1
|
Lush ME, Tsai YY, Chen S, Münch D, Peloggia J, Sandler JE, Piotrowski T. Stem and progenitor cell proliferation are independently regulated by cell type-specific cyclinD genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.619490. [PMID: 39484411 PMCID: PMC11526906 DOI: 10.1101/2024.10.21.619490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Regeneration and homeostatic turnover of solid tissues depend on the proliferation of symmetrically dividing adult stem cells, which either remain stem cells or differentiate based on their niche position. Here we demonstrate that in zebrafish lateral line sensory organs, stem and progenitor cell proliferation are independently regulated by two cyclinD genes. Loss of ccnd2a impairs stem cell proliferation during development, while loss of ccndx disrupts hair cell progenitor proliferation but allows normal differentiation. Notably, ccnd2a can functionally replace ccndx , indicating that the respective effects of these Cyclins on proliferation are due to cell type-specific expression. However, even though hair cell progenitors differentiate normally in ccndx mutants, they are mispolarized due to hes2 and Emx2 downregulation. Thus, regulated proliferation ensures that equal numbers of hair cells are polarized in opposite directions. Our study reveals cell type-specific roles for cyclinD genes in regulating the different populations of symmetrically dividing cells governing organ development and regeneration, with implications for regenerative medicine and disease.
Collapse
|
2
|
Lee LR, Guillotin B, Rahni R, Hutchison C, Desvoyes B, Gutierrez C, Birnbaum KD. Glutathione accelerates the cell cycle and cellular reprogramming in plant regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.28.569014. [PMID: 38168452 PMCID: PMC10760015 DOI: 10.1101/2023.11.28.569014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The plasticity of plant cells underlies their wide capacity to regenerate, with increasing evidence in plants and animals implicating cell cycle dynamics in cellular reprogramming. To investigate the cell cycle during cellular reprogramming, we developed a comprehensive set of cell cycle phase markers in the Arabidopsis root. Using single-cell RNA-seq profiles and live imaging during regeneration, we found that a subset of cells near an ablation injury dramatically increases division rate by truncating G1. Cells in G1 undergo a transient nuclear peak of glutathione (GSH) prior to coordinated entry into S phase followed by rapid divisions and cellular reprogramming. A symplastic block of the ground tissue impairs regeneration, which is rescued by exogenous GSH. We propose a model in which GSH from the outer tissues is released upon injury licensing an exit from G1 near the wound to induce rapid cell division and reprogramming.
Collapse
Affiliation(s)
- Laura R Lee
- New York University, Center for Genomics and Systems Biology, Department of Biology, NY, New York, 10003, USA
| | - Bruno Guillotin
- New York University, Center for Genomics and Systems Biology, Department of Biology, NY, New York, 10003, USA
| | - Ramin Rahni
- New York University, Center for Genomics and Systems Biology, Department of Biology, NY, New York, 10003, USA
| | - Chanel Hutchison
- New York University, Center for Genomics and Systems Biology, Department of Biology, NY, New York, 10003, USA
| | | | | | - Kenneth D Birnbaum
- New York University, Center for Genomics and Systems Biology, Department of Biology, NY, New York, 10003, USA
| |
Collapse
|
3
|
Goins LM, Girard JR, Mondal BC, Buran S, Su CC, Tang R, Biswas T, Kissi JA, Banerjee U. Wnt signaling couples G2 phase control with differentiation during hematopoiesis in Drosophila. Dev Cell 2024; 59:2477-2496.e5. [PMID: 38866012 PMCID: PMC11421984 DOI: 10.1016/j.devcel.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 03/27/2024] [Accepted: 05/17/2024] [Indexed: 06/14/2024]
Abstract
During homeostasis, a critical balance is maintained between myeloid-like progenitors and their differentiated progeny, which function to mitigate stress and innate immune challenges. The molecular mechanisms that help achieve this balance are not fully understood. Using genetic dissection in Drosophila, we show that a Wnt6/EGFR-signaling network simultaneously controls progenitor growth, proliferation, and differentiation. Unlike G1-quiescence of stem cells, hematopoietic progenitors are blocked in G2 phase by a β-catenin-independent (Wnt/STOP) Wnt6 pathway that restricts Cdc25 nuclear entry and promotes cell growth. Canonical β-catenin-dependent Wnt6 signaling is spatially confined to mature progenitors through localized activation of the tyrosine kinases EGFR and Abelson kinase (Abl), which promote nuclear entry of β-catenin and facilitate exit from G2. This strategy combines transcription-dependent and -independent forms of both Wnt6 and EGFR pathways to create a direct link between cell-cycle control and differentiation. This unique combinatorial strategy employing conserved components may underlie homeostatic balance and stress response in mammalian hematopoiesis.
Collapse
Affiliation(s)
- Lauren M Goins
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Juliet R Girard
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA
| | - Bama Charan Mondal
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sausan Buran
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA; Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Chloe C Su
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ruby Tang
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Titash Biswas
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jessica A Kissi
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Utpal Banerjee
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA; Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Noller K, Cahan P. Cell cycle expression heterogeneity predicts degree of differentiation. Brief Bioinform 2024; 25:bbae536. [PMID: 39446193 PMCID: PMC11500603 DOI: 10.1093/bib/bbae536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
Methods that predict fate potential or degree of differentiation from transcriptomic data have identified rare progenitor populations and uncovered developmental regulatory mechanisms. However, some state-of-the-art methods are too computationally burdensome for emerging large-scale data and all methods make inaccurate predictions in certain biological systems. We developed a method in R (stemFinder) that predicts single cell differentiation time based on heterogeneity in cell cycle gene expression. Our method is computationally tractable and is as good as or superior to competitors. As part of our benchmarking, we implemented four different performance metrics to assist potential users in selecting the tool that is most apt for their application. Finally, we explore the relationship between differentiation time and cell fate potential by analyzing a lineage tracing dataset with clonally labelled hematopoietic cells, revealing that metrics of differentiation time are correlated with the number of downstream lineages.
Collapse
Affiliation(s)
- Kathleen Noller
- Institute for Cell Engineering, Johns Hopkins University, 733 N. Broadway, Baltimore MD, 21205, United States
- Department of Biomedical Engineering, Johns Hopkins University, 733 N. Broadway, Baltimore MD, 21205, United States
| | - Patrick Cahan
- Institute for Cell Engineering, Johns Hopkins University, 733 N. Broadway, Baltimore MD, 21205, United States
- Department of Biomedical Engineering, Johns Hopkins University, 733 N. Broadway, Baltimore MD, 21205, United States
- Department of Molecular Biology and Genetics, Johns Hopkins University, 733 N. Broadway, Baltimore MD, 21205, United States
| |
Collapse
|
5
|
Atemin A, Ivanova A, Kanev PB, Uzunova S, Nedelcheva-Veleva M, Stoynov S. Dynamics of Replication-Associated Protein Levels through the Cell Cycle. Int J Mol Sci 2024; 25:8230. [PMID: 39125800 PMCID: PMC11311332 DOI: 10.3390/ijms25158230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The measurement of dynamic changes in protein level and localization throughout the cell cycle is of major relevance to studies of cellular processes tightly coordinated with the cycle, such as replication, transcription, DNA repair, and checkpoint control. Currently available methods include biochemical assays of cells in bulk following synchronization, which determine protein levels with poor temporal and no spatial resolution. Taking advantage of genetic engineering and live-cell microscopy, we performed time-lapse imaging of cells expressing fluorescently tagged proteins under the control of their endogenous regulatory elements in order to follow their levels throughout the cell cycle. We effectively discern between cell cycle phases and S subphases based on fluorescence intensity and distribution of co-expressed proliferating cell nuclear antigen (PCNA)-mCherry. This allowed us to precisely determine and compare the levels and distribution of multiple replication-associated factors, including Rap1-interacting factor 1 (RIF1), minichromosome maintenance complex component 6 (MCM6), origin recognition complex subunit 1 (ORC1, and Claspin, with high spatiotemporal resolution in HeLa Kyoto cells. Combining these data with available mass spectrometry-based measurements of protein concentrations reveals the changes in the concentration of these proteins throughout the cell cycle. Our approach provides a practical basis for a detailed interrogation of protein dynamics in the context of the cell cycle.
Collapse
Affiliation(s)
| | | | | | | | | | - Stoyno Stoynov
- Laboratory of Genomic Stability, Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G., Bonchev Str. Bl. 21, 1113 Sofia, Bulgaria; (A.A.); (A.I.); (P.-B.K.); (S.U.); (M.N.-V.)
| |
Collapse
|
6
|
Bernadskaya YY, Kuan A, Tjärnberg A, Brandenburg J, Zheng P, Wiechecki K, Kaplan N, Failla M, Bikou M, Madilian O, Wang W, Christiaen L. Cell cycle-driven transcriptome maturation confers multilineage competence to cardiopharyngeal progenitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.604718. [PMID: 39091743 PMCID: PMC11291048 DOI: 10.1101/2024.07.23.604718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
During development, stem and progenitor cells divide and transition through germ layer- and lineage-specific multipotent states to generate the diverse cell types that compose an animal. Defined changes in biomolecular composition underlie the progressive loss of potency and acquisition of lineage-specific characteristics. For example, multipotent cardiopharyngeal progenitors display multilineage transcriptional priming, whereby both the cardiac and pharyngeal muscle programs are partially active and coexist in the same progenitor cells, while their daughter cells engage in a cardiac or pharyngeal muscle differentiation path only after cell division. Here, using the tunicate Ciona, we studied the acquisition of multilineage competence and the coupling between fate decisions and cell cycle progression. We showed that multipotent cardiopharyngeal progenitors acquire the competence to produce distinct Tbx1/10(+) and (-) daughter cells shortly before mitosis, which is necessary for Tbx1/10 activation. By combining transgene-based sample barcoding with single cell RNA-seq (scRNA-seq), we uncovered transcriptome-wide dynamics in migrating cardiopharyngeal progenitors as cells progress through G1, S and G2 phases. We termed this process "transcriptome maturation", and identified candidate "mature genes", including the Rho GAP-coding gene Depdc1, which peak in late G2. Functional assays indicated that transcriptome maturation fosters cardiopharyngeal competence, in part through multilineage priming and proper oriented and asymmetric division that influences subsequent fate decisions, illustrating the concept of "behavioral competence". Both classic feedforward circuits and coupling with cell cycle progression drive transcriptome maturation, uncovering distinct levels of coupling between cell cycle progression and fateful molecular transitions. We propose that coupling competence and fate decision with the G2 and G1 phases, respectively, ensures the timely deployment of lineage-specific programs.
Collapse
Affiliation(s)
| | - Ariel Kuan
- Department of Biology, New York University, New York, NY, USA
| | | | | | - Ping Zheng
- Fang Centre, Ocean University of China, Qingdao, China
| | - Keira Wiechecki
- Department of Biology, New York University, New York, NY, USA
| | - Nicole Kaplan
- Department of Biology, New York University, New York, NY, USA
| | - Margaux Failla
- Michael Sars Centre, University of Bergen, Bergen, Norway
- Department of Biology, New York University, New York, NY, USA
| | - Maria Bikou
- Department of Biology, New York University, New York, NY, USA
| | - Oliver Madilian
- Department of Biology, New York University, New York, NY, USA
| | - Wei Wang
- Department of Biology, New York University, New York, NY, USA
- Fang Centre, Ocean University of China, Qingdao, China
| | - Lionel Christiaen
- Michael Sars Centre, University of Bergen, Bergen, Norway
- Department of Biology, New York University, New York, NY, USA
| |
Collapse
|
7
|
Noller K, Cahan P. Cell cycle expression heterogeneity predicts degree of differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604184. [PMID: 39091773 PMCID: PMC11291076 DOI: 10.1101/2024.07.19.604184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Methods that predict fate potential or degree of differentiation from transcriptomic data have identified rare progenitor populations and uncovered developmental regulatory mechanisms. However, some state-of-the-art methods are too computationally burdensome for emerging large-scale data and all methods make inaccurate predictions in certain biological systems. We developed a method in R (stemFinder) that predicts single cell differentiation time based on heterogeneity in cell cycle gene expression. Our method is computationally tractable and is as good as or superior to competitors. As part of our benchmarking, we implemented four different performance metrics to assist potential users in selecting the tool that is most apt for their application. Finally, we explore the relationship between differentiation time and cell fate potential by analyzing a lineage tracing dataset with clonally labelled hematopoietic cells, revealing that metrics of differentiation time are correlated with the number of downstream lineages.
