1
|
Du Y, Feng Z, Gao M, Wang A, Yan X, Chen R, Liu B, Yu F, Ba Y, Zhou G. Impaired neurogenesis induced by fluoride via the Notch1 signaling and effects of carvacrol intervention. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124371. [PMID: 38880328 DOI: 10.1016/j.envpol.2024.124371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/26/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
The negative regulation on neurogenesis has been implicated in fluoride neurotoxicity, while the evidence is limited. To explore whether fluoride interferes with neurogenesis via the Notch1 signaling and the potential alleviation effects of carvacrol (CAR), we conducted in vivo and in vitro experiments, as well as epidemiological analyses in this study. The results showed that urinary fluoride levels and circulating Notch1 levels were associated with IQ levels in boys. NaF-treated rats had fewer neurons, lower densities of dendritic spines, depressed neurogenesis, and impaired learning and memory abilities. In vitro experiments using undifferentiated PC12 cells mimicking neurogenesis revealed that NaF suppressed differentiation and neurite outgrowth. Besides, Notch1 signaling activation was detected in vivo and in vitro. The latter was confirmed using an in vitro model supplemented with DAPT, a potent Notch1 inhibitor. Furthermore, CAR supplementation negatively regulated NICD1 and Hes1 expressions and promoted hippocampal neurogenesis, thereby improving neurological functions in NaF-treated rats. These findings indicated that the inhibition of neurogenesis in hippocampi induced by fluoride via Notch1 signaling activation may be one of the underlying mechanisms of its neurotoxicity, and that CAR significantly alleviated the neurotoxicity of NaF via the Notch1 signaling.
Collapse
Affiliation(s)
- Yuhui Du
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Zichen Feng
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Minghui Gao
- The First Affiliated Hospital of Henan University, Henan University, Kaifeng, Henan, 475000, China
| | - Anqi Wang
- Henan Provincial Center for Disease Control and Prevention, Zhengzhou, Henan, 450000, China
| | - Xi Yan
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Ruiqin Chen
- Jinshui District Center for Disease Control and Prevention, Zhengzhou, Henan, 450000, China
| | - Bin Liu
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Fangfang Yu
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yue Ba
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Guoyu Zhou
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
2
|
Yamada M, Keller RR, Gutierrez RL, Cameron D, Suzuki H, Sanghrajka R, Vaynshteyn J, Gerwin J, Maura F, Hooper W, Shah M, Robine N, Demarest P, Bayin NS, Zapater LJ, Reed C, Hébert S, Masilionis I, Chaligne R, Socci ND, Taylor MD, Kleinman CL, Joyner AL, Raju GP, Kentsis A. Childhood cancer mutagenesis caused by transposase-derived PGBD5. SCIENCE ADVANCES 2024; 10:eadn4649. [PMID: 38517960 PMCID: PMC10959420 DOI: 10.1126/sciadv.adn4649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/16/2024] [Indexed: 03/24/2024]
Abstract
Genomic rearrangements are a hallmark of most childhood tumors, including medulloblastoma, one of the most common brain tumors in children, but their causes remain largely unknown. Here, we show that PiggyBac transposable element derived 5 (Pgbd5) promotes tumor development in multiple developmentally accurate mouse models of Sonic Hedgehog (SHH) medulloblastoma. Most Pgbd5-deficient mice do not develop tumors, while maintaining normal cerebellar development. Ectopic activation of SHH signaling is sufficient to enforce cerebellar granule cell progenitor-like cell states, which exhibit Pgbd5-dependent expression of distinct DNA repair and neurodevelopmental factors. Mouse medulloblastomas expressing Pgbd5 have increased numbers of somatic structural DNA rearrangements, some of which carry PGBD5-specific sequences at their breakpoints. Similar sequence breakpoints recurrently affect somatic DNA rearrangements of known tumor suppressors and oncogenes in medulloblastomas in 329 children. This identifies PGBD5 as a medulloblastoma mutator and provides a genetic mechanism for the generation of oncogenic DNA rearrangements in childhood cancer.
Collapse
Affiliation(s)
- Makiko Yamada
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA
| | - Ross R. Keller
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA
| | | | - Daniel Cameron
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA
| | - Hiromichi Suzuki
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Reeti Sanghrajka
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Jake Vaynshteyn
- Departments of Neurology and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeffrey Gerwin
- Departments of Neurology and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Francesco Maura
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - William Hooper
- Computational Biology, New York Genome Center, New York, NY, USA
| | - Minita Shah
- Computational Biology, New York Genome Center, New York, NY, USA
| | - Nicolas Robine
- Computational Biology, New York Genome Center, New York, NY, USA
| | - Phillip Demarest
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA
| | - N. Sumru Bayin
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge University, Cambridge, UK
| | - Luz Jubierre Zapater
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA
| | - Casie Reed
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA
| | - Steven Hébert
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Ignas Masilionis
- Single-Cell Analytics Innovation Lab, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ronan Chaligne
- Single-Cell Analytics Innovation Lab, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nicholas D. Socci
- Bioinformatics Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael D. Taylor
- Department of Pediatrics—Hematology/Oncology and Neurosurgery, Baylor College of Medicine, Houston, TX, USA
- Hematology-Oncology Section, Texas Children’s Cancer Center, Houston, TX, USA
- The Arthur and Sonia Labatt Brain Tumour Research Centre and the Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Claudia L. Kleinman
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Alexandra L. Joyner
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Biochemistry, Cell and Molecular Biology Program and Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - G. Praveen Raju
- Departments of Neurology and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alex Kentsis
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA
- Departments of Pediatrics, Pharmacology, and Physiology & Biophysics, Weill Medical College of Cornell University, New York, NY, USA
| |
Collapse
|
3
|
Klinkovskij A, Shepelev M, Isaakyan Y, Aniskin D, Ulasov I. Advances of Genome Editing with CRISPR/Cas9 in Neurodegeneration: The Right Path towards Therapy. Biomedicines 2023; 11:3333. [PMID: 38137554 PMCID: PMC10741756 DOI: 10.3390/biomedicines11123333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
The rate of neurodegenerative disorders (NDDs) is rising rapidly as the world's population ages. Conditions such as Alzheimer's disease (AD), Parkinson's disease (PD), and dementia are becoming more prevalent and are now the fourth leading cause of death, following heart disease, cancer, and stroke. Although modern diagnostic techniques for detecting NDDs are varied, scientists are continuously seeking new and improved methods to enable early and precise detection. In addition to that, the present treatment options are limited to symptomatic therapy, which is effective in reducing the progression of neurodegeneration but lacks the ability to target the root cause-progressive loss of neuronal functioning. As a result, medical researchers continue to explore new treatments for these conditions. Here, we present a comprehensive summary of the key features of NDDs and an overview of the underlying mechanisms of neuroimmune dysfunction. Additionally, we dive into the cutting-edge treatment options that gene therapy provides in the quest to treat these disorders.
Collapse
Affiliation(s)
- Aleksandr Klinkovskij
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre “Digital Biodesign and Personalized Healthcare”, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia; (A.K.); (D.A.)
| | - Mikhail Shepelev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova Str., Moscow 119334, Russia
| | - Yuri Isaakyan
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8 Trubetskaya Str., Moscow 119991, Russia;
| | - Denis Aniskin
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre “Digital Biodesign and Personalized Healthcare”, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia; (A.K.); (D.A.)
| | - Ilya Ulasov
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre “Digital Biodesign and Personalized Healthcare”, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia; (A.K.); (D.A.)
| |
Collapse
|
4
|
Yao Y, Baronio D, Chen YC, Jin C, Panula P. The Roles of Histamine Receptor 1 (hrh1) in Neurotransmitter System Regulation, Behavior, and Neurogenesis in Zebrafish. Mol Neurobiol 2023; 60:6660-6675. [PMID: 37474883 PMCID: PMC10533647 DOI: 10.1007/s12035-023-03447-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023]
Abstract
Histamine receptors mediate important physiological processes and take part in the pathophysiology of different brain disorders. Histamine receptor 1 (HRH1) is involved in the development of neurotransmitter systems, and its role in neurogenesis has been proposed. Altered HRH1 binding and expression have been detected in the brains of patients with schizophrenia, depression, and autism. Our goal was to assess the role of hrh1 in zebrafish development and neurotransmitter system regulation through the characterization of hrh1-/- fish generated by the CRISPR/Cas9 system. Quantitative PCR, in situ hybridization, and immunocytochemistry were used to study neurotransmitter systems and genes essential for brain development. Additionally, we wanted to reveal the role of this histamine receptor in larval and adult fish behavior using several quantitative behavioral methods including locomotion, thigmotaxis, dark flash and startle response, novel tank diving, and shoaling behavior. Hrh1-/- larvae displayed normal behavior in comparison with hrh1+/+ siblings. Interestingly, a transient abnormal expression of important neurodevelopmental markers was evident in these larvae, as well as a reduction in the number of tyrosine hydroxylase 1 (Th1)-positive cells, th1 mRNA, and hypocretin (hcrt)-positive cells. These abnormalities were not detected in adulthood. In summary, we verified that zebrafish lacking hrh1 present deficits in the dopaminergic and hypocretin systems during early development, but those are compensated by the time fish reach adulthood. However, impaired sociability and anxious-like behavior, along with downregulation of choline O-acetyltransferase a and LIM homeodomain transcription factor Islet1, were displayed by adult fish.
Collapse
Affiliation(s)
- Yuxiao Yao
- Department of Anatomy, University of Helsinki, POB 63, 00014, Helsinki, Finland
| | - Diego Baronio
- Department of Anatomy, University of Helsinki, POB 63, 00014, Helsinki, Finland
| | - Yu-Chia Chen
- Department of Anatomy, University of Helsinki, POB 63, 00014, Helsinki, Finland
| | - Congyu Jin
- Department of Anatomy, University of Helsinki, POB 63, 00014, Helsinki, Finland
| | - Pertti Panula
- Department of Anatomy, University of Helsinki, POB 63, 00014, Helsinki, Finland.
| |
Collapse
|
5
|
Chen Y, Pang J, Ye L, Zhang Z, Lin S, Lin N, Lee TH, Liu H. Disorders of the central nervous system: Insights from Notch and Nrf2 signaling. Biomed Pharmacother 2023; 166:115383. [PMID: 37643483 DOI: 10.1016/j.biopha.2023.115383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023] Open
Abstract
The functional complexity of the central nervous system (CNS) is unparalleled in living organisms. It arises from neural crest-derived cells that migrate by the exact route, leading to the formation of a complex network of neurons and glial cells. Recent studies have shown that novel crosstalk exists between the Notch1 and Nrf2 pathways and is associated with many neurological diseases. The Notch1-Nrf2 axis may act on nervous system development, and the molecular mechanism has recently been reported. In this review, we summarize the essential structure and function of the CNS. The significance of interactions between signaling pathways and between developmental processes like proliferation, apoptosis and migration in ensuring the correct development of the CNS is also presented. We primarily focus on research concerning possible mechanism of interaction between Notch1 and Nrf2 and the functions of Notch1-Nrf2 in neurons. There may be a direct interaction between Notch1 and NRF2, which is closely related to the crosstalk that occurs between them. The significance and potential applications of the Notch1-Nrf2 axis in abnormal development of the nervous system are been highlighten. We also discuss the molecular mechanisms by which the Notch1-Nrf2 axis controls the apoptosis, antioxidant pathway and differentiation of neurons to modulate the development of the nervous system. This information will lead to a better understanding of Notch1-Nrf2 axis signaling pathways in the nervous system and may facilitate the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Yuwen Chen
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Jiao Pang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Lu Ye
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Zhentao Zhang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Suijin Lin
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Na Lin
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Tae Ho Lee
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Hekun Liu
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China.
| |
Collapse
|
6
|
Coronel R, Bernabeu-Zornoza A, Palmer C, González-Sastre R, Rosca A, Mateos-Martínez P, López-Alonso V, Liste I. Amyloid Precursor Protein (APP) Regulates Gliogenesis and Neurogenesis of Human Neural Stem Cells by Several Signaling Pathways. Int J Mol Sci 2023; 24:12964. [PMID: 37629148 PMCID: PMC10455174 DOI: 10.3390/ijms241612964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Numerous studies have focused on the pathophysiological role of amyloid precursor protein (APP) because the proteolytic processing of APP to β-amyloid (Aβ) peptide is a central event in Alzheimer's disease (AD). However, many authors consider that alterations in the physiological functions of APP are likely to play a key role in AD. Previous studies in our laboratory revealed that APP plays an important role in the differentiation of human neural stem cells (hNSCs), favoring glial differentiation (gliogenesis) and preventing their differentiation toward a neuronal phenotype (neurogenesis). In the present study, we have evaluated the effects of APP overexpression in hNSCs at a global gene level by a transcriptomic analysis using the massive RNA sequencing (RNA-seq) technology. Specifically, we have focused on differentially expressed genes that are related to neuronal and glial differentiation processes, as well as on groups of differentially expressed genes associated with different signaling pathways, in order to find a possible interaction between them and APP. Our data indicate a differential expression in genes related to Notch, Wnt, PI3K-AKT, and JAK-STAT signaling, among others. Knowledge of APP biological functions, as well as the possible signaling pathways that could be related to this protein, are essential to advance our understanding of AD.
Collapse
Affiliation(s)
- Raquel Coronel
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (A.B.-Z.); (C.P.); (R.G.-S.); (A.R.); (P.M.-M.)
- Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain
| | - Adela Bernabeu-Zornoza
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (A.B.-Z.); (C.P.); (R.G.-S.); (A.R.); (P.M.-M.)
| | - Charlotte Palmer
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (A.B.-Z.); (C.P.); (R.G.-S.); (A.R.); (P.M.-M.)
| | - Rosa González-Sastre
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (A.B.-Z.); (C.P.); (R.G.-S.); (A.R.); (P.M.-M.)
- Unidad de Biología Computacional, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain;
| | - Andreea Rosca
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (A.B.-Z.); (C.P.); (R.G.-S.); (A.R.); (P.M.-M.)
| | - Patricia Mateos-Martínez
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (A.B.-Z.); (C.P.); (R.G.-S.); (A.R.); (P.M.-M.)
| | - Victoria López-Alonso
- Unidad de Biología Computacional, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain;
| | - Isabel Liste
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (A.B.-Z.); (C.P.); (R.G.-S.); (A.R.); (P.M.-M.)
| |
Collapse
|
7
|
Zhang J, Li Y. Propofol-Induced Developmental Neurotoxicity: From Mechanisms to Therapeutic Strategies. ACS Chem Neurosci 2023; 14:1017-1032. [PMID: 36854650 DOI: 10.1021/acschemneuro.2c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Propofol is the most commonly used intravenous general anesthetic in clinical anesthesia, and it is also widely used in general anesthesia for pregnant women and infants. Some clinical and preclinical studies have found that propofol causes damage to the immature nervous system, which may lead to neurodevelopmental disorders and cognitive dysfunction in infants and children. However, its potential molecular mechanism has not been fully elucidated. Recent in vivo and in vitro studies have found that some exogenous drugs and interventions can effectively alleviate propofol-induced neurotoxicity. In this review, we focus on the relevant preclinical studies and summarize the latest findings on the potential mechanisms and therapeutic strategies of propofol-induced developmental neurotoxicity.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao 266000, China.,Department of Medicine, Qingdao University, Qingdao 266000, China
| | - Yu Li
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao 266000, China
| |
Collapse
|
8
|
Wu F, Zuo HJ, Ren XQ, Wang PX, Li F, Li JJ. Gastrodin Regulates the Notch-1 Signal Pathway via Renin-Angiotensin System in Activated Microglia. Neuromolecular Med 2023; 25:40-52. [PMID: 35749056 DOI: 10.1007/s12017-022-08714-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 05/17/2022] [Indexed: 10/17/2022]
Abstract
Notch-1 and renin angiotensin system (RAS) are involved in microglia activation. It has been reported that gastrodin inhibited inflammatory responses mediated by activated microglia. This study explored the possible interaction between this two pathways, and to determine whether gastrodin would exert its effects on both of them. Expression of RAS, Notch-1 signaling and proinflammatory mediators in lipopolysaccharide (LPS) activated BV-2 microglia subjected to various treatments was determined by Western blot and immunofluorescence. The protein expression of RAS, Notch-1 pathway and TNF-α and IL-1β was significantly increased in activated microglia. Exogenous Ang II markedly enhanced the expression of these biomarkers. Meanwhile, Azilsartan [a specific inhibitor of AT1 (AT1I)] inhibited the expression of Notch-1 pathway and proinflammatory cytokines. When Notch-1 signaling was inhibited with DAPT, ACE and AT1 expression remained unaffected, indicating that RAS can regulate the Notch-1 pathway in activated microglia but not reciprocally. Additionally, we showed here that gastrodin inhibited the RAS, Notch-1 pathway and inflammatory response. Remarkably, gastrodin did not exert any effect on expression of Notch-1 signaling when RAS was blocked by AT1I, suggesting that gastrodin acts on the RAS directly, not through the Notch-1 pathway. Furthermore, TNF-α and IL-1β expression was significantly increased in activated microglia treated with exogenous Ang II; the expression, however, was suppressed by gastrodin. Of note, expression of proinflammatory cytokines was further decreased in gastrodin and AT1I combination treatment. The results suggest that gastrodin acts via the RAS which regulates the Notch-1 signaling and inflammation in LPS-induced microglia.
Collapse
Affiliation(s)
- Fang Wu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China
| | - Han-Jun Zuo
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China
| | - Xue-Qi Ren
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China
| | - Peng-Xiang Wang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China
| | - Fan Li
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China
| | - Juan-Juan Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China.
| |
Collapse
|
9
|
Abdi IY, Bartl M, Dakna M, Abdesselem H, Majbour N, Trenkwalder C, El-Agnaf O, Mollenhauer B. Cross-sectional proteomic expression in Parkinson's disease-related proteins in drug-naïve patients vs healthy controls with longitudinal clinical follow-up. Neurobiol Dis 2023; 177:105997. [PMID: 36634823 DOI: 10.1016/j.nbd.2023.105997] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/04/2023] [Accepted: 01/08/2023] [Indexed: 01/11/2023] Open
Abstract
There is an urgent need to find reliable and accessible blood-based biomarkers for early diagnosis of Parkinson's disease (PD) correlating with clinical symptoms and displaying predictive potential to improve future clinical trials. This led us to a conduct large-scale proteomics approach using an advanced high-throughput proteomics technology to create a proteomic profile for PD. Over 1300 proteins were measured in serum samples from a de novo Parkinson's (DeNoPa) cohort made up of 85 deep clinically phenotyped drug-naïve de novo PD patients and 93 matched healthy controls (HC) with longitudinal clinical follow-up available of up to 8 years. The analysis identified 73 differentially expressed proteins (DEPs) of which 14 proteins were confirmed as stable potential diagnostic markers using machine learning tools. Among the DEPs identified, eight proteins-ALCAM, contactin 1, CD36, DUS3, NEGR1, Notch1, TrkB, and BTK- significantly correlated with longitudinal clinical scores including motor and non-motor symptom scores, cognitive function and depression scales, indicating potential predictive values for progression in PD among various phenotypes. Known functions of these proteins and their possible relation to the pathophysiology or symptomatology of PD were discussed and presented with a particular emphasis on the potential biological mechanisms involved, such as cell adhesion, axonal guidance and neuroinflammation, and T-cell activation. In conclusion, with the use of advance multiplex proteomic technology, a blood-based protein signature profile was identified from serum samples of a well-characterized PD cohort capable of potentially differentiating PD from HC and predicting clinical disease progression of related motor and non-motor PD symptoms. We thereby highlight the need to validate and further investigate these markers in future prospective cohorts and assess their possible PD-related mechanisms.
Collapse
Affiliation(s)
- Ilham Yahya Abdi
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Education City, Qatar Foundation, Doha, Qatar; Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar.
| | - Michael Bartl
- Department of Neurology, University Medical Center Goettingen, Robert-Koch, Goettingen, Germany.
| | - Mohammed Dakna
- Department of Neurology, University Medical Center Goettingen, Robert-Koch, Goettingen, Germany.
| | - Houari Abdesselem
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar.
| | - Nour Majbour
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar.
| | - Claudia Trenkwalder
- Paracelsus-Elena-Klinik, Klinikstrasse, Kassel, Germany; Department of Neurosurgery, University Medical Center Goettingen, Robert-Koch, Goettingen, Germany.
| | - Omar El-Agnaf
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Education City, Qatar Foundation, Doha, Qatar; Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar.
| | - Brit Mollenhauer
- Department of Neurology, University Medical Center Goettingen, Robert-Koch, Goettingen, Germany; Paracelsus-Elena-Klinik, Klinikstrasse, Kassel, Germany.
| |
Collapse
|
10
|
Ravin R, Cai TX, Li A, Briceno N, Pursley RH, Garmendia-Cedillos M, Pohida T, Wang H, Zhuang Z, Cui J, Morgan NY, Williamson NH, Gilbert MR, Basser PJ. "Tumor Treating Fields" delivered via electromagnetic induction have varied effects across glioma cell lines and electric field amplitudes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524504. [PMID: 36789415 PMCID: PMC9928061 DOI: 10.1101/2023.01.18.524504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Previous studies reported that alternating electric fields (EFs) in the intermediate frequency (100 - 300 kHz) and low intensity (1 - 3 V/cm) regime - termed "Tumor Treating Fields" (TTFields) - have a specific, anti-proliferative effect on glioblastoma multiforme (GBM) cells. However, the mechanism(s) of action remain(s) incompletely understood, hindering the clinical adoption of treatments based on TTFields. To advance the study of such treatment in vitro , we developed an inductive device to deliver EFs to cell cultures which improves thermal and osmolar regulation compared to prior devices. Using this inductive device, we applied continuous, 200 kHz electromagnetic fields (EMFs) with a radial EF amplitude profile spanning 0 - 6.5 V/cm to cultures of primary rat astrocytes and several human GBM cell lines - U87, U118, GSC827, and GSC923 - for a duration of 72 hours. Cell density was assessed via segmented pixel densities from GFP expression (U87, U118) or from staining (astrocytes, GSC827, GSC923). Further RNA-Seq analyses were performed on GSC827 and GSC923 cells. Treated cultures of all cell lines exhibited little to no change in proliferation at lower EF amplitudes (0 - 3 V/cm). At higher amplitudes (> 4 V/cm), different effects were observed. Apparent cell densities increased (U87), decreased (GSC827, GSC923), or showed little change (U118, astrocytes). RNA-Seq analyses on treated and untreated GSC827 and GSC923 cells revealed differentially expressed gene sets of interest, such as those related to cell cycle control. Up- and down-regulation, however, was not consistent across cell lines nor EF amplitudes. Our results indicate no consistent, anti-proliferative effect of 200 kHz EMFs across GBM cell lines and thus contradict previous in vitro findings. Rather, effects varied across different cell lines and EF amplitude regimes, highlighting the need to assess the effect(s) of TTFields and similar treatments on a per cell line basis.
Collapse
|
11
|
Sartoretti MM, Campetella CA, Lanuza GM. Dbx1 controls the development of astrocytes of the intermediate spinal cord by modulating Notch signaling. Development 2022; 149:275961. [DOI: 10.1242/dev.200750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/27/2022] [Indexed: 10/17/2022]
Abstract
ABSTRACT
Significant progress has been made in elucidating the basic principles that govern neuronal specification in the developing central nervous system. In contrast, much less is known about the origin of astrocytic diversity. Here, we demonstrate that a restricted pool of progenitors in the mouse spinal cord, expressing the transcription factor Dbx1, produces a subset of astrocytes, in addition to interneurons. Ventral p0-derived astrocytes (vA0 cells) exclusively populate intermediate regions of spinal cord with extraordinary precision. The postnatal vA0 population comprises gray matter protoplasmic and white matter fibrous astrocytes and a group of cells with strict radial morphology contacting the pia. We identified that vA0 cells in the lateral funiculus are distinguished by the expression of reelin and Kcnmb4. We show that Dbx1 mutants have an increased number of vA0 cells at the expense of p0-derived interneurons. Manipulation of the Notch pathway, together with the alteration in their ligands seen in Dbx1 knockouts, suggest that Dbx1 controls neuron-glial balance by modulating Notch-dependent cell interactions. In summary, this study highlights that restricted progenitors in the dorsal-ventral neural tube produce region-specific astrocytic subgroups and that progenitor transcriptional programs highly influence glial fate and are instrumental in creating astrocyte diversity.
Collapse
Affiliation(s)
- Maria Micaela Sartoretti
- Developmental Neurobiology Lab, Fundación Instituto Leloir and Consejo Nacional de Investigaciones Científicas y Técnicas (IIBBA-CONICET) , Avenida Patricias Argentinas 435, Buenos Aires 1405 , Argentina
| | - Carla A. Campetella
- Developmental Neurobiology Lab, Fundación Instituto Leloir and Consejo Nacional de Investigaciones Científicas y Técnicas (IIBBA-CONICET) , Avenida Patricias Argentinas 435, Buenos Aires 1405 , Argentina
| | - Guillermo M. Lanuza
- Developmental Neurobiology Lab, Fundación Instituto Leloir and Consejo Nacional de Investigaciones Científicas y Técnicas (IIBBA-CONICET) , Avenida Patricias Argentinas 435, Buenos Aires 1405 , Argentina
| |
Collapse
|
12
|
Corales LG, Inada H, Hiraoka K, Araki S, Yamanaka S, Kikkawa T, Osumi N. The subcommissural organ maintains features of neuroepithelial cells in the adult mouse. J Anat 2022; 241:820-830. [PMID: 35638289 PMCID: PMC9358730 DOI: 10.1111/joa.13709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/28/2022] [Accepted: 05/18/2022] [Indexed: 11/27/2022] Open
Abstract
The subcommissural organ (SCO) is a part of the circumventricular organs located in the dorsocaudal region of the third ventricle at the entrance of the aqueduct of Sylvius. The SCO comprises epithelial cells and produces high molecular weight glycoproteins, which are secreted into the third ventricle and become part of Reissner's fibre in the cerebrospinal fluid. Abnormal development of the SCO has been linked with congenital hydrocephalus, a condition characterized by excessive accumulation of cerebrospinal fluid in the brain. In the present study, we characterized the SCO cells in the adult mouse brain to gain insights into the possible role of this brain region. Immunohistochemical analyses revealed that expression of Pax6, a transcription factor essential for SCO differentiation during embryogenesis, is maintained in the SCO at postnatal stages from P0 to P84. SCO cells in the adult brain expressed known neural stem/progenitor cell (NSPC) markers, Sox2 and vimentin. The adult SCO cells also expressed proliferating marker PCNA, although expression of another proliferation marker Ki67, indicating a G2/M phase, was not detected. The SCO cells did not incorporate BrdU, a marker for DNA synthesis in the S phase. Therefore, the SCO cells have a potential for proliferation but are quiescent for cell division in the adult. The SCO cells also expressed GFAP, a marker for astrocytes or NSPCs, but not NeuN (for neurons). A few cells positive for Iba1 (microglia), Olig2 (for oligodendrocytes) and PDGFRα (oligodendrocyte progenitors) existed within or on the periphery of the SCO. These findings revealed that the SCO cells have a unique feature as secretory yet immature neuroepithelial cells in the adult mouse brain.
