1
|
Roy PR, Link N. Loss of neuronal Imp induces seizure behavior through Syndecan function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.21.624719. [PMID: 39605343 PMCID: PMC11601543 DOI: 10.1101/2024.11.21.624719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Seizures affect a large proportion of the global population and occur due to abnormal neuronal activity in the brain. Unfortunately, widespread genetic and phenotypic heterogeneity contribute to insufficient treatment options. It is critical to identify the genetic underpinnings of how seizures occur to better understand seizure disorders and improve therapeutic development. We used the Drosophila model to identify that IGF-II mRNA Binding Protein (Imp) is linked to the onset of this phenotype. Specific reduction of Imp in neurons causes seizures after mechanical stimulation. Importantly, gross motor behavior is unaffected, showing Imp loss does not affect general neuronal activity. Developmental loss of Imp is sufficient to cause seizures in adults, thus Imp-modulated neuron development affects mature neuronal function. Since Imp is an RNA-binding protein, we sought to identify the mRNA target that Imp regulates in neurons to ensure proper neuronal activity after mechanical stress. We find that Imp protein binds Syndecan ( Sdc ) mRNA, and reduction of Sdc also causes mechanically-induced seizures. Expression of Sdc in Imp deficient neurons rescues seizure defects, showing that Sdc is sufficient to restore normal behavior after mechanical stress. We suggest that Imp protein binds Sdc mRNA in neurons, and this functional interaction is important for normal neuronal biology and animal behavior in a mechanically-induced seizure model. Since Imp and Sdc are conserved, our work highlights a neuronal specific pathway that might contribute to seizure disorder when mutated in humans.
Collapse
|
2
|
Barthel L, Pettemeridi S, Nebras A, Schnaidt H, Fahland K, Vormwald L, Raabe T. The transcription elongation factors Spt4 and Spt5 control neural progenitor proliferation and are implicated in neuronal remodeling during Drosophila mushroom body development. Front Cell Dev Biol 2024; 12:1434168. [PMID: 39445331 PMCID: PMC11496258 DOI: 10.3389/fcell.2024.1434168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Spt4 and Spt5 form the DRB sensitivity inducing factor (DSIF) complex that regulates transcription elongation at multiple steps including promotor-proximal pausing, processivity and termination. Although this implicated a general role in transcription, several studies pointed to smaller sets of target genes and indicated a more specific requirement in certain cellular contexts. To unravel common or distinct functions of Spt4 and Spt5 in vivo, we generated knock-out alleles for both genes in Drosophila melanogaster. Using the development of the mushroom bodies as a model, we provided evidence for two common functions of Spt4 and Spt5 during mushroom body development, namely control of cell proliferation of neural progenitor cells and remodeling of axonal projections of certain mushroom body neurons. This latter function is not due to a general requirement of Spt4 and Spt5 for axon pathfinding of mushroom body neurons, but due to distinct effects on the expression of genes controlling remodeling.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Thomas Raabe
- Department Molecular Genetics of the Faculty of Medicine, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
3
|
Guan W, Nie Z, Laurençon A, Bouchet M, Godin C, Kabir C, Darnas A, Enriquez J. The role of Imp and Syp RNA-binding proteins in precise neuronal elimination by apoptosis through the regulation of transcription factors. eLife 2024; 12:RP91634. [PMID: 39364747 PMCID: PMC11452180 DOI: 10.7554/elife.91634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
Neuronal stem cells generate a limited and consistent number of neuronal progenies, each possessing distinct morphologies and functions, which are crucial for optimal brain function. Our study focused on a neuroblast (NB) lineage in Drosophila known as Lin A/15, which generates motoneurons (MNs) and glia. Intriguingly, Lin A/15 NB dedicates 40% of its time to producing immature MNs (iMNs) that are subsequently eliminated through apoptosis. Two RNA-binding proteins, Imp and Syp, play crucial roles in this process. Imp+ MNs survive, while Imp-, Syp+ MNs undergo apoptosis. Genetic experiments show that Imp promotes survival, whereas Syp promotes cell death in iMNs. Late-born MNs, which fail to express a functional code of transcription factors (mTFs) that control their morphological fate, are subject to elimination. Manipulating the expression of Imp and Syp in Lin A/15 NB and progeny leads to a shift of TF code in late-born MNs toward that of early-born MNs, and their survival. Additionally, introducing the TF code of early-born MNs into late-born MNs also promoted their survival. These findings demonstrate that the differential expression of Imp and Syp in iMNs links precise neuronal generation and distinct identities through the regulation of mTFs. Both Imp and Syp are conserved in vertebrates, suggesting that they play a fundamental role in precise neurogenesis across species.
Collapse
Affiliation(s)
- Wenyue Guan
- Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, CNRS, Univ Lyon 1LyonFrance
| | - Ziyan Nie
- Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, CNRS, Univ Lyon 1LyonFrance
| | - Anne Laurençon
- Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, CNRS, Univ Lyon 1LyonFrance
| | - Mathilde Bouchet
- Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, CNRS, Univ Lyon 1LyonFrance
| | - Christophe Godin
- Laboratoire Reproduction et Développement des Plantes, ENS de LyonLyonFrance
| | - Chérif Kabir
- Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, CNRS, Univ Lyon 1LyonFrance
| | - Aurelien Darnas
- Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, CNRS, Univ Lyon 1LyonFrance
| | - Jonathan Enriquez
- Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, CNRS, Univ Lyon 1LyonFrance
| |
Collapse
|
4
|
Nguyen PK, Cheng LY. Drosophila medulla neuroblast termination via apoptosis, differentiation, and gliogenic switch is scheduled by the depletion of the neuroepithelial stem cell pool. eLife 2024; 13:e96876. [PMID: 38905123 PMCID: PMC11262793 DOI: 10.7554/elife.96876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/20/2024] [Indexed: 06/23/2024] Open
Abstract
The brain is consisted of diverse neurons arising from a limited number of neural stem cells. Drosophila neural stem cells called neuroblasts (NBs) produces specific neural lineages of various lineage sizes depending on their location in the brain. In the Drosophila visual processing centre - the optic lobes (OLs), medulla NBs derived from the neuroepithelium (NE) give rise to neurons and glia cells of the medulla cortex. The timing and the mechanisms responsible for the cessation of medulla NBs are so far not known. In this study, we show that the termination of medulla NBs during early pupal development is determined by the exhaustion of the NE stem cell pool. Hence, altering NE-NB transition during larval neurogenesis disrupts the timely termination of medulla NBs. Medulla NBs terminate neurogenesis via a combination of apoptosis, terminal symmetric division via Prospero, and a switch to gliogenesis via Glial Cell Missing (Gcm); however, these processes occur independently of each other. We also show that temporal progression of the medulla NBs is mostly not required for their termination. As the Drosophila OL shares a similar mode of division with mammalian neurogenesis, understanding when and how these progenitors cease proliferation during development can have important implications for mammalian brain size determination and regulation of its overall function.