Collapse
Affiliation(s)
- Kathleen Noller
- Institute for Cell Engineering, Johns Hopkins University, Baltimore MD USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore MD USA
| | - Patrick Cahan
- Institute for Cell Engineering, Johns Hopkins University, Baltimore MD USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore MD USA
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore MD USA
| |
Collapse
|
8
|
Yang Z. The Principle of Cortical Development and Evolution. Neurosci Bull 2024:10.1007/s12264-024-01259-2. [PMID: 39023844 DOI: 10.1007/s12264-024-01259-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Human's robust cognitive abilities, including creativity and language, are made possible, at least in large part, by evolutionary changes made to the cerebral cortex. This paper reviews the biology and evolution of mammalian cortical radial glial cells (primary neural stem cells) and introduces the concept that a genetically step wise process, based on a core molecular pathway already in use, is the evolutionary process that has molded cortical neurogenesis. The core mechanism, which has been identified in our recent studies, is the extracellular signal-regulated kinase (ERK)-bone morphogenic protein 7 (BMP7)-GLI3 repressor form (GLI3R)-sonic hedgehog (SHH) positive feedback loop. Additionally, I propose that the molecular basis for cortical evolutionary dwarfism, exemplified by the lissencephalic mouse which originated from a larger gyrencephalic ancestor, is an increase in SHH signaling in radial glia, that antagonizes ERK-BMP7 signaling. Finally, I propose that: (1) SHH signaling is not a key regulator of primate cortical expansion and folding; (2) human cortical radial glial cells do not generate neocortical interneurons; (3) human-specific genes may not be essential for most cortical expansion. I hope this review assists colleagues in the field, guiding research to address gaps in our understanding of cortical development and evolution.
Collapse
Affiliation(s)
- Zhengang Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
9
|
Sun J, Durmaz AD, Babu A, Macabenta F, Stathopoulos A. Two sequential gene expression programs bridged by cell division support long-distance collective cell migration. Development 2024; 151:dev202262. [PMID: 38646822 PMCID: PMC11165717 DOI: 10.1242/dev.202262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 04/08/2024] [Indexed: 04/23/2024]
Abstract
The precise assembly of tissues and organs relies on spatiotemporal regulation of gene expression to coordinate the collective behavior of cells. In Drosophila embryos, the midgut musculature is formed through collective migration of caudal visceral mesoderm (CVM) cells, but how gene expression changes as cells migrate is not well understood. Here, we have focused on ten genes expressed in the CVM and the cis-regulatory sequences controlling their expression. Although some genes are continuously expressed, others are expressed only early or late during migration. Late expression relates to cell cycle progression, as driving string/Cdc25 causes earlier division of CVM cells and accelerates the transition to late gene expression. In particular, we found that the cell cycle effector transcription factor E2F1 is a required input for the late gene CG5080. Furthermore, whereas late genes are broadly expressed in all CVM cells, early gene transcripts are polarized to the anterior or posterior ends of the migrating collective. We show this polarization requires transcription factors Snail, Zfh1 and Dorsocross. Collectively, these results identify two sequential gene expression programs bridged by cell division that support long-distance directional migration of CVM cells.
Collapse
Affiliation(s)
- Jingjing Sun
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Ayse Damla Durmaz
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
- Faculty of Biology, Ludwig-Maximilians Universität München, München, 82152 DE, Germany
| | - Aswini Babu
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Frank Macabenta
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
- California State University, Monterey Bay, Seaside, CA 93955, USA
| | - Angelike Stathopoulos
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
10
|
Shao H, Huang J, Wang H, Wang G, Yang X, Cheng M, Sun C, Zou L, Yang Q, Zhang D, Liu Z, Jiang X, Shi L, Shi P, Han B, Jiao B. Fused in sarcoma (FUS) inhibits milk production efficiency in mammals. Nat Commun 2024; 15:3953. [PMID: 38729967 PMCID: PMC11087553 DOI: 10.1038/s41467-024-48428-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
Efficient milk production in mammals confers evolutionary advantages by facilitating the transmission of energy from mother to offspring. However, the regulatory mechanism responsible for the gradual establishment of milk production efficiency in mammals, from marsupials to eutherians, remains elusive. Here, we find that mammary gland of the marsupial sugar glider contained milk components during adolescence, and that mammary gland development is less dynamically cyclic compared to that in placental mammals. Furthermore, fused in sarcoma (FUS) is found to be partially responsible for this establishment of low efficiency. In mouse model, FUS inhibit mammary epithelial cell differentiation through the cyclin-dependent kinase inhibitor p57Kip2, leading to lactation failure and pup starvation. Clinically, FUS levels are negatively correlated with milk production in lactating women. Overall, our results shed light on FUS as a negative regulator of milk production, providing a potential mechanism for the establishment of milk production from marsupial to eutherian mammals.
Collapse
Affiliation(s)
- Haili Shao
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Jipeng Huang
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Hui Wang
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Guolei Wang
- Department of Obstetrics, Weifang People's Hospital, Weifang, Shandong, 261042, China
| | - Xu Yang
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Mei Cheng
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Changjie Sun
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Li Zou
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Qin Yang
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Dandan Zhang
- Luoyang Maternal and Child Health Hospital, Luoyang, Henan, 471000, China
| | - Zhen Liu
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Xuelong Jiang
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Lei Shi
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Peng Shi
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650203, China
| | - Baowei Han
- Luoyang Maternal and Child Health Hospital, Luoyang, Henan, 471000, China.
| | - Baowei Jiao
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650203, China.
| |
Collapse
|
11
|
Wu J, Yue B. Regulation of myogenic cell proliferation and differentiation during mammalian skeletal myogenesis. Biomed Pharmacother 2024; 174:116563. [PMID: 38583341 DOI: 10.1016/j.biopha.2024.116563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/14/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024] Open
Abstract
Mammalian skeletal myogenesis is a complex process that allows precise control of myogenic cells' proliferation, differentiation, and fusion to form multinucleated, contractile, and functional muscle fibers. Typically, myogenic progenitors continue growth and division until acquiring a differentiated state, which then permanently leaves the cell cycle and enters terminal differentiation. These processes have been intensively studied using the skeletal muscle developing models in vitro and in vivo, uncovering a complex cellular intrinsic network during mammalian skeletal myogenesis containing transcription factors, translation factors, extracellular matrix, metabolites, and mechano-sensors. Examining the events and how they are knitted together will better understand skeletal myogenesis's molecular basis. This review describes various regulatory mechanisms and recent advances in myogenic cell proliferation and differentiation during mammalian skeletal myogenesis. We focus on significant cell cycle regulators, myogenic factors, and chromatin regulators impacting the coordination of the cell proliferation versus differentiation decision, which will better clarify the complex signaling underlying skeletal myogenesis.
Collapse
Affiliation(s)
- Jiyao Wu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610225, China; College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Binglin Yue
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610225, China.
| |
Collapse
|
12
|
Rüegg AB, van der Weijden VA, de Sousa JA, von Meyenn F, Pausch H, Ulbrich SE. Developmental progression continues during embryonic diapause in the roe deer. Commun Biol 2024; 7:270. [PMID: 38443549 PMCID: PMC10914810 DOI: 10.1038/s42003-024-05944-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
Embryonic diapause in mammals is a temporary developmental delay occurring at the blastocyst stage. In contrast to other diapausing species displaying a full arrest, the blastocyst of the European roe deer (Capreolus capreolus) proliferates continuously and displays considerable morphological changes in the inner cell mass. We hypothesised that developmental progression also continues during this period. Here we evaluate the mRNA abundance of developmental marker genes in embryos during diapause and elongation. Our results show that morphological rearrangements of the epiblast during diapause correlate with gene expression patterns and changes in cell polarity. Immunohistochemical staining further supports these findings. Primitive endoderm formation occurs during diapause in embryos composed of around 3,000 cells. Gastrulation coincides with elongation and thus takes place after embryo reactivation. The slow developmental progression makes the roe deer an interesting model for unravelling the link between proliferation and differentiation and requirements for embryo survival.
Collapse
Affiliation(s)
- Anna B Rüegg
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
| | - Vera A van der Weijden
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
- Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | - João Agostinho de Sousa
- ETH Zurich, Laboratory of Nutrition and Metabolic Epigenetics, Institute of Food, Nutrition and Health, Zurich, Switzerland
| | - Ferdinand von Meyenn
- ETH Zurich, Laboratory of Nutrition and Metabolic Epigenetics, Institute of Food, Nutrition and Health, Zurich, Switzerland
| | - Hubert Pausch
- ETH Zurich, Animal Genomics, Institute of Agricultural Sciences, Zurich, Switzerland
| | - Susanne E Ulbrich
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland.
| |
Collapse
|
13
|
Espinosa-Martínez M, Alcázar-Fabra M, Landeira D. The molecular basis of cell memory in mammals: The epigenetic cycle. SCIENCE ADVANCES 2024; 10:eadl3188. [PMID: 38416817 PMCID: PMC10901381 DOI: 10.1126/sciadv.adl3188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/26/2024] [Indexed: 03/01/2024]
Abstract
Cell memory refers to the capacity of cells to maintain their gene expression program once the initiating environmental signal has ceased. This exceptional feature is key during the formation of mammalian organisms, and it is believed to be in part mediated by epigenetic factors that can endorse cells with the landmarks required to maintain transcriptional programs upon cell duplication. Here, we review current literature analyzing the molecular basis of epigenetic memory in mammals, with a focus on the mechanisms by which transcriptionally repressive chromatin modifications such as methylation of DNA and histone H3 are propagated through mitotic cell divisions. The emerging picture suggests that cellular memory is supported by an epigenetic cycle in which reversible activities carried out by epigenetic regulators in coordination with cell cycle transition create a multiphasic system that can accommodate both maintenance of cell identity and cell differentiation in proliferating stem cell populations.
Collapse
Affiliation(s)
- Mencía Espinosa-Martínez
- Centre for Genomics and Oncological Research (GENYO), Avenue de la Ilustración 114, 18016 Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - María Alcázar-Fabra
- Centre for Genomics and Oncological Research (GENYO), Avenue de la Ilustración 114, 18016 Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - David Landeira
- Centre for Genomics and Oncological Research (GENYO), Avenue de la Ilustración 114, 18016 Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| |
Collapse
|
14
|
Contreras A, Perea-Resa C. Transcriptional repression across mitosis: mechanisms and functions. Biochem Soc Trans 2024; 52:455-464. [PMID: 38372373 PMCID: PMC10903446 DOI: 10.1042/bst20231071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/20/2024]
Abstract
Transcription represents a central aspect of gene expression with RNA polymerase machineries (RNA Pol) driving the synthesis of RNA from DNA template molecules. In eukaryotes, a total of three RNA Pol enzymes generate the plethora of RNA species and RNA Pol II is the one transcribing all protein-coding genes. A high number of cis- and trans-acting factors orchestrates RNA Pol II-mediated transcription by influencing the chromatin recruitment, activation, elongation, and/or termination steps. The levels of DNA accessibility, defining open-euchromatin versus close-heterochromatin, delimits RNA Pol II activity as well as the encounter with other factors acting on chromatin such as the DNA replication or DNA repair machineries. The stage of the cell cycle highly influences RNA Pol II activity with mitosis representing the major challenge. In fact, there is a massive inhibition of transcription during the mitotic entry coupled with chromatin dissociation of most of the components of the transcriptional machinery. Mitosis, as a consequence, highly compromises the transcriptional memory and the perpetuation of cellular identity. Once mitosis ends, transcription levels immediately recover to define the cell fate and to safeguard the proper progression of daughter cells through the cell cycle. In this review, we evaluate our current understanding of the transcriptional repression associated with mitosis with a special focus on the molecular mechanisms involved, on the potential function behind the general repression, and on the transmission of the transcriptional machinery into the daughter cells. We finally discuss the contribution that errors in the inheritance of the transcriptional machinery across mitosis might play in stem cell aging.
