medicine, Texas A&M University, USA
| | - Shenyuan L Zhang
- Department of Medical Physiology, College of Medicine, Texas A&M University, USA.
| | - Xu Peng
- Department of Medical Physiology, College of Medicine, Texas A&M University, USA.
| |
Collapse
|
13
|
Li J, Miao L, Shieh D, Spiotto E, Li J, Zhou B, Paul A, Schwartz RJ, Firulli AB, Singer HA, Huang G, Wu M. Single-Cell Lineage Tracing Reveals that Oriented Cell Division Contributes to Trabecular Morphogenesis and Regional Specification. Cell Rep 2016; 15:158-170. [PMID: 27052172 DOI: 10.1016/j.celrep.2016.03.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/20/2016] [Accepted: 02/26/2016] [Indexed: 01/07/2023] Open
Abstract
The cardiac trabeculae are sheet-like structures extending from the myocardium that function to increase surface area. A lack of trabeculation causes embryonic lethality due to compromised cardiac function. To understand the cellular and molecular mechanisms of trabecular formation, we genetically labeled individual cardiomyocytes prior to trabeculation via the brainbow multicolor system and traced and analyzed the labeled cells during trabeculation by whole-embryo clearing and imaging. The clones derived from labeled single cells displayed four different geometric patterns that are derived from different patterns of oriented cell division (OCD) and migration. Of the four types of clones, the inner, transmural, and mixed clones contributed to trabecular cardiomyocytes. Further studies showed that perpendicular OCD is an extrinsic asymmetric cell division that putatively contributes to trabecular regional specification. Furthermore, N-Cadherin deletion in labeled clones disrupted the clonal patterns. In summary, our data demonstrate that OCD contributes to trabecular morphogenesis and specification.
Collapse
Affiliation(s)
- Jingjing Li
- Center for Cardiovascular Sciences, Albany Medical College, Albany, NY 12208, USA
| | - Lianjie Miao
- Center for Cardiovascular Sciences, Albany Medical College, Albany, NY 12208, USA
| | - David Shieh
- Center for Cardiovascular Sciences, Albany Medical College, Albany, NY 12208, USA
| | - Ernest Spiotto
- Center for Cardiovascular Sciences, Albany Medical College, Albany, NY 12208, USA
| | - Jian Li
- Key Laboratory of Molecular Medicine, Ministry of Education, Fudan University, Shanghai 200032, China
| | - Bin Zhou
- Department of Genetics, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA
| | - Antoni Paul
- Center for Cardiovascular Sciences, Albany Medical College, Albany, NY 12208, USA
| | - Robert J Schwartz
- Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| | - Anthony B Firulli
- Riley Heart Research Center, Indiana University, Indianapolis, IN 46202, USA
| | - Harold A Singer
- Center for Cardiovascular Sciences, Albany Medical College, Albany, NY 12208, USA
| | - Guoying Huang
- Key Laboratory of Molecular Medicine, Ministry of Education, Fudan University, Shanghai 200032, China
| | - Mingfu Wu
- Center for Cardiovascular Sciences, Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|
14
|
Chen D, Wang X, Liang D, Gordon J, Mittal A, Manley N, Degenhardt K, Astrof S. Fibronectin signals through integrin α5β1 to regulate cardiovascular development in a cell type-specific manner. Dev Biol 2015; 407:195-210. [PMID: 26434918 DOI: 10.1016/j.ydbio.2015.09.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/09/2015] [Accepted: 09/12/2015] [Indexed: 01/23/2023]
Abstract
Fibronectin (Fn1) is an evolutionarily conserved extracellular matrix glycoprotein essential for embryonic development. Global deletion of Fn1 leads to mid-gestation lethality from cardiovascular defects. However, severe morphogenetic defects that occur early in embryogenesis in these embryos precluded assigning a direct role for Fn1 in cardiovascular development. We noticed that Fn1 is expressed in strikingly non-uniform patterns during mouse embryogenesis, and that its expression is particularly enriched in the pharyngeal region corresponding with the pharyngeal arches 3, 4, and 6. This region bears a special importance for the developing cardiovascular system, and we hypothesized that the localized enrichment of Fn1 in the pharyngeal region may be essential for cardiovascular morphogenesis. To test this hypothesis, we ablated Fn1 using the Isl1(Cre) knock-in strain of mice. Deletion of Fn1 using the Isl1(Cre) strain resulted in defective formation of the 4th pharyngeal arch arteries (PAAs), aberrant development of the cardiac outflow tract (OFT), and ventricular septum defects. To determine the cell types responding to Fn1 signaling during cardiovascular development, we deleted a major Fn1 receptor, integrin α5 using the Isl1(Cre) strain, and observed the same spectrum of abnormalities seen in the Fn1 conditional mutants. Additional conditional mutagenesis studies designed to ablate integrin α5 in distinct cell types within the Isl1(+) tissues and their derivatives, suggested that the expression of integrin α5 in the pharyngeal arch mesoderm, endothelium, surface ectoderm and the neural crest were not required for PAA formation. Our studies suggest that an (as yet unknown) integrin α5-dependent signal extrinsic to the pharyngeal endothelium mediates the formation of the 4th PAAs.
Collapse
Affiliation(s)
- Dongying Chen
- Sidney Kimmel Medical College of Thomas Jefferson University, Department of Medicine, Center for Translational Medicine, 1020 Locust Street, Philadelphia, PA 19107, USA; Cell and Developmental Biology graduate program, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Xia Wang
- Sidney Kimmel Medical College of Thomas Jefferson University, Department of Medicine, Center for Translational Medicine, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Dong Liang
- Sidney Kimmel Medical College of Thomas Jefferson University, Department of Medicine, Center for Translational Medicine, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Julie Gordon
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Ashok Mittal
- Sidney Kimmel Medical College of Thomas Jefferson University, Department of Medicine, Center for Translational Medicine, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Nancy Manley
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Karl Degenhardt
- Children's Hospital of Pennsylvania, University of Pennsylvania, Philadelphia, PA 19107, USA
| | - Sophie Astrof
- Sidney Kimmel Medical College of Thomas Jefferson University, Department of Medicine, Center for Translational Medicine, 1020 Locust Street, Philadelphia, PA 19107, USA; Cell and Developmental Biology graduate program, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
15
|
Miyamoto Y, Sakane F, Hashimoto K. N-cadherin-based adherens junction regulates the maintenance, proliferation, and differentiation of neural progenitor cells during development. Cell Adh Migr 2015; 9:183-92. [PMID: 25869655 DOI: 10.1080/19336918.2015.1005466] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
This review addresses our current understanding of the regulatory mechanism by which N-cadherin, a classical cadherin, affects neural progenitor cells (NPCs) during development. N-cadherin is responsible for the integrity of adherens junctions (AJs), which develop in the sub-apical region of NPCs in the neural tube and brain cortex. The apical domain, which contains the sub-apical region, is involved in the switching from symmetric proliferative division to asymmetric neurogenic division of NPCs. In addition, N-cadherin-based AJ is deeply involved in the apico-basal polarity of NPCs and the regulation of Wnt-β-catenin, hedgehog (Hh), and Notch signaling. In this review, we discuss the roles of N-cadherin in the maintenance, proliferation, and differentiation of NPCs through components of AJ, β-catenin and αE-catenin.
Collapse
Key Words
- AJ, adherens junction
- EC, extracellular
- Fox, forkhead box
- Frz, frizzled
- GFAP, glial fibrillary acidic protein
- GSK3β, glycogen synthase kinase 3β
- Hes, hairly/enhancer of split
- Hh, hedgehog
- IP, intermediate progenitor
- KO, knockout
- LEF, lymphocyte enhancer factor
- N-cadherin
- NPC, neural progenitor cell
- Par, partition defective complex protein
- Ptc, Pached
- Smo, smoothened
- Sox2, sry (sex determining region Y)-box containing gene 2
- TA cell, transient amplifying cell; ZO-1, Zonula Occludens-1.