Collapse
Affiliation(s)
- Phuong-Khanh Nguyen
- Peter MacCallum Cancer CentreMelbourneAustralia
- Department of Anatomy and Physiology, The University of MelbourneMelbourneAustralia
| | - Louise Y Cheng
- Peter MacCallum Cancer CentreMelbourneAustralia
- Department of Anatomy and Physiology, The University of MelbourneMelbourneAustralia
- Sir Peter MacCallum Department of Oncology, The University of MelbourneMelbourneAustralia
| |
Collapse
|
5
|
Sood C, Nahid MA, Branham KR, Pahl M, Doyle SE, Siegrist SE. Delta-dependent Notch activation closes the early neuroblast temporal program to promote lineage progression and neurogenesis termination in Drosophila. eLife 2024; 12:RP88565. [PMID: 38391176 PMCID: PMC10942576 DOI: 10.7554/elife.88565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
Neuroblasts in Drosophila divide asymmetrically, sequentially expressing a series of intrinsic factors to generate a diversity of neuron types. These intrinsic factors known as temporal factors dictate timing of neuroblast transitions in response to steroid hormone signaling and specify early versus late temporal fates in neuroblast neuron progeny. After completing their temporal programs, neuroblasts differentiate or die, finalizing both neuron number and type within each neuroblast lineage. From a screen aimed at identifying genes required to terminate neuroblast divisions, we identified Notch and Notch pathway components. When Notch is knocked down, neuroblasts maintain early temporal factor expression longer, delay late temporal factor expression, and continue dividing into adulthood. We find that Delta, expressed in cortex glia, neuroblasts, and after division, their GMC progeny, regulates neuroblast Notch activity. We also find that Delta in neuroblasts is expressed high early, low late, and is controlled by the intrinsic temporal program: early factor Imp promotes Delta, late factors Syp/E93 reduce Delta. Thus, in addition to systemic steroid hormone cues, forward lineage progression is controlled by local cell-cell signaling between neuroblasts and their cortex glia/GMC neighbors: Delta transactivates Notch in neuroblasts bringing the early temporal program and early temporal factor expression to a close.
Collapse
Affiliation(s)
- Chhavi Sood
- Department of Biology, University of VirginiaCharlottesvilleUnited States
| | | | - Kendall R Branham
- Department of Biology, University of VirginiaCharlottesvilleUnited States
| | - Matt Pahl
- Department of Biology, University of VirginiaCharlottesvilleUnited States
| | - Susan E Doyle
- Department of Biology, University of VirginiaCharlottesvilleUnited States
| | - Sarah E Siegrist
- Department of Biology, University of VirginiaCharlottesvilleUnited States
| |
Collapse
|
6
|
Dillon NR, Manning L, Hirono K, Doe CQ. Seven-up acts in neuroblasts to specify adult central complex neuron identity and initiate neuroblast decommissioning. Development 2024; 151:dev202504. [PMID: 38230563 PMCID: PMC10906098 DOI: 10.1242/dev.202504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/22/2023] [Indexed: 01/18/2024]
Abstract
An unanswered question in neurobiology is how are diverse neuron cell types generated from a small number of neural stem cells? In the Drosophila larval central brain, there are eight bilateral Type 2 neuroblast (T2NB) lineages that express a suite of early temporal factors followed by a different set of late temporal factors and generate the majority of the central complex (CX) neurons. The early-to-late switch is triggered by the orphan nuclear hormone receptor Seven-up (Svp), yet little is known about how this Svp-dependent switch is involved in specifying CX neuron identities. Here, we: (1) birth date the CX neurons P-EN and P-FN (early and late, respectively); (2) show that Svp is transiently expressed in all early T2NBs; and (3) show that loss of Svp expands the population of early born P-EN neurons at the expense of late born P-FN neurons. Furthermore, in the absence of Svp, T2NBs fail decommissioning and abnormally extend their lineage into week-old adults. We conclude that Svp is required to specify CX neuron identity, as well as to initiate T2NB decommissioning.
Collapse
Affiliation(s)
- Noah R. Dillon
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| | - Laurina Manning
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| | - Keiko Hirono
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| | - Chris Q. Doe
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
7
|
Yin C, Morita T, Parrish JZ. A cell atlas of the larval Aedes aegypti ventral nerve cord. Neural Dev 2024; 19:2. [PMID: 38297398 PMCID: PMC10829479 DOI: 10.1186/s13064-023-00178-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/28/2023] [Indexed: 02/02/2024] Open
Abstract
Mosquito-borne diseases account for nearly 1 million human deaths annually, yet we have a limited understanding of developmental events that influence host-seeking behavior and pathogen transmission in mosquitoes. Mosquito-borne pathogens are transmitted during blood meals, hence adult mosquito behavior and physiology have been intensely studied. However, events during larval development shape adult traits, larvae respond to many of the same sensory cues as adults, and larvae are susceptible to infection by many of the same disease-causing agents as adults. Hence, a better understanding of larval physiology will directly inform our understanding of physiological processes in adults. Here, we use single cell RNA sequencing (scRNA-seq) to provide a comprehensive view of cellular composition in the Aedes aegypti larval ventral nerve cord (VNC), a central hub of sensory inputs and motor outputs which additionally controls multiple aspects of larval physiology. We identify more than 35 VNC cell types defined in part by neurotransmitter and neuropeptide expression. We also explore diversity among monoaminergic and peptidergic neurons that likely control key elements of larval physiology and developmental timing, and identify neuroblasts and immature neurons, providing a view of neuronal differentiation in the VNC. Finally, we find that larval cell composition, number, and position are preserved in the adult abdominal VNC, suggesting studies of larval VNC form and function will likely directly inform our understanding adult mosquito physiology. Altogether, these studies provide a framework for targeted analysis of VNC development and neuronal function in Aedes aegypti larvae.
Collapse
Affiliation(s)
- Chang Yin
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
- Division of Education, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 02543, USA
| | - Takeshi Morita
- Division of Education, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 02543, USA
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY, 10065, USA
- Howard Hughes Medical Institute, New York, NY, 10065, USA
| | - Jay Z Parrish
- Department of Biology, University of Washington, Seattle, WA, 98195, USA.