Collapse
Affiliation(s)
- Laarni Grace Corales
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hitoshi Inada
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan.,Laboratory of Health and Sports Sciences, Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Kotaro Hiraoka
- Division of Cyclotron Nuclear Medicine, Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan
| | - Shun Araki
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shinya Yamanaka
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takako Kikkawa
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Noriko Osumi
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
13
|
Tournière O, Gahan JM, Busengdal H, Bartsch N, Rentzsch F. Insm1-expressing neurons and secretory cells develop from a common pool of progenitors in the sea anemone Nematostella vectensis. SCIENCE ADVANCES 2022; 8:eabi7109. [PMID: 35442742 PMCID: PMC9020782 DOI: 10.1126/sciadv.abi7109] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 03/02/2022] [Indexed: 06/01/2023]
Abstract
Neurons are highly specialized cells present in nearly all animals, but their evolutionary origin and relationship to other cell types are not well understood. We use here the sea anemone Nematostella vectensis as a model system for early-branching animals to gain fresh insights into the evolutionary history of neurons. We generated a transgenic reporter line to show that the transcription factor NvInsm1 is expressed in postmitotic cells that give rise to various types of neurons and secretory cells. Expression analyses, double transgenics, and gene knockdown experiments show that the NvInsm1-expressing neurons and secretory cells derive from a common pool of NvSoxB(2)-positive progenitor cells. These findings, together with the requirement for Insm1 for the development of neurons and endocrine cells in vertebrates, support a close evolutionary relationship of neurons and secretory cells.
Collapse
Affiliation(s)
- Océane Tournière
- Sars International Centre for Marine Molecular Biology, University of Bergen, 5006 Bergen, Norway
| | - James M. Gahan
- Sars International Centre for Marine Molecular Biology, University of Bergen, 5006 Bergen, Norway
| | - Henriette Busengdal
- Sars International Centre for Marine Molecular Biology, University of Bergen, 5006 Bergen, Norway
| | - Natascha Bartsch
- Sars International Centre for Marine Molecular Biology, University of Bergen, 5006 Bergen, Norway
- Department of Biological Sciences, University of Bergen, 5006 Bergen, Norway
| | - Fabian Rentzsch
- Sars International Centre for Marine Molecular Biology, University of Bergen, 5006 Bergen, Norway
- Department of Biological Sciences, University of Bergen, 5006 Bergen, Norway
| |
Collapse
|
14
|
Jha NK, Chen WC, Kumar S, Dubey R, Tsai LW, Kar R, Jha SK, Gupta PK, Sharma A, Gundamaraju R, Pant K, Mani S, Singh SK, Maccioni RB, Datta T, Singh SK, Gupta G, Prasher P, Dua K, Dey A, Sharma C, Mughal YH, Ruokolainen J, Kesari KK, Ojha S. Molecular mechanisms of developmental pathways in neurological disorders: a pharmacological and therapeutic review. Open Biol 2022; 12:210289. [PMID: 35291879 PMCID: PMC8924757 DOI: 10.1098/rsob.210289] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 02/01/2022] [Indexed: 01/07/2023] Open
Abstract
Developmental signalling pathways such as Wnt/β-catenin, Notch and Sonic hedgehog play a central role in nearly all the stages of neuronal development. The term 'embryonic' might appear to be a misnomer to several people because these pathways are functional during the early stages of embryonic development and adulthood, albeit to a certain degree. Therefore, any aberration in these pathways or their associated components may contribute towards a detrimental outcome in the form of neurological disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and stroke. In the last decade, researchers have extensively studied these pathways to decipher disease-related interactions, which can be used as therapeutic targets to improve outcomes in patients with neurological abnormalities. However, a lot remains to be understood in this domain. Nevertheless, there is strong evidence supporting the fact that embryonic signalling is indeed a crucial mechanism as is manifested by its role in driving memory loss, motor impairments and many other processes after brain trauma. In this review, we explore the key roles of three embryonic pathways in modulating a range of homeostatic processes such as maintaining blood-brain barrier integrity, mitochondrial dynamics and neuroinflammation. In addition, we extensively investigated the effect of these pathways in driving the pathophysiology of a range of disorders such as Alzheimer's, Parkinson's and diabetic neuropathy. The concluding section of the review is dedicated to neurotherapeutics, wherein we identify and list a range of biological molecules and compounds that have shown enormous potential in improving prognosis in patients with these disorders.
Collapse
Affiliation(s)
- Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Wei-Chih Chen
- Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Sanjay Kumar
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Rajni Dubey
- Department of Medicine Research, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Lung-Wen Tsai
- Department of Medicine Research, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Department of Information Technology Office, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei 110, Taiwan
| | - Rohan Kar
- Indian Institute of Management Ahmedabad (IIMA), Gujarat 380015, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Piyush Kumar Gupta
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Ankur Sharma
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Laboratory, School of Health Sciences, University of Tasmania, Launceston, Tasmania 7248, Australia
| | - Kumud Pant
- Department of Biotechnology, Graphic Era deemed to be University Dehradun Uttarakhand, 248002 Dehradun, India
| | - Shalini Mani
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector 62, Noida, Uttar Pradesh 201301, India
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology Foundation, Lucknow 226002, India
| | - Ricardo B. Maccioni
- Laboratory of Neurosciences and Functional Medicine, International Center for Biomedicine (ICC) and Faculty of Sciences, University of Chile, Santiago de Chile, Chile
| | - Tirtharaj Datta
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Gaurav Gupta
- Department of Pharmacology, School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, 302017 Jagatpura, Jaipur, India
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, India
- Department of Applied Physics, School of Science, and
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Yasir Hayat Mughal
- Department of Health Administration, College of Public Health and Health Informatics, Qassim University, Buraidah, Saudi Arabia
| | | | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, and
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 00076, Finland
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| |
Collapse
|
15
|
Liu C, Ying Z, Li Z, Zhang L, Li X, Gong W, Sun J, Fan X, Yang K, Wang X, Wei S, Dong N. Danzhi Xiaoyao Powder Promotes Neuronal Regeneration by Downregulating Notch Signaling Pathway in the Treatment of Generalized Anxiety Disorder. Front Pharmacol 2021; 12:772576. [PMID: 34912225 PMCID: PMC8666953 DOI: 10.3389/fphar.2021.772576] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/22/2021] [Indexed: 12/27/2022] Open
Abstract
Background: Generalized anxiety disorder (GAD) is one of the most common types of anxiety disorders with unclear pathogenesis. Our team's previous research found that extensive neuronal apoptosis and neuronal regeneration disorders occur in the hippocampus of GAD rats. Danzhi Xiaoyao (DZXYS) Powder can improve the anxiety behavior of rats, but its molecular mechanism is not well understood. Objective: This paper discusses whether the pathogenesis of GAD is related to the abnormal expression of Notch signal pathway, and whether the anti-anxiety effect of DZXYS promotes nerve regeneration in the hippocampus by regulating the Notch signaling pathway. Methods: The animal model of GAD was developed by the chronic restraint stress and uncertain empty bottle stimulation method. After the model was successfully established, the rats in the model preparation group were divided into the buspirone, DZXYS, DZXYS + DAPT, and model groups, and were administered the corresponding drug intervention. The changes in body weight and food intake of rats were continuously monitored throughout the process. The changes in anxiety behavior of rats were measured by open field experiment and elevated plus-maze test, and morphological changes and regeneration of neurons in the rat hippocampus were observed by HE staining and double immunofluorescence staining. Changes in the expression of key targets of the Notch signaling pathway in the hippocampus were monitored by real-time fluorescence quantitative PCR and western blotting. Results: In this study, we verified that the GAD model was stable and reliable, and found that the key targets of the Notch signaling pathway (Notch1, Hes1, Hes5, etc.) in the hippocampus of GAD rats were significantly upregulated, leading to the increased proliferation of neural stem cells in the hippocampus and increased differentiation into astrocytes, resulting in neuronal regeneration. DZXYS intervention in GAD rats can improve appetite, promote weight growth, and significantly reverse the anxiety behavior of GAD rats, which can inhibit the upregulation of key targets of the Notch signaling pathway, promote the differentiation of neural stem cells in the hippocampus into neurons, and inhibit their differentiation into astrocytes, thus alleviating anxiety behavior. Conclusion: The occurrence of GAD is closely related to the upregulation of the Notch signaling pathway, which hinders the regeneration of normal neurons in the hippocampus, while DZXYS can downregulate the Notch signaling pathway and promote neuronal regeneration in the hippocampus, thereby relieving anxiety behavior.
Collapse
Affiliation(s)
- Chao Liu
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Zhenhao Ying
- School of Rehabilitation Science, Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Zifa Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Ji'nan, China.,Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji'nan, China.,Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Long Zhang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Xin Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Wenbo Gong
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Jiang Sun
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Xuejing Fan
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Ke Yang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Xingchen Wang
- Department of Neurology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji'nan, China.,The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Sheng Wei
- Experimental Center, Shandong University of Traditional Chinese Medicine, Ji'nan, China.,Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji'nan, China.,Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Ning Dong
- Department of Neurology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji'nan, China.,The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Ji'nan, China
| |
Collapse
|
16
|
Yang Y, Zhou X, Liu X, Song R, Gao Y, Wang S. Implications of FBXW7 in Neurodevelopment and Neurodegeneration: Molecular Mechanisms and Therapeutic Potential. Front Cell Neurosci 2021; 15:736008. [PMID: 34512273 PMCID: PMC8424092 DOI: 10.3389/fncel.2021.736008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 08/04/2021] [Indexed: 11/25/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) mediated protein degradation is crucial to maintain quantitive and functional homeostasis of diverse proteins. Balanced cellular protein homeostasis controlled by UPS is fundamental to normal neurological functions while impairment of UPS can also lead to some neurodevelopmental and neurodegenerative disorders. Functioning as the substrate recognition component of the SCF-type E3 ubiquitin ligase, FBXW7 is essential to multiple aspects of cellular processes via targeting a wide range of substrates for proteasome-mediated degradation. Accumulated evidence shows that FBXW7 is fundamental to neurological functions and especially implicated in neurodevelopment and the nosogenesis of neurodegeneration. In this review, we describe general features of FBXW7 gene and proteins, and mainly present recent findings that highlight the vital roles and molecular mechanisms of FBXW7 in neurodevelopment such as neurogenesis, myelination and cerebral vasculogenesis and in the pathogenesis of some typical neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease and Huntington’s disease. Additionally, we also provide a prospect on focusing FBXW7 as a potential therapeutic target to rescue neurodevelopmental and neurodegenerative impairment.
Collapse
Affiliation(s)
- Yu Yang
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Xuan Zhou
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China.,Research Center for Quality of Life and Applied Psychology, School of Humanities and Management, Guangdong Medical University, Dongguan, China
| | - Xinpeng Liu
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Ruying Song
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Yiming Gao
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Shuai Wang
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| |
Collapse
|
17
|
Transcriptome programs involved in the development and structure of the cerebellum. Cell Mol Life Sci 2021; 78:6431-6451. [PMID: 34406416 PMCID: PMC8558292 DOI: 10.1007/s00018-021-03911-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/02/2021] [Indexed: 12/23/2022]
Abstract
In the past two decades, mounting evidence has modified the classical view of the cerebellum as a brain region specifically involved in the modulation of motor functions. Indeed, clinical studies and engineered mouse models have highlighted cerebellar circuits implicated in cognitive functions and behavior. Furthermore, it is now clear that insults occurring in specific time windows of cerebellar development can affect cognitive performance later in life and are associated with neurological syndromes, such as Autism Spectrum Disorder. Despite its almost homogenous cytoarchitecture, how cerebellar circuits form and function is not completely elucidated yet. Notably, the apparently simple neuronal organization of the cerebellum, in which Purkinje cells represent the only output, hides an elevated functional diversity even within the same neuronal population. Such complexity is the result of the integration of intrinsic morphogenetic programs and extracellular cues from the surrounding environment, which impact on the regulation of the transcriptome of cerebellar neurons. In this review, we briefly summarize key features of the development and structure of the cerebellum before focusing on the pathways involved in the acquisition of the cerebellar neuron identity. We focus on gene expression and mRNA processing programs, including mRNA methylation, trafficking and splicing, that are set in motion during cerebellar development and participate to its physiology. These programs are likely to add new layers of complexity and versatility that are fundamental for the adaptability of cerebellar neurons.