Collapse
Affiliation(s)
- A. Contreras
- Centro de Biología Molecular Severo Ochoa (CBMSO-CSIC), C/Nicolas Cabrera 1, 28049 Madrid, Spain
| | - C. Perea-Resa
- Centro de Biología Molecular Severo Ochoa (CBMSO-CSIC), C/Nicolas Cabrera 1, 28049 Madrid, Spain
| |
Collapse
|
15
|
Calderon A, Mestvirishvili T, Boccalatte F, Ruggles KV, David G. Chromatin accessibility and cell cycle progression are controlled by the HDAC-associated Sin3B protein in murine hematopoietic stem cells. Epigenetics Chromatin 2024; 17:2. [PMID: 38254205 PMCID: PMC10804615 DOI: 10.1186/s13072-024-00526-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Blood homeostasis requires the daily production of millions of terminally differentiated effector cells that all originate from hematopoietic stem cells (HSCs). HSCs are rare and exhibit unique self-renewal and multipotent properties, which depend on their ability to maintain quiescence through ill-defined processes. Defective control of cell cycle progression can eventually lead to bone marrow failure or malignancy. In particular, the molecular mechanisms tying cell cycle re-entry to cell fate commitment in HSCs remain elusive. Previous studies have identified chromatin coordination as a key regulator of differentiation in embryonic stem cells. RESULTS Here, we utilized genetic inactivation of the chromatin-associated Sin3B protein to manipulate cell cycle control and found dysregulated chromatin accessibility and cell cycle progression in HSCs. Single cell transcriptional profiling of hematopoietic stem and progenitor cells (HSPCs) inactivated for Sin3B reveals aberrant progression through the G1 phase of the cell cycle, which correlates with the engagement of specific signaling pathways, including aberrant expression of cell adhesion molecules and the interferon signaling program in LT-HSCs. In addition, we uncover the Sin3B-dependent accessibility of genomic elements controlling HSC differentiation, which points to cell cycle progression possibly dictating the priming of HSCs for differentiation. CONCLUSIONS Our findings provide new insights into controlled cell cycle progression as a potential regulator of HSC lineage commitment through the modulation of chromatin features.
Collapse
Affiliation(s)
- Alexander Calderon
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, 10016, USA
- Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, 10016, USA
| | - Tamara Mestvirishvili
- Department of Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, 10016, USA
| | - Francesco Boccalatte
- Department of Pathology, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, 10016, USA
| | - Kelly V Ruggles
- Department of Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, 10016, USA
| | - Gregory David
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, 10016, USA.
- Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, 10016, USA.
- Department of Urology, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, 10016, USA.
| |
Collapse
|
16
|
Kuang H, Li Y, Wang Y, Shi M, Duan R, Xiao Q, She H, Liu Y, Liang Q, Teng Y, Zhou M, Liang D, Li Z, Wu L. A homozygous variant in INTS11 links mitosis and neurogenesis defects to a severe neurodevelopmental disorder. Cell Rep 2023; 42:113445. [PMID: 37980560 DOI: 10.1016/j.celrep.2023.113445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/15/2023] [Accepted: 10/31/2023] [Indexed: 11/21/2023] Open
Abstract
The INTS11 endonuclease is crucial in modulating gene expression and has only recently been linked to human neurodevelopmental disorders (NDDs). However, how INTS11 participates in human development and disease remains unclear. Here, we identify a homozygous INTS11 variant in two siblings with a severe NDD. The variant impairs INTS11 catalytic activity, supported by its substrate's accumulation, and causes G2/M arrest in patient cells with length-dependent dysregulation of genes involved in mitosis and neural development, including the NDD gene CDKL5. The mutant knockin (KI) in induced pluripotent stem cells (iPSCs) disturbs their mitotic spindle organization and thus leads to slow proliferation and increased apoptosis, possibly through the decreased neurally functional CDKL5-induced extracellular signal-regulated kinase (ERK) pathway inhibition. The generation of neural progenitor cells (NPCs) from the mutant iPSCs is also delayed, with long transcript loss concerning neurogenesis. Our work reveals a mechanism underlying INTS11 dysfunction-caused human NDD and provides an iPSC model for this disease.
Collapse
Affiliation(s)
- Hanzhe Kuang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China
| | - Yunlong Li
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China
| | - Yixuan Wang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China
| | - Meizhen Shi
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China; Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ranhui Duan
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China
| | - Qiao Xiao
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China
| | - Haoyuan She
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China
| | - Yingdi Liu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China
| | - Qiaowei Liang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China; Department of Medical Genetics, Hunan Jiahui Genetics Hospital, Changsha 410000, China
| | - Yanling Teng
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China
| | - Miaojin Zhou
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China
| | - Desheng Liang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China; Department of Medical Genetics, Hunan Jiahui Genetics Hospital, Changsha 410000, China.
| | - Zhuo Li
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China.
| | - Lingqian Wu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China; Department of Medical Genetics, Hunan Jiahui Genetics Hospital, Changsha 410000, China.
| |
Collapse
|
17
|
Motoyoshi A, Saitoh F, Iida T, Fujieda H. Nestin Regulates Müller Glia Proliferation After Retinal Injury. Invest Ophthalmol Vis Sci 2023; 64:8. [PMID: 37934159 PMCID: PMC10631512 DOI: 10.1167/iovs.64.14.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/15/2023] [Indexed: 11/08/2023] Open
Abstract
Purpose The proliferative and neurogenic potential of retinal Müller glia after injury varies widely across species. To identify the endogenous mechanisms regulating the proliferative response of mammalian Müller glia, we comparatively analyzed the expression and function of nestin, an intermediate filament protein established as a neural stem cell marker, in the mouse and rat retinas after injury. Methods Nestin expression in the retinas of C57BL/6 mice and Wistar rats after methyl methanesulfonate (MMS)-induced photoreceptor injury was examined by immunofluorescence and Western blotting. Adeno-associated virus (AAV)-delivered control and nestin short hairpin RNA (shRNA) were intravitreally injected to rats and Müller glia proliferation after MMS-induced injury was analyzed by BrdU incorporation and immunofluorescence. Photoreceptor removal and microglia/macrophage infiltration were also analyzed by immunofluorescence. Results Rat Müller glia re-entered the cell cycle and robustly upregulated nestin after injury whereas Müller glia proliferation and nestin upregulation were not observed in mice. In vivo knockdown of nestin in the rat retinas inhibited Müller glia proliferation while transiently stimulating microglia/macrophage infiltration and phagocytic removal of dead photoreceptors. Conclusions Our findings suggest a critical role for nestin in the regulation of Müller glia proliferation after retinal injury and highlight the importance of cross species analysis to identify the molecular mechanisms regulating the injury responses of the mammalian retina.
Collapse
Affiliation(s)
- Aya Motoyoshi
- Department of Anatomy and Neurobiology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
- Department of Ophthalmology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Fuminori Saitoh
- Department of Anatomy and Neurobiology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Tomohiro Iida
- Department of Ophthalmology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Hiroki Fujieda
- Department of Anatomy and Neurobiology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
18
|
Fleifel D, Cook JG. G1 Dynamics at the Crossroads of Pluripotency and Cancer. Cancers (Basel) 2023; 15:4559. [PMID: 37760529 PMCID: PMC10526231 DOI: 10.3390/cancers15184559] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
G1 cell cycle phase dynamics are regulated by intricate networks involving cyclins, cyclin-dependent kinases (CDKs), and CDK inhibitors, which control G1 progression and ensure proper cell cycle transitions. Moreover, adequate origin licensing in G1 phase, the first committed step of DNA replication in the subsequent S phase, is essential to maintain genome integrity. In this review, we highlight the intriguing parallels and disparities in G1 dynamics between stem cells and cancer cells, focusing on their regulatory mechanisms and functional outcomes. Notably, SOX2, OCT4, KLF4, and the pluripotency reprogramming facilitator c-MYC, known for their role in establishing and maintaining stem cell pluripotency, are also aberrantly expressed in certain cancer cells. In this review, we discuss recent advances in understanding the regulatory role of these pluripotency factors in G1 dynamics in the context of stem cells and cancer cells, which may offer new insights into the interconnections between pluripotency and tumorigenesis.
Collapse
Affiliation(s)
| | - Jeanette Gowen Cook
- Department of Biochemistry & Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| |
Collapse
|
19
|
Zhu K, Xia Y, Tian X, He Y, Zhou J, Han R, Guo H, Song T, Chen L, Tian X. Characterization and therapeutic perspectives of differentiation-inducing therapy in malignant tumors. Front Genet 2023; 14:1271381. [PMID: 37745860 PMCID: PMC10514561 DOI: 10.3389/fgene.2023.1271381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/30/2023] [Indexed: 09/26/2023] Open
Abstract
Cancer is a major public health issue globally and is one of the leading causes of death. Although available treatments improve the survival rate of some cases, many advanced tumors are insensitive to these treatments. Cancer cell differentiation reverts the malignant phenotype to its original state and may even induce differentiation into cell types found in other tissues. Leveraging differentiation-inducing therapy in high-grade tumor masses offers a less aggressive strategy to curb tumor progression and heightens chemotherapy sensitivity. Differentiation-inducing therapy has been demonstrated to be effective in a variety of tumor cells. For example, differentiation therapy has become the first choice for acute promyelocytic leukemia, with the cure rate of more than 90%. Although an appealing concept, the mechanism and clinical drugs used in differentiation therapy are still in their nascent stage, warranting further investigation. In this review, we examine the current differentiation-inducing therapeutic approach and discuss the clinical applications as well as the underlying biological basis of differentiation-inducing agents.
Collapse
Affiliation(s)
- Kangwei Zhu
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yuren Xia
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xindi Tian
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yuchao He
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jun Zhou
- Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda, Japan
| | - Ruyu Han
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Hua Guo
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Tianqiang Song
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Lu Chen
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xiangdong Tian
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
20
|
Silvério-Alves R, Kurochkin I, Rydström A, Vazquez Echegaray C, Haider J, Nicholls M, Rode C, Thelaus L, Lindgren AY, Ferreira AG, Brandão R, Larsson J, de Bruijn MFTR, Martin-Gonzalez J, Pereira CF. GATA2 mitotic bookmarking is required for definitive haematopoiesis. Nat Commun 2023; 14:4645. [PMID: 37580379 PMCID: PMC10425459 DOI: 10.1038/s41467-023-40391-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 07/26/2023] [Indexed: 08/16/2023] Open
Abstract
In mitosis, most transcription factors detach from chromatin, but some are retained and bookmark genomic sites. Mitotic bookmarking has been implicated in lineage inheritance, pluripotency and reprogramming. However, the biological significance of this mechanism in vivo remains unclear. Here, we address mitotic retention of the hemogenic factors GATA2, GFI1B and FOS during haematopoietic specification. We show that GATA2 remains bound to chromatin throughout mitosis, in contrast to GFI1B and FOS, via C-terminal zinc finger-mediated DNA binding. GATA2 bookmarks a subset of its interphase targets that are co-enriched for RUNX1 and other regulators of definitive haematopoiesis. Remarkably, homozygous mice harbouring the cyclin B1 mitosis degradation domain upstream Gata2 partially phenocopy knockout mice. Degradation of GATA2 at mitotic exit abolishes definitive haematopoiesis at aorta-gonad-mesonephros, placenta and foetal liver, but does not impair yolk sac haematopoiesis. Our findings implicate GATA2-mediated mitotic bookmarking as critical for definitive haematopoiesis and highlight a dependency on bookmarkers for lineage commitment.
Collapse
Affiliation(s)
- Rita Silvério-Alves
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, BMC A12, 221 84, Lund, Sweden
- CNC - Centre for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês do Pombal, 3004-517, Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine, University of Coimbra, Largo Marquês do Pombal, 3004-517, Coimbra, Portugal
| | - Ilia Kurochkin
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, BMC A12, 221 84, Lund, Sweden
| | - Anna Rydström
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84, Lund, Sweden
| | - Camila Vazquez Echegaray
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, BMC A12, 221 84, Lund, Sweden
| | - Jakob Haider
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, BMC A12, 221 84, Lund, Sweden
| | - Matthew Nicholls
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS, Oxford, UK
| | - Christina Rode
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS, Oxford, UK
| | - Louise Thelaus
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, BMC A12, 221 84, Lund, Sweden
| | - Aida Yifter Lindgren
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, BMC A12, 221 84, Lund, Sweden
| | - Alexandra Gabriela Ferreira
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, BMC A12, 221 84, Lund, Sweden
- CNC - Centre for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês do Pombal, 3004-517, Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine, University of Coimbra, Largo Marquês do Pombal, 3004-517, Coimbra, Portugal
| | - Rafael Brandão
- Core Facility for Transgenic Mice, Department of Experimental Medicine, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Jonas Larsson
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, BMC A12, 221 84, Lund, Sweden
| | - Marella F T R de Bruijn
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS, Oxford, UK
| | - Javier Martin-Gonzalez
- Core Facility for Transgenic Mice, Department of Experimental Medicine, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Carlos-Filipe Pereira
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84, Lund, Sweden.