- Division of Education, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 02543, USA.
| |
Collapse
|
8
|
Baker CC, Gallicchio L, Matias NR, Porter DF, Parsanian L, Taing E, Tam C, Fuller MT. Cell-type-specific interacting proteins collaborate to regulate the timing of Cyclin B protein expression in male meiotic prophase. Development 2023; 150:dev201709. [PMID: 37882771 PMCID: PMC10730016 DOI: 10.1242/dev.201709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023]
Abstract
During meiosis, germ cell and stage-specific components impose additional layers of regulation on the core cell cycle machinery to set up an extended G2 period termed meiotic prophase. In Drosophila males, meiotic prophase lasts 3.5 days, during which spermatocytes upregulate over 1800 genes and grow 25-fold. Previous work has shown that the cell cycle regulator Cyclin B (CycB) is subject to translational repression in immature spermatocytes, mediated by the RNA-binding protein Rbp4 and its partner Fest. Here, we show that the spermatocyte-specific protein Lut is required for translational repression of cycB in an 8-h window just before spermatocytes are fully mature. In males mutant for rbp4 or lut, spermatocytes enter and exit meiotic division 6-8 h earlier than in wild type. In addition, spermatocyte-specific isoforms of Syncrip (Syp) are required for expression of CycB protein in mature spermatocytes and normal entry into the meiotic divisions. Lut and Syp interact with Fest independent of RNA. Thus, a set of spermatocyte-specific regulators choreograph the timing of expression of CycB protein during male meiotic prophase.
Collapse
Affiliation(s)
- Catherine C. Baker
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lorenzo Gallicchio
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Neuza R. Matias
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Douglas F. Porter
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lucineh Parsanian
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Emily Taing
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cheuk Tam
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Margaret T. Fuller
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
9
|
Dillon NR, Manning L, Hirono K, Doe CQ. Seven-up acts in neuroblasts to specify adult central complex neuron identity and initiate neuroblast decommissioning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.02.565340. [PMID: 37961302 PMCID: PMC10635090 DOI: 10.1101/2023.11.02.565340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
An open question in neurobiology is how diverse neuron cell types are generated from a small number of neural stem cells. In the Drosophila larval central brain, there are eight bilateral Type 2 neuroblast (T2NB) lineages that express a suite of early temporal factors followed by a different set of late temporal factors and generate the majority of the central complex (CX) neurons. The early-to-late switch is triggered by the orphan nuclear hormone receptor Seven-up (Svp), yet little is known about this Svp-dependent switch in specifying CX neuron identities. Here, we (i) birthdate the CX neurons P-EN and P-FN (early and late, respectively); (ii) show that Svp is transiently expressed in all early T2NBs; and (iii) show that loss of Svp expands the population of early born P-EN neurons at the expense of late born P-FN neurons. Furthermore, in the absence of Svp, T2NBs fail decommissioning and abnormally extend their lineage into week-old adults. We conclude that Svp is required to specify CX neuron identity, as well as to initiate T2NB decommissioning.
Collapse
Affiliation(s)
- Noah R. Dillon
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403
| | - Laurina Manning
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403
| | - Keiko Hirono
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403
| | - Chris Q. Doe
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403
| |
Collapse
|
10
|
Titus MB, Chang AW, Popitsch N, Ebmeier CC, Bono JM, Olesnicky EC. The identification of protein and RNA interactors of the splicing factor Caper in the adult Drosophila nervous system. Front Mol Neurosci 2023; 16:1114857. [PMID: 37435576 PMCID: PMC10332324 DOI: 10.3389/fnmol.2023.1114857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 05/19/2023] [Indexed: 07/13/2023] Open
Abstract
Post-transcriptional gene regulation is a fundamental mechanism that helps regulate the development and healthy aging of the nervous system. Mutations that disrupt the function of RNA-binding proteins (RBPs), which regulate post-transcriptional gene regulation, have increasingly been implicated in neurological disorders including amyotrophic lateral sclerosis, Fragile X Syndrome, and spinal muscular atrophy. Interestingly, although the majority of RBPs are expressed widely within diverse tissue types, the nervous system is often particularly sensitive to their dysfunction. It is therefore critical to elucidate how aberrant RNA regulation that results from the dysfunction of ubiquitously expressed RBPs leads to tissue specific pathologies that underlie neurological diseases. The highly conserved RBP and alternative splicing factor Caper is widely expressed throughout development and is required for the development of Drosophila sensory and motor neurons. Furthermore, caper dysfunction results in larval and adult locomotor deficits. Nonetheless, little is known about which proteins interact with Caper, and which RNAs are regulated by Caper. Here we identify proteins that interact with Caper in both neural and muscle tissue, along with neural specific Caper target RNAs. Furthermore, we show that a subset of these Caper-interacting proteins and RNAs genetically interact with caper to regulate Drosophila gravitaxis behavior.
Collapse
Affiliation(s)
- M. Brandon Titus
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, United States
| | - Adeline W. Chang
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, United States
| | - Niko Popitsch
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | | | - Jeremy M. Bono
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, United States
| | - Eugenia C. Olesnicky
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, United States
| |
Collapse
|
11
|
Baker CC, Gallicchio L, Parsanian L, Taing E, Tam C, Fuller MT. A cell-type-specific multi-protein complex regulates expression of Cyclin B protein in Drosophila male meiotic prophase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528869. [PMID: 36824933 PMCID: PMC9949121 DOI: 10.1101/2023.02.16.528869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
During meiosis, germ cell and stage-specific components impose additional layers of regulation on the core cell cycle machinery to set up an extended G2 period termed meiotic prophase. In Drosophila males, meiotic prophase lasts 3.5 days, during which spermatocytes turn up expression of over 3000 genes and grow 25-fold in volume. Previous work showed that the core cell cycle regulator Cyclin B (CycB) is subject to translational repression in immature Drosophila spermatocytes, mediated by the RNA-binding protein Rbp4 and its partner Fest. Here we show that another spermatocyte-specific protein, Lut, is required for translational repression of cycB in an 8-hour window just before spermatocytes are fully mature. In males mutant for rbp4 or lut , spermatocytes enter and exit the meiotic divisions 6-8 hours earlier than in wild-type. In addition, we show that spermatocyte-specific isoforms of Syncrip (Syp) are required for expression of CycB protein and normal entry into the meiotic divisions. Both Lut and Syp interact with Fest in an RNA-independent manner. Thus a complex of spermatocyte-specific regulators choreograph the timing of expression of CycB protein during male meiotic prophase. SUMMARY STATEMENT Expression of a conserved cell cycle component, Cyclin B, is regulated by multiple mechanisms in the Drosophila male germline to dictate the correct timing of meiotic division.