Collapse
|
18
|
Bahram Sangani N, Gomes AR, Curfs LMG, Reutelingsperger CP. The role of Extracellular Vesicles during CNS development. Prog Neurobiol 2021; 205:102124. [PMID: 34314775 DOI: 10.1016/j.pneurobio.2021.102124] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 04/16/2021] [Accepted: 07/20/2021] [Indexed: 12/21/2022]
Abstract
With a diverse set of neuronal and glial cell populations, Central Nervous System (CNS) has one of the most complex structures in the body. Intercellular communication is therefore highly important to coordinate cell-to-cell interactions. Besides electrical and chemical messengers, CNS cells also benefit from another communication route, what is known as extracellular vesicles, to harmonize their interactions. Extracellular Vesicles (EVs) and their subtype exosomes are membranous particles secreted by cells and contain information packaged in the form of biomolecules such as small fragments of DNA, lipids, miRNAs, mRNAs, and proteins. They are able to efficiently drive changes upon their arrival to recipient cells. EVs actively participate in all stages of CNS development by stimulating neural cell proliferation, differentiation, synaptic formation, and mediating reciprocal interactions between neurons and oligodendrocyte for myelination process. The aim of the present review is to enlighten the presence and contribution of EVs at each CNS developmental milestone.
Collapse
Affiliation(s)
- Nasim Bahram Sangani
- Department of Biochemistry, Maastricht University, Cardiovascular Research Institute Maastricht, Maastricht, the Netherlands; GKC-Rett Expertise Centre, Maastricht University Medical Centre, Maastricht, the Netherlands.
| | - Ana Rita Gomes
- Department of Bioengineering and IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal; Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Portugal.
| | - Leopold M G Curfs
- GKC-Rett Expertise Centre, Maastricht University Medical Centre, Maastricht, the Netherlands.
| | - Chris P Reutelingsperger
- Department of Biochemistry, Maastricht University, Cardiovascular Research Institute Maastricht, Maastricht, the Netherlands; GKC-Rett Expertise Centre, Maastricht University Medical Centre, Maastricht, the Netherlands.
| |
Collapse
|
19
|
Barros II, Leão V, Santis JO, Rosa RCA, Brotto DB, Storti CB, Siena ÁDD, Molfetta GA, Silva WA. Non-Syndromic Intellectual Disability and Its Pathways: A Long Noncoding RNA Perspective. Noncoding RNA 2021; 7:ncrna7010022. [PMID: 33799572 PMCID: PMC8005948 DOI: 10.3390/ncrna7010022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Non-syndromic intellectual disability (NS-ID or idiopathic) is a complex neurodevelopmental disorder that represents a global health issue. Although many efforts have been made to characterize it and distinguish it from syndromic intellectual disability (S-ID), the highly heterogeneous aspect of this disorder makes it difficult to understand its etiology. Long noncoding RNAs (lncRNAs) comprise a large group of transcripts that can act through various mechanisms and be involved in important neurodevelopmental processes. In this sense, comprehending the roles they play in this intricate context is a valuable way of getting new insights about how NS-ID can arise and develop. In this review, we attempt to bring together knowledge available in the literature about lncRNAs involved with molecular and cellular pathways already described in intellectual disability and neural function, to better understand their relevance in NS-ID and the regulatory complexity of this disorder.
Collapse
Affiliation(s)
- Isabela I. Barros
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
| | - Vitor Leão
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
| | - Jessica O. Santis
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
| | - Reginaldo C. A. Rosa
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
| | - Danielle B. Brotto
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
| | - Camila B. Storti
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
| | - Ádamo D. D. Siena
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
| | - Greice A. Molfetta
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
| | - Wilson A. Silva
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
- National Institute of Science and Technology in Stem Cell and Cell Therapy and Center for Cell Based Therapy, Ribeirão Preto Medical School, University of São Paulo, Rua Tenente Catão Roxo, 2501, Monte Alegre, Ribeirão Preto 14051-140, Brazil
- Center for Integrative Systems Biology-CISBi, NAP/USP, Ribeirão Preto Medical School, University of São Paulo, Rua Catão Roxo, 2501, Monte Alegre, Ribeirão Preto 14051-140, Brazil
- Department of Medicine at the Midwest State University of Paraná-UNICENTRO, and Guarapuava Institute for Cancer Research, Rua Fortim Atalaia, 1900, Cidade dos Lagos, Guarapuava 85100-000, Brazil
- Correspondence: ; Tel.: +55-16-3315-3293
| |
Collapse
|
20
|
Bagheri-Mohammadi S. Adult neurogenesis and the molecular signalling pathways in brain: the role of stem cells in adult hippocampal neurogenesis. Int J Neurosci 2021; 132:1165-1177. [PMID: 33350876 DOI: 10.1080/00207454.2020.1865953] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Molecular signalling pathways are an evolutionarily conserved multifaceted pathway that can control diverse cellular processes. The role of signalling pathways in regulating development and tissue homeostasis as well as hippocampal neurogenesis is needed to study in detail. In the adult brain, the Notch signalling pathway, in collaboration with the Wnt/β-catenin, bone morphogenetic proteins (BMPs), and sonic hedgehog (Shh) molecular signalling pathways, are involved in stem cell regulation in the hippocampal formation, and they also control the plasticity of the neural stem cells (NSCs) or neural progenitor cells (NPCs) which involved in neurogenesis processes. Here we discuss the distinctive roles of molecular signalling pathways involved in the generation of new neurons from a pool of NSCs in the adult brain. Our approach will facilitate the understanding of the molecular signalling mechanism of hippocampal neurogenesis during NSCs development in the adult brain using molecular aspects coupled with cell biological and physiological analysis.
Collapse
Affiliation(s)
- Saeid Bagheri-Mohammadi
- Department of Physiology and Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Physiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Department of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
21
|
Guo J, Zhang XLN, Bao ZR, Yang XK, Li LS, Zi Y, Li F, Wu CY, Li JJ, Yuan Y. Gastrodin Regulates the Notch Signaling Pathway and Sirt3 in Activated Microglia in Cerebral Hypoxic-Ischemia Neonatal Rats and in Activated BV-2 Microglia. Neuromolecular Med 2020; 23:348-362. [PMID: 33095377 DOI: 10.1007/s12017-020-08627-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022]
Abstract
In response to hypoxic-ischemic brain damage (HIBD), microglia activation and its mediated inflammation contribute to neuronal damage. Inhibition of over-activated microglia is deemed to be a potential therapeutic strategy. Our previous studies showed that gastrodin efficiently depressed the neuroinflammation mediated by activated microglia in HIBD neonatal rats. The underlying mechanisms through which gastrodin acts on activated microglia have not been fully elucidated. This study is designed to determine whether gastrodin would regulate the Notch signaling pathway and Sirtuin3 (Sirt3), which are implicated in regulating microglia activation. The present results showed that gastrodin markedly suppressed the expression of members of Notch signaling pathway (Notch-1, NICD, RBP-JK and Hes-1) in activated microglia both in vivo and in vitro. Conversely, Sirt3 expression was enhanced. In BV-2 microglia treated with a γ-secretase inhibitor of Notch pathway- DAPT, the expression of RBP-JK, Hes-1, and NICD was suppressed in activated microglia. Treatment with DAPT and gastrodin further decreased NICD and Hes-1 expression. Sirt3 expression was also decreased after DAPT treatment. However, Sirt3 expression in activated BV-2 microglia given a combined DAPT and gastrodin treatment was not further increased. In addition, combination of DAPT and Gastrodin cumulatively decreased tumor necrosis factor-α (TNF-α) expression. The results suggest that gastrodin regulates microglia activation via the Notch signaling pathway and Sirt3. More importantly, interference of the Notch signaling pathway inhibited Sirt3 expression, indicating that Sirt3 is a downstream gene of the Notch signaling pathway. It is suggested that Notch and Sirt3 synergistically regulate microglia activation such as in TNF-α production.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Benzyl Alcohols/pharmacokinetics
- Benzyl Alcohols/pharmacology
- Carotid Artery, Common
- Cells, Cultured
- Cerebral Cortex/pathology
- Corpus Callosum/pathology
- Diamines/pharmacology
- Disease Models, Animal
- Drug Synergism
- Gene Expression Regulation/drug effects
- Glucosides/pharmacokinetics
- Glucosides/pharmacology
- Hypoxia-Ischemia, Brain/drug therapy
- Hypoxia-Ischemia, Brain/metabolism
- Hypoxia-Ischemia, Brain/pathology
- Ligation
- Lipopolysaccharides/pharmacology
- Microglia/drug effects
- Microglia/metabolism
- Neuroinflammatory Diseases/drug therapy
- Random Allocation
- Rats
- Rats, Sprague-Dawley
- Receptor, Notch1/biosynthesis
- Receptor, Notch1/genetics
- Receptor, Notch1/physiology
- Signal Transduction/drug effects
- Sirtuins/biosynthesis
- Sirtuins/genetics
- Sirtuins/physiology
- Thiazoles/pharmacology
- Tumor Necrosis Factor-alpha/biosynthesis
- Tumor Necrosis Factor-alpha/genetics
Collapse
Affiliation(s)
- Jing Guo
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China
| | - Xiao-Li-Na Zhang
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China
- First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650500, China
| | - Zhang-Rui Bao
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China
| | - Xue-Ke Yang
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China
| | - Ling-Shuang Li
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China
| | - Yu Zi
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China
| | - Fan Li
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China
| | - Chun-Yun Wu
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China
| | - Juan-Juan Li
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China.
| | - Yun Yuan
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China.
| |
Collapse
|
22
|
Ji W, Ferdman D, Copel J, Scheinost D, Shabanova V, Brueckner M, Khokha MK, Ment LR. De novo damaging variants associated with congenital heart diseases contribute to the connectome. Sci Rep 2020; 10:7046. [PMID: 32341405 PMCID: PMC7184603 DOI: 10.1038/s41598-020-63928-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/08/2020] [Indexed: 12/15/2022] Open
Abstract
Congenital heart disease (CHD) survivors are at risk for neurodevelopmental disability (NDD), and recent studies identify genes associated with both disorders, suggesting that NDD in CHD survivors may be of genetic origin. Genes contributing to neurogenesis, dendritic development and synaptogenesis organize neural elements into networks known as the connectome. We hypothesized that NDD in CHD may be attributable to genes altering both neural connectivity and cardiac patterning. To assess the contribution of de novo variants (DNVs) in connectome genes, we annotated 229 published NDD genes for connectome status and analyzed data from 3,684 CHD subjects and 1,789 controls for connectome gene mutations. CHD cases had more protein truncating and deleterious missense DNVs among connectome genes compared to controls (OR = 5.08, 95%CI:2.81-9.20, Fisher's exact test P = 6.30E-11). When removing three known syndromic CHD genes, the findings remained significant (OR = 3.69, 95%CI:2.02-6.73, Fisher's exact test P = 1.06E-06). In CHD subjects, the top 12 NDD genes with damaging DNVs that met statistical significance after Bonferroni correction (PTPN11, CHD7, CHD4, KMT2A, NOTCH1, ADNP, SMAD2, KDM5B, NSD2, FOXP1, MED13L, DYRK1A; one-tailed binomial test P ≤ 4.08E-05) contributed to the connectome. These data suggest that NDD in CHD patients may be attributable to genes that alter both cardiac patterning and the connectome.
Collapse
Affiliation(s)
- Weizhen Ji
- Departments of Pediatrics, New Haven, CT, USA
| | | | - Joshua Copel
- Departments of Pediatrics, New Haven, CT, USA
- Obstetrics, Gynecology and Reproductive Sciences, New Haven, CT, USA
| | | | | | - Martina Brueckner
- Departments of Pediatrics, New Haven, CT, USA
- Genetics, New Haven, CT, USA
- Yale Combined Program in Biological and Biomedical Sciences, New Haven, CT, USA
| | - Mustafa K Khokha
- Departments of Pediatrics, New Haven, CT, USA
- Genetics, New Haven, CT, USA
| | - Laura R Ment
- Departments of Pediatrics, New Haven, CT, USA.
- Neurology, Yale School of Medicine, 333 Cedar Street, New Haven, CT, USA.
| |
Collapse
|
23
|
Abstract
Astrocytes, initially described as merely support cells, are now known as a heterogeneous population of cells actively involved in a variety of biological functions such as: neuronal migration and differentiation; regulation of cerebral blood flow; metabolic control of extracellular potassium concentration; and modulation of synapse formation and elimination; among others. Cerebellar glial cells have been shown to play a significant role in proliferation, differentiation, migration, and synaptogenesis. However, less evidence is available about the role of neuron-astrocyte interactions during cerebellar development and their impact on diseases of the cerebellum. In this review, we will focus on the mechanisms underlying cellular interactions, specifically neuron-astrocyte interactions, during cerebellar development, function, and disease. We will discuss how cerebellar glia, astrocytes, and Bergmann glia play a fundamental role in several steps of cerebellar development, such as granule cell migration, axonal growth, neuronal differentiation, and synapse formation, and in diseases associated with the cerebellum. We will focus on how astrocytes and thyroid hormones impact cerebellar development. Furthermore, we will provide evidence of how growth factors secreted by glial cells, such as epidermal growth factor and transforming growth factors, control cerebellar organogenesis. Finally, we will argue that glia are a key mediator of cerebellar development and that identification of molecules and pathways involved in neuron-glia interactions may contribute to a better understanding of cerebellar development and associated disorders.