- Wallenberg Centre for Molecular Medicine, Lund University, BMC A12, 221 84, Lund, Sweden.
- CNC - Centre for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês do Pombal, 3004-517, Coimbra, Portugal.
| |
Collapse
|
21
|
Milagre I, Pereira C, Oliveira RA. Compromised Mitotic Fidelity in Human Pluripotent Stem Cells. Int J Mol Sci 2023; 24:11933. [PMID: 37569309 PMCID: PMC10418648 DOI: 10.3390/ijms241511933] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Human pluripotent stem cells (PSCs), which include both embryonic and induced pluripotent stem cells, are widely used in fundamental and applied biomedical research. They have been instrumental for better understanding development and cell differentiation processes, disease origin and progression and can aid in the discovery of new drugs. PSCs also hold great potential in regenerative medicine to treat or diminish the effects of certain debilitating diseases, such as degenerative disorders. However, some concerns have recently been raised over their safety for use in regenerative medicine. One of the major concerns is the fact that PSCs are prone to errors in passing the correct number of chromosomes to daughter cells, resulting in aneuploid cells. Aneuploidy, characterised by an imbalance in chromosome number, elicits the upregulation of different stress pathways that are deleterious to cell homeostasis, impair proper embryo development and potentiate cancer development. In this review, we will summarize known molecular mechanisms recently revealed to impair mitotic fidelity in human PSCs and the consequences of the decreased mitotic fidelity of these cells. We will finish with speculative views on how the physiological characteristics of PSCs can affect the mitotic machinery and how their suboptimal mitotic fidelity may be circumvented.
Collapse
Affiliation(s)
- Inês Milagre
- Católica Biomedical Research Centre, Católica Medical School, Universidade Católica Portuguesa, 1649-023 Lisbon, Portugal
| | | | - Raquel A. Oliveira
- Católica Biomedical Research Centre, Católica Medical School, Universidade Católica Portuguesa, 1649-023 Lisbon, Portugal
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| |
Collapse
|
22
|
Zhang S, Pyne S, Pietrzak S, Halberg S, McCalla SG, Siahpirani AF, Sridharan R, Roy S. Inference of cell type-specific gene regulatory networks on cell lineages from single cell omic datasets. Nat Commun 2023; 14:3064. [PMID: 37244909 PMCID: PMC10224950 DOI: 10.1038/s41467-023-38637-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 05/10/2023] [Indexed: 05/29/2023] Open
Abstract
Cell type-specific gene expression patterns are outputs of transcriptional gene regulatory networks (GRNs) that connect transcription factors and signaling proteins to target genes. Single-cell technologies such as single cell RNA-sequencing (scRNA-seq) and single cell Assay for Transposase-Accessible Chromatin using sequencing (scATAC-seq), can examine cell-type specific gene regulation at unprecedented detail. However, current approaches to infer cell type-specific GRNs are limited in their ability to integrate scRNA-seq and scATAC-seq measurements and to model network dynamics on a cell lineage. To address this challenge, we have developed single-cell Multi-Task Network Inference (scMTNI), a multi-task learning framework to infer the GRN for each cell type on a lineage from scRNA-seq and scATAC-seq data. Using simulated and real datasets, we show that scMTNI is a broadly applicable framework for linear and branching lineages that accurately infers GRN dynamics and identifies key regulators of fate transitions for diverse processes such as cellular reprogramming and differentiation.
Collapse
Affiliation(s)
- Shilu Zhang
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Saptarshi Pyne
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Stefan Pietrzak
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Spencer Halberg
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Sunnie Grace McCalla
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Alireza Fotuhi Siahpirani
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Rupa Sridharan
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Sushmita Roy
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
23
|
Oses C, Francia MG, Verneri P, Vazquez Echegaray C, Guberman AS, Levi V. The dynamical organization of the core pluripotency transcription factors responds to differentiation cues in early S-phase. Front Cell Dev Biol 2023; 11:1125015. [PMID: 37215075 PMCID: PMC10192714 DOI: 10.3389/fcell.2023.1125015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
DNA replication in stem cells is a major challenge for pluripotency preservation and cell fate decisions. This process involves massive changes in the chromatin architecture and the reorganization of many transcription-related molecules in different spatial and temporal scales. Pluripotency is controlled by the master transcription factors (TFs) OCT4, SOX2 and NANOG that partition into condensates in the nucleus of embryonic stem cells. These condensates are proposed to play relevant roles in the regulation of gene expression and the maintenance of pluripotency. Here, we asked whether the dynamical distribution of the pluripotency TFs changes during the cell cycle, particularly during DNA replication. Since the S phase is considered to be a window of opportunity for cell fate decisions, we explored if differentiation cues in G1 phase trigger changes in the distribution of these TFs during the subsequent S phase. Our results show a spatial redistribution of TFs condensates during DNA replication which was not directly related to chromatin compaction. Additionally, fluorescence fluctuation spectroscopy revealed TF-specific, subtle changes in the landscape of TF-chromatin interactions, consistent with their particularities as key players of the pluripotency network. Moreover, we found that differentiation stimuli in the preceding G1 phase triggered a relatively fast and massive reorganization of pluripotency TFs in early-S phase. Particularly, OCT4 and SOX2 condensates dissolved whereas the lifetimes of TF-chromatin interactions increased suggesting that the reorganization of condensates is accompanied with a change in the landscape of TF-chromatin interactions. Notably, NANOG showed impaired interactions with chromatin in stimulated early-S cells in line with its role as naïve pluripotency TF. Together, these findings provide new insights into the regulation of the core pluripotency TFs during DNA replication of embryonic stem cells and highlight their different roles at early differentiation stages.
Collapse
Affiliation(s)
- Camila Oses
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marcos Gabriel Francia
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Paula Verneri
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Camila Vazquez Echegaray
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandra Sonia Guberman
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Valeria Levi
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
24
|
Calderon A, Mestvirishvili T, Boccalatte F, Ruggles K, David G. The Sin3B chromatin modifier restricts cell cycle progression to dictate hematopoietic stem cell differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.23.525185. [PMID: 36747851 PMCID: PMC9900761 DOI: 10.1101/2023.01.23.525185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
To maintain blood homeostasis, millions of terminally differentiated effector cells are produced every day. At the apex of this massive and constant blood production lie hematopoietic stem cells (HSCs), a rare cell type harboring unique self-renewal and multipotent properties. A key feature of HSCs is their ability to temporarily exit the cell cycle in a state termed quiescence. Defective control of cell cycle progression can eventually lead to bone marrow failure or malignant transformation. Recent work in embryonic stem cells has suggested that cells can more robustly respond to differentiation cues in the early phases of the cell cycle, owing to a discrete chromatin state permissive to cell fate commitment. However, the molecular mechanisms tying cell cycle re-entry to cell fate commitment in adult stem cells such as HSCs remain elusive. Here, we report that the chromatin-associated Sin3B protein is necessary for HSCs' commitment to differentiation, but dispensable for their self-renewal or survival. Transcriptional profiling of hematopoietic stem and progenitor cells (HSPCs) genetically inactivated for Sin3B at the single cell level reveals aberrant cell cycle gene expression, correlating with the defective engagement of discrete signaling programs. In particular, the loss of Sin3B in the hematopoietic compartment results in aberrant expression of cell adhesion molecules and essential components of the interferon signaling cascade in LT-HSCs. Finally, chromatin accessibility profiling in LT-HSCs suggests a link between Sin3B-dependent cell cycle progression and priming of hematopoietic stem cells for differentiation. Together, these results point to controlled progression through the G1 phase of the cell cycle as a likely regulator of HSC lineage commitment through the modulation of chromatin features.
Collapse
|
25
|
Soujanya M, Bihani A, Hajirnis N, Pathak RU, Mishra RK. Nuclear architecture and the structural basis of mitotic memory. CHROMOSOME RESEARCH : AN INTERNATIONAL JOURNAL ON THE MOLECULAR, SUPRAMOLECULAR AND EVOLUTIONARY ASPECTS OF CHROMOSOME BIOLOGY 2023; 31:8. [PMID: 36725757 DOI: 10.1007/s10577-023-09714-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/13/2022] [Accepted: 12/19/2022] [Indexed: 02/03/2023]
Abstract
The nucleus is a complex organelle that hosts the genome and is essential for vital processes like DNA replication, DNA repair, transcription, and splicing. The genome is non-randomly organized in the three-dimensional space of the nucleus. This functional sub-compartmentalization was thought to be organized on the framework of nuclear matrix (NuMat), a non-chromatin scaffold that functions as a substratum for various molecular processes of the nucleus. More recently, nuclear bodies or membrane-less subcompartments of the nucleus are thought to arise due to phase separation of chromatin, RNA, and proteins. The nuclear architecture is an amalgamation of the relative organization of chromatin, epigenetic landscape, the nuclear bodies, and the nucleoskeleton in the three-dimensional space of the nucleus. During mitosis, the nucleus undergoes drastic changes in morphology to the degree that it ceases to exist as such; various nuclear components, including the envelope that defines the nucleus, disintegrate, and the chromatin acquires mitosis-specific epigenetic marks and condenses to form chromosome. Upon mitotic exit, chromosomes are decondensed, re-establish hierarchical genome organization, and regain epigenetic and transcriptional status similar to that of the mother cell. How this mitotic memory is inherited during cell division remains a puzzle. NuMat components that are a part of the mitotic chromosome in the form of mitotic chromosome scaffold (MiCS) could potentially be the seeds that guide the relative re-establishment of the epigenome, chromosome territories, and the nuclear bodies. Here, we synthesize the advances towards understanding cellular memory of nuclear architecture across mitosis and propose a hypothesis that a subset of NuMat proteome essential for nucleation of various nuclear bodies are retained in MiCS to serve as seeds of mitotic memory, thus ensuring the daughter cells re-establish the complex status of nuclear architecture similar to that of the mother cells, thereby maintaining the pre-mitotic transcriptional status.
Collapse
Affiliation(s)
- Mamilla Soujanya
- CSIR - Centre for Cellular & Molecular Biology, Hyderabad, India
- AcSIR - Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Ashish Bihani
- CSIR - Centre for Cellular & Molecular Biology, Hyderabad, India
| | - Nikhil Hajirnis
- CSIR - Centre for Cellular & Molecular Biology, Hyderabad, India
- Department of Anatomy and Neurobiology, University of Maryland, Baltimore, USA
| | - Rashmi U Pathak
- CSIR - Centre for Cellular & Molecular Biology, Hyderabad, India
| | - Rakesh K Mishra
- CSIR - Centre for Cellular & Molecular Biology, Hyderabad, India.
- AcSIR - Academy of Scientific and Innovative Research, Ghaziabad, India.
- TIGS - Tata Institute for Genetics and Society, Bangalore, India.
| |
Collapse
|
26
|
Espinosa-Medina I, Feliciano D, Belmonte-Mateos C, Linda Miyares R, Garcia-Marques J, Foster B, Lindo S, Pujades C, Koyama M, Lee T. TEMPO enables sequential genetic labeling and manipulation of vertebrate cell lineages. Neuron 2023; 111:345-361.e10. [PMID: 36417906 DOI: 10.1016/j.neuron.2022.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/15/2022] [Accepted: 10/26/2022] [Indexed: 11/24/2022]
Abstract
During development, regulatory factors appear in a precise order to determine cell fates over time. Consequently, to investigate complex tissue development, it is necessary to visualize and manipulate cell lineages with temporal control. Current strategies for tracing vertebrate cell lineages lack genetic access to sequentially produced cells. Here, we present TEMPO (Temporal Encoding and Manipulation in a Predefined Order), an imaging-readable genetic tool allowing differential labeling and manipulation of consecutive cell generations in vertebrates. TEMPO is based on CRISPR and powered by a cascade of gRNAs that drive orderly activation and inactivation of reporters and/or effectors. Using TEMPO to visualize zebrafish and mouse neurogenesis, we recapitulated birth-order-dependent neuronal fates. Temporally manipulating cell-cycle regulators in mouse cortex progenitors altered the proportion and distribution of neurons and glia, revealing the effects of temporal gene perturbation on serial cell fates. Thus, TEMPO enables sequential manipulation of molecular factors, crucial to study cell-type specification.