- TCF, T-cell factor
- aPKC, atypical protein kinase C
- adherens junction
- apico-basal polarity
- iPSC, induced pluripotent stem cell
- neural progenitor cells
- ngn2, neurogenin 2
- shRNA, short hairpin RNA
- β-catenin
Collapse
Affiliation(s)
- Yasunori Miyamoto
- a The Graduate School of Humanities and Sciences; Ochanomizu University ; Tokyo , Japan
| | | | | |
Collapse
|
16
|
de Boer BA, Le Garrec JF, Christoffels VM, Meilhac SM, Ruijter JM. Integrating multi-scale knowledge on cardiac development into a computational model of ventricular trabeculation. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2014; 6:389-97. [DOI: 10.1002/wsbm.1285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/21/2014] [Accepted: 09/05/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Bouke A. de Boer
- Department of Anatomy, Embryology and Physiology; Academic Medical Center; Amsterdam The Netherlands
| | - Jean-François Le Garrec
- Department of Developmental and Stem Cell Biology; Institut Pasteur; Paris France
- CNRS URA2578; Paris France
| | - Vincent M. Christoffels
- Department of Anatomy, Embryology and Physiology; Academic Medical Center; Amsterdam The Netherlands
| | - Sigolène M. Meilhac
- Department of Developmental and Stem Cell Biology; Institut Pasteur; Paris France
- CNRS URA2578; Paris France
| | - Jan M. Ruijter
- Department of Anatomy, Embryology and Physiology; Academic Medical Center; Amsterdam The Netherlands
| |
Collapse
|
17
|
Guan X, Bidlack FB, Stokes N, Bartlett JD. E-cadherin can replace N-cadherin during secretory-stage enamel development. PLoS One 2014; 9:e102153. [PMID: 25014356 PMCID: PMC4094553 DOI: 10.1371/journal.pone.0102153] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 06/16/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND N-cadherin is a cell-cell adhesion molecule and deletion of N-cadherin in mice is embryonic lethal. During the secretory stage of enamel development, E-cadherin is down-regulated and N-cadherin is specifically up-regulated in ameloblasts when groups of ameloblasts slide by one another to form the rodent decussating enamel rod pattern. Since N-cadherin promotes cell migration, we asked if N-cadherin is essential for ameloblast cell movement during enamel development. METHODOLOGY/PRINCIPAL FINDINGS The enamel organ, including its ameloblasts, is an epithelial tissue and for this study a mouse strain with N-cadherin ablated from epithelium was generated. Enamel from wild-type (WT) and N-cadherin conditional knockout (cKO) mice was analyzed. μCT and scanning electron microscopy showed that thickness, surface structure, and prism pattern of the cKO enamel looked identical to WT. No significant difference in hardness was observed between WT and cKO enamel. Interestingly, immunohistochemistry revealed the WT and N-cadherin cKO secretory stage ameloblasts expressed approximately equal amounts of total cadherins. Strikingly, E-cadherin was not normally down-regulated during the secretory stage in the cKO mice suggesting that E-cadherin can compensate for the loss of N-cadherin. Previously it was demonstrated that bone morphogenetic protein-2 (BMP2) induces E- and N-cadherin expression in human calvaria osteoblasts and we show that the N-cadherin cKO enamel organ expressed significantly more BMP2 and significantly less of the BMP antagonist Noggin than did WT enamel organ. CONCLUSIONS/SIGNIFICANCE The E- to N-cadherin switch at the secretory stage is not essential for enamel development or for forming the decussating enamel rod pattern. E-cadherin can substitute for N-cadherin during these developmental processes. Bmp2 expression may compensate for the loss of N-cadherin by inducing or maintaining E-cadherin expression when E-cadherin is normally down-regulated. Notably, this is the first demonstration of a natural endogenous increase in E-cadherin expression due to N-cadherin ablation in a healthy developing tissue.
Collapse
Affiliation(s)
- Xiaomu Guan
- Department of Mineralized Tissue Biology and Harvard School of Dental Medicine, The Forsyth Institute, Cambridge, Massachusetts, United States of America
| | - Felicitas B. Bidlack
- Department of Mineralized Tissue Biology and Harvard School of Dental Medicine, The Forsyth Institute, Cambridge, Massachusetts, United States of America
| | - Nicole Stokes
- Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, New York, United States of America
| | - John D. Bartlett
- Department of Mineralized Tissue Biology and Harvard School of Dental Medicine, The Forsyth Institute, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
18
|
Vite A, Radice GL. N-cadherin/catenin complex as a master regulator of intercalated disc function. ACTA ACUST UNITED AC 2014; 21:169-79. [PMID: 24766605 DOI: 10.3109/15419061.2014.908853] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Intercellular adhesive junctions are essential for maintaining the physical integrity of tissues; this is particularly true for the heart that is under constant mechanical load. The correct functionality of the heart is dependent on the electrical and mechanical coordination of its constituent cardiomyocytes. The intercalated disc (ID) structure located at the termini of the rod-shaped adult cardiomyocyte contains various junctional proteins responsible for the integration of structural information and cell-cell communication. According to the classical description, the ID consists of three distinct junctional complexes: adherens junction (AJ), desmosome (Des), and gap junction (GJ) that work together to mediate mechanical and electrical coupling of cardiomyocytes. However, recent morphological and molecular studies indicate that AJ and Des components are capable of mixing together resulting in a "hybrid adhering junction" or "area composita." This review summarizes recent progress in understanding the in vivo function(s) of AJ components in cardiac homeostasis and disease.
Collapse
Affiliation(s)
- Alexia Vite
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University , Philadelphia, PA , USA
| | | |
Collapse
|
19
|
Gheldof A, Berx G. Cadherins and epithelial-to-mesenchymal transition. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 116:317-36. [PMID: 23481201 DOI: 10.1016/b978-0-12-394311-8.00014-5] [Citation(s) in RCA: 248] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a process whereby epithelial cells are transcriptionally reprogrammed, resulting in decreased adhesion and enhanced migration or invasion. EMT occurs during different stages of embryonic development, including gastrulation and neural crest cell delamination, and is induced by a panel of specific transcription factors. These factors comprise, among others, members of the Snail, ZEB, and Twist families, and are all known to modulate cadherin expression and, in particular, E-cadherin. By regulating expression of the cadherin family of proteins, EMT-inducing transcription factors dynamically modulate cell adhesion, allowing many developmental processes to take place. However, during cancer progression EMT can be utilized by cancer cells to contribute to malignancy. This is also reflected at the level of the cadherins, where the cadherin switch between E- and N-cadherins is a classical example seen in cancer-related EMT. In this chapter, we give a detailed overview of the entanglement between EMT-inducing transcription factors and cadherin modulation during embryonic development and cancer progression. We describe how classical cadherins such as E- and N-cadherins are regulated during EMT, as well as cadherin 7, -6B, and -11.
Collapse
Affiliation(s)
- Alexander Gheldof
- Department for Molecular Biomedical Research, Unit of Molecular and Cellular Oncology, VIB, Ghent, Belgium
| | | |
Collapse
|
20
|
Nicholson TB, Singh AK, Su H, Hevi S, Wang J, Bajko J, Li M, Valdez R, Goetschkes M, Capodieci P, Loureiro J, Cheng X, Li E, Kinzel B, Labow M, Chen T. A hypomorphic lsd1 allele results in heart development defects in mice. PLoS One 2013; 8:e60913. [PMID: 23637775 PMCID: PMC3634827 DOI: 10.1371/journal.pone.0060913] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 03/06/2013] [Indexed: 11/19/2022] Open
Abstract
Lysine-specific demethylase 1 (Lsd1/Aof2/Kdm1a), the first enzyme with specific lysine demethylase activity to be described, demethylates histone and non-histone proteins and is essential for mouse embryogenesis. Lsd1 interacts with numerous proteins through several different domains, most notably the tower domain, an extended helical structure that protrudes from the core of the protein. While there is evidence that Lsd1-interacting proteins regulate the activity and specificity of Lsd1, the significance and roles of such interactions in developmental processes remain largely unknown. Here we describe a hypomorphic Lsd1 allele that contains two point mutations in the tower domain, resulting in a protein with reduced interaction with known binding partners and decreased enzymatic activity. Mice homozygous for this allele die perinatally due to heart defects, with the majority of animals suffering from ventricular septal defects. Molecular analyses revealed hyperphosphorylation of E-cadherin in the hearts of mutant animals. These results identify a previously unknown role for Lsd1 in heart development, perhaps partly through the control of E-cadherin phosphorylation.