Collapse
|
12
|
Lin S. The making of the Drosophila mushroom body. Front Physiol 2023; 14:1091248. [PMID: 36711013 PMCID: PMC9880076 DOI: 10.3389/fphys.2023.1091248] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/02/2023] [Indexed: 01/14/2023] Open
Abstract
The mushroom body (MB) is a computational center in the Drosophila brain. The intricate neural circuits of the mushroom body enable it to store associative memories and process sensory and internal state information. The mushroom body is composed of diverse types of neurons that are precisely assembled during development. Tremendous efforts have been made to unravel the molecular and cellular mechanisms that build the mushroom body. However, we are still at the beginning of this challenging quest, with many key aspects of mushroom body assembly remaining unexplored. In this review, I provide an in-depth overview of our current understanding of mushroom body development and pertinent knowledge gaps.
Collapse
|
13
|
Imp is required for timely exit from quiescence in Drosophila type II neuroblasts. PLoS One 2022; 17:e0272177. [PMID: 36520944 PMCID: PMC9754222 DOI: 10.1371/journal.pone.0272177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/06/2022] [Indexed: 12/23/2022] Open
Abstract
Stem cells must balance proliferation and quiescence, with excess proliferation favoring tumor formation, and premature quiescence preventing proper organogenesis. Drosophila brain neuroblasts are a model for investigating neural stem cell entry and exit from quiescence. Neuroblasts begin proliferating during embryogenesis, enter quiescence prior to larval hatching, and resume proliferation 12-30h after larval hatching. Here we focus on the mechanism used to exit quiescence, focusing on "type II" neuroblasts. There are 16 type II neuroblasts in the brain, and they undergo the same cycle of embryonic proliferation, quiescence, and proliferation as do most other brain neuroblasts. We focus on type II neuroblasts due to their similar lineage as outer radial glia in primates (both have extended lineages with intermediate neural progenitors), and because of the availability of specific markers for type II neuroblasts and their progeny. Here we characterize the role of Insulin-like growth factor II mRNA-binding protein (Imp) in type II neuroblast proliferation and quiescence. Imp has previously been shown to promote proliferation in type II neuroblasts, in part by acting antagonistically to another RNA-binding protein called Syncrip (Syp). Here we show that reducing Imp levels delays exit from quiescence in type II neuroblasts, acting independently of Syp, with Syp levels remaining low in both quiescent and newly proliferating type II neuroblasts. We conclude that Imp promotes exit from quiescence, a function closely related to its known role in promoting neuroblast proliferation.
Collapse
|
14
|
Petridi S, Dubal D, Rikhy R, van den Ameele J. Mitochondrial respiration and dynamics of in vivo neural stem cells. Development 2022; 149:285126. [PMID: 36445292 PMCID: PMC10112913 DOI: 10.1242/dev.200870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Neural stem cells (NSCs) in the developing and adult brain undergo many different transitions, tightly regulated by extrinsic and intrinsic factors. While the role of signalling pathways and transcription factors is well established, recent evidence has also highlighted mitochondria as central players in NSC behaviour and fate decisions. Many aspects of cellular metabolism and mitochondrial biology change during NSC transitions, interact with signalling pathways and affect the activity of chromatin-modifying enzymes. In this Spotlight, we explore recent in vivo findings, primarily from Drosophila and mammalian model systems, about the role that mitochondrial respiration and morphology play in NSC development and function.
Collapse
Affiliation(s)
- Stavroula Petridi
- Department of Clinical Neurosciences and MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Dnyanesh Dubal
- Department of Clinical Neurosciences and MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK.,Biology, Indian Institute of Science Education and Research, Homi Bhabha Road, Pashan, Pune 411008, India
| | - Richa Rikhy
- Biology, Indian Institute of Science Education and Research, Homi Bhabha Road, Pashan, Pune 411008, India
| | - Jelle van den Ameele
- Department of Clinical Neurosciences and MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| |
Collapse
|
15
|
Islam IM, Erclik T. Imp and Syp mediated temporal patterning of neural stem cells in the developing Drosophila CNS. Genetics 2022; 222:iyac103. [PMID: 35881070 PMCID: PMC9434295 DOI: 10.1093/genetics/iyac103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/21/2022] [Indexed: 11/12/2022] Open
Abstract
The assembly of complex neural circuits requires that stem cells generate diverse types of neurons in the correct temporal order. Pioneering work in the Drosophila embryonic ventral nerve cord has shown that neural stem cells are temporally patterned by the sequential expression of rapidly changing transcription factors to generate diversity in their progeny. In recent years, a second temporal patterning mechanism, driven by the opposing gradients of the Imp and Syp RNA-binding proteins, has emerged as a powerful way to generate neural diversity. This long-range temporal patterning mechanism is utilized in the extended neural stem cell lineages of the postembryonic fly brain. Here, we review the role played by Imp and Syp gradients in several neural stem cell lineages, focusing on how they specify sequential neural fates through the post-transcriptional regulation of target genes, including the Chinmo and Mamo transcription factors. We further discuss how upstream inputs, including hormonal signals, modify the output of these gradients to couple neurogenesis with the development of the organism. Finally, we review the roles that the Imp and Syp gradients play beyond the generation of diversity, including the regulation of stem cell proliferation, the timing of neural stem cell lineage termination, and the coupling of neuronal birth order to circuit assembly.
Collapse
Affiliation(s)
- Ishrat Maliha Islam
- Departments of Biology and Cell & Systems Biology, University of Toronto—Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Ted Erclik
- Departments of Biology and Cell & Systems Biology, University of Toronto—Mississauga, Mississauga, ON L5L 1C6, Canada
| |
Collapse
|
16
|
Dillon N, Cocanougher B, Sood C, Yuan X, Kohn AB, Moroz LL, Siegrist SE, Zlatic M, Doe CQ. Single cell RNA-seq analysis reveals temporally-regulated and quiescence-regulated gene expression in Drosophila larval neuroblasts. Neural Dev 2022; 17:7. [PMID: 36002894 PMCID: PMC9404614 DOI: 10.1186/s13064-022-00163-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/19/2022] [Indexed: 12/12/2022] Open
Abstract
The mechanisms that generate neural diversity during development remains largely unknown. Here, we use scRNA-seq methodology to discover new features of the Drosophila larval CNS across several key developmental timepoints. We identify multiple progenitor subtypes - both stem cell-like neuroblasts and intermediate progenitors - that change gene expression across larval development, and report on new candidate markers for each class of progenitors. We identify a pool of quiescent neuroblasts in newly hatched larvae and show that they are transcriptionally primed to respond to the insulin signaling pathway to exit from quiescence, including relevant pathway components in the adjacent glial signaling cell type. We identify candidate "temporal transcription factors" (TTFs) that are expressed at different times in progenitor lineages. Our work identifies many cell type specific genes that are candidates for functional roles, and generates new insight into the differentiation trajectory of larval neurons.