Collapse
Affiliation(s)
| | - Daniel Feliciano
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Carla Belmonte-Mateos
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, PRBB, Barcelona 08003, Spain
| | - Rosa Linda Miyares
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Jorge Garcia-Marques
- Centro Nacional de Biotecnologia, Consejo Superior de Investigaciones Cientificas, Madrid 28049, Spain
| | - Benjamin Foster
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Sarah Lindo
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Cristina Pujades
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, PRBB, Barcelona 08003, Spain
| | - Minoru Koyama
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| | - Tzumin Lee
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| |
Collapse
|
27
|
INO80 Is Required for the Cell Cycle Control, Survival, and Differentiation of Mouse ESCs by Transcriptional Regulation. Int J Mol Sci 2022; 23:ijms232315402. [PMID: 36499727 PMCID: PMC9740483 DOI: 10.3390/ijms232315402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Precise regulation of the cell cycle of embryonic stem cells (ESCs) is critical for their self-maintenance and differentiation. The cell cycle of ESCs differs from that of somatic cells and is different depending on the cell culture conditions. However, the cell cycle regulation in ESCs via epigenetic mechanisms remains unclear. Here, we showed that the ATP-dependent chromatin remodeler Ino80 regulates the cell cycle genes in ESCs under primed conditions. Ino80 loss led to a significantly extended length of the G1-phase in ESCs grown under primed culture conditions. Ino80 directly bound to the transcription start site and regulated the expression of cell cycle-related genes. Furthermore, Ino80 loss induced cell apoptosis. However, the regulatory mechanism of Ino80 in differentiating ESC cycle slightly differed; an extended S-phase was detected in differentiating inducible Ino80 knockout ESCs. RNA-seq analysis of differentiating ESCs revealed that the expression of genes associated with organ development cell cycle is persistently altered in Ino80 knockout cells, suggesting that cell cycle regulation by Ino80 is not limited to undifferentiated ESCs. Therefore, our study establishes the function of Ino80 in ESC cycle via transcriptional regulation, at least partly. Moreover, this Ino80 function may be universal to other cell types.
Collapse
|
28
|
Li D, Yang J, Malik V, Huang Y, Huang X, Zhou H, Wang J. An RNAi screen of RNA helicases identifies eIF4A3 as a regulator of embryonic stem cell identity. Nucleic Acids Res 2022; 50:12462-12479. [PMID: 36416264 PMCID: PMC9757061 DOI: 10.1093/nar/gkac1084] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/24/2022] Open
Abstract
RNA helicases are involved in multiple steps of RNA metabolism to direct their roles in gene expression, yet their functions in pluripotency control remain largely unexplored. Starting from an RNA interference (RNAi) screen of RNA helicases, we identified that eIF4A3, a DEAD-box (Ddx) helicase component of the exon junction complex (EJC), is essential for the maintenance of embryonic stem cells (ESCs). Mechanistically, we show that eIF4A3 post-transcriptionally controls the pluripotency-related cell cycle regulators and that its depletion causes the loss of pluripotency via cell cycle dysregulation. Specifically, eIF4A3 is required for the efficient nuclear export of Ccnb1 mRNA, which encodes Cyclin B1, a key component of the pluripotency-promoting pathway during the cell cycle progression of ESCs. Our results reveal a previously unappreciated role for eIF4A3 and its associated EJC in maintaining stem cell pluripotency through post-transcriptional control of the cell cycle.
Collapse
Affiliation(s)
- Dan Li
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Cell, Developmental and Regenerative Biology; The Black Family Stem Cell Institute; Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jihong Yang
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Vikas Malik
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yuting Huang
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Xin Huang
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hongwei Zhou
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jianlong Wang
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
29
|
Samara A, Spildrejorde M, Sharma A, Falck M, Leithaug M, Modafferi S, Bjørnstad PM, Acharya G, Gervin K, Lyle R, Eskeland R. A multi-omics approach to visualize early neuronal differentiation from hESCs in 4D. iScience 2022; 25:105279. [PMID: 36304110 PMCID: PMC9593815 DOI: 10.1016/j.isci.2022.105279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/22/2022] [Accepted: 09/28/2022] [Indexed: 11/19/2022] Open
Abstract
Neuronal differentiation of pluripotent stem cells is an established method to study physiology, disease, and medication safety. However, the sequence of events in human neuronal differentiation and the ability of in vitro models to recapitulate early brain development are poorly understood. We developed a protocol optimized for the study of early human brain development and neuropharmacological applications. We comprehensively characterized gene expression and epigenetic profiles at four timepoints, because the cells differentiate from embryonic stem cells towards a heterogeneous population of progenitors, immature and mature neurons bearing telencephalic signatures. A multi-omics roadmap of neuronal differentiation, combined with searchable interactive gene analysis tools, allows for extensive exploration of early neuronal development and the effect of medications.
Collapse
Affiliation(s)
- Athina Samara
- Division of Clinical Paediatrics, Department of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
- Astrid Lindgren Children′s Hospital Karolinska University Hospital, Stockholm, Sweden
| | - Mari Spildrejorde
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ankush Sharma
- Department of Informatics, University of Oslo, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Martin Falck
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Magnus Leithaug
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Stefania Modafferi
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Pål Marius Bjørnstad
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Ganesh Acharya
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Alfred Nobels Allé 8, SE-14152 Stockholm, Sweden
- Center for Fetal Medicine, Karolinska University Hospital Huddinge, SE-14186 Stockholm, Sweden
| | - Kristina Gervin
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Pharmacoepidemiology and Drug Safety Research Group, Department of Pharmacy, School of Pharmacy, University of Oslo, Oslo, Norway
- Division of Clinical Neuroscience, Department of Research and Innovation, Oslo University Hospital, Oslo, Norway
| | - Robert Lyle
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ragnhild Eskeland
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
30
|
Chavkin NW, Genet G, Poulet M, Jeffery ED, Marziano C, Genet N, Vasavada H, Nelson EA, Acharya BR, Kour A, Aragon J, McDonnell SP, Huba M, Sheynkman GM, Walsh K, Hirschi KK. Endothelial cell cycle state determines propensity for arterial-venous fate. Nat Commun 2022; 13:5891. [PMID: 36202789 PMCID: PMC9537338 DOI: 10.1038/s41467-022-33324-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 09/09/2022] [Indexed: 12/15/2022] Open
Abstract
During blood vessel development, endothelial cells become specified toward arterial or venous fates to generate a circulatory network that provides nutrients and oxygen to, and removes metabolic waste from, all tissues. Arterial-venous specification occurs in conjunction with suppression of endothelial cell cycle progression; however, the mechanistic role of cell cycle state is unknown. Herein, using Cdh5-CreERT2;R26FUCCI2aR reporter mice, we find that venous endothelial cells are enriched for the FUCCI-Negative state (early G1) and BMP signaling, while arterial endothelial cells are enriched for the FUCCI-Red state (late G1) and TGF-β signaling. Furthermore, early G1 state is essential for BMP4-induced venous gene expression, whereas late G1 state is essential for TGF-β1-induced arterial gene expression. Pharmacologically induced cell cycle arrest prevents arterial-venous specification defects in mice with endothelial hyperproliferation. Collectively, our results show that distinct endothelial cell cycle states provide distinct windows of opportunity for the molecular induction of arterial vs. venous fate.
Collapse
Affiliation(s)
- Nicholas W Chavkin
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Gael Genet
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Mathilde Poulet
- Department of Medicine, Yale Cardiovascular Research Center Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Erin D Jeffery
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Corina Marziano
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Nafiisha Genet
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Hema Vasavada
- Department of Medicine, Yale Cardiovascular Research Center Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Elizabeth A Nelson
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Bipul R Acharya
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Anupreet Kour
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Jordon Aragon
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Stephanie P McDonnell
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Mahalia Huba
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Gloria M Sheynkman
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
- UVA Comprehensive Cancer Center, University of Virginia, Charlottesville, VA, 22908, USA
| | - Kenneth Walsh
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
- Hematovascular Biology Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Karen K Hirschi
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
- Department of Medicine, Yale Cardiovascular Research Center Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
31
|
The beta subunit of AMP-activated protein kinase is critical for cell cycle progression and parasite development in Toxoplasma gondii. Cell Mol Life Sci 2022; 79:532. [DOI: 10.1007/s00018-022-04556-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/30/2022] [Accepted: 09/10/2022] [Indexed: 11/03/2022]
|
32
|
Cui C, Tang X, Xing J, Sheng X, Chi H, Zhan W. Single-cell RNA-seq uncovered hemocyte functional subtypes and their differentiational characteristics and connectivity with morphological subpopulations in Litopenaeus vannamei. Front Immunol 2022; 13:980021. [PMID: 36177045 PMCID: PMC9513592 DOI: 10.3389/fimmu.2022.980021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/22/2022] [Indexed: 12/01/2022] Open
Abstract
Hemocytes play central roles in shrimp immune system, whereas whose subclasses have not yet been completely defined. At present, the morphological classification of hemocytes is inadequate to classify the complete hemocyte repertoire and elucidate the functions and differentiation and maturation processes. Based on single-cell RNA sequencing (scRNA-seq) of hemocytes in healthy Litopenaeus vannamei, combined with RNA-FISH and flow cytometric sorting, we identified three hemocyte clusters including TGase+ cells, CTL+ cells and Crustin+ cells, and further determined their functional properties, potential differentiation trajectory and correspondence with morphological subpopulations. The TGase+ cells were mainly responsible for the coagulation, exhibiting distinguishable characteristics of hyalinocyte, and appeared to be developmentally arrested at an early stage of hemocyte differentiation. The CTL+ cells and Crustin+ cells arrested at terminal stages of differentiation mainly participated in recognizing foreign pathogens and initiating immune defense responses, owning distinctive features of granule-containing hemocytes. Furthermore, we have revealed the functional sub-clusters of three hemocyte clusters and their potential differentiation pathways according to the expression of genes involved in cell cycle, cell differentiation and immune response, and the successive differentiation and maturation of hyalinocytes to granule-containing hemocytes have also mapped. The results revealed the diversity of shrimp hemocytes and provide new theoretical rationale for hemocyte classification, which also facilitate systematic research on crustacean immunity.
Collapse
Affiliation(s)
- Chuang Cui
- Laboratory of Pathology and Immunology of Aquatic Animals, The Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, The Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, The Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, The Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, The Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, The Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
33
|
Vujovic F, Hunter N, Farahani RM. Cellular self-organization: An overdrive in Cambrian diversity? Bioessays 2022; 44:e2200033. [PMID: 35900058 DOI: 10.1002/bies.202200033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 11/10/2022]
Abstract
During the early Cambrian period metazoan life forms diverged at an accelerated rate to occupy multiple ecological niches on earth. A variety of explanations have been proposed to address this major evolutionary phenomenon termed the "Cambrian explosion." While most hypotheses address environmental, developmental, and ecological factors that facilitated evolutionary innovations, the biological basis for accelerated emergence of species diversity in the Cambrian period remains largely conjectural. Herein, we posit that morphogenesis by self-organization enables the uncoupling of genomic mutational landscape from phenotypic diversification. Evidence is provided for a two-tiered interpretation of genomic changes in metazoan animals wherein mutations not only impact upon function of individual cells, but also alter the self-organization outcome during developmental morphogenesis. We provide evidence that the morphological impacts of mutations on self-organization could remain repressed if associated with an unmet negative energetic cost. We posit that accelerated morphological diversification in transition to the Cambrian period has occurred by emergence of dormant (i.e., reserved) morphological novelties whose molecular underpinnings were seeded in the Precambrian period.