Collapse
MESH Headings
- Alleles
- Animals
- Cadherins/metabolism
- Disease Models, Animal
- Enzyme Activation
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Developmental
- Heart Defects, Congenital/genetics
- Heart Defects, Congenital/metabolism
- Heart Defects, Congenital/pathology
- Heart Septal Defects, Ventricular/genetics
- Heart Septal Defects, Ventricular/metabolism
- Heart Septal Defects, Ventricular/pathology
- Histone Demethylases
- Homozygote
- Mice
- Mice, Knockout
- Oxidoreductases, N-Demethylating/genetics
- Oxidoreductases, N-Demethylating/metabolism
- Phosphorylation
- Point Mutation
- Pregnancy
- Protein Binding
Collapse
Affiliation(s)
- Thomas B. Nicholson
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
- Epigenetics Program, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Anup K. Singh
- Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, United States of America
| | - Hui Su
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
- Epigenetics Program, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Sarah Hevi
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
- Epigenetics Program, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Jing Wang
- Epigenetics Program, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Jeff Bajko
- Epigenetics Program, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Mei Li
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Reginald Valdez
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Margaret Goetschkes
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Paola Capodieci
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Joseph Loureiro
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Xiaodong Cheng
- Department of Biochemistry, Emory University, Atlanta, Georgia, United States of America
| | - En Li
- Epigenetics Program, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Bernd Kinzel
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Mark Labow
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Taiping Chen
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
- Epigenetics Program, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
- Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, United States of America
- * E-mail:
| |
Collapse
|
21
|
Radice GL. N-cadherin-mediated adhesion and signaling from development to disease: lessons from mice. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 116:263-89. [PMID: 23481199 PMCID: PMC6047516 DOI: 10.1016/b978-0-12-394311-8.00012-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Of the 20 classical cadherin subtypes identified in mammals, the functions of the two initially identified family members E- (epithelial) and N- (neural) cadherin have been most extensively studied. E- and N-Cadherin have mostly mutually exclusive expression patterns, with E-cadherin expressed primarily in epithelial cells, whereas N-cadherin is found in a variety of cells, including neural, muscle, and mesenchymal cells. N-Cadherin function, in particular, appears to be cell context-dependent, as it can mediate strong cell-cell adhesion in the heart but induces changes in cell behavior in favor of a migratory phenotype in the context of epithelial-mesenchymal transition (EMT). The ability of tumor cells to alter their cadherin expression profile, for example, E- to N-cadherin, is critical for malignant progression. Recent advances in mouse molecular genetics, and specifically tissue-specific knockout and knockin alleles of N-cadherin, have provided some unexpected results. This chapter highlights some of the genetic studies that explored the complex role of N-cadherin in embryonic development and disease.
Collapse
Affiliation(s)
- Glenn L Radice
- Department of Medicine, Center for Translational Medicine, Jefferson Medical College, Philadelphia, Pennsylvania, USA
| |
Collapse
|
22
|
Abstract
Cadherins are Ca(2+)-dependent cell-cell adhesion molecules that play critical roles in animal morphogenesis. Various cadherin-related molecules have also been identified, which show diverse functions, not only for the regulation of cell adhesion but also for that of cell proliferation and planar cell polarity. During the past decade, understanding of the roles of these molecules in the nervous system has significantly progressed. They are important not only for the development of the nervous system but also for its functions and, in turn, for neural disorders. In this review, we discuss the roles of cadherins and related molecules in neural development and function in the vertebrate brain.
Collapse
Affiliation(s)
- Shinji Hirano
- Department of Neurobiology and Anatomy, Kochi Medical School, Okoh-cho Kohasu, Nankoku-City 783–8505, Japan.
| | | |
Collapse
|
23
|
Dady A, Blavet C, Duband JL. Timing and kinetics of E- to N-cadherin switch during neurulation in the avian embryo. Dev Dyn 2012; 241:1333-49. [PMID: 22684994 DOI: 10.1002/dvdy.23813] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2012] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND During embryonic development, cadherin switches are correlated with tissue remodelings, such as epithelium-to-mesenchyme transition (EMT). An E- to N-cadherin switch also occurs during neurogenesis, but this is not accompanied with EMT. The biological significance of this switch is currently unknown. RESULTS We analyzed the timing and kinetics of the E- to N-cadherin switch during early neural induction and neurulation in the chick embryo, in relation to the patterns of their transcriptional regulators. We found that deployment of the E- to N-cadherin switch program varies considerably along the embryonic axis. Rostrally in regions of primary neurulation, it occurs progressively both in time and space in a manner that appears neither in connection with morphological transformation of neural epithelial cells nor in synchrony with movements of neurulation. Caudally, in regions of secondary neurulation, neurogenesis was not associated with cadherin switch as N-cadherin pre-existed before formation of the neural tube. We also found that, during neural development, cadherin switch is orchestrated by a set of transcriptional regulators distinct from those involved in EMT. CONCLUSIONS Our results indicate that cadherin switch correlates with the partition of the neurectoderm into its three main populations: ectoderm, neural crest, and neural tube.
Collapse
Affiliation(s)
- Alwyn Dady
- Université Pierre et Marie Curie-Paris 6, Laboratoire de Biologie du Développement, Paris, France
| | | | | |
Collapse
|
24
|
Hochmeister S, Romauch M, Bauer J, Seifert-Held T, Weissert R, Linington C, Hartung HP, Fazekas F, Storch MK. Re-expression of N-cadherin in remyelinating lesions of experimental inflammatory demyelination. Exp Neurol 2012; 237:70-7. [PMID: 22735489 DOI: 10.1016/j.expneurol.2012.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 06/13/2012] [Accepted: 06/16/2012] [Indexed: 10/28/2022]
Abstract
The cell adhesion molecule N-cadherin is involved in several processes during central nervous system development, but also in certain pathologic conditions in the adult brain, including tumorigenesis and Alzheimer's disease. N-cadherin function in inflammatory demyelinating disease has so far not been investigated. In vitro studies suggest a role of N-cadherin in myelination; on the other hand N-cadherin has been implicated in the formation of the glial scar, which is believed to impede remyelination. The aim of our study was to investigate the expression pattern of N-cadherin immunoreactivity in experimental autoimmune encephalomyelitis induced by myelin oligodendrocyte glycoprotein (MOG-EAE), an animal model closely mimicking multiple sclerosis. It allows a detailed evaluation of all stages of de- and remyelination during lesion development. Immunopathological evaluation was performed on paraffin-embedded CNS sections sampled at days 20 to 120 post immunization. We found a predominant expression of N-cadherin on oligodendrocytes in early remyelinating lesions, while in fully remyelinated shadow plaques there was no detectable immunoreactivity for N-cadherin. This expression pattern indicates a role of N-cadherin in the initiation of remyelination, most likely by providing a guidance between myelin lamellae and oligodendrocytes. Once the initial contact is made N-cadherin is then rapidly downregulated and virtually absent after completion of the repair process, analog to its known role in developmental myelination. Our results show that N-cadherin plays an important role in creating a remyelination-facilitating environment.