Collapse
Affiliation(s)
- Noah Dillon
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, OR, 97403, Eugene, USA
| | - Ben Cocanougher
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Chhavi Sood
- Department of Biology, University of Virginia, VA, 22904, Charlottesville, USA
| | - Xin Yuan
- Department of Biology, University of Virginia, VA, 22904, Charlottesville, USA
| | - Andrea B Kohn
- Whitney Laboratory for Marine Biosciences, University of Florida, FL, 32080, St. Augustine, USA
| | - Leonid L Moroz
- Whitney Laboratory for Marine Biosciences, University of Florida, FL, 32080, St. Augustine, USA
| | - Sarah E Siegrist
- Department of Biology, University of Virginia, VA, 22904, Charlottesville, USA
| | - Marta Zlatic
- MRC Laboratory of Molecular Biology, Dept of Zoology, University of Cambridge, Cambridge, UK
- Janelia Research Campus, VA, Ashburn, USA
| | - Chris Q Doe
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, OR, 97403, Eugene, USA.
| |
Collapse
|
17
|
Pfeifer K, Wolfstetter G, Anthonydhason V, Masudi T, Arefin B, Bemark M, Mendoza-Garcia P, Palmer RH. Patient-associated mutations in Drosophila Alk perturb neuronal differentiation and promote survival. Dis Model Mech 2022; 15:dmm049591. [PMID: 35972154 PMCID: PMC9403751 DOI: 10.1242/dmm.049591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/27/2022] [Indexed: 12/13/2022] Open
Abstract
Activating anaplastic lymphoma kinase (ALK) receptor tyrosine kinase (RTK) mutations occur in pediatric neuroblastoma and are associated with poor prognosis. To study ALK-activating mutations in a genetically controllable system, we employed CRIPSR/Cas9, incorporating orthologs of the human oncogenic mutations ALKF1174L and ALKY1278S in the Drosophila Alk locus. AlkF1251L and AlkY1355S mutant Drosophila exhibited enhanced Alk signaling phenotypes, but unexpectedly depended on the Jelly belly (Jeb) ligand for activation. Both AlkF1251L and AlkY1355S mutant larval brains displayed hyperplasia, represented by increased numbers of Alk-positive neurons. Despite this hyperplasic phenotype, no brain tumors were observed in mutant animals. We showed that hyperplasia in Alk mutants was not caused by significantly increased rates of proliferation, but rather by decreased levels of apoptosis in the larval brain. Using single-cell RNA sequencing, we identified perturbations during temporal fate specification in AlkY1355S mutant mushroom body lineages. These findings shed light on the role of Alk in neurodevelopmental processes and highlight the potential of Alk-activating mutations to perturb specification and promote survival in neuronal lineages. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Kathrin Pfeifer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Georg Wolfstetter
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Vimala Anthonydhason
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Tafheem Masudi
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Badrul Arefin
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Mats Bemark
- Department of Microbiology and Immunology, Mucosal Immunobiology and Vaccine Center, Institute of Biomedicine, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Patricia Mendoza-Garcia
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Ruth H. Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
18
|
Emerging Roles of RNA-Binding Proteins in Neurodevelopment. J Dev Biol 2022; 10:jdb10020023. [PMID: 35735914 PMCID: PMC9224834 DOI: 10.3390/jdb10020023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023] Open
Abstract
Diverse cell types in the central nervous system (CNS) are generated by a relatively small pool of neural stem cells during early development. Spatial and temporal regulation of stem cell behavior relies on precise coordination of gene expression. Well-studied mechanisms include hormone signaling, transcription factor activity, and chromatin remodeling processes. Much less is known about downstream RNA-dependent mechanisms including posttranscriptional regulation, nuclear export, alternative splicing, and transcript stability. These important functions are carried out by RNA-binding proteins (RBPs). Recent work has begun to explore how RBPs contribute to stem cell function and homeostasis, including their role in metabolism, transport, epigenetic regulation, and turnover of target transcripts. Additional layers of complexity are provided by the different target recognition mechanisms of each RBP as well as the posttranslational modifications of the RBPs themselves that alter function. Altogether, these functions allow RBPs to influence various aspects of RNA metabolism to regulate numerous cellular processes. Here we compile advances in RNA biology that have added to our still limited understanding of the role of RBPs in neurodevelopment.
Collapse
|
19
|
Gaultier C, Foppolo S, Maurange C. Regulation of developmental hierarchy in Drosophila neural stem cell tumors by COMPASS and Polycomb complexes. SCIENCE ADVANCES 2022; 8:eabi4529. [PMID: 35544555 PMCID: PMC9094666 DOI: 10.1126/sciadv.abi4529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 03/23/2022] [Indexed: 06/15/2023]
Abstract
COMPASS and Polycomb complexes are antagonistic chromatin complexes that are frequently inactivated in cancers, but how these events affect the cellular hierarchy, composition, and growth of tumors is unclear. These characteristics can be systematically investigated in Drosophila neuroblast tumors in which cooption of temporal patterning induces a developmental hierarchy that confers cancer stem cell (CSC) properties to a subset of neuroblasts retaining an early larval temporal identity. Here, using single-cell transcriptomics, we reveal that the trithorax/MLL1/2-COMPASS-like complex guides the developmental trajectory at the top of the tumor hierarchy. Consequently, trithorax knockdown drives larval-to-embryonic temporal reversion and the marked expansion of CSCs that remain locked in a spectrum of early temporal states. Unexpectedly, this phenotype is amplified by concomitant inactivation of Polycomb repressive complex 2 genes, unleashing tumor growth. This study illustrates how inactivation of specific COMPASS and Polycomb complexes cooperates to impair tumor hierarchies, inducing CSC plasticity, heterogeneity, and expansion.