Collapse
Affiliation(s)
- Filip Vujovic
- IDR/Westmead Institute for Medical Research, Sydney, New South Wales, Australia.,School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Neil Hunter
- IDR/Westmead Institute for Medical Research, Sydney, New South Wales, Australia
| | - Ramin M Farahani
- IDR/Westmead Institute for Medical Research, Sydney, New South Wales, Australia.,School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
34
|
Theilgaard-Mönch K, Pundhir S, Reckzeh K, Su J, Tapia M, Furtwängler B, Jendholm J, Jakobsen JS, Hasemann MS, Knudsen KJ, Cowland JB, Fossum A, Schoof E, Schuster MB, Porse BT. Transcription factor-driven coordination of cell cycle exit and lineage-specification in vivo during granulocytic differentiation : In memoriam Professor Niels Borregaard. Nat Commun 2022; 13:3595. [PMID: 35739121 PMCID: PMC9225994 DOI: 10.1038/s41467-022-31332-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 06/14/2022] [Indexed: 12/14/2022] Open
Abstract
Differentiation of multipotent stem cells into mature cells is fundamental for development and homeostasis of mammalian tissues, and requires the coordinated induction of lineage-specific transcriptional programs and cell cycle withdrawal. To understand the underlying regulatory mechanisms of this fundamental process, we investigated how the tissue-specific transcription factors, CEBPA and CEBPE, coordinate cell cycle exit and lineage-specification in vivo during granulocytic differentiation. We demonstrate that CEBPA promotes lineage-specification by launching an enhancer-primed differentiation program and direct activation of CEBPE expression. Subsequently, CEBPE confers promoter-driven cell cycle exit by sequential repression of MYC target gene expression at the G1/S transition and E2F-meditated G2/M gene expression, as well as by the up-regulation of Cdk1/2/4 inhibitors. Following cell cycle exit, CEBPE unleashes the CEBPA-primed differentiation program to generate mature granulocytes. These findings highlight how tissue-specific transcription factors coordinate cell cycle exit with differentiation through the use of distinct gene regulatory elements.
Collapse
Affiliation(s)
- Kim Theilgaard-Mönch
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark.
| | - Sachin Pundhir
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- The Bioinformatics Centre, Department of Biology, Faculty of Natural Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Reckzeh
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jinyu Su
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marta Tapia
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Benjamin Furtwängler
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Johan Jendholm
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Janus Schou Jakobsen
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie Sigurd Hasemann
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Jermiin Knudsen
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jack Bernard Cowland
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark
| | - Anna Fossum
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Erwin Schoof
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Mikkel Bruhn Schuster
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bo T Porse
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
35
|
Im GB, Kim YG, Jo IS, Yoo TY, Kim SW, Park HS, Hyeon T, Yi GR, Bhang SH. Effect of polystyrene nanoplastics and their degraded forms on stem cell fate. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128411. [PMID: 35149489 DOI: 10.1016/j.jhazmat.2022.128411] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Several studies have examined the effects of micro- and nanoplastics on microbes, cells, and the environment. However, only a few studies have examined their effects-especially, those of their reduced cohesiveness-on cell viability and physiology. We synthesized surfactant-free amine-functionalized polystyrene (PS) nanoparticles (NPs) and PS-NPs with decreased crosslinking density (DPS-NPs) without changing other factors, such as size, shape, and zeta potential and examined their effects on cell viability and physiology. PS- and DPS-NPs exhibited reactive oxygen species (ROS) scavenging activity by upregulating GPX3 expression and downregulating HSP70 (ROS-related gene) and XBP1 (endoplasmic reticulum stress-related gene) expression in human bone marrow-derived mesenchymal stem cells (hBM-MSCs). Additionally, they led to upregulation of MFN2 (mitochondrial fusion related gene) expression and downregulation of FIS1 (mitochondrial fission related gene) expression, indicating enhanced mitochondrial fusion in hBM-MSCs. Cell-cycle analysis revealed that PS- and DPS-NPs increased the proportion of cells in the S phase, indicating that they promoted cell proliferation and, specifically, the adipogenic differentiation of hBM-MSCs. However, the cytotoxicity of DPS-NPs against hBM-MSCs was higher than that of PS-NPs after long-term treatment under adipogenic conditions.
Collapse
Affiliation(s)
- Gwang-Bum Im
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Young Geon Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - In-Seong Jo
- University of Bordeaux, CNRS, Centre de Recherche Paul Pascal, Pessac, France
| | - Tae Yong Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Won Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyun Su Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Gi-Ra Yi
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea.
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
36
|
Avalos PN, Forsthoefel DJ. An Emerging Frontier in Intercellular Communication: Extracellular Vesicles in Regeneration. Front Cell Dev Biol 2022; 10:849905. [PMID: 35646926 PMCID: PMC9130466 DOI: 10.3389/fcell.2022.849905] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Regeneration requires cellular proliferation, differentiation, and other processes that are regulated by secreted cues originating from cells in the local environment. Recent studies suggest that signaling by extracellular vesicles (EVs), another mode of paracrine communication, may also play a significant role in coordinating cellular behaviors during regeneration. EVs are nanoparticles composed of a lipid bilayer enclosing proteins, nucleic acids, lipids, and other metabolites, and are secreted by most cell types. Upon EV uptake by target cells, EV cargo can influence diverse cellular behaviors during regeneration, including cell survival, immune responses, extracellular matrix remodeling, proliferation, migration, and differentiation. In this review, we briefly introduce the history of EV research and EV biogenesis. Then, we review current understanding of how EVs regulate cellular behaviors during regeneration derived from numerous studies of stem cell-derived EVs in mammalian injury models. Finally, we discuss the potential of other established and emerging research organisms to expand our mechanistic knowledge of basic EV biology, how injury modulates EV biogenesis, cellular sources of EVs in vivo, and the roles of EVs in organisms with greater regenerative capacity.
Collapse
Affiliation(s)
- Priscilla N. Avalos
- Department of Cell Biology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - David J. Forsthoefel
- Department of Cell Biology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| |
Collapse
|
37
|
Herchcovici Levy S, Feldman Cohen S, Arnon L, Lahav S, Awawdy M, Alajem A, Bavli D, Sun X, Buganim Y, Ram O. Esrrb is a cell-cycle-dependent associated factor balancing pluripotency and XEN differentiation. Stem Cell Reports 2022; 17:1334-1350. [PMID: 35594859 PMCID: PMC9214067 DOI: 10.1016/j.stemcr.2022.04.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 01/02/2023] Open
Abstract
Cell cycle and differentiation decisions are linked; however, the underlying principles that drive these decisions are unclear. Here, we combined cell-cycle reporter system and single-cell RNA sequencing (scRNA-seq) profiling to study the transcriptomes of embryonic stem cells (ESCs) in the context of cell-cycle states and differentiation. By applying retinoic acid, to G1 and G2/M ESCs, we show that, while both populations can differentiate toward epiblast stem cells (EpiSCs), only G2/M ESCs could differentiate into extraembryonic endoderm cells. We identified Esrrb, a pluripotency factor that is upregulated during G2/M, as a driver of extraembryonic endoderm stem cell (XEN) differentiation. Furthermore, enhancer chromatin states based on wild-type (WT) and ESRRB knockout (KO) ESCs show association of ESRRB with XEN poised enhancers. G1 cells overexpressing Esrrb allow ESCs to produce XENs, while ESRRB-KO ESCs lost their potential to differentiate into XEN. Overall, this study reveals a vital link between Esrrb and cell-cycle states during the exit from pluripotency.
Collapse
Affiliation(s)
- Sapir Herchcovici Levy
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Sharon Feldman Cohen
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Lee Arnon
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Shlomtzion Lahav
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Muhammad Awawdy
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Adi Alajem
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Danny Bavli
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Xue Sun
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Yosef Buganim
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University, Hadassah Medical School, Jerusalem 91120, Israel
| | - Oren Ram
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel.
| |
Collapse
|
38
|
Sainz de la Maza D, Hof-Michel S, Phillimore L, Bökel C, Amoyel M. Cell-cycle exit and stem cell differentiation are coupled through regulation of mitochondrial activity in the Drosophila testis. Cell Rep 2022; 39:110774. [PMID: 35545055 PMCID: PMC9350557 DOI: 10.1016/j.celrep.2022.110774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 02/21/2022] [Accepted: 04/12/2022] [Indexed: 11/27/2022] Open
Abstract
Whereas stem and progenitor cells proliferate to maintain tissue homeostasis, fully differentiated cells exit the cell cycle. How cell identity and cell-cycle state are coordinated during differentiation is still poorly understood. The Drosophila testis niche supports germline stem cells and somatic cyst stem cells (CySCs). CySCs give rise to post-mitotic cyst cells, providing a tractable model to study the links between stem cell identity and proliferation. We show that, while cell-cycle progression is required for CySC self-renewal, the E2f1/Dp transcription factor is dispensable for self-renewal but instead must be silenced by the Drosophila retinoblastoma homolog, Rbf, to permit differentiation. Continued E2f1/Dp activity inhibits the expression of genes important for mitochondrial activity. Furthermore, promoting mitochondrial biogenesis rescues the differentiation of CySCs with ectopic E2f1/Dp activity but not their cell-cycle exit. In sum, E2f1/Dp coordinates cell-cycle progression with stem cell identity by regulating the metabolic state of CySCs. CycE is critical for CySC self-renewal E2f/Dp does not act in self-renewal but must be silenced for differentiation E2f/Dp inhibits increases in oxidative metabolism involved in normal differentiation Increased mitochondrial biogenesis rescues differentiation of E2f/Dp-active cells
Collapse
Affiliation(s)
- Diego Sainz de la Maza
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Silvana Hof-Michel
- Department of Developmental Genetics, Philipps University Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
| | - Lee Phillimore
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Christian Bökel
- Department of Developmental Genetics, Philipps University Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany.
| | - Marc Amoyel
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
39
|
Ranjan R, Snedeker J, Wooten M, Chu C, Bracero S, Mouton T, Chen X. Differential condensation of sister chromatids acts with Cdc6 to ensure asynchronous S-phase entry in Drosophila male germline stem cell lineage. Dev Cell 2022; 57:1102-1118.e7. [PMID: 35483360 PMCID: PMC9134767 DOI: 10.1016/j.devcel.2022.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 01/16/2022] [Accepted: 04/05/2022] [Indexed: 01/06/2023]
Abstract
During Drosophila melanogaster male germline stem cell (GSC) asymmetric division, preexisting old versus newly synthesized histones H3 and H4 are asymmetrically inherited. However, the biological outcomes of this phenomenon have remained unclear. Here, we tracked old and new histones throughout the GSC cell cycle through the use of high spatial and temporal resolution microscopy. We found unique features that differ between old and new histone-enriched sister chromatids, including differences in nucleosome density, chromosomal condensation, and H3 Ser10 phosphorylation. These distinct chromosomal features lead to their differential association with Cdc6, a pre-replication complex component, and subsequent asynchronous DNA replication initiation in the resulting daughter cells. Disruption of asymmetric histone inheritance abolishes differential Cdc6 association and asynchronous S-phase entry, demonstrating that histone asymmetry acts upstream of these critical cell-cycle progression events. Furthermore, disruption of these GSC-specific chromatin features leads to GSC defects, indicating a connection between histone inheritance, cell-cycle progression, and cell fate determination.
Collapse
Affiliation(s)
- Rajesh Ranjan
- Howard Hughes Medical Institute, Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Jonathan Snedeker
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Matthew Wooten
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Carolina Chu
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sabrina Bracero
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Taylar Mouton
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xin Chen
- Howard Hughes Medical Institute, Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
40
|
Graf M, Interlandi M, Moreno N, Holdhof D, Göbel C, Melcher V, Mertins J, Albert TK, Kastrati D, Alfert A, Holsten T, de Faria F, Meisterernst M, Rossig C, Warmuth-Metz M, Nowak J, Meyer Zu Hörste G, Mayère C, Nef S, Johann P, Frühwald MC, Dugas M, Schüller U, Kerl K. Single-cell transcriptomics identifies potential cells of origin of MYC rhabdoid tumors. Nat Commun 2022; 13:1544. [PMID: 35318328 PMCID: PMC8941154 DOI: 10.1038/s41467-022-29152-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/26/2022] [Indexed: 11/30/2022] Open
Abstract
Rhabdoid tumors (RT) are rare and highly aggressive pediatric neoplasms. Their epigenetically-driven intertumoral heterogeneity is well described; however, the cellular origin of RT remains an enigma. Here, we establish and characterize different genetically engineered mouse models driven under the control of distinct promoters and being active in early progenitor cell types with diverse embryonic onsets. From all models only Sox2-positive progenitor cells give rise to murine RT. Using single-cell analyses, we identify distinct cells of origin for the SHH and MYC subgroups of RT, rooting in early stages of embryogenesis. Intra- and extracranial MYC tumors harbor common genetic programs and potentially originate from fetal primordial germ cells (PGCs). Using PGC specific Smarcb1 knockout mouse models we validate that MYC RT originate from these progenitor cells. We uncover an epigenetic imbalance in MYC tumors compared to PGCs being sustained by epigenetically-driven subpopulations. Importantly, treatments with the DNA demethylating agent decitabine successfully impair tumor growth in vitro and in vivo. In summary, our work sheds light on the origin of RT and supports the clinical relevance of DNA methyltransferase inhibitors against this disease. Rhabdoid tumors (RT) are aggressive paediatric cancers with yet unknown cells of origin. Here, the authors establish genetically engineered mouse models of RT and, using single-cell RNA-seq and epigenomics, identify potential cells of origin for the SHH and MYC subtypes.