Collapse
Affiliation(s)
- S Hochmeister
- Department of Neurology, Medical University Graz, Austria.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Bedzhov I, Liszewska E, Kanzler B, Stemmler MP. Igf1r signaling is indispensable for preimplantation development and is activated via a novel function of E-cadherin. PLoS Genet 2012; 8:e1002609. [PMID: 22479204 PMCID: PMC3315466 DOI: 10.1371/journal.pgen.1002609] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 02/05/2012] [Indexed: 01/26/2023] Open
Abstract
Insulin-like growth factor I receptor (Igf1r) signaling controls proliferation, differentiation, growth, and cell survival in many tissues; and its deregulated activity is involved in tumorigenesis. Although important during fetal growth and postnatal life, a function for the Igf pathway during preimplantation development has not been described. We show that abrogating Igf1r signaling with specific inhibitors blocks trophectoderm formation and compromises embryo survival during murine blastocyst formation. In normal embryos total Igf1r is present throughout the membrane, whereas the activated form is found exclusively at cell contact sites, colocalizing with E-cadherin. Using genetic domain switching, we show a requirement for E-cadherin to maintain proper activation of Igf1r. Embryos expressing exclusively a cadherin chimera with N-cadherin extracellular and E-cadherin intracellular domains (NcEc) fail to form a trophectoderm and cells die by apoptosis. In contrast, homozygous mutant embryos expressing a reverse-structured chimera (EcNc) show trophectoderm survival and blastocoel cavitation, indicating a crucial and non-substitutable role of the E-cadherin ectodomain for these processes. Strikingly, blastocyst formation can be rescued in homozygous NcEc embryos by restoring Igf1r signaling, which enhances cell survival. Hence, perturbation of E-cadherin extracellular integrity, independent of its cell-adhesion function, blocked Igf1r signaling and induced cell death in the trophectoderm. Our results reveal an important and yet undiscovered function of Igf1r during preimplantation development mediated by a unique physical interaction between Igf1r and E-cadherin indispensable for proper receptor activation and anti-apoptotic signaling. We provide novel insights into how ligand-dependent Igf1r activity is additionally gated to sense developmental potential in utero and into a bifunctional role of adhesion molecules in contact formation and signaling. One of the most important steps during mammalian development is the formation of a blastocyst before implantation. Proper blastocyst development is fundamentally reliant on the function of the E-cadherin adhesion molecule, which cannot be replaced by another highly related member of the cadherin family. We have addressed the question of how E-cadherin unfolds its unique function during this central embryonic process. We generated mouse mutants that allow specific domain swapping of extra- and intracellular protein domains of E-cadherin with the corresponding portion of N-cadherin. Upon E-cadherin (Cdh1) depletion, apoptosis is induced in cells that are required to form the trophectoderm, the outer cells of a functional blastocyst. Uncoupling of the two E-cadherin domains demonstrated that specifically the presence of the extracellular domain is indispensable in providing essential survival cues. To establish a proper trophectoderm the insulin-like growth factor I receptor (Igf1r) is intimately connected to the E-cadherin–mediated suppression of apoptosis. By interaction of the two proteins Igf1r is efficiently activated to allow embryo survival, blastocyst formation, and implantation. This novel and adhesion-independent function of E-cadherin may serve as paradigm for bifunctionality of adhesion molecules and how they are particularly utilized to interpret signal transduction activities in specific cellular contexts.
Collapse
Affiliation(s)
| | | | | | - Marc P. Stemmler
- Department of Molecular Embryology, Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- * E-mail:
| |
Collapse
|
26
|
Abstract
Cadherin-based intercellular adhesions are important determinants of proper tissue architecture. These adhesions must be both stable and dynamic to maintain tissue integrity as cells undergo morphogenetic movements during development. The role of α-catenin in this process has been vigorously debated due to conflicting in vitro and in vivo evidence regarding its molecular mechanism of action. Recent data supports the classical view that α-catenin facilitates actin attachments at adherens junctions, but also suggests that α-catenin may act as a force transducer, and may have additional roles in the cytoplasm. These multiple functions for α-catenin converge on the regulation of adhesion and may help to explain its stable yet dynamic nature.
Collapse
Affiliation(s)
- Stephanie L Maiden
- Molecular and Cellular Pharmacology Program and Department of Zoology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
27
|
Boggetti B, Niessen CM. Adherens junctions in mammalian development, homeostasis and disease: lessons from mice. Subcell Biochem 2012; 60:321-55. [PMID: 22674078 DOI: 10.1007/978-94-007-4186-7_14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mice have proven to be a particularly powerful model to study molecular mechanisms of development and disease. The reason for this is the close evolutionary relationship between rodents and humans, similarities in physiological mechanisms in mice and human, and the large number of techniques available to study gene functions in mice. A large number of mice mutations, either germ line, conditional or inducible, have been generated in the past years for adherens junctions components, and the number is still increasing. In this review we will discuss mice models that have contributed to understanding the developmental and physiological role of adherens junctions and their components in mammals and have revealed novel mechanistic aspects of how adherens junctions regulate morphogenesis and tissue homeostasis.
Collapse
Affiliation(s)
- Barbara Boggetti
- Department of Dermatology, Center for Molecular Medicine, University of Cologne, Room 4A.05, Robert Kochstrasse 21, 50931, Cologne, Germany
| | | |
Collapse
|
28
|
Nicholson TB, Su H, Hevi S, Wang J, Bajko J, Li M, Valdez R, Loureiro J, Cheng X, Li E, Kinzel B, Labow M, Chen T. Defective heart development in hypomorphic LSD1 mice. Cell Res 2011:cr2011194. [PMID: 22143567 DOI: 10.1038/cr.2011.194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/07/2011] [Accepted: 10/14/2010] [Indexed: 11/09/2022] Open
Abstract
Lysine-specific demethylase 1 (LSD1/AOF2/KDM1A), the first enzyme with specific lysine demethylase activity to be described, demethylates histone and non-histone proteins and is essential for mouse embryogenesis. LSD1 interacts with numerous proteins through several different domains, most notably the tower domain, an extended helical structure that protrudes from the core of the protein. While there is evidence that LSD1-interacting proteins regulate the activity and specificity of LSD1, the significance and roles of such interactions in developmental processes remain largely unknown. Here we describe a hypomorphic LSD1 allele that contains two point mutations in the tower domain, resulting in a protein with reduced interaction with known binding partners and decreased enzymatic activity. Mice homozygous for this allele die perinatally due to heart defects, with the majority of animals suffering from ventricular septal defects. Transcriptional profiling revealed altered expression of a limited subset of genes in the hearts. This includes an increase in calmodulin kinase (CK) 2β, the regulatory subunit of the CK2 kinase, which correlates with E-cadherin hyperphosphorylation. These results identify a previously unknown role for LSD1 in heart development, perhaps partly through the control of E-cadherin phosphorylation.Cell Research advance online publication 6 December 2011; doi:10.1038/cr.2011.194.
Collapse
Affiliation(s)
- Thomas B Nicholson
- 1] Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA [2] Epigenetics Program, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Hui Su
- 1] Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA [2] Epigenetics Program, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Sarah Hevi
- 1] Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA [2] Epigenetics Program, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Jing Wang
- Epigenetics Program, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Jeff Bajko
- Epigenetics Program, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Mei Li
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Reginald Valdez
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Joseph Loureiro
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Xiaodong Cheng
- Department of Biochemistry, Emory University, Atlanta, GA 30322, USA
| | - En Li
- Epigenetics Program, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Bernd Kinzel
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Novartis Pharma AG Forum 1 Novartis Campus CH-4056, Basel, Switzerland
| | - Mark Labow
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Taiping Chen
- 1] Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA [2] Epigenetics Program, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA [3] Current address: Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| |
Collapse
|
29
|
Piven OO, Kostetskii IE, Macewicz LL, Kolomiets YM, Radice GL, Lukash LL. Requirement for N-cadherin-catenin complex in heart development. Exp Biol Med (Maywood) 2011; 236:816-22. [PMID: 21680756 DOI: 10.1258/ebm.2011.010362] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cell adhesion, mediated by N-cadherin, is critical for embryogenesis since N-cadherin-null embryos die during mid-gestation with multiple developmental defects. To investigate the role of N-cadherin in heart muscle development, N-cadherin was specifically deleted from myocardial cells in mice. The structural integrity of the myocardial cell wall was compromised in the N-cadherin mutant embryos, leading to a malformed heart and a delay in embryonic development. In contrast, cardiac-specific deletion of αE-catenin, found in adherens junctions, or β-catenin, did not cause any morphological defects in the embryonic heart, presumably due to compensation by αT-catenin that is normally found in intercalated disks and γ-catenin (plakoglobin), respectively. Embryos lacking β-catenin in the heart also exhibited a cardiac defect, but only later in development resulting in partial lethality. These genetic studies underscore the importance of the N-cadherin/catenin complex in cardiogenesis.