Collapse
|
24
|
Kim S, Lee M, Choi YK. The Role of a Neurovascular Signaling Pathway Involving Hypoxia-Inducible Factor and Notch in the Function of the Central Nervous System. Biomol Ther (Seoul) 2020; 28:45-57. [PMID: 31484285 PMCID: PMC6939687 DOI: 10.4062/biomolther.2019.119] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022] Open
Abstract
In the neurovascular unit, the neuronal and vascular systems communicate with each other. O2 and nutrients, reaching endothelial cells (ECs) through the blood stream, spread into neighboring cells, such as neural stem cells, and neurons. The proper function of neural circuits in adults requires sufficient O2 and glucose for their metabolic demands through angiogenesis. In a central nervous system (CNS) injury, such as glioma, Parkinson’s disease, and Alzheimer’s disease, damaged ECs can contribute to tissue hypoxia and to the consequent disruption of neuronal functions and accelerated neurodegeneration. This review discusses the current evidence regarding the contribution of oxygen deprivation to CNS injury, with an emphasis on hypoxia-inducible factor (HIF)-mediated pathways and Notch signaling. Additionally, it focuses on adult neurological functions and angiogenesis, as well as pathological conditions in the CNS. Furthermore, the functional interplay between HIFs and Notch is demonstrated in pathophysiological conditions.
Collapse
Affiliation(s)
- Seunghee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Minjae Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Yoon Kyung Choi
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
25
|
Notch Signaling and Embryonic Development: An Ancient Friend, Revisited. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1218:9-37. [PMID: 32060869 DOI: 10.1007/978-3-030-34436-8_2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The evolutionary highly conserved Notch pathway, which first developed during evolution in metazoans and was first discovered in fruit flies (Drosophila melanogaster), governs many core processes including cell fate decisions during embryonic development. A huge mountain of scientific evidence convincingly demonstrates that Notch signaling represents one of the most important pathways that regulate embryogenesis from sponges, roundworms, Drosophila melanogaster, and mice to humans. In this review, we give a brief introduction on how Notch orchestrates the embryonic development of several selected tissues, summarizing some of the most relevant findings in the central nervous system, skin, kidneys, liver, pancreas, inner ear, eye, skeleton, heart, and vascular system.
Collapse
|
26
|
Laug D, Huang TW, Huerta NAB, Huang AYS, Sardar D, Ortiz-Guzman J, Carlson JC, Arenkiel BR, Kuo CT, Mohila CA, Glasgow SM, Lee HK, Deneen B. Nuclear factor I-A regulates diverse reactive astrocyte responses after CNS injury. J Clin Invest 2019; 129:4408-4418. [PMID: 31498149 PMCID: PMC6763246 DOI: 10.1172/jci127492] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 07/16/2019] [Indexed: 01/09/2023] Open
Abstract
Reactive astrocytes are associated with every form of neurological injury. Despite their ubiquity, the molecular mechanisms controlling their production and diverse functions remain poorly defined. Because many features of astrocyte development are recapitulated in reactive astrocytes, we investigated the role of nuclear factor I-A (NFIA), a key transcriptional regulator of astrocyte development whose contributions to reactive astrocytes remain undefined. Here, we show that NFIA is highly expressed in reactive astrocytes in human neurological injury and identify unique roles across distinct injury states and regions of the CNS. In the spinal cord, after white matter injury (WMI), NFIA-deficient astrocytes exhibit defects in blood-brain barrier remodeling, which are correlated with the suppression of timely remyelination. In the cortex, after ischemic stroke, NFIA is required for the production of reactive astrocytes from the subventricular zone (SVZ). Mechanistically, NFIA directly regulates the expression of thrombospondin 4 (Thbs4) in the SVZ, revealing a key transcriptional node regulating reactive astrogenesis. Together, these studies uncover critical roles for NFIA in reactive astrocytes and illustrate how region- and injury-specific factors dictate the spectrum of reactive astrocyte responses.
Collapse
Affiliation(s)
- Dylan Laug
- Center for Cell and Gene Therapy and,Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Navish A. Bosquez Huerta
- Center for Cell and Gene Therapy and,Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Anna Yu-Szu Huang
- Center for Cell and Gene Therapy and,Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Joshua Ortiz-Guzman
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA.,Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, USA
| | - Jeffrey C. Carlson
- Center for Cell and Gene Therapy and,Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Benjamin R. Arenkiel
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA.,Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, USA.,Department of Neuroscience and,Department of Human and Molecular Genetics Baylor College of Medicine, Houston, Texas, USA
| | - Chay T. Kuo
- Department of Cell Biology, Duke University, Durham, North Carolina, USA
| | - Carrie A. Mohila
- Department of Pathology, Texas Children’s Hospital, Houston, Texas, USA
| | | | - Hyun Kyoung Lee
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA.,Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, USA.,Department of Neuroscience and,Department of Pediatrics, Division of Neurology, Texas Children’s Hospital, Houston, Texas, USA
| | - Benjamin Deneen
- Center for Cell and Gene Therapy and,Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA.,Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, USA.,Department of Neuroscience and,Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
27
|
Reis CF, de Souza ID, Morais DAA, Oliveira RAC, Imparato DO, de Almeida RMC, Dalmolin RJS. Systems Biology-Based Analysis Indicates Global Transcriptional Impairment in Lead-Treated Human Neural Progenitor Cells. Front Genet 2019; 10:791. [PMID: 31552095 PMCID: PMC6748217 DOI: 10.3389/fgene.2019.00791] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/26/2019] [Indexed: 01/19/2023] Open
Abstract
Lead poisoning effects are wide and include nervous system impairment, peculiarly during development, leading to neural damage. Lead interaction with calcium and zinc-containing metalloproteins broadly affects cellular metabolism since these proteins are related to intracellular ion balance, activation of signaling transduction cascades, and gene expression regulation. In spite of lead being recognized as a neurotoxin, there are gaps in knowledge about the global effect of lead in modulating the transcription of entire cellular systems in neural cells. In order to investigate the effects of lead poisoning in a systemic perspective, we applied the transcriptogram methodology in an RNA-seq dataset of human embryonic-derived neural progenitor cells (ES-NP cells) treated with 30 µM lead acetate for 26 days. We observed early downregulation of several cellular systems involved with cell differentiation, such as cytoskeleton organization, RNA, and protein biosynthesis. The downregulated cellular systems presented big and tightly connected networks. For long treatment times (12 to 26 days), it was possible to observe a massive impairment in cell transcription profile. Taking the enriched terms together, we observed interference in all layers of gene expression regulation, from chromatin remodeling to vesicle transport. Considering that ES-NP cells are progenitor cells that can originate other neural cell types, our results suggest that lead-induced gene expression disturbance might impair cells’ ability to differentiate, therefore influencing ES-NP cells’ fate.
Collapse
Affiliation(s)
- Clovis F Reis
- Bioinformatics Multidisciplinary Environment - IMD, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Iara D de Souza
- Bioinformatics Multidisciplinary Environment - IMD, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Diego A A Morais
- Bioinformatics Multidisciplinary Environment - IMD, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Raffael A C Oliveira
- Bioinformatics Multidisciplinary Environment - IMD, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Danilo O Imparato
- Bioinformatics Multidisciplinary Environment - IMD, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Rita M C de Almeida
- Institute of Physics and National Institute of Science and Technology: Complex Systems, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Rodrigo J S Dalmolin
- Bioinformatics Multidisciplinary Environment - IMD, Federal University of Rio Grande do Norte, Natal, Brazil.,Department of Biochemistry - CB, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
28
|
Peng Z, Li X, Fu M, Zhu K, Long L, Zhao X, Chen Q, Deng DYB, Wan Y. Inhibition of Notch1 signaling promotes neuronal differentiation and improves functional recovery in spinal cord injury through suppressing the activation of Ras homolog family member A. J Neurochem 2019; 150:709-722. [PMID: 31339573 DOI: 10.1111/jnc.14833] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 06/17/2019] [Indexed: 12/28/2022]
Abstract
Neural stem cells (NSCs) transplantation represents a promising strategy for the repair of injured neurons, since NSCs not only produce multiple neurotrophic growth factors but also differentiate into mature cells to replace damaged cells. Previous studies have shown that Notch signaling pathway had negative effects on neuronal differentiation; however, the precise mechanism remained inadequately understood. This research aimed to investigate whether inhibition of Notch1 signaling promotes neuronal differentiation and improves functional recovery in rat spinal cord injury through suppressing the activation of Ras homolog family member A (RhoA). QPCR, western blot, and immunofluorescence experiments were used to analyze Notch1 signaling pathways, RhoA, Ras homologous -associated coiled-coil containing protein kinase 1 (ROCK1), cleaved caspased-3, and neuronal/astrocytic differentiation markers. The expression of RhoA and ROCK1 was inhibited by lentivirus or specific biochemical inhibitors. In spinal cord injury (SCI), motor function was assessed by hind limbs movements and electrophysiology. Tissue repairing was measured by immunofluorescence, Nissl staining, Fluorogold, HE staining, QPCR, western blot, and magnetic resonance imaging (MRI) experiments. Our results demonstrate that inhibition of Notch1 in NSCs can promote the differentiation of NSCs to neurons. Knockdown of RhoA and inhibition of ROCK1 both can promote neuronal differentiation through inhibiting the activation of Notch1 signaling pathway in NSCs. In SCI, silencing RhoA enhanced neuronal differentiation and improved tissue repairing/functional recovery by inhibiting the activation of Notch1 signaling pathway. Since Notch1 inhibits neuronal differentiation through activating the RhoA/ROCK1 signaling pathway in NSCs, our data suggest that the Notch1/RhoA/ROCK1/Hes1/Hes5 signaling pathway may serve as a novel target for the treatment of SCI.
Collapse
Affiliation(s)
- Zhiming Peng
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiang Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mengxia Fu
- Division of Cardiac Surgery, NHC Key Laboratory of Assisted Circulation, Ministry of Health, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kai Zhu
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lingli Long
- Department of Translational Medicine Center Research Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyang Zhao
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qingui Chen
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - David Y B Deng
- Scientific Research Center and Department of Orthopedic, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yong Wan
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
29
|
Luque-Molina I, Shi Y, Abdullah Y, Monaco S, Hölzl-Wenig G, Mandl C, Ciccolini F. The Orphan Nuclear Receptor TLX Represses Hes1 Expression, Thereby Affecting NOTCH Signaling and Lineage Progression in the Adult SEZ. Stem Cell Reports 2019; 13:132-146. [PMID: 31178417 PMCID: PMC6626847 DOI: 10.1016/j.stemcr.2019.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 12/31/2022] Open
Abstract
In the adult subependymal zone (SEZ), neural stem cells (NSCs) apically contacting the lateral ventricle on activation generate progenitors proliferating at the niche basal side. We here show that Tailless (TLX) coordinates NSC activation and basal progenitor proliferation by repressing the NOTCH effector Hes1. Consistent with this, besides quiescence Hes1 expression also increases on Tlx mutation. Since HES1 levels are higher at the apical SEZ, NOTCH activation is increased in Tlx−/− NSCs, but not in surrounding basal progenitors. Underscoring the causative relationship between higher HES1/NOTCH and increased quiescence, downregulation of Hes1 only in mutant NSCs normalizes NOTCH activation and resumes proliferation and neurogenesis not only in NSCs, but especially in basal progenitors. Since pharmacological blockade of NOTCH signaling also promotes proliferation of basal progenitors, we conclude that TLX, by repressing Hes1 expression, counteracts quiescence and NOTCH activation in NSCs, thereby relieving NOTCH-mediated lateral inhibition of proliferation in basal progenitors. TLX autonomously controls quiescence in apical NSCs by repressing Hes1 TLX controls basal progenitor proliferation via NOTCH-mediated lateral inhibition Downregulation of Hes1 in apical Tlx−/− NSCs resumes proliferation and neurogenesis
Collapse
Affiliation(s)
- Inma Luque-Molina
- Department of Neurobiology, Interdisciplinary Center for Neurosciences, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Yan Shi
- Department of Neurobiology, Interdisciplinary Center for Neurosciences, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Yomn Abdullah
- Department of Neurobiology, Interdisciplinary Center for Neurosciences, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Sara Monaco
- Department of Neurobiology, Interdisciplinary Center for Neurosciences, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Gabriele Hölzl-Wenig
- Department of Neurobiology, Interdisciplinary Center for Neurosciences, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Claudia Mandl
- Department of Neurobiology, Interdisciplinary Center for Neurosciences, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Francesca Ciccolini
- Department of Neurobiology, Interdisciplinary Center for Neurosciences, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany.
| |
Collapse
|
30
|
Kim SY, Völkl S, Ludwig S, Schneider H, Wixler V, Park J. Deficiency of Fhl2 leads to delayed neuronal cell migration and premature astrocyte differentiation. J Cell Sci 2019; 132:jcs.228940. [PMID: 30745335 DOI: 10.1242/jcs.228940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 01/22/2019] [Indexed: 01/17/2023] Open
Abstract
The four and a half LIM domains protein 2 (Fhl2) is an adaptor protein capable of mediating protein-protein interactions. Here, we report for the first time phenotypic changes in the brain of Fhl2-deficient mice. We showed that Fhl2 is expressed in neural stem cells, precursors and mature cells of neuronal lineage. Moreover, Fhl2 deficiency leads to delayed neuroblast migration in vivo, premature astroglial differentiation of neural stem cells (NSCs) in vitro, and a gliosis-like accumulation of glial fibrillary acidic protein (GFAP)-positive astrocytes in vivo that substantially increases with age. Collectively, Fhl2-deficiency in the brain interrupts the maintenance and the balanced differentiation of adult NSCs, resulting in preferentially glial differentiation and early exhaustion of the NSC pool required for adult neurogenesis.