Collapse
Affiliation(s)
| | - Sophie Foppolo
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living systems, Equipe Labellisée Ligue Contre le Cancer, Campus de Luminy Case 907, 13288 Cedex 09 Marseille, France
| | | |
Collapse
|
20
|
Sood C, Justis VT, Doyle SE, Siegrist SE. Notch signaling regulates neural stem cell quiescence entry and exit in Drosophila. Development 2022; 149:274416. [PMID: 35112131 PMCID: PMC8918809 DOI: 10.1242/dev.200275] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 01/13/2022] [Indexed: 12/18/2022]
Abstract
Stem cells enter and exit quiescence as part of normal developmental programs and to maintain tissue homeostasis in adulthood. Although it is clear that stem cell intrinsic and extrinsic cues, local and systemic, regulate quiescence, it remains unclear whether intrinsic and extrinsic cues coordinate to control quiescence and how cue coordination is achieved. Here, we report that Notch signaling coordinates neuroblast intrinsic temporal programs with extrinsic nutrient cues to regulate quiescence in Drosophila. When Notch activity is reduced, quiescence is delayed or altogether bypassed, with some neuroblasts dividing continuously during the embryonic-to-larval transition. During embryogenesis before quiescence, neuroblasts express Notch and the Notch ligand Delta. After division, Delta is partitioned to adjacent GMC daughters where it transactivates Notch in neuroblasts. Over time, in response to intrinsic temporal cues and increasing numbers of Delta-expressing daughters, neuroblast Notch activity increases, leading to cell cycle exit and consequently, attenuation of Notch pathway activity. Quiescent neuroblasts have low to no active Notch, which is required for exit from quiescence in response to nutrient cues. Thus, Notch signaling coordinates proliferation versus quiescence decisions.
Collapse
|
21
|
Oliveira AC, Rebelo AR, Homem CCF. Integrating animal development: How hormones and metabolism regulate developmental transitions and brain formation. Dev Biol 2021; 475:256-264. [PMID: 33549549 PMCID: PMC7617117 DOI: 10.1016/j.ydbio.2021.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/15/2021] [Accepted: 01/29/2021] [Indexed: 10/22/2022]
Abstract
Our current knowledge on how individual tissues or organs are formed during animal development is considerable. However, the development of each organ does not occur in isolation and thus their formation needs to be done in a coordinated manner. This coordination is regulated by hormones, systemic signals that instruct the simultaneous development of all organs and direct tissue specific developmental programs. In addition, multi- and individual-organ development requires the integration of the nutritional state of the animal, since this affects nutrient availability necessary for the progression of development and growth. Variations in the nutritional state of the animal are normal during development, as the sources and access to nutrients greatly differ depending on the animal stage. Furthermore, adversities of the external environment also exert major alterations in extrinsic nutritional conditions. Thus, both in normal and malnutrition circumstances, the animal needs to trigger metabolic changes to maintain energy homeostasis and sustain growth and development. This metabolic flexibility is mediated by hormones, that drive both developmental encoded metabolic transitions throughout development and adaptation responses according to the nutritional state of the animal. This review aims to provide a comprehensive summary of the current knowledge of how endocrine regulation coordinates multi-organ development by orchestrating metabolic transitions and how it integrates metabolic adaptation responses to starvation. We also focus on the particular case of brain development, as it is extremely sensitive to hormonally induced metabolic changes. Finally, we discuss how brain development is prioritized over the development of other organs, as its growth can be spared from nutrient deprivation.
Collapse
Affiliation(s)
- Andreia C Oliveira
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056, Lisboa, Portugal
| | - Ana R Rebelo
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056, Lisboa, Portugal
| | - Catarina C F Homem
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056, Lisboa, Portugal.
| |
Collapse
|
22
|
Glia-derived temporal signals orchestrate neurogenesis in the Drosophila mushroom body. Proc Natl Acad Sci U S A 2021; 118:2020098118. [PMID: 34078666 DOI: 10.1073/pnas.2020098118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intrinsic mechanisms such as temporal series of transcription factors orchestrate neurogenesis from a limited number of neural progenitors in the brain. Extrinsic regulations, however, remain largely unexplored. Here we describe a two-step glia-derived signal that regulates neurogenesis in the Drosophila mushroom body (MB). In a temporal manner, glial-specific ubiquitin ligase dSmurf activates non-cell-autonomous Hedgehog signaling propagation by targeting the receptor Patched to suppress and promote the exit of MB neuroblast (NB) proliferation, thereby specifying the correct α/β cell number without affecting differentiation. Independent of NB proliferation, dSmurf also stabilizes the expression of the cell-adhesion molecule Fasciclin II (FasII) via its WW domains and regulates FasII homophilic interaction between glia and MB axons to refine α/β-lobe integrity. Our findings provide insights into how extrinsic glia-to-neuron communication coordinates with NB proliferation capacity to regulate MB neurogenesis; glial proteostasis is likely a generalized mechanism in orchestrating neurogenesis.
Collapse
|
23
|
Rossi AM, Jafari S, Desplan C. Integrated Patterning Programs During Drosophila Development Generate the Diversity of Neurons and Control Their Mature Properties. Annu Rev Neurosci 2021; 44:153-172. [PMID: 33556251 DOI: 10.1146/annurev-neuro-102120-014813] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
During the approximately 5 days of Drosophila neurogenesis (late embryogenesis to the beginning of pupation), a limited number of neural stem cells produce approximately 200,000 neurons comprising hundreds of cell types. To build a functional nervous system, neuronal types need to be produced in the proper places, appropriate numbers, and correct times. We discuss how neural stem cells (neuroblasts) obtain so-called area codes for their positions in the nervous system (spatial patterning) and how they keep time to sequentially produce neurons with unique fates (temporal patterning). We focus on specific examples that demonstrate how a relatively simple patterning system (Notch) can be used reiteratively to generate different neuronal types. We also speculate on how different modes of temporal patterning that operate over short versus long time periods might be linked. We end by discussing how specification programs are integrated and lead to the terminal features of different neuronal types.