Collapse
Affiliation(s)
- Oksana O Piven
- Іnstitute of Molecular Biology and Genetic, Kyiv, Ukraine
| | | | | | | | | | | |
Collapse
|
30
|
Johansson JK, Voss U, Kesavan G, Kostetskii I, Wierup N, Radice GL, Semb H. N-cadherin is dispensable for pancreas development but required for beta-cell granule turnover. Genesis 2010; 48:374-81. [PMID: 20533404 DOI: 10.1002/dvg.20628] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The cadherin family of cell adhesion molecules mediates adhesive interactions that are required for the formation and maintenance of tissues. Previously, we demonstrated that N-cadherin, which is required for numerous morphogenetic processes, is expressed in the pancreatic epithelium at E9.5, but later becomes restricted to endocrine aggregates in mice. To study the role of N-cadherin during pancreas formation and function we generated a tissue-specific knockout of N-cadherin in the early pancreatic epithelium by inter-crossing N-cadherin-floxed mice with Pdx1Cre mice. Analysis of pancreas-specific ablation of N-cadherin demonstrates that N-cadherin is dispensable for pancreatic development, but required for beta-cell granule turnover. The number of insulin secretory granules is significantly reduced in N-cadherin-deficient beta-cells, and as a consequence insulin secretion is decreased.
Collapse
Affiliation(s)
- Jenny K Johansson
- Stem Cell Center, Department of Laboratory Medicine, Lund University, Sweden
| | | | | | | | | | | | | |
Collapse
|
31
|
Culver JC, Dickinson ME. The effects of hemodynamic force on embryonic development. Microcirculation 2010; 17:164-78. [PMID: 20374481 DOI: 10.1111/j.1549-8719.2010.00025.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Blood vessels have long been known to respond to hemodynamic force, and several mechanotransduction pathways have been identified. However, only recently have we begun to understand the effects of hemodynamic force on embryonic development. In this review, we will discuss specific examples illustrating the role of hemodynamic force during the development of the embryo, with particular focus on the development of the vascular system and the morphogenesis of the heart. We will also discuss the important functions served by mechanotransduction and hemodynamic force during placentation, as well as in regulating the maintenance and division of embryonic, hematopoietic, neural, and mesenchymal stem cells. Pathological misregulation of mechanosensitive pathways during pregnancy and embryonic development may contribute to the occurrence of cardiovascular birth defects, as well as to a variety of other diseases, including preeclampsia. Thus, there is a need for future studies focusing on better understanding the physiological effects of hemodynamic force during embryonic development and their role in the pathogenesis of disease.
Collapse
Affiliation(s)
- James C Culver
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
32
|
Craig MA, McBride MW, Smith G, George SJ, Baker A. Dysregulation of cadherins in the intercalated disc of the spontaneously hypertensive stroke-prone rat. J Mol Cell Cardiol 2010; 48:1121-8. [PMID: 20138888 PMCID: PMC2867785 DOI: 10.1016/j.yjmcc.2010.01.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 12/19/2009] [Accepted: 01/26/2010] [Indexed: 12/01/2022]
Abstract
The structural integrity of cardiac cells is maintained by the Ca(2+)-dependent homophilic cell-cell adhesion of cadherins. N-cadherin is responsible for this adhesion under normal physiological conditions. The role of cadherins in adverse cardiac pathology is less clear. We studied the hearts of the stroke-prone spontaneously hypertensive (SHRSP) rat as a genetic model of cardiac hypertrophy and compared them to Wistar-Kyoto control animals. Western blotting of protein homogenates from 12-week old SHRSP animals indicated that similar levels of beta, gamma-, and alpha-catenin and T, N and R-cadherin were expressed in the control and SHRSP animals. However, dramatically higher levels of E-cadherin were detected in SHRSP animals compared to controls at 6, 12 and 18 weeks of age. This was confirmed by quantitative Taqman PCR and immunohistochemistry. E-cadherin was located at the intercalated disc of the myocytes in co-localisation with connexin 43. Adenoviral overexpression of E-cadherin in rat H9c2 cells and primary rabbit myocytes resulted in a significant reduction in myocyte cell diameter and breadth. E-cadherin overexpression resulted in re-localisation of beta-catenin to the cell surface particularly to cell-cell junctions. Subsequent immunohistochemistry of the hearts of WKY and SHRSP animals also revealed increased levels of beta-catenin in the intercalated disc in the SHRSP compared to WKY. Therefore, remodelling of the intercalated disc in the hearts of SHRSP animals may contribute to the altered function observed in these animals.
Collapse
Affiliation(s)
- Margaret Anne Craig
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University place, Glasgow, G12 8TA, UK
| | | | | | | | | |
Collapse
|
33
|
Smith AN, Radice G, Lang RA. Which FGF ligands are involved in lens induction? Dev Biol 2009; 337:195-8. [PMID: 19913010 DOI: 10.1016/j.ydbio.2009.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 11/05/2009] [Accepted: 11/05/2009] [Indexed: 11/17/2022]
Affiliation(s)
- April N Smith
- The Visual Systems Group, Division of Pediatric Ophthalmology, University of Cincinnati, Cincinnati, OH 45229, USA
| | | | | |
Collapse
|
34
|
Romeih M, Cakstina I, Zile MH. Retinoic acid is a negative physiological regulator of N-cadherin during early avian heart morphogenesis. Dev Growth Differ 2009; 51:753-67. [PMID: 19843154 DOI: 10.1111/j.1440-169x.2009.01134.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The vitamin A-deficient (VAD) early avian embryo has a grossly abnormal cardiovascular system that is rescued by treating the embryo with the vitamin A-active form, retinoic acid (RA). Here we examine the role of N-cadherin (N-cad) in RA-regulated early cardiovascular morphogenesis. N-cad mRNA and protein are expressed globally in the presomite through HH14 normal and VAD quail embryos. The expression in VAD embryos prior to HH10 is significantly higher than that in normal embryos. Functional analyses of the N-cad overproducing VAD embryos reveal N-cad involvement in the RA-regulated cardiovascular development and suggest that N-cad expression may be mediated by Msx1. We provide evidence that in the early avian embryo, endogenous RA is a negative physiological regulator of N-cad. We hypothesize that a critical endogenous level of N-cad is needed for normal early cardiovascular morphogenesis to occur and that this level is ensured by stage-specific, developmentally regulated RA signaling.
Collapse
Affiliation(s)
- Mahmoud Romeih
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
35
|
Kim D, Kang SS, Jin EJ. Alterations in the temporal expression and function of cadherin-7 inhibit cell migration and condensation during chondrogenesis of chick limb mesenchymal cells in vitro. J Cell Physiol 2009; 221:161-70. [DOI: 10.1002/jcp.21840] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
36
|
LaMora A, Voigt MM. Cranial sensory ganglia neurons require intrinsic N-cadherin function for guidance of afferent fibers to their final targets. Neuroscience 2009; 159:1175-84. [PMID: 19356698 DOI: 10.1016/j.neuroscience.2009.01.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 01/21/2009] [Accepted: 01/24/2009] [Indexed: 11/19/2022]
Abstract
Cell adhesion molecules, such as N-cadherin (cdh2), are essential for normal neuronal development, and as such have been implicated in an array of processes including neuronal differentiation and migration, and axon growth and fasciculation. cdh2 is expressed in neurons of the peripheral nervous system during development, but its role in these cells during this time is poorly understood. Using the transgenic zebrafish line, tg(p2xr3.2:eGFP(sl1)), we have examined the involvement of cdh2 in the formation of sensory circuits by the peripheral nervous system. The tg(p2xr3.2:eGFP(sl1)) fish allows visualization of neurons comprising the trigeminal, facial, glossopharyngeal and vagal ganglia and their axons throughout development. Reduction of cdh2 in this line was achieved by either crosses to the cdh2-mutant strain, glass onion (glo) or injection of a cdh2 morpholino (MO) into single-cell embryos. Here we show that cdh2 function is required to alter the directional vectors of growing axons upon reaching intermediate targets. The central axons enter the hindbrain appropriately but fail to turn caudally towards their final targets. Similarly, the peripheral axons extend ventrally, but fail to turn and project along a rostral/caudal axis. Furthermore, by expressing dominant negative cdh2 constructs selectively within cranial sensory ganglia (CSG) neurons, we found that cdh2 function is necessary within the axons to elicit these stereotypic turns, thus demonstrating that cdh2 acts cell autonomously. Together, our in vivo data reveal a novel role for cdh2 in the establishment of circuits by peripheral sensory neurons.