Collapse
Affiliation(s)
- Soung Yung Kim
- University Institute for Diagnostic, Interventional and Pediatric Radiology, Inselspital - University Hospital Bern, University of Bern, 3010 Bern, Switzerland.,Department of Pediatrics, Division of Molecular Pediatrics, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Simon Völkl
- Department of Internal Medicine 5, Hematology/Oncology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Stephan Ludwig
- Institute of Molecular Virology, Münster University Hospital Medical School, 48149 Münster, Germany
| | - Holm Schneider
- Department of Pediatrics, Division of Molecular Pediatrics, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Viktor Wixler
- Institute of Molecular Virology, Münster University Hospital Medical School, 48149 Münster, Germany
| | - Jung Park
- Department of Pediatrics, Division of Molecular Pediatrics, University Hospital Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
31
|
Liu W, Li R, Yin J, Guo S, Chen Y, Fan H, Li G, Li Z, Li X, Zhang X, He X, Duan C. Mesenchymal stem cells alleviate the early brain injury of subarachnoid hemorrhage partly by suppression of Notch1-dependent neuroinflammation: involvement of Botch. J Neuroinflammation 2019; 16:8. [PMID: 30646897 PMCID: PMC6334441 DOI: 10.1186/s12974-019-1396-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 01/02/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Activated microglia-mediated neuroinflammation has been regarded as an underlying key player in the pathogenesis of subarachnoid hemorrhage (SAH)-induced early brain injury (EBI). The therapeutic potential of bone marrow mesenchymal stem cells (BMSCs) transplantation has been demonstrated in several brain injury models and is thought to involve modulation of the inflammatory response. The present study investigated the salutary effects of BMSCs on EBI after SAH and the potential mechanism mediated by Notch1 signaling pathway inhibition. METHODS The Sprague-Dawley rats SAH model was induced by endovascular perforation method. BMSCs (3 × 106 cells) were transplanted intravenously into rats, and N-[N-(3,5-difluorophenacetyl-L-alanyl)]-S-phenylglycine t-butyl ester (DAPT), a Notch1 activation inhibitor, and Notch1 small interfering RNA (siRNA) were injected intracerebroventricularly. The effects of BMSCs on EBI were assayed by neurological score, brain water content (BWC), blood-brain barrier (BBB) permeability, magnetic resonance imaging, hematoxylin and eosin staining, and Fluoro-Jade C staining. Immunofluorescence and immunohistochemistry staining, Western blotting, and quantitative real-time polymerase chain reaction were used to analyze various proteins and transcript levels. Pro-inflammatory cytokines were measured by enzyme-linked immunosorbent assay. RESULTS BMSCs treatment mitigated the neurobehavioral dysfunction, BWC and BBB disruption associated with EBI after SAH, reduced ionized calcium binding adapter molecule 1 and cluster of differentiation 68 staining and interleukin (IL)-1 beta, IL-6 and tumor necrosis factor alpha expression in the left hemisphere but concurrently increased IL-10 expression. DAPT or Notch1 siRNA administration reduced Notch1 signaling pathway activation following SAH, ameliorated neurobehavioral impairments, and BBB disruption; increased BWC and neuronal degeneration; and inhibited activation of microglia and production of pro-inflammatory factors. The augmentation of Notch1 signal pathway agents and phosphorylation of nuclear factor-κB after SAH were suppressed by BMSCs but the levels of Botch were upregulated in the ipsilateral hemisphere. Botch knockdown in BMSCs abrogated the protective effects of BMSCs treatment on EBI and the suppressive effects of BMSCs on Notch1 expression. CONCLUSIONS BMSCs treatment alleviated neurobehavioral impairments and the inflammatory response in EBI after SAH; these effects may be attributed to Botch upregulation in brain tissue, which subsequently inhibited the Notch1 signaling pathway.
Collapse
Affiliation(s)
- Wenchao Liu
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, 510282 China
| | - Ran Li
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, 510282 China
| | - Jian Yin
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, 510282 China
| | - Shenquan Guo
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, 510282 China
| | - Yunchang Chen
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, 510282 China
| | - Haiyan Fan
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, 510282 China
| | - Gancheng Li
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, 510282 China
| | - Zhenjun Li
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, 510282 China
| | - Xifeng Li
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, 510282 China
| | - Xin Zhang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, 510282 China
| | - Xuying He
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, 510282 China
| | - Chuanzhi Duan
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, 510282 China
| |
Collapse
|
32
|
Hara T, Maejima I, Akuzawa T, Hirai R, Kobayashi H, Tsukamoto S, Tsunoda M, Ono A, Yamakoshi S, Oikawa S, Sato K. Rer1-mediated quality control system is required for neural stem cell maintenance during cerebral cortex development. PLoS Genet 2018; 14:e1007647. [PMID: 30260951 PMCID: PMC6159856 DOI: 10.1371/journal.pgen.1007647] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 08/20/2018] [Indexed: 11/18/2022] Open
Abstract
Rer1 is a retrieval receptor for endoplasmic reticulum (ER) retention of various ER membrane proteins and unassembled or immature components of membrane protein complexes. However, its physiological functions during mammalian development remain unclear. This study aimed to investigate the role of Rer1-mediated quality control system in mammalian development. We show that Rer1 is required for the sufficient cell surface expression and activity of γ-secretase complex, which modulates Notch signaling during mouse cerebral cortex development. When Rer1 was depleted in the mouse cerebral cortex, the number of neural stem cells decreased significantly, and malformation of the cerebral cortex was observed. Rer1 loss reduced γ-secretase activity and downregulated Notch signaling in the developing cerebral cortex. In Rer1-deficient cells, a subpopulation of γ-secretase complexes and components was transported to and degraded in lysosomes, thereby significantly reducing the amount of γ-secretase complex on the cell surface. These results suggest that Rer1 maintains Notch signaling by maintaining sufficient expression of the γ-secretase complex on the cell surface and regulating neural stem cell maintenance during cerebral cortex development. We showed that Rer1 functions as an early-Golgi quality control pathway that maintains γ-secretase activity by maintaining sufficient cell surface expression of γ-secretase complex during cerebral cortex development, thereby modulating Notch signaling.
Collapse
MESH Headings
- Adaptor Proteins, Vesicular Transport
- Amyloid Precursor Protein Secretases/metabolism
- Animals
- Behavior, Animal
- CRISPR-Cas Systems/genetics
- Cell Line, Tumor
- Cerebral Cortex/growth & development
- Cerebral Cortex/metabolism
- Chromosome Deletion
- Chromosome Disorders/genetics
- Chromosomes, Human, Pair 1/genetics
- Disease Models, Animal
- Female
- Gene Expression Regulation, Developmental
- Humans
- Lysosomes/metabolism
- Male
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Knockout
- Neural Stem Cells
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Notch/metabolism
Collapse
Affiliation(s)
- Taichi Hara
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
- Laboratory of Cellular Regulation, Faculty of Human Sciences, Waseda University, Mikajima, Tokorozawa, Saitama, Japan
| | - Ikuko Maejima
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Tomoko Akuzawa
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Rika Hirai
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Hisae Kobayashi
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Satoshi Tsukamoto
- Laboratory Animal and Genome Sciences Section, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Anagawa, Inage-ku, Chiba, Japan
| | - Mika Tsunoda
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Aguri Ono
- Laboratory of Cellular Regulation, Faculty of Human Sciences, Waseda University, Mikajima, Tokorozawa, Saitama, Japan
| | - Shota Yamakoshi
- Laboratory of Cellular Regulation, Faculty of Human Sciences, Waseda University, Mikajima, Tokorozawa, Saitama, Japan
| | - Satoshi Oikawa
- Laboratory of Cellular Regulation, Faculty of Human Sciences, Waseda University, Mikajima, Tokorozawa, Saitama, Japan
| | - Ken Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
- * E-mail:
| |
Collapse
|
33
|
Yu Y, Wang Y, Wang Y, Dong J, Min H, Chen J. Maternal marginal iodine deficiency delays cerebellar Bergmann glial cell development in rat offspring: Involvement of Notch signaling pathway. Neurotoxicology 2018; 68:159-166. [PMID: 30121210 DOI: 10.1016/j.neuro.2018.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 12/24/2022]
Abstract
During early pregnancy, iodine deficiency (ID) is linked to adverse effects on child motor and psychomotor function. Maternal marginal ID has become a common public health problem. It is unclear whether marginal ID influences the development of the cerebellum or its underlying mechanisms. Thus, the purpose of this study was to determine the effects of marginal ID on the development of cerebellar Bergmann glial cells (BGs) and investigate the activation of the Notch signaling pathway, which is crucial for the development and morphology of BGs. We treated Wistar rats with an ID diet (iodine content 60 ± 1.5 ng/g) supplemented with deionized water containing different concentrations of potassium iodide (KI) (183, 117, and 0 μg/L for the control, marginal ID, and severe ID groups, respectively) during pregnancy and lactation. We explored the morphology of the BGs by Golgi-Cox staining and immunofluorescence and investigated the Notch signaling pathway using western blot. Our results showed that the marginal ID and severe ID groups had decreased cerebellar BG fiber lengths (P < 0.05 and 0.01, respectively) and numbers (P < 0.01 for both) on postnatal day (PN) 7, PN14, and PN21 compared to the control group. Moreover, the data showed that severe ID significantly reduced Dll1, Notch1, RBP-Jκ, and BLBP protein levels at all three time points. Marginal ID slightly reduced the expression of Notch1 on PN7 (P < 0.05) and PN21 (P < 0.01), RBP-Jκ on PN14 (P < 0.01) and PN21 (P < 0.05), and BLBP on PN7 (P < 0.05). There was no significant difference in Dll1 protein levels between the marginal ID and control groups at any time point. Our study suggests that marginal ID leads to mild damage to BG morphogenesis in the cerebellum. The abnormal regulation of the Notch signaling pathway may be involved in the damage to BGs.
Collapse
Affiliation(s)
- Ye Yu
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, PR China
| | - Yuan Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, PR China
| | - Yi Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, PR China
| | - Jing Dong
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, PR China
| | - Hui Min
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, PR China
| | - Jie Chen
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, PR China.
| |
Collapse
|
34
|
Sarubbo F, Moranta D, Pani G. Dietary polyphenols and neurogenesis: Molecular interactions and implication for brain ageing and cognition. Neurosci Biobehav Rev 2018; 90:456-470. [DOI: 10.1016/j.neubiorev.2018.05.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 04/05/2018] [Accepted: 05/07/2018] [Indexed: 12/17/2022]
|
35
|
Pfeiffer V, Götz R, Camarero G, Heinsen H, Blum R, Rapp UR. Impaired neuronal maturation of hippocampal neural progenitor cells in mice lacking CRAF. PLoS One 2018; 13:e0192067. [PMID: 29590115 PMCID: PMC5873938 DOI: 10.1371/journal.pone.0192067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 01/16/2018] [Indexed: 11/19/2022] Open
Abstract
RAF kinases are major constituents of the mitogen activated signaling pathway, regulating cell proliferation, differentiation and cell survival of many cell types, including neurons. In mammals, the family of RAF proteins consists of three members, ARAF, BRAF, and CRAF. Ablation of CRAF kinase in inbred mouse strains causes major developmental defects during fetal growth and embryonic or perinatal lethality. Heterozygous germline mutations in CRAF result in Noonan syndrome, which is characterized by neurocognitive impairment that may involve hippocampal physiology. The role of CRAF signaling during hippocampal development and generation of new postnatal hippocampal granule neurons has not been examined and may provide novel insight into the cause of hippocampal dysfunction in Noonan syndrome. In this study, by crossing CRAF-deficiency to CD-1 outbred mice, a CRAF mouse model was established which enabled us to investigate the interplay of neural progenitor proliferation and postmitotic differentiation during adult neurogenesis in the hippocampus. Albeit the general morphology of the hippocampus was unchanged, CRAF-deficient mice displayed smaller granule cell layer (GCL) volume at postnatal day 30 (P30). In CRAF-deficient mice a substantial number of abnormal, chromophilic, fast dividing cells were found in the subgranular zone (SGZ) and hilus of the dentate gyrus (DG), indicating that CRAF signaling contributes to hippocampal neural progenitor proliferation. CRAF-deficient neural progenitor cells showed an increased cell death rate and reduced neuronal maturation. These results indicate that CRAF function affects postmitotic neural cell differentiation and points to a critical role of CRAF-dependent growth factor signaling pathway in the postmitotic development of adult-born neurons.