Collapse
Affiliation(s)
- Anthony M Rossi
- Department of Biology, New York University, New York, NY 10003, USA; .,Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Shadi Jafari
- Department of Biology, New York University, New York, NY 10003, USA;
| | - Claude Desplan
- Department of Biology, New York University, New York, NY 10003, USA;
| |
Collapse
|
24
|
Sood C, Doyle SE, Siegrist SE. Steroid hormones, dietary nutrients, and temporal progression of neurogenesis. CURRENT OPINION IN INSECT SCIENCE 2021; 43:70-77. [PMID: 33127508 PMCID: PMC8058227 DOI: 10.1016/j.cois.2020.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/10/2020] [Accepted: 10/16/2020] [Indexed: 05/13/2023]
Abstract
Temporal patterning of neural progenitors, in which different factors are sequentially expressed, is an evolutionarily conserved strategy for generating neuronal diversity during development. In the Drosophila embryo, mechanisms that mediate temporal patterning of neural stem cells (neuroblasts) are largely cell-intrinsic. However, after embryogenesis, neuroblast temporal patterning relies on extrinsic cues as well, as freshly hatched larvae seek out nutrients and other key resources in varying natural environments. We recap current understanding of neuroblast-intrinsic temporal programs and discuss how neuroblast extrinsic cues integrate and coordinate with neuroblast intrinsic programs to control numbers and types of neurons produced. One key emerging extrinsic factor that impacts temporal patterning of neuroblasts and their daughters as well as termination of neurogenesis is the steroid hormone, ecdysone, a known regulator of large-scale developmental transitions in insects and arthropods. Lastly, we consider evolutionary conservation and discuss recent work on thyroid hormone signaling in early vertebrate brain development.
Collapse
Affiliation(s)
- Chhavi Sood
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Susan E Doyle
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Sarah E Siegrist
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA.
| |
Collapse
|
25
|
Li G, Hidalgo A. Adult Neurogenesis in the Drosophila Brain: The Evidence and the Void. Int J Mol Sci 2020; 21:ijms21186653. [PMID: 32932867 PMCID: PMC7554932 DOI: 10.3390/ijms21186653] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 01/05/2023] Open
Abstract
Establishing the existence and extent of neurogenesis in the adult brain throughout the animals including humans, would transform our understanding of how the brain works, and how to tackle brain damage and disease. Obtaining convincing, indisputable experimental evidence has generally been challenging. Here, we revise the state of this question in the fruit-fly Drosophila. The developmental neuroblasts that make the central nervous system and brain are eliminated, either through apoptosis or cell cycle exit, before the adult fly ecloses. Despite this, there is growing evidence that cell proliferation can take place in the adult brain. This occurs preferentially at, but not restricted to, a critical period. Adult proliferating cells can give rise to both glial cells and neurons. Neuronal activity, injury and genetic manipulation in the adult can increase the incidence of both gliogenesis and neurogenesis, and cell number. Most likely, adult glio- and neuro-genesis promote structural brain plasticity and homeostasis. However, a definitive visualisation of mitosis in the adult brain is still lacking, and the elusive adult progenitor cells are yet to be identified. Resolving these voids is important for the fundamental understanding of any brain. Given its powerful genetics, Drosophila can expedite discovery into mammalian adult neurogenesis in the healthy and diseased brain.
Collapse
|
26
|
Maurange C. Temporal patterning in neural progenitors: from Drosophila development to childhood cancers. Dis Model Mech 2020; 13:dmm044883. [PMID: 32816915 PMCID: PMC7390627 DOI: 10.1242/dmm.044883] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The developing central nervous system (CNS) is particularly prone to malignant transformation, but the underlying mechanisms remain unresolved. However, periods of tumor susceptibility appear to correlate with windows of increased proliferation, which are often observed during embryonic and fetal stages and reflect stereotypical changes in the proliferative properties of neural progenitors. The temporal mechanisms underlying these proliferation patterns are still unclear in mammals. In Drosophila, two decades of work have revealed a network of sequentially expressed transcription factors and RNA-binding proteins that compose a neural progenitor-intrinsic temporal patterning system. Temporal patterning controls both the identity of the post-mitotic progeny of neural progenitors, according to the order in which they arose, and the proliferative properties of neural progenitors along development. In addition, in Drosophila, temporal patterning delineates early windows of cancer susceptibility and is aberrantly regulated in developmental tumors to govern cellular hierarchy as well as the metabolic and proliferative heterogeneity of tumor cells. Whereas recent studies have shown that similar genetic programs unfold during both fetal development and pediatric brain tumors, I discuss, in this Review, how the concept of temporal patterning that was pioneered in Drosophila could help to understand the mechanisms of initiation and progression of CNS tumors in children.
Collapse
Affiliation(s)
- Cédric Maurange
- Aix Marseille University, CNRS, IBDM, Equipe Labellisée LIGUE Contre le Cancer, Marseille 13009, France
| |
Collapse
|
27
|
Rossi AM, Desplan C. Extrinsic activin signaling cooperates with an intrinsic temporal program to increase mushroom body neuronal diversity. eLife 2020; 9:58880. [PMID: 32628110 PMCID: PMC7365662 DOI: 10.7554/elife.58880] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/03/2020] [Indexed: 12/16/2022] Open
Abstract
Temporal patterning of neural progenitors leads to the sequential production of diverse neurons. To understand how extrinsic cues influence intrinsic temporal programs, we studied Drosophila mushroom body progenitors (neuroblasts) that sequentially produce only three neuronal types: γ, then α’β’, followed by αβ. Opposing gradients of two RNA-binding proteins Imp and Syp comprise the intrinsic temporal program. Extrinsic activin signaling regulates the production of α’β’ neurons but whether it affects the intrinsic temporal program was not known. We show that the activin ligand Myoglianin from glia regulates the temporal factor Imp in mushroom body neuroblasts. Neuroblasts missing the activin receptor Baboon have a delayed intrinsic program as Imp is higher than normal during the α’β’ temporal window, causing the loss of α’β’ neurons, a decrease in αβ neurons, and a likely increase in γ neurons, without affecting the overall number of neurons produced. Our results illustrate that an extrinsic cue modifies an intrinsic temporal program to increase neuronal diversity.
Collapse
Affiliation(s)
- Anthony M Rossi
- Department of Biology, New York University, New York, United States
| | - Claude Desplan
- Department of Biology, New York University, New York, United States
| |
Collapse
|
28
|
Hailstone M, Waithe D, Samuels TJ, Yang L, Costello I, Arava Y, Robertson E, Parton RM, Davis I. CytoCensus, mapping cell identity and division in tissues and organs using machine learning. eLife 2020; 9:e51085. [PMID: 32423529 PMCID: PMC7237217 DOI: 10.7554/elife.51085] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 03/17/2020] [Indexed: 01/16/2023] Open
Abstract
A major challenge in cell and developmental biology is the automated identification and quantitation of cells in complex multilayered tissues. We developed CytoCensus: an easily deployed implementation of supervised machine learning that extends convenient 2D 'point-and-click' user training to 3D detection of cells in challenging datasets with ill-defined cell boundaries. In tests on such datasets, CytoCensus outperforms other freely available image analysis software in accuracy and speed of cell detection. We used CytoCensus to count stem cells and their progeny, and to quantify individual cell divisions from time-lapse movies of explanted Drosophila larval brains, comparing wild-type and mutant phenotypes. We further illustrate the general utility and future potential of CytoCensus by analysing the 3D organisation of multiple cell classes in Zebrafish retinal organoids and cell distributions in mouse embryos. CytoCensus opens the possibility of straightforward and robust automated analysis of developmental phenotypes in complex tissues.