Collapse
Affiliation(s)
- A LaMora
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 South Grand Boulevard, St. Louis, MO 63104, USA
| | | |
Collapse
|
37
|
Pontoriero GF, Smith AN, Miller LAD, Radice GL, West-Mays JA, Lang RA. Co-operative roles for E-cadherin and N-cadherin during lens vesicle separation and lens epithelial cell survival. Dev Biol 2008; 326:403-17. [PMID: 18996109 DOI: 10.1016/j.ydbio.2008.10.011] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 09/23/2008] [Accepted: 10/06/2008] [Indexed: 10/21/2022]
Abstract
The classical cadherins are known to have both adhesive and signaling functions. It has also been proposed that localized regulation of cadherin activity may be important in cell assortment during development. In the context of eye development, it has been suggested that cadherins are important for separation of the invaginated lens vesicle from the surface ectoderm. To test this hypothesis, we conditionally deleted N-cadherin or E-cadherin from the presumptive lens ectoderm of the mouse. Conditional deletion of either cadherin alone did not produce a lens vesicle separation defect. However, these conditional mutants did exhibit common structural deficits, including microphthalmia, severe iris hyperplasia, persistent vacuolization within the fibre cell region, and eventual lens epithelial cell deterioration. To assess the co-operative roles of E-cadherin and N-cadherin within the developing lens, double conditional knockout embryos were generated. These mice displayed distinct defects in lens vesicle separation and persistent expression of another classical cadherin, P-cadherin, within the cells of the persistent lens stalk. Double mutant lenses also exhibited severe defects in lens epithelial cell adhesion and survival. Finally, the severity of the lens phenotype was shown to be sensitive to the number of wild-type E- and N-cadherin alleles. These data suggest that the co-operative expression of both E- and N-cadherin during lens development is essential for normal cell sorting and subsequent lens vesicle separation.
Collapse
|
38
|
Sakamoto A, Murata K, Suzuki H, Yatabe M, Kikuchi M. Immunohistochemical observation of co-expression of E- and N-cadherins in rat organogenesis. Acta Histochem Cytochem 2008; 41:143-7. [PMID: 18989468 PMCID: PMC2576505 DOI: 10.1267/ahc.08026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 08/21/2008] [Indexed: 11/22/2022] Open
Abstract
Cadherins are a family of transmembrane glycoproteins that mediate cell-to-cell adhesion. Isoforms, including E- and N-cadherin, have been identified and shown to regulate morphogenesis through homophilic binding. In the ontogeny, the expressions of E- and N-cadherin change spatiotemporally, and the changes in cadherin isoforms, called cadherin switching, impact the mechanical adhesion of cells. Furthermore, cadherin functions as a receptor that transfers information from outside to inside cells, and in terms of switching, it affects cell phenotypes. To observe the expression patterns of E- and N-cadherins during embryogenesis and to identify cells that transiently coexpress both cadherins, we employed a recently developed immunohistochemical double staining technique in rat fetuses. At embryonic day 9, embryonic ectodermal cells more dominantly expressed E-cadherin, while mesodermal cells more dominantly expressed N-cadherin. At embryonic day 10, the expression pattern of E-cadherin in the surface ectoderm and endoderm and that of N-cadherin in the neuroectoderm were established. After embryonic day 10, unique co-expression of E- and N-cadherin was observed in primordia, such as the bulbus cordis, otic pit, notochord, and Rathke’s pouch. In the present study, it was possible to visualize the expression patterns of E- and N-cadherin during early fetal development, which enabled us to morphologically clarify cadherin switching.
Collapse
Affiliation(s)
- Atsushi Sakamoto
- Division of Forensic Medicine, Center for Community Medicine, Jichi Medical University School of Medicine
| | - Kazumoto Murata
- Division of Forensic Medicine, Center for Community Medicine, Jichi Medical University School of Medicine
| | - Hideto Suzuki
- Division of Forensic Medicine, Center for Community Medicine, Jichi Medical University School of Medicine
| | - Megumi Yatabe
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine
| | - Motoshi Kikuchi
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine
| |
Collapse
|
39
|
Martín-de-Lara F, Sánchez-Aparicio P, Arias de la Fuente C, Rey-Campos J. Biological effects of FoxJ2 over-expression. Transgenic Res 2008; 17:1131-41. [PMID: 18726704 DOI: 10.1007/s11248-008-9214-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Accepted: 07/28/2008] [Indexed: 12/15/2022]
Abstract
As reported previously, we have extensively studied FoxJ2, a member of the Fork Head transcription factors family. While the biochemical and functional structures of this transcription factor are well understood, its biological function remains unknown. Here, we present data that address this point using transgenic mouse technology. We found that the birth rate and the number of transgenic animals obtained when transferring embryos over-expressing the FoxJ2 protein were lower than those obtained with embryos over-expressing a control protein, suggesting FoxJ2 overexpression has a negative effect on embryonic development. Transient FoxJ2 transgenesis experiments have confirmed that FoxJ2 over-expression has a lethal effect on embryonic development from E10.5. Moreover, in vitro culture of FoxJ2-microinjected embryos demonstrated a significant developmental blockage, indicating that FoxJ2 could also have an effect on pre-implantation stages. Most probably, these negative effects of FoxJ2 over-expression during development also explain the low percentage of adult transgenic mice obtained. Furthermore, most of the transgenic mice that lived to adulthood did not show transgene expression. In fact, the only two adult transgenic animals (one male and one female) in which FoxJ2 transgene expression was detected showed a mosaic expression and died prematurely as a result of cardio-respiratory failure. Postmortem analysis of these animals revealed a hypertrophic heart and abnormal testes in the male. In order to identify genes regulated by FoxJ2 consistent with the phenotypes observed for FoxJ2 transgenic mice, EMSA assays and co-transfection experiments were carried out. Our data indicate that the genes coding for the gap junction protein Connexin-43 and the cell-cell contact protein E-Cadherin, may be good candidates for FoxJ2-regulated genes. Interestingly, Connexin-43 and E-Cadherin show expression patterns similar to FoxJ2, and the phenotypes of Connexin-43 and E-Cadherin mutants resemble those of our FoxJ2 transgenic animals. These data suggest that the lethal effect on embryonic development of FoxJ2 overexpression, as well as the alterations observed in the heart and testes of adult transgenic mice, could be determined by changes in the transcription of genes such as Connexin-43 and/or E-Cadherin.
Collapse
|
40
|
Sasse P, Malan D, Fleischmann M, Roell W, Gustafsson E, Bostani T, Fan Y, Kolbe T, Breitbach M, Addicks K, Welz A, Brem G, Hescheler J, Aszodi A, Costell M, Bloch W, Fleischmann BK. Perlecan is critical for heart stability. Cardiovasc Res 2008; 80:435-44. [PMID: 18694874 DOI: 10.1093/cvr/cvn225] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AIMS Perlecan is a heparansulfate proteoglycan found in basement membranes, cartilage, and several mesenchymal tissues that form during development, tumour growth, and tissue repair. Loss-of-function mutations in the perlecan gene in mice are associated with embryonic lethality caused primarily by cardiac abnormalities probably due to hemopericards. The aim of the present study was to investigate the mechanism underlying the early embryonic lethality and the pathophysiological relevance of perlecan for heart function. METHODS AND RESULTS Perlecan-deficient murine embryonic stem cells were used to investigate the myofibrillar network and the electrophysiological properties of single cardiomyocytes. The mechanical stability of the developing perlecan-deficient mouse hearts was analysed by microinjecting fluorescent-labelled dextran. Maturation and formation of basement membranes and cell-cell contacts were investigated by electron microscopy, immunohistochemistry, and western blotting. Sarcomere formation and cellular functional properties were unaffected in perlecan-deficient cardiomyocytes. However, the intraventricular dye injection experiments revealed mechanical instability of the early embryonic mouse heart muscle wall before embryonic day 10.5 (E10.5). Accordingly, perlecan-null embryonic hearts contained lower amounts of the critical basement membrane components, collagen IV and laminins. Furthermore, basement membranes were absent in perlecan-null cardiomoycytes whereas adherens junctions formed and matured around E9.5. Infarcted hearts from perlecan heterozygous mice displayed reduced heart function when compared with wild-type hearts. CONCLUSION We propose that perlecan plays an important role in maintaining the integrity during cardiac development and is important for heart function in the adult heart after injury.