Collapse
Affiliation(s)
- Monika Graf
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany
| | - Marta Interlandi
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany.,Institute of Medical Informatics, University of Münster, 48149, Münster, Germany
| | - Natalia Moreno
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany
| | - Dörthe Holdhof
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.,Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Carolin Göbel
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.,Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Viktoria Melcher
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany
| | - Julius Mertins
- Department of Neurology, Schlosspark-Klinik, 14059, Berlin, Germany.,Institute of Molecular Tumor Biology, University of Münster, 48149, Münster, Germany
| | - Thomas K Albert
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany
| | - Dennis Kastrati
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany
| | - Amelie Alfert
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany
| | - Till Holsten
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.,Institute of Molecular Tumor Biology, University of Münster, 48149, Münster, Germany
| | - Flavia de Faria
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany.,Department of Pediatric Hematology and Oncology, Children's Hospital of Brasìlia, 70684-831, Brasìlia, Brazil
| | - Michael Meisterernst
- Institute of Molecular Tumor Biology, University of Münster, 48149, Münster, Germany
| | - Claudia Rossig
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany
| | - Monika Warmuth-Metz
- Neuroradiological Reference Center, University Hospital Würzburg, Würzburg, Germany
| | - Johannes Nowak
- Neuroradiological Reference Center, University Hospital Würzburg, Würzburg, Germany.,SRH Poliklinik Gera GmbH, Radiological Practice Gotha, Gotha, Germany
| | - Gerd Meyer Zu Hörste
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149, Münster, Germany
| | - Chloe Mayère
- Department of Genetic Medicine and Development, University of Geneva, 1211, Geneva, Switzerland.,iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211, Geneva, Switzerland
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva, 1211, Geneva, Switzerland.,iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211, Geneva, Switzerland
| | - Pascal Johann
- Swabian Children's Cancer Center, Paediatric and Adolescent Medicine, University Medical Center Augsburg, 86156, Augsburg, Germany.,Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael C Frühwald
- Swabian Children's Cancer Center, Paediatric and Adolescent Medicine, University Medical Center Augsburg, 86156, Augsburg, Germany
| | - Martin Dugas
- Institute of Medical Informatics, University of Münster, 48149, Münster, Germany.,Institute of Medical Informatics, Heidelberg University Hospital, Heidelberg, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.,Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.,Research Institute Children's Cancer Center, 20251, Hamburg, Germany
| | - Kornelius Kerl
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany.
| |
Collapse
|
41
|
Huang HB, Luo HT, Wei NN, Liu ML, He F, Yang W, Dong J, Yang XF, Li FR. Integrative analysis reveals a lineage-specific circular RNA landscape for adipo-osteogenesis of human mesenchymal stem cells. Stem Cell Res Ther 2022; 13:106. [PMID: 35279206 PMCID: PMC8917624 DOI: 10.1186/s13287-022-02792-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/28/2022] [Indexed: 12/03/2022] Open
Abstract
Background The balance between osteogenesis and adipogenesis of mesenchymal stem cells (MSCs) is critical to skeletal development and diseases. As a research hotspot, circular RNAs (circRNAs) have expanded our understanding of a hidden layer of the transcriptome. Yet, their roles during adipo-osteogenesis remain poorly described. Methods The identity of human MSCs derived from bone marrow and adipose were first determined by flow cytometry, cellular staining, and quantitative polymerase chain reaction (qPCR). Multi-strategic RNA-sequencing was performed using Poly A, RiboMinus and RiboMinus/RNase R methods. Integrative analysis was performed to identify lineage-specific expressed circRNAs. The structural and expressional characteristics were identified by Sanger sequencing and qPCR, respectively. The regulatory effects of adipogenesis-specific circ-CRLF1 were confirmed using siRNA transcfection and qPCR. Results We generated a whole transcriptome map during adipo-osteogenesis based on 10 Poly A, 20 RiboMinus and 20 RiboMinus/ RNase R datasets. A total of 31,326 circRNAs were identified and quantified from ~ 3.4 billion paired-end reads. Furthermore, the integrative analysis revealed that 1166 circRNA genes exhibited strong lineage-specific expression patterns. Their host genes were enriched in distinct biological functions, such as cell adhesion, cytokine signaling, and cell division. We randomly selected and validated the back-spliced junction sites and expression patterns of 12 lineage-specific circRNAs. Functional analysis indicated that circ-CRLF1 negatively regulated adipogenesis. Conclusions Our integrative analysis reveals an accurate and generally applicable lineage-specific circRNA landscape for adipo-osteogenesis of MSCs and provides a potential therapeutic target, circ-CRLF1, for the treatment of skeleton-related disease. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02792-5.
Collapse
Affiliation(s)
- Hai-Bo Huang
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), ShenzhenGuangdong, 518020, China.,Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, Guangdong, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, Guangdong, China.,Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Hai-Tao Luo
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), ShenzhenGuangdong, 518020, China.,Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, Guangdong, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Na-Na Wei
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), ShenzhenGuangdong, 518020, China.,Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, Guangdong, China.,Kunpeng Institute of Modern Agriculture at Foshan, Foshan, 528200, China
| | - Miao-Ling Liu
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), ShenzhenGuangdong, 518020, China.,Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, Guangdong, China
| | - Fei He
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), ShenzhenGuangdong, 518020, China.,Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, Guangdong, China
| | - Wei Yang
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), ShenzhenGuangdong, 518020, China.,Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, Guangdong, China
| | - Jun Dong
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, Guangdong, China. .,Department of Pathophysiology, Key Laboratory of the State Administration of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
| | - Xiao-Fei Yang
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), ShenzhenGuangdong, 518020, China. .,Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, Guangdong, China.
| | - Fu-Rong Li
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), ShenzhenGuangdong, 518020, China. .,Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, Guangdong, China. .,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
42
|
Guo P, Liu X, Zhang P, He Z, Li Z, Alini M, Richards RG, Grad S, Stoddart MJ, Zhou G, Zou X, Chan D, Tian W, Chen D, Gao M, Zhou Z, Liu S. A single-cell transcriptome of mesenchymal stromal cells to fabricate bioactive hydroxyapatite materials for bone regeneration. Bioact Mater 2021; 9:281-298. [PMID: 34820571 PMCID: PMC8586438 DOI: 10.1016/j.bioactmat.2021.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/01/2021] [Accepted: 08/05/2021] [Indexed: 01/07/2023] Open
Abstract
The osteogenic microenvironment of bone-repairing materials plays a key role in accelerating bone regeneration but remains incompletely defined, which significantly limits the application of such bioactive materials. Here, the transcriptional landscapes of different osteogenic microenvironments, including three-dimensional (3D) hydroxyapatite (HA) scaffolds and osteogenic medium (OM), for mesenchymal stromal cells (MSCs) in vitro were mapped at single-cell resolution. Our findings suggested that an osteogenic process reminiscent of endochondral ossification occurred in HA scaffolds through sequential activation of osteogenic-related signaling pathways, along with inflammation and angiogenesis, but inhibition of adipogenesis and fibrosis. Moreover, we revealed the mechanism during OM-mediated osteogenesis involves the ZBTB16 and WNT signaling pathways. Heterogeneity of MSCs was also demonstrated. In vitro ossification of LRRC75A+ MSCs was shown to have better utilization of WNT-related ossification process, and PCDH10+ MSCs with superiority in hydroxyapatite-related osteogenic process. These findings provided further understanding of the cellular activity modulated by OM conditions and HA scaffolds, providing new insights for the improvement of osteogenic biomaterials. This atlas provides a blueprint for research on MSC heterogeneity and the osteogenic microenvironment of HA scaffolds and a database reference for the application of bioactive materials for bone regeneration.
Collapse
Affiliation(s)
- Peng Guo
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xizhe Liu
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Penghui Zhang
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhongyuan He
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhen Li
- AO Research Institute Davos, Davos, Switzerland
| | - Mauro Alini
- AO Research Institute Davos, Davos, Switzerland
| | | | | | | | - Guangqian Zhou
- Shenzhen Key Laboratory of Anti-aging and Regenerative Medicine, Department of Medical Cell Biology and Genetics, Health Sciences Center, Shenzhen University, Shenzhen, China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Danny Chan
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Wei Tian
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Orthopaedics and Traumatology, Beijing JiShuiTan Hospital, Beijing, China
| | - Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Orthopaedics and Traumatology, Beijing JiShuiTan Hospital, Beijing, China
- Corresponding author.
| | - Manman Gao
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Sport Medicine, Inst Translat Med, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
- Corresponding author. Department of Sport Medicine, Inst Translat Med, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China.
| | - Zhiyu Zhou
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Corresponding author. Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.
| | - Shaoyu Liu
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
43
|
Despin-Guitard E, Migeotte I. Mitosis, a springboard for epithelial-mesenchymal transition? Cell Cycle 2021; 20:2452-2464. [PMID: 34720062 DOI: 10.1080/15384101.2021.1992854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mitosis is a key process in development and remains critical to ensure homeostasis in adult tissues. Besides its primary role in generating two new cells, cell division involves deep structural and molecular changes that might have additional effects on cell and tissue fate and shape. Specific quantitative and qualitative regulation of mitosis has been observed in multiple morphogenetic events in different embryo models. For instance, during mouse embryo gastrulation, the portion of epithelium that undergoes epithelial to mesenchymal transition, where a static epithelial cell become mesenchymal and motile, has a higher mitotic index and a distinct localization of mitotic rounding, compared to the rest of the tissue. Here we explore the potential mechanisms through which mitosis may favor tissue reorganization in various models. Notably, we discuss the mechanical impact of cell rounding on the cell and its environment, and the modification of tissue physical parameters through changes in cell-cell and cell-matrix adhesion.
Collapse
Affiliation(s)
- Evangéline Despin-Guitard
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Iribhm, Université Libre De Bruxelles, Brussels, Belgium
| | - Isabelle Migeotte
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Iribhm, Université Libre De Bruxelles, Brussels, Belgium
| |
Collapse
|
44
|
Conedera FM, Pousa AMQ, Mercader N, Tschopp M, Enzmann V. The TGFβ/Notch axis facilitates Müller cell-to-epithelial transition to ultimately form a chronic glial scar. Mol Neurodegener 2021; 16:69. [PMID: 34593012 PMCID: PMC8482586 DOI: 10.1186/s13024-021-00482-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 08/13/2021] [Indexed: 01/04/2023] Open
Abstract
Background Contrasting with zebrafish, retinal regeneration from Müller cells (MCs) is largely limited in mammals, where they undergo reactive gliosis that consist of a hypertrophic response and ultimately results in vision loss. Transforming growth factor β (TGFβ) is essential for wound healing, including both scar formation and regeneration. However, targeting TGFβ may affect other physiological mechanisms, owing its pleiotropic nature. The regulation of various cellular activities by TGFβ relies on its interaction with other pathways including Notch. Here, we explore the interplay of TGFβ with Notch and how this regulates MC response to injury in zebrafish and mice. Furthermore, we aimed to characterize potential similarities between murine and human MCs during chronic reactive gliosis. Methods Focal damage to photoreceptors was induced with a 532 nm diode laser in TgBAC (gfap:gfap-GFP) zebrafish (ZF) and B6-Tg (Rlbp1-GFP) mice. Transcriptomics, immunofluorescence, and flow cytometry were employed for a comparative analysis of MC response to laser-induced injury between ZF and mouse. The laser-induced injury was paired with pharmacological treatments to inhibit either Notch (DAPT) or TGFβ (Pirfenidone) or TGFβ/Notch interplay (SIS3). To determine if the murine laser-induced injury model translates to the human system, we compared the ensuing MC response to human donors with early retinal degeneration. Results Investigations into injury-induced changes in murine MCs revealed TGFβ/Notch interplay during reactive gliosis. We found that TGFβ1/2 and Notch1/2 interact via Smad3 to reprogram murine MCs towards an epithelial lineage and ultimately to form a glial scar. Similar to what we observed in mice, we confirmed the epithelial phenotype of human Müller cells during gliotic response. Conclusion The study indicates a pivotal role for TGFβ/Notch interplay in tuning MC stemness during injury response and provides novel insights into the remodeling mechanism during retinal degenerative diseases. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13024-021-00482-z.