Collapse
Affiliation(s)
- Verena Pfeiffer
- University of Würzburg, Institute of Anatomy and Cell Biology, Koellikerstraße 6, Würzburg, Germany
- University of Würzburg, Institute for Medical Radiation and Cell Research (MSZ), Versbacher Strasse 5, Würzburg, Germany
- * E-mail:
| | - Rudolf Götz
- University of Würzburg, Institute for Medical Radiation and Cell Research (MSZ), Versbacher Strasse 5, Würzburg, Germany
- Institute for Clinical Neurobiology, University Hospital Würzburg, Versbacher Strasse 5, Würzburg, Germany
| | - Guadelupe Camarero
- University of Würzburg, Institute for Medical Radiation and Cell Research (MSZ), Versbacher Strasse 5, Würzburg, Germany
| | - Helmut Heinsen
- University of Würzburg, Department of Psychiatry, Psychosomatics and Psychotherapy, Margarethe-Höppel-Platz 1, Würzburg, Germany
- Universidade de Sao Paulo Faculdade de Medicina, Pathology—LIM 44 Sao Paulo, SP, Brazil
| | - Robert Blum
- Institute for Clinical Neurobiology, University Hospital Würzburg, Versbacher Strasse 5, Würzburg, Germany
| | - Ulf Rüdiger Rapp
- University of Würzburg, Institute for Medical Radiation and Cell Research (MSZ), Versbacher Strasse 5, Würzburg, Germany
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Parkstr.1, Bad Nauheim, Germany
| |
Collapse
|
36
|
Mukhtar T, Taylor V. Untangling Cortical Complexity During Development. J Exp Neurosci 2018; 12:1179069518759332. [PMID: 29551911 PMCID: PMC5846925 DOI: 10.1177/1179069518759332] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 01/23/2018] [Indexed: 12/23/2022] Open
Abstract
The cerebral cortex is composed of billions of morphologically and functionally distinct neurons. These neurons are produced and organized in a regimental fashion during development. The ability of neurons to encode and elicit complex cognitive and motor functions depends on their precise molecular processes, identity, and connectivity established during development. Elucidating the cellular and molecular mechanisms that regulate development of the neocortex has been a challenge for many years. The cerebral cortical neuronal subtypes are classified based on morphology, function, intrinsic synaptic properties, location, connectivity, and marker gene expression. Development of the neocortex requires an orchestration of a series of processes including the appropriate determination, migration and positioning of the neurons, acquisition of layer-specific transcriptional hallmarks, and formation of precise axonal projections and networks. Historically, fate mapping, genome-wide analysis, and transcriptome profiling have provided many opportunities for the characterization of neuronal subtypes. During the course of this review, we will address the regimental organization of the cerebral cortex, dissect the cellular subtypes that contribute to cortical complexity, and outline their molecular hallmarks to understand cellular diversity in the cerebral cortex with a focus on the excitatory neurons.
Collapse
Affiliation(s)
- Tanzila Mukhtar
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Verdon Taylor
- Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
37
|
Lemes SF, de Souza ACP, Payolla TB, Versutti MD, de Fátima da Silva Ramalho A, Mendes-da-Silva C, Souza CM, Milanski M, Torsoni AS, Torsoni MA. Maternal Consumption of High-fat Diet in Mice Alters Hypothalamic Notch Pathway, NPY Cell Population and Food Intake in Offspring. Neuroscience 2018; 371:1-15. [DOI: 10.1016/j.neuroscience.2017.11.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 11/15/2017] [Accepted: 11/24/2017] [Indexed: 01/03/2023]
|
38
|
Abstract
Neurogenesis is the process of forming neurons and is essential during vertebrate development to produce most of the neurons of the adult brain. However, neurogenesis continues throughout life at distinct locations in the vertebrate brain. Neural stem cells (NSCs) are the origin of both embryonic and adult neurogenesis, but their activity and fate are tightly regulated by their local milieu or niche. In this chapter, we will discuss the role of Notch signaling in the control of neurogenesis and regeneration in the embryo and adult. Notch-dependence is a common feature among NSC populations, we will discuss how differences in Notch signaling might contribute to heterogeneity among adult NSCs. Understanding the fate of multiple NSC populations with distinct functions could be important for effective brain regeneration.
Collapse
|
39
|
Bigas A, Porcheri C. Notch and Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1066:235-263. [DOI: 10.1007/978-3-319-89512-3_12] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Honda M, Nakashima K, Katada S. Epigenetic Regulation of Human Neural Stem Cell Differentiation. Results Probl Cell Differ 2018; 66:125-136. [PMID: 30209657 DOI: 10.1007/978-3-319-93485-3_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Emerging evidence has demonstrated that epigenetic programs influence many aspects of neural stem cell (NSC) behavior, including proliferation and differentiation. It is becoming apparent that epigenetic mechanisms, such as DNA methylation, histone modifications, and noncoding RNA expression, are spatiotemporally regulated and that these intracellular programs, in concert with extracellular signals, ensure appropriate gene activation. Here we summarize recent advances in understanding of the epigenetic regulation of human NSCs directly isolated from the brain or produced from pluripotent stem cells (embryonic and induced pluripotent stem cells, respectively).
Collapse
Affiliation(s)
- Mizuki Honda
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sayako Katada
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
41
|
Xiao R, Yu D, Li X, Huang J, Jing S, Bao X, Yang T, Fan X. Propofol Exposure in Early Life Induced Developmental Impairments in the Mouse Cerebellum. Front Cell Neurosci 2017; 11:373. [PMID: 29249940 PMCID: PMC5715384 DOI: 10.3389/fncel.2017.00373] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/09/2017] [Indexed: 01/07/2023] Open
Abstract
Propofol is a widely used anesthetic in the clinic while several studies have demonstrated that propofol exposure may cause neurotoxicity in the developing brain. However, the effects of early propofol exposure on cerebellar development are not well understood. Propofol (30 or 60 mg/kg) was administered to mice on postnatal day (P)7; Purkinje cell dendritogenesis and Bergmann glial cell development were evaluated on P8, and granule neuron migration was analyzed on P10. The results indicated that exposure to propofol on P7 resulted in a significant reduction in calbindin-labeled Purkinje cells and their dendrite length. Furthermore, propofol induced impairments in Bergmann glia development, which might be involved in the delay of granule neuron migration from the external granular layer (EGL) to the internal granular layer (IGL) during P8 to P10 at the 60 mg/kg dosage, but not at the 30 mg/kg dosage. Several reports have suggested that the Notch signaling pathway plays instructive roles in the morphogenesis of Bergmann glia. Here, it was revealed that propofol treatment decreased Jagged1 and Notch1 protein levels in the cerebellum on P8. Taken together, exposure to propofol during the neonatal period impairs Bergmann glia development and may therefore lead to cerebellum development defects. Our results may aid in the understanding of the neurotoxic effects of propofol when administrated to infants.
Collapse
Affiliation(s)
- Rui Xiao
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Department of Developmental Neuropsychology, Third Military Medical University, Chongqing, China
| | - Dan Yu
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Department of Developmental Neuropsychology, Third Military Medical University, Chongqing, China
| | - Xin Li
- Department of Developmental Neuropsychology, Third Military Medical University, Chongqing, China
| | - Jing Huang
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Sheng Jing
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xiaohang Bao
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Tiande Yang
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xiaotang Fan
- Department of Developmental Neuropsychology, Third Military Medical University, Chongqing, China
| |
Collapse
|
42
|
Boareto M, Iber D, Taylor V. Differential interactions between Notch and ID factors control neurogenesis by modulating Hes factor autoregulation. Development 2017; 144:3465-3474. [PMID: 28974640 PMCID: PMC5665482 DOI: 10.1242/dev.152520] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/14/2017] [Indexed: 12/25/2022]
Abstract
During embryonic and adult neurogenesis, neural stem cells (NSCs) generate the correct number and types of neurons in a temporospatial fashion. Control of NSC activity and fate is crucial for brain formation and homeostasis. Neurogenesis in the embryonic and adult brain differ considerably, but Notch signaling and inhibitor of DNA-binding (ID) factors are pivotal in both. Notch and ID factors regulate NSC maintenance; however, it has been difficult to evaluate how these pathways potentially interact. Here, we combined mathematical modeling with analysis of single-cell transcriptomic data to elucidate unforeseen interactions between the Notch and ID factor pathways. During brain development, Notch signaling dominates and directly regulates Id4 expression, preventing other ID factors from inducing NSC quiescence. Conversely, during adult neurogenesis, Notch signaling and Id2/3 regulate neurogenesis in a complementary manner and ID factors can induce NSC maintenance and quiescence in the absence of Notch. Our analyses unveil key molecular interactions underlying NSC maintenance and mechanistic differences between embryonic and adult neurogenesis. Similar Notch and ID factor interactions may be crucial in other stem cell systems. Summary: Computational analysis of transcriptome data from neural stem cells reveals key differences in the synergistic interactions between Notch and inhibitor of DNA-binding factors during embryonic and adult neurogenesis.
Collapse
Affiliation(s)
- Marcelo Boareto
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland .,Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Dagmar Iber
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland .,Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Verdon Taylor
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| |
Collapse
|
43
|
Casoni F, Croci L, Bosone C, D'Ambrosio R, Badaloni A, Gaudesi D, Barili V, Sarna JR, Tessarollo L, Cremona O, Hawkes R, Warming S, Consalez GG. Zfp423/ZNF423 regulates cell cycle progression, the mode of cell division and the DNA-damage response in Purkinje neuron progenitors. Development 2017; 144:3686-3697. [PMID: 28893945 DOI: 10.1242/dev.155077] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/01/2017] [Indexed: 02/03/2023]
Abstract
The Zfp423/ZNF423 gene encodes a 30-zinc-finger transcription factor involved in key developmental pathways. Although null Zfp423 mutants develop cerebellar malformations, the underlying mechanism remains unknown. ZNF423 mutations are associated with Joubert Syndrome, a ciliopathy causing cerebellar vermis hypoplasia and ataxia. ZNF423 participates in the DNA-damage response (DDR), raising questions regarding its role as a regulator of neural progenitor cell cycle progression in cerebellar development. To characterize in vivo the function of ZFP423 in neurogenesis, we analyzed allelic murine mutants in which distinct functional domains are deleted. One deletion impairs mitotic spindle orientation, leading to premature cell cycle exit and Purkinje cell (PC) progenitor pool deletion. The other deletion impairs PC differentiation. In both mutants, cell cycle progression is remarkably delayed and DDR markers are upregulated in cerebellar ventricular zone progenitors. Our in vivo evidence sheds light on the domain-specific roles played by ZFP423 in different aspects of PC progenitor development, and at the same time strengthens the emerging notion that an impaired DDR may be a key factor in the pathogenesis of JS and other ciliopathies.
Collapse
Affiliation(s)
- Filippo Casoni
- Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy.,Università Vita-Salute San Raffaele, Milan 20132, Italy
| | - Laura Croci
- Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Camilla Bosone
- Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy.,Università Vita-Salute San Raffaele, Milan 20132, Italy
| | - Roberta D'Ambrosio
- Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Aurora Badaloni
- Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Davide Gaudesi
- Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Valeria Barili
- Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy.,Università Vita-Salute San Raffaele, Milan 20132, Italy
| | - Justyna R Sarna
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta AB T2N 1N4, Canada
| | - Lino Tessarollo
- Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Ottavio Cremona
- Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy.,Università Vita-Salute San Raffaele, Milan 20132, Italy
| | - Richard Hawkes
- Department of Cell Biology & Anatomy and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta AB T2N 1N4, Canada
| | - Søren Warming
- Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - G Giacomo Consalez
- Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy .,Università Vita-Salute San Raffaele, Milan 20132, Italy
| |
Collapse
|
44
|
Semerci F, Choi WTS, Bajic A, Thakkar A, Encinas JM, Depreux F, Segil N, Groves AK, Maletic-Savatic M. Lunatic fringe-mediated Notch signaling regulates adult hippocampal neural stem cell maintenance. eLife 2017; 6. [PMID: 28699891 PMCID: PMC5531831 DOI: 10.7554/elife.24660] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 07/11/2017] [Indexed: 12/12/2022] Open
Abstract
Hippocampal neural stem cells (NSCs) integrate inputs from multiple sources to balance quiescence and activation. Notch signaling plays a key role during this process. Here, we report that Lunatic fringe (Lfng), a key modifier of the Notch receptor, is selectively expressed in NSCs. Further, Lfng in NSCs and Notch ligands Delta1 and Jagged1, expressed by their progeny, together influence NSC recruitment, cell cycle duration, and terminal fate. We propose a new model in which Lfng-mediated Notch signaling enables direct communication between a NSC and its descendants, so that progeny can send feedback signals to the ‘mother’ cell to modify its cell cycle status. Lfng-mediated Notch signaling appears to be a key factor governing NSC quiescence, division, and fate. DOI:http://dx.doi.org/10.7554/eLife.24660.001
Collapse
Affiliation(s)
- Fatih Semerci
- Program in Developmental Biology, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
| | - William Tin-Shing Choi
- Program in Developmental Biology, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States.,Medical Scientist Training Program, Baylor College of Medicine, Houston, United States
| | - Aleksandar Bajic
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States.,Department of Pediatrics, Baylor College of Medicine, Houston, United States
| | - Aarohi Thakkar
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States.,Department of Pediatrics, Baylor College of Medicine, Houston, United States
| | - Juan Manuel Encinas
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States.,Achucarro Basque Center for Neuroscience and Ikerbasque, The Basque Science Foundation, Bizkaia, Spain
| | - Frederic Depreux
- Department of Cell Biology and Anatomy, Rosalind Franklin University of Medicine and Science, Chicago, United States
| | - Neil Segil
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, United States.,Caruso Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, United States
| | - Andrew K Groves
- Program in Developmental Biology, Baylor College of Medicine, Houston, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Mirjana Maletic-Savatic
- Program in Developmental Biology, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States.,Department of Pediatrics, Baylor College of Medicine, Houston, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, United States
| |
Collapse
|
45
|
Abstract
Notch signaling is evolutionarily conserved from Drosophila to human. It plays critical roles in neural stem cell maintenance and neurogenesis in the embryonic brain as well as in the adult brain. Notch functions greatly depend on careful regulation and cross-talk with other regulatory mechanisms. Deregulation of Notch signaling is involved in many neurodegenerative diseases and brain disorders. Here, we summarize the fundamental role of Notch in neuronal development and specification and discuss how epigenetic regulation and pathway cross-talk contribute to Notch function. In addition, we cover aberrant alterations of Notch signaling in the diseased brain. The aim of this review is to provide an insight into how Notch signaling works in different contexts to control neurogenesis and its potential effects in diagnoses and therapies of neurodegeneration, brain tumors and disorders.