Collapse
Affiliation(s)
- Philipp Sasse
- Institute of Physiology I, Life & Brain Center, University of Bonn, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Nyqvist D, Giampietro C, Dejana E. Deciphering the functional role of endothelial junctions by using in vivo models. EMBO Rep 2008; 9:742-7. [PMID: 18600233 DOI: 10.1038/embor.2008.123] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 05/23/2008] [Indexed: 11/09/2022] Open
Abstract
Endothelial cell-to-cell junctions are vital for the formation and integrity of blood vessels. The main adhesive junctional complexes in endothelial cells, adherens junctions and tight junctions, are formed by transmembrane adhesive proteins that are linked to intracellular signalling partners and cytoskeletal-binding proteins. Gene inactivation and blocking antibodies in mouse models have revealed some of the functions of the individual junctional components in vivo, and are increasing our understanding of the functional role of endothelial cell junctions in angiogenesis and vascular homeostasis. Adherens-junction organization is required for correct vascular morphogenesis during embryo development. By contrast, the data available suggest that tight-junction proteins are not essential for vascular development but are necessary for endothelial barrier function.
Collapse
Affiliation(s)
- Daniel Nyqvist
- IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | | | | |
Collapse
|
42
|
Abstract
Proper embryonic development is guaranteed under conditions of regulated cell-cell and cell-matrix adhesion. The cells of an embryo have to be able to distinguish their neighbours as being alike or different. Cadherins, single-pass transmembrane, Ca(2+)-dependent adhesion molecules that mainly interact in a homophilic manner, are major contributors to cell-cell adhesion. Cadherins play pivotal roles in important morphogenetic and differentiation processes during development, and in maintaining tissue integrity and homeostasis. Changes in cadherin expression throughout development enable differentiation and the formation of various organs. In addition to these functions, cadherins have strong implications in tumourigenesis, since frequently tumour cells show deregulated cadherin expression and inappropriate switching among family members. In this review, I focus on E- and N-cadherin, giving an overview of their structure, cellular function, importance during development, role in cancer, and of the complexity of Ecadherin gene regulation.
Collapse
Affiliation(s)
- Marc P Stemmler
- Department of Molecular Embryology, Max-Planck Institute of Immunobiology, Stuebeweg 51, D-79108 Freiburg, Germany.
| |
Collapse
|
43
|
Agarwal SK, Lee DM, Kiener HP, Brenner MB. Coexpression of two mesenchymal cadherins, cadherin 11 and N-cadherin, on murine fibroblast-like synoviocytes. ACTA ACUST UNITED AC 2008; 58:1044-54. [PMID: 18383368 DOI: 10.1002/art.23369] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Cadherin 11 has recently been identified on fibroblast-like synoviocytes (FLS), and studies in mice have demonstrated its importance in synovial lining architecture and inflammation. However, many tissues express more than 1 cadherin. Given the newly appreciated functional significance of cadherins in the synovium, this study was undertaken to determine whether mouse FLS express other cadherins in addition to cadherin 11. METHODS The characterization of cadherin expression was determined in FLS derived from wild-type and cadherin 11-null mice using immunofluorescence (IF), biochemical, and immunohistologic techniques. RESULTS Cadherin 11 expression was observed at points of cell-cell contact in cultured wild-type mouse FLS. However, despite the lack of cell surface cadherin 11, cadherin 11-null mouse FLS cells still formed intimate cell-cell contacts that contained beta-catenin. Immunoprecipitation of cell surface biotinylated FLS with anti-beta-catenin antibody demonstrated the presence of 2 cell surface catenin-associated proteins in FLS from wild-type mice and 1 in FLS sample from cadherin 11-null mice. Using biochemical approaches and reverse transcriptase-polymerase chain reaction, these proteins were determined to be N-cadherin and cadherin 11. Expression of both N-cadherin and cadherin 11 in the synovial lining was demonstrated by immunohistochemical analysis of mouse synovium. IF analyses demonstrated colocalization of N-cadherin and cadherin 11 to the same points of cell-cell contact. However, the inability to coimmunoprecipitate both cadherins using either anti-N-cadherin or anti-cadherin 11 antibodies suggests that these cadherins are not contained within the same molecular complexes. CONCLUSION These findings demonstrate that FLS express both N-cadherin and cadherin 11, and suggest that these cadherins are not contained within the same molecular complex. Given their importance in modulating cellular behavior, understanding how these cadherins regulate FLS behavior individually and in concert will be critical to understanding synovial architecture and inflammation.
Collapse
Affiliation(s)
- Sandeep K Agarwal
- Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
44
|
Abstract
Classic cadherins represent a family of calcium-dependent homophilic cell-cell adhesion molecules. They confer strong adhesiveness to animal cells when they are anchored to the actin cytoskeleton via their cytoplasmic binding partners, catenins. The cadherin/catenin adhesion system plays key roles in the morphogenesis and function of the vertebrate and invertebrate nervous systems. In early vertebrate development, cadherins are involved in multiple events of brain morphogenesis including the formation and maintenance of the neuroepithelium, neurite extension and migration of neuronal cells. In the invertebrate nervous system, classic cadherin-mediated cell-cell interaction plays important roles in wiring among neurons. For synaptogenesis, the cadherin/catenin system not only stabilizes cell-cell contacts at excitatory synapses but also assembles synaptic molecules at synaptic sites. Furthermore, this system is involved in synaptic plasticity. Recent studies on the role of individual cadherin subtypes at synapses indicate that individual cadherin subtypes play their own unique role to regulate synaptic activities.
Collapse
Affiliation(s)
- Sachihiro C Suzuki
- RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | | |
Collapse
|
45
|
Lim ST, Lim KC, Giuliano RE, Federoff HJ. Temporal and spatial localization of nectin-1 and l-afadin during synaptogenesis in hippocampal neurons. J Comp Neurol 2008; 507:1228-44. [PMID: 18181141 DOI: 10.1002/cne.21608] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Nectins are cell adhesion molecules that, together with the intracellular binding partner afadin, mediate adhesion and signaling at a variety of intercellular junctions. In this work we studied the distribution of nectin-1 and afadin during hippocampal synapse formation using cultured primary hippocampal neurons. Nectin-1 and afadin cluster at developing synapses between hippocampal neurons. These nectin-afadin clusters uniformly colocalize with N-cadherin-catenin pairs, suggesting that formation of developing synapses involves participation of both bimolecular systems. Nectin-1 is initially expressed at excitatory and inhibitory synapses but is progressively lost at inhibitory synapses during their maturation. Treatment of neurons with actin depolymerizing agents disrupts the synaptically localized nectin-1 and afadin cluster at an early stage and elicits nectin-1 ectodomain shedding. These data indicate that the synaptic localization of nectin-1 and l-afadin are F-actin-dependent and that the shedding of nectin-1 is a mechanism contributing to synaptic plasticity.
Collapse
Affiliation(s)
- Seung T Lim
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | | | | | | |
Collapse
|
46
|
Warga RM, Kane DA. A role for N-cadherin in mesodermal morphogenesis during gastrulation. Dev Biol 2007; 310:211-25. [PMID: 17826762 DOI: 10.1016/j.ydbio.2007.06.023] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 06/26/2007] [Accepted: 06/28/2007] [Indexed: 11/19/2022]
Abstract
Cell adhesion molecules mediate numerous developmental processes necessary for the segregation and organization of tissues. Here we show that the zebrafish biber (bib) mutant encodes a dominant allele at the N-cadherin locus. When knocked down with antisense oligonucleotides, bib mutants phenocopy parachute (pac) null alleles, demonstrating that bib is a gain-of-function mutation. The mutant phenotype disrupts normal cell-cell contacts throughout the mesoderm as well as the ectoderm. During gastrulation stages, cells of the mesodermal germ layer converge slowly; during segmentation stages, the borders between paraxial and axial tissues are irregular and somite borders do not form; later, myotomes are fused. During neurulation, the neural tube is disorganized. Although weaker, all traits present in bib mutants were found in pac mutants. When the distribution of N-cadherin mRNA was analyzed to distinguish mesodermal from neuroectodermal expression, we found that N-cadherin is strongly expressed in the yolk cell and hypoblast in the early gastrula, just preceding the appearance of the bib mesodermal defects. Only later is N-cadherin expressed in the anlage of the CNS, where it is found as a radial gradient in the forming neural plate. Hence, besides a well-established role in neural and somite morphogenesis, N-cadherin is essential for morphogenesis of the mesodermal germ layer during gastrulation.