Collapse
Affiliation(s)
- Federica Maria Conedera
- Department of Ophthalmology, University Hospital of Bern, University of Bern, Bern, Switzerland.,Department of BioMedical Research, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.,Advanced Microscopy Program, Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA.,Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | - Ana Maria Quintela Pousa
- Department of Ophthalmology, University Hospital of Bern, University of Bern, Bern, Switzerland.,Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Nadia Mercader
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Markus Tschopp
- Department of Ophthalmology, University Hospital of Bern, University of Bern, Bern, Switzerland.,Department of Ophthalmology, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Volker Enzmann
- Department of Ophthalmology, University Hospital of Bern, University of Bern, Bern, Switzerland. .,Department of BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
45
|
Dudek KD, Osipovich AB, Cartailler JP, Gu G, Magnuson MA. Insm1, Neurod1, and Pax6 promote murine pancreatic endocrine cell development through overlapping yet distinct RNA transcription and splicing programs. G3-GENES GENOMES GENETICS 2021; 11:6358139. [PMID: 34534285 PMCID: PMC8527475 DOI: 10.1093/g3journal/jkab303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/19/2021] [Indexed: 11/13/2022]
Abstract
Insm1, Neurod1, and Pax6 are essential for the formation and function of pancreatic endocrine cells. Here, we report comparative immunohistochemical, transcriptomic, functional enrichment, and RNA splicing analyses of these genes using gene knock-out mice. Quantitative immunohistochemical analysis confirmed that elimination of each of these three factors variably impairs the proliferation, survival, and differentiation of endocrine cells. Transcriptomic analysis revealed that each factor contributes uniquely to the transcriptome although their effects were overlapping. Functional enrichment analysis revealed that genes downregulated by the elimination of Insm1, Neurod1, and Pax6 are commonly involved in mRNA metabolism, chromatin organization, secretion, and cell cycle regulation, and upregulated genes are associated with protein degradation, autophagy, and apoptotic process. Elimination of Insm1, Neurod1, and Pax6 impaired expression of many RNA-binding proteins thereby altering RNA splicing events, including for Syt14 and Snap25, two genes required for insulin secretion. All three factors are necessary for normal splicing of Syt14, and both Insm1 and Pax6 are necessary for the processing of Snap25. Collectively, these data provide new insights into how Insm1, Neurod1, and Pax6 contribute to the formation of functional pancreatic endocrine cells.
Collapse
Affiliation(s)
- Karrie D Dudek
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA.,Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Anna B Osipovich
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | | | - Guoquing Gu
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA.,Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Mark A Magnuson
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA.,Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
46
|
Munisha M, Schimenti JC. Genome maintenance during embryogenesis. DNA Repair (Amst) 2021; 106:103195. [PMID: 34358805 DOI: 10.1016/j.dnarep.2021.103195] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/25/2022]
Abstract
Genome maintenance during embryogenesis is critical, because defects during this period can be perpetuated and thus have a long-term impact on individual's health and longevity. Nevertheless, genome instability is normal during certain aspects of embryonic development, indicating that there is a balance between the exigencies of timely cell proliferation and mutation prevention. In particular, early embryos possess unique cellular and molecular features that underscore the challenge of having an appropriate balance. Here, we discuss genome instability during embryonic development, the mechanisms used in various cell compartments to manage genomic stress and address outstanding questions regarding the balance between genome maintenance mechanisms in key cell types that are important for adulthood and progeny.
Collapse
Affiliation(s)
- Mumingjiang Munisha
- Dept. of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, United States
| | - John C Schimenti
- Dept. of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, United States.
| |
Collapse
|
47
|
Sharma T, Robinson DCL, Witwicka H, Dilworth FJ, Imbalzano AN. The Bromodomains of the mammalian SWI/SNF (mSWI/SNF) ATPases Brahma (BRM) and Brahma Related Gene 1 (BRG1) promote chromatin interaction and are critical for skeletal muscle differentiation. Nucleic Acids Res 2021; 49:8060-8077. [PMID: 34289068 PMCID: PMC8373147 DOI: 10.1093/nar/gkab617] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/17/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle regeneration is mediated by myoblasts that undergo epigenomic changes to establish the gene expression program of differentiated myofibers. mSWI/SNF chromatin remodeling enzymes coordinate with lineage-determining transcription factors to establish the epigenome of differentiated myofibers. Bromodomains bind to acetylated lysines on histone N-terminal tails and other proteins. The mutually exclusive ATPases of mSWI/SNF complexes, BRG1 and BRM, contain bromodomains with undefined functional importance in skeletal muscle differentiation. Pharmacological inhibition of mSWI/SNF bromodomain function using the small molecule PFI-3 reduced differentiation in cell culture and in vivo through decreased myogenic gene expression, while increasing cell cycle-related gene expression and the number of cells remaining in the cell cycle. Comparative gene expression analysis with data from myoblasts depleted of BRG1 or BRM showed that bromodomain function was required for a subset of BRG1- and BRM-dependent gene expression. Reduced binding of BRG1 and BRM after PFI-3 treatment showed that the bromodomain is required for stable chromatin binding at target gene promoters to alter gene expression. Our findings demonstrate that mSWI/SNF ATPase bromodomains permit stable binding of the mSWI/SNF ATPases to promoters required for cell cycle exit and establishment of muscle-specific gene expression.
Collapse
Affiliation(s)
- Tapan Sharma
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Daniel C L Robinson
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON K1H 8L6, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Hanna Witwicka
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - F Jeffrey Dilworth
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON K1H 8L6, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Anthony N Imbalzano
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
48
|
Novo CL. A Tale of Two States: Pluripotency Regulation of Telomeres. Front Cell Dev Biol 2021; 9:703466. [PMID: 34307383 PMCID: PMC8300013 DOI: 10.3389/fcell.2021.703466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/08/2021] [Indexed: 01/01/2023] Open
Abstract
Inside the nucleus, chromatin is functionally organized and maintained as a complex three-dimensional network of structures with different accessibility such as compartments, lamina associated domains, and membraneless bodies. Chromatin is epigenetically and transcriptionally regulated by an intricate and dynamic interplay of molecular processes to ensure genome stability. Phase separation, a process that involves the spontaneous organization of a solution into separate phases, has been proposed as a mechanism for the timely coordination of several cellular processes, including replication, transcription and DNA repair. Telomeres, the repetitive structures at the end of chromosomes, are epigenetically maintained in a repressed heterochromatic state that prevents their recognition as double-strand breaks (DSB), avoiding DNA damage repair and ensuring cell proliferation. In pluripotent embryonic stem cells, telomeres adopt a non-canonical, relaxed epigenetic state, which is characterized by a low density of histone methylation and expression of telomere non-coding transcripts (TERRA). Intriguingly, this telomere non-canonical conformation is usually associated with chromosome instability and aneuploidy in somatic cells, raising the question of how genome stability is maintained in a pluripotent background. In this review, we will explore how emerging technological and conceptual developments in 3D genome architecture can provide novel mechanistic perspectives for the pluripotent epigenetic paradox at telomeres. In particular, as RNA drives the formation of LLPS, we will consider how pluripotency-associated high levels of TERRA could drive and coordinate phase separation of several nuclear processes to ensure genome stability. These conceptual advances will provide a better understanding of telomere regulation and genome stability within the highly dynamic pluripotent background.
Collapse
Affiliation(s)
- Clara Lopes Novo
- The Francis Crick Institute, London, United Kingdom
- Imperial College London, London, United Kingdom
| |
Collapse
|
49
|
Barua A, Beygi A, Hatzikirou H. Close to Optimal Cell Sensing Ensures the Robustness of Tissue Differentiation Process: The Avian Photoreceptor Mosaic Case. ENTROPY 2021; 23:e23070867. [PMID: 34356408 PMCID: PMC8303396 DOI: 10.3390/e23070867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 12/22/2022]
Abstract
The way that progenitor cell fate decisions and the associated environmental sensing are regulated to ensure the robustness of the spatial and temporal order in which cells are generated towards a fully differentiating tissue still remains elusive. Here, we investigate how cells regulate their sensing intensity and radius to guarantee the required thermodynamic robustness of a differentiated tissue. In particular, we are interested in finding the conditions where dedifferentiation at cell level is possible (microscopic reversibility), but tissue maintains its spatial order and differentiation integrity (macroscopic irreversibility). In order to tackle this, we exploit the recently postulated Least microEnvironmental Uncertainty Principle (LEUP) to develop a theory of stochastic thermodynamics for cell differentiation. To assess the predictive and explanatory power of our theory, we challenge it against the avian photoreceptor mosaic data. By calibrating a single parameter, the LEUP can predict the cone color spatial distribution in the avian retina and, at the same time, suggest that such a spatial pattern is associated with quasi-optimal cell sensing. By means of the stochastic thermodynamics formalism, we find out that thermodynamic robustness of differentiated tissues depends on cell metabolism and cell sensing properties. In turn, we calculate the limits of the cell sensing radius that ensure the robustness of differentiated tissue spatial order. Finally, we further constrain our model predictions to the avian photoreceptor mosaic.
Collapse
Affiliation(s)
- Arnab Barua
- Centre for Information Services and High Performance Computing, Technische Universität Dresden, Nöthnitzer Straße 46, 01062 Dresden, Germany; (A.B.); (A.B.)
| | - Alireza Beygi
- Centre for Information Services and High Performance Computing, Technische Universität Dresden, Nöthnitzer Straße 46, 01062 Dresden, Germany; (A.B.); (A.B.)
| | - Haralampos Hatzikirou
- Centre for Information Services and High Performance Computing, Technische Universität Dresden, Nöthnitzer Straße 46, 01062 Dresden, Germany; (A.B.); (A.B.)
- Mathematics Department, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Correspondence:
| |
Collapse
|
50
|
Soares MAF, Soares DS, Teixeira V, Heskol A, Bressan RB, Pollard SM, Oliveira RA, Castro DS. Hierarchical reactivation of transcription during mitosis-to-G1 transition by Brn2 and Ascl1 in neural stem cells. Genes Dev 2021; 35:1020-1034. [PMID: 34168041 PMCID: PMC8247608 DOI: 10.1101/gad.348174.120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/19/2021] [Indexed: 12/19/2022]
Abstract
During mitosis, chromatin condensation is accompanied by a global arrest of transcription. Recent studies suggest transcriptional reactivation upon mitotic exit occurs in temporally coordinated waves, but the underlying regulatory principles have yet to be elucidated. In particular, the contribution of sequence-specific transcription factors (TFs) remains poorly understood. Here we report that Brn2, an important regulator of neural stem cell identity, associates with condensed chromatin throughout cell division, as assessed by live-cell imaging of proliferating neural stem cells. In contrast, the neuronal fate determinant Ascl1 dissociates from mitotic chromosomes. ChIP-seq analysis reveals that Brn2 mitotic chromosome binding does not result in sequence-specific interactions prior to mitotic exit, relying mostly on electrostatic forces. Nevertheless, surveying active transcription using single-molecule RNA-FISH against immature transcripts reveals differential reactivation kinetics for key targets of Brn2 and Ascl1, with transcription onset detected in early (anaphase) versus late (early G1) phases, respectively. Moreover, by using a mitotic-specific dominant-negative approach, we show that competing with Brn2 binding during mitotic exit reduces the transcription of its target gene Nestin Our study shows an important role for differential binding of TFs to mitotic chromosomes, governed by their electrostatic properties, in defining the temporal order of transcriptional reactivation during mitosis-to-G1 transition.
Collapse
Affiliation(s)
- Mário A F Soares
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
- i3S Instituto de Investigação e Inovação em Saúde, IBMC Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Diogo S Soares
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
- i3S Instituto de Investigação e Inovação em Saúde, IBMC Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Vera Teixeira
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Abeer Heskol
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
- i3S Instituto de Investigação e Inovação em Saúde, IBMC Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Raul Bardini Bressan
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Steven M Pollard
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | | | - Diogo S Castro
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
- i3S Instituto de Investigação e Inovação em Saúde, IBMC Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|