Collapse
Affiliation(s)
- Runrui Zhang
- Embryology and Stem Cell Biology, Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058, Basel, Switzerland
| | - Anna Engler
- Embryology and Stem Cell Biology, Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058, Basel, Switzerland
| | - Verdon Taylor
- Embryology and Stem Cell Biology, Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058, Basel, Switzerland.
| |
Collapse
|
46
|
Ogawa Y, Kaizu K, Yanagi Y, Takada S, Sakuraba H, Oishi K. Abnormal differentiation of Sandhoff disease model mouse-derived multipotent stem cells toward a neural lineage. PLoS One 2017; 12:e0178978. [PMID: 28575132 PMCID: PMC5456357 DOI: 10.1371/journal.pone.0178978] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 05/22/2017] [Indexed: 12/21/2022] Open
Abstract
In Sandhoff disease (SD), the activity of the lysosomal hydrolytic enzyme, β-hexosaminidase (Hex), is lost due to a Hexb gene defect, which results in the abnormal accumulation of the substrate, GM2 ganglioside (GM2), in neuronal cells, causing neuronal loss, microglial activation, and astrogliosis. We established induced pluripotent stem cells from the cells of SD mice (SD-iPSCs). In the present study, we investigated the occurrence of abnormal differentiation and development of a neural lineage in the asymptomatic phase of SD in vitro using SD mouse fetus-derived neural stem cells (NSCs) and SD-iPSCs. It was assumed that the number of SD mouse fetal brain-derived NSCs was reduced and differentiation was promoted, resulting in the inhibition of differentiation into neurons and enhancement of differentiation into astrocytes. The number of SD-iPSC-derived NSCs was also reduced, suggesting that the differentiation of NSCs was promoted, resulting in the inhibition of differentiation into neurons and enhancement of that into astrocytes. This abnormal differentiation of SD-iPSCs toward a neural lineage was reduced by the glucosylceramide synthase inhibitor, miglustat. Furthermore, abnormal differentiation toward a neural lineage was reduced in SD-iPSCs with Hexb gene transfection. Therefore, differentiation ability along the time axis appears to be altered in SD mice in which the differentiation ability of NSCs is promoted and differentiation into neurons is completed earlier, while the timing of differentiation into astrocytes is accelerated. These results clarified that the abnormal differentiation of SD-iPSCs toward a neural lineage in vitro was shown to reflect the pathology of SD.
Collapse
Affiliation(s)
- Yasuhiro Ogawa
- Department of Pharmacology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Katsutoshi Kaizu
- Department of Pharmacology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Yusuke Yanagi
- Department of Pharmacology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Subaru Takada
- Department of Pharmacology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Hitoshi Sakuraba
- Department of Clinical Genetics, Meiji Pharmaceutical University, Tokyo, Japan
| | - Kazuhiko Oishi
- Department of Pharmacology, Meiji Pharmaceutical University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
47
|
Galant S, Furlan G, Coolen M, Dirian L, Foucher I, Bally-Cuif L. Embryonic origin and lineage hierarchies of the neural progenitor subtypes building the zebrafish adult midbrain. Dev Biol 2016; 420:120-135. [PMID: 27693369 PMCID: PMC5156517 DOI: 10.1016/j.ydbio.2016.09.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/31/2016] [Accepted: 09/26/2016] [Indexed: 01/11/2023]
Abstract
Neurogenesis in the post-embryonic vertebrate brain varies in extent and efficiency between species and brain territories. Distinct neurogenesis modes may account for this diversity, and several neural progenitor subtypes, radial glial cells (RG) and neuroepithelial progenitors (NE), have been identified in the adult zebrafish brain. The neurogenic sequences issued from these progenitors, and their contribution to brain construction, remain incompletely understood. Here we use genetic tracing techniques based on conditional Cre recombination and Tet-On neuronal birthdating to unravel the neurogenic sequence operating from NE progenitors in the zebrafish post-embryonic optic tectum. We reveal that a subpopulation of her5-positive NE cells of the posterior midbrain layer stands at the top of a neurogenic hierarchy involving, in order, the amplification pool of the tectal proliferation zone (TPZ), followed by her4-positive RG cells with transient neurogenic activity. We further demonstrate that the adult her5-positive NE pool is issued in lineage from an identically located NE pool expressing the same gene in the embryonic neural tube. Finally, we show that these features are reminiscent of the neurogenic sequence and embryonic origin of the her9-positive progenitor NE pool involved in the construction of the lateral pallium at post-embryonic stages. Together, our results highlight the shared recruitment of an identical neurogenic strategy by two remote brain territories, where long-lasting NE pools serve both as a growth zone and as the life-long source of young neurogenic RG cells. Zebrafish post-embryonic tectal neurogenesis is driven by neuroepithelial progenitors. The neuroepithelial progenitor pool is long-lasting and expresses Her5 life long. Tectal radial glia originate from the her5-positive pool and are transiently neurogenic. The post-embryonic neurogenic sequences of the tectum and lateral pallium are similar.
Collapse
Affiliation(s)
- Sonya Galant
- Paris-Saclay Institute for Neuroscience, CNRS UMR9197 - Université Paris-Sud, Team Zebrafish Neurogenetics, Avenue de la Terrasse, Bldg 5, F-91198 Gif-sur-Yvette, France
| | - Giacomo Furlan
- Paris-Saclay Institute for Neuroscience, CNRS UMR9197 - Université Paris-Sud, Team Zebrafish Neurogenetics, Avenue de la Terrasse, Bldg 5, F-91198 Gif-sur-Yvette, France
| | - Marion Coolen
- Paris-Saclay Institute for Neuroscience, CNRS UMR9197 - Université Paris-Sud, Team Zebrafish Neurogenetics, Avenue de la Terrasse, Bldg 5, F-91198 Gif-sur-Yvette, France; Department of Developmental and Stem Cell Biology and CNRS UMR 3738, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France
| | - Lara Dirian
- Paris-Saclay Institute for Neuroscience, CNRS UMR9197 - Université Paris-Sud, Team Zebrafish Neurogenetics, Avenue de la Terrasse, Bldg 5, F-91198 Gif-sur-Yvette, France
| | - Isabelle Foucher
- Paris-Saclay Institute for Neuroscience, CNRS UMR9197 - Université Paris-Sud, Team Zebrafish Neurogenetics, Avenue de la Terrasse, Bldg 5, F-91198 Gif-sur-Yvette, France; Department of Developmental and Stem Cell Biology and CNRS UMR 3738, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France.
| | - Laure Bally-Cuif
- Paris-Saclay Institute for Neuroscience, CNRS UMR9197 - Université Paris-Sud, Team Zebrafish Neurogenetics, Avenue de la Terrasse, Bldg 5, F-91198 Gif-sur-Yvette, France; Department of Developmental and Stem Cell Biology and CNRS UMR 3738, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France.
| |
Collapse
|
48
|
Abstract
In all vertebrate species studied thus far, the adult central nervous system harbors neural stem cells that sustain constitutive neurogenesis, as well as latent neural progenitors that can be awakened in lesional contexts. In spite of this common theme, many species differ dramatically in their ability to recruit constitutive progenitors, to awaken latent progenitors, or to enhance or bias neural progenitor fate to achieve successful neuronal repair. This Review summarizes the striking similarities in the essential molecular and cellular properties of adult neural stem cells between different vertebrate species, both under physiological and reparative conditions. It also emphasizes the differences in the reparative process across evolution and how the study of non-mammalian models can provide insights into both basic neural stem cell properties and stimulatory cues shared between vertebrates, and subsequent neurogenic events, which are abortive under reparative conditions in mammals. Summary: This Review article provides a comparative view of neuronal repair across vertebrate species, with a particular focus on the molecular pathways that enable repair in some, but not all animals.
Collapse
Affiliation(s)
- Alessandro Alunni
- Paris-Saclay Institute for Neuroscience, CNRS UMR9197 - Université Paris-Sud, Université Paris-Saclay, Team Zebrafish Neurogenetics, Avenue de la Terrasse, Building 5, Gif-sur-Yvette F-91198, France
| | - Laure Bally-Cuif
- Paris-Saclay Institute for Neuroscience, CNRS UMR9197 - Université Paris-Sud, Université Paris-Saclay, Team Zebrafish Neurogenetics, Avenue de la Terrasse, Building 5, Gif-sur-Yvette F-91198, France
| |
Collapse
|
49
|
Roese-Koerner B, Stappert L, Berger T, Braun NC, Veltel M, Jungverdorben J, Evert BO, Peitz M, Borghese L, Brüstle O. Reciprocal Regulation between Bifunctional miR-9/9(∗) and its Transcriptional Modulator Notch in Human Neural Stem Cell Self-Renewal and Differentiation. Stem Cell Reports 2016; 7:207-19. [PMID: 27426040 PMCID: PMC4982985 DOI: 10.1016/j.stemcr.2016.06.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 06/16/2016] [Accepted: 06/16/2016] [Indexed: 12/21/2022] Open
Abstract
Tight regulation of the balance between self-renewal and differentiation of neural stem cells is crucial to assure proper neural development. In this context, Notch signaling is a well-known promoter of stemness. In contrast, the bifunctional brain-enriched microRNA miR-9/9∗ has been implicated in promoting neuronal differentiation. Therefore, we set out to explore the role of both regulators in human neural stem cells. We found that miR-9/9∗ decreases Notch activity by targeting NOTCH2 and HES1, resulting in an enhanced differentiation. Vice versa, expression levels of miR-9/9∗ depend on the activation status of Notch signaling. While Notch inhibits differentiation of neural stem cells, it also induces miR-9/9∗ via recruitment of the Notch intracellular domain (NICD)/RBPj transcriptional complex to the miR-9/9∗_2 genomic locus. Thus, our data reveal a mutual interaction between bifunctional miR-9/9∗ and the Notch signaling cascade, calibrating the delicate balance between self-renewal and differentiation of human neural stem cells. MiR-9/9∗ regulate Notch signaling by targeting NOTCH2 and HES1 Notch directly regulates transcription of the miR-9_2 genomic locus Notch-miR-9 reciprocal regulation calibrates NSC self-renewal and differentiation
Collapse
Affiliation(s)
- Beate Roese-Koerner
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn, 53127 Bonn, Germany
| | - Laura Stappert
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn, 53127 Bonn, Germany
| | - Thomas Berger
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn, 53127 Bonn, Germany
| | - Nils Christian Braun
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn, 53127 Bonn, Germany
| | - Monika Veltel
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn, 53127 Bonn, Germany
| | - Johannes Jungverdorben
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn, 53127 Bonn, Germany; DZNE, German Center for Neurodegenerative Diseases, 53127 Bonn, Germany
| | - Bernd O Evert
- Department of Neurology, University of Bonn, 53127 Bonn, Germany
| | - Michael Peitz
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn, 53127 Bonn, Germany; DZNE, German Center for Neurodegenerative Diseases, 53127 Bonn, Germany
| | - Lodovica Borghese
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn, 53127 Bonn, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn, 53127 Bonn, Germany; DZNE, German Center for Neurodegenerative Diseases, 53127 Bonn, Germany.
| |
Collapse
|
50
|
Rao SNR, Pearse DD. Regulating Axonal Responses to Injury: The Intersection between Signaling Pathways Involved in Axon Myelination and The Inhibition of Axon Regeneration. Front Mol Neurosci 2016; 9:33. [PMID: 27375427 PMCID: PMC4896923 DOI: 10.3389/fnmol.2016.00033] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/02/2016] [Indexed: 01/06/2023] Open
Abstract
Following spinal cord injury (SCI), a multitude of intrinsic and extrinsic factors adversely affect the gene programs that govern the expression of regeneration-associated genes (RAGs) and the production of a diversity of extracellular matrix molecules (ECM). Insufficient RAG expression in the injured neuron and the presence of inhibitory ECM at the lesion, leads to structural alterations in the axon that perturb the growth machinery, or form an extraneous barrier to axonal regeneration, respectively. Here, the role of myelin, both intact and debris, in antagonizing axon regeneration has been the focus of numerous investigations. These studies have employed antagonizing antibodies and knockout animals to examine how the growth cone of the re-growing axon responds to the presence of myelin and myelin-associated inhibitors (MAIs) within the lesion environment and caudal spinal cord. However, less attention has been placed on how the myelination of the axon after SCI, whether by endogenous glia or exogenously implanted glia, may alter axon regeneration. Here, we examine the intersection between intracellular signaling pathways in neurons and glia that are involved in axon myelination and axon growth, to provide greater insight into how interrogating this complex network of molecular interactions may lead to new therapeutics targeting SCI.
Collapse
Affiliation(s)
- Sudheendra N R Rao
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine Miami, FL, USA
| | - Damien D Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of MedicineMiami, FL, USA; The Department of Neurological Surgery, University of Miami Miller School of MedicineMiami, FL, USA; The Neuroscience Program, University of Miami Miller School of MedicineMiami, FL, USA; The Interdisciplinary Stem Cell Institute, University of Miami Miller School of MedicineMiami, FL, USA; Bruce W. Carter Department of Veterans Affairs Medical CenterMiami, FL, USA
| |
Collapse
|