Collapse
Affiliation(s)
- Rachel M Warga
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA
| | | |
Collapse
|
47
|
Gustafson-Wagner EA, Sinn HW, Chen YL, Wang DZ, Reiter RS, Lin JLC, Yang B, Williamson RA, Chen J, Lin CI, Lin JJC. Loss of mXinalpha, an intercalated disk protein, results in cardiac hypertrophy and cardiomyopathy with conduction defects. Am J Physiol Heart Circ Physiol 2007; 293:H2680-92. [PMID: 17766470 PMCID: PMC2394510 DOI: 10.1152/ajpheart.00806.2007] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The intercalated disk protein Xin was originally discovered in chicken striated muscle and implicated in cardiac morphogenesis. In the mouse, there are two homologous genes, mXinalpha and mXinbeta. The human homolog of mXinalpha, Cmya1, maps to chromosomal region 3p21.2-21.3, near a dilated cardiomyopathy with conduction defect-2 locus. Here we report that mXinalpha-null mouse hearts are hypertrophied and exhibit fibrosis, indicative of cardiomyopathy. A significant upregulation of mXinbeta likely provides partial compensation and accounts for the viability of the mXinalpha-null mice. Ultrastructural studies of mXinalpha-null mouse hearts reveal intercalated disk disruption and myofilament disarray. In mXinalpha-null mice, there is a significant decrease in the expression level of p120-catenin, beta-catenin, N-cadherin, and desmoplakin, which could compromise the integrity of the intercalated disks and functionally weaken adhesion, leading to cardiac defects. Additionally, altered localization and decreased expression of connexin 43 are observed in the mXinalpha-null mouse heart, which, together with previously observed abnormal electrophysiological properties of mXinalpha-deficient mouse ventricular myocytes, could potentially lead to conduction defects. Indeed, ECG recordings on isolated, perfused hearts (Langendorff preparations) show a significantly prolonged QT interval in mXinalpha-deficient hearts. Thus mXinalpha functions in regulating the hypertrophic response and maintaining the structural integrity of the intercalated disk in normal mice, likely through its association with adherens junctional components and actin cytoskeleton. The mXinalpha-knockout mouse line provides a novel model of cardiac hypertrophy and cardiomyopathy with conduction defects.
Collapse
|
48
|
Mariotti A, Perotti A, Sessa C, Rüegg C. N-cadherin as a therapeutic target in cancer. Expert Opin Investig Drugs 2007; 16:451-65. [PMID: 17371194 DOI: 10.1517/13543784.16.4.451] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
During tumor progression, cancer cells undergo dramatic changes in the expression profile of adhesion molecules resulting in detachment from original tissue and acquisition of a highly motile and invasive phenotype. A hallmark of this change, also referred to as the epithelial-mesenchymal transition, is the loss of E- (epithelial) cadherin and the de novo expression of N- (neural) cadherin adhesion molecules. N-cadherin promotes tumor cell survival, migration and invasion, and a high level of its expression is often associated with poor prognosis. N-cadherin is also expressed in endothelial cells and plays an essential role in the maturation and stabilization of normal vessels and tumor-associated angiogenic vessels. Increasing experimental evidence suggests that N-cadherin is a potential therapeutic target in cancer. A peptidic N-cadherin antagonist (ADH-1) has been developed and has entered clinical testing. In this review, the authors discuss the biochemical and functional features of N-cadherin, its potential role in cancer and angiogenesis, and summarize the preclinical and clinical results achieved with ADH-1.
Collapse
Affiliation(s)
- Agnese Mariotti
- Centre Pluridisciplinaire d'Oncologie, Division of Experimental Oncology, Lausanne Cancer Center, and Swiss Institute for Experimental Cancer Research (ISREC), NCCR Molecular Oncology, Epalinges, Switzerland.
| | | | | | | |
Collapse
|
49
|
Franke WW, Schumacher H, Borrmann CM, Grund C, Winter-Simanowski S, Schlechter T, Pieperhoff S, Hofmann I. The area composita of adhering junctions connecting heart muscle cells of vertebrates – III: Assembly and disintegration of intercalated disks in rat cardiomyocytes growing in culture. Eur J Cell Biol 2007; 86:127-42. [PMID: 17275137 DOI: 10.1016/j.ejcb.2006.11.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 11/23/2006] [Accepted: 11/24/2006] [Indexed: 12/31/2022] Open
Abstract
For cell and molecular biological studies of heart formation and function cell cultures of embryonal, neonatal or adult hearts of various vertebrates, notably rat and chicken, have been widely used. As the myocardium-specific cell-cell junctions, the intercalated disks (ID), have recently been found to be particularly sensitive to losses of - or mutations in - certain cytoskeletal proteins, resulting in cardiac damages, we have examined the ID organization in primary cultures of cardiomyocytes obtained from neonatal rats. Using immunofluorescence and immunoelectron microscopy, we have studied the major ID components for up to 2 weeks in culture, paying special attention to spontaneously beating, individual cardiomyocytes and myocardial cell colonies. While our results demonstrate the formation of some ID-like cardiomyocyte-connecting junction arrays, they also reveal a variety of structural disorders such as rather extended, junction-free ID regions, sac-like invaginations and endocytotic blebs as well as accumulations of intracytoplasmic structures suggestive of endocytosed forms of junction-derived vesicles or of junction fragments resembling fascia adhaerens elements. Moreover, we have noticed a novel type of small, obviously plaque-free cytoplasmic vesicles containing one or both of the desmosomal cadherins, desmocollin Dsc2 and desmoglein Dsg2. We conclude that cardiomyocyte cultures are useful model systems for studies of certain aspects of myocardiac differentiation and functions but, on the other hand, show progressive disintegration and deterioration. The potential value of molecular markers and reagents in studies of myocardial pathology as well as in the monitoring of myocardial differentiation of so-called stem cells is discussed.
Collapse
Affiliation(s)
- Werner W Franke
- Division of Cell Biology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Nagaoka M, Ise H, Harada I, Koshimizu U, Maruyama A, Akaike T. Embryonic undifferentiated cells show scattering activity on a surface coated with immobilized E-cadherin. J Cell Biochem 2007; 103:296-310. [PMID: 17559080 DOI: 10.1002/jcb.21406] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Rearrangement of cell-cell adhesion is a critical event in embryonic development and tissue formation. We investigated the regulatory function of E-cadherin, a key adhesion protein, in the developmental process by using E-cadherin/IgG Fc fusion protein as an adhesion matrix in cell culture. F9 embryonal carcinoma cells usually form colonies when cultured on gelatin or fibronectin matrices. However, F9 cells cultured on the E-cadherin/IgG Fc fusion protein matrix formed a scattered distribution, with a different cytoskeletal organization and E-cadherin-rich protrusions that were regulated by Rac1 activity. The same scattering activity was observed in P19 embryonal carcinoma cells. In contrast, three types of differentiated cells, NMuMG mammary gland cells, MDCK kidney epithelial cells, and mouse primary isolated hepatocytes, did not show the scattering activity observed in F9 and P19 cells. These results suggest that migratory behavior on an E-cadherin-immobilized surface is only observed in embryonic cells, and that the regulatory mechanisms underlying E-cadherin-mediated cell adhesion vary with the state of differentiation.
Collapse
Affiliation(s)
- Masato Nagaoka
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | | | | | |
Collapse
|