Collapse
Affiliation(s)
- Martin Hailstone
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
| | - Dominic Waithe
- Wolfson Imaging Center & MRC WIMM Centre for Computational Biology MRC Weather all Institute of Molecular Medicine University of OxfordOxfordUnited Kingdom
| | - Tamsin J Samuels
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
| | - Lu Yang
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
| | - Ita Costello
- The Dunn School of Pathology,University of OxfordOxfordUnited Kingdom
| | - Yoav Arava
- Department of Biology, Technion - Israel Institute of TechnologyHaifaIsrael
| | | | - Richard M Parton
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
- Micron Advanced Bioimaging Unit, Department of Biochemistry, University of OxfordOxfordUnited Kingdom
| | - Ilan Davis
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
- Micron Advanced Bioimaging Unit, Department of Biochemistry, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
29
|
Samuels TJ, Arava Y, Järvelin AI, Robertson F, Lee JY, Yang L, Yang CP, Lee T, Ish-Horowicz D, Davis I. Neuronal upregulation of Prospero protein is driven by alternative mRNA polyadenylation and Syncrip-mediated mRNA stabilisation. Biol Open 2020; 9:bio049684. [PMID: 32205310 PMCID: PMC7225087 DOI: 10.1242/bio.049684] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/24/2020] [Indexed: 12/14/2022] Open
Abstract
During Drosophila and vertebrate brain development, the conserved transcription factor Prospero/Prox1 is an important regulator of the transition between proliferation and differentiation. Prospero level is low in neural stem cells and their immediate progeny, but is upregulated in larval neurons and it is unknown how this process is controlled. Here, we use single molecule fluorescent in situ hybridisation to show that larval neurons selectively transcribe a long prospero mRNA isoform containing a 15 kb 3' untranslated region, which is bound in the brain by the conserved RNA-binding protein Syncrip/hnRNPQ. Syncrip binding increases the stability of the long prospero mRNA isoform, which allows an upregulation of Prospero protein production. Adult flies selectively lacking the long prospero isoform show abnormal behaviour that could result from impaired locomotor or neurological activity. Our findings highlight a regulatory strategy involving alternative polyadenylation followed by differential post-transcriptional regulation.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Tamsin J Samuels
- Department of Biochemistry, The University of Oxford, Oxford, OX1 3QU, UK
| | - Yoav Arava
- Department of Biochemistry, The University of Oxford, Oxford, OX1 3QU, UK
- Department of Biology Technion, Haifa, 32000, Israel
| | - Aino I Järvelin
- Department of Biochemistry, The University of Oxford, Oxford, OX1 3QU, UK
| | | | - Jeffrey Y Lee
- Department of Biochemistry, The University of Oxford, Oxford, OX1 3QU, UK
| | - Lu Yang
- Department of Biochemistry, The University of Oxford, Oxford, OX1 3QU, UK
| | - Ching-Po Yang
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA, 20147 USA
| | - Tzumin Lee
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA, 20147 USA
| | - David Ish-Horowicz
- Department of Biochemistry, The University of Oxford, Oxford, OX1 3QU, UK
- MRC Laboratory for Molecular Cell Biology, University College, London, WC1E 6BT UK
| | - Ilan Davis
- Department of Biochemistry, The University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
30
|
Nguyen DTT, Lu Y, Chu EL, Yang X, Park SM, Choo ZN, Chin CR, Prieto C, Schurer A, Barin E, Savino AM, Gourkanti S, Patel P, Vu LP, Leslie CS, Kharas MG. HyperTRIBE uncovers increased MUSASHI-2 RNA binding activity and differential regulation in leukemic stem cells. Nat Commun 2020; 11:2026. [PMID: 32332729 PMCID: PMC7181745 DOI: 10.1038/s41467-020-15814-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 03/25/2020] [Indexed: 01/16/2023] Open
Abstract
The cell-context dependency for RNA binding proteins (RBPs) mediated control of stem cell fate remains to be defined. Here we adapt the HyperTRIBE method using an RBP fused to a Drosophila RNA editing enzyme (ADAR) to globally map the mRNA targets of the RBP MSI2 in mammalian adult normal and malignant stem cells. We reveal a unique MUSASHI-2 (MSI2) mRNA binding network in hematopoietic stem cells that changes during transition to multipotent progenitors. Additionally, we discover a significant increase in RNA binding activity of MSI2 in leukemic stem cells compared with normal hematopoietic stem and progenitor cells, resulting in selective regulation of MSI2's oncogenic targets. This provides a basis for MSI2 increased dependency in leukemia cells compared to normal cells. Moreover, our study provides a way to measure RBP function in rare cells and suggests that RBPs can achieve differential binding activity during cell state transition independent of gene expression.
Collapse
Affiliation(s)
- Diu T T Nguyen
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Yuheng Lu
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Blavatnik Institute of System Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Eren L Chu
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Weill Cornell School of Medical Sciences, New York, NY, 10065, USA
| | - Xuejing Yang
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Sun-Mi Park
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Zi-Ning Choo
- Weill Cornell School of Medical Sciences, New York, NY, 10065, USA
| | | | - Camila Prieto
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Alexandra Schurer
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Ersilia Barin
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Angela M Savino
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Saroj Gourkanti
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Payal Patel
- Weill Cornell School of Medical Sciences, New York, NY, 10065, USA
| | - Ly P Vu
- Terry Fox Laboratory, British Columbia Cancer Research Centre, Vancouver, BC, V5Z 1L3, Canada
- Molecular Biology and Biochemistry, Simon Fraser University, Vancouver, BC, V5A 1S6, Canada
| | - Christina S Leslie
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael G Kharas
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
31
|
Allen AM, Neville MC, Birtles S, Croset V, Treiber CD, Waddell S, Goodwin SF. A single-cell transcriptomic atlas of the adult Drosophila ventral nerve cord. eLife 2020; 9:e54074. [PMID: 32314735 PMCID: PMC7173974 DOI: 10.7554/elife.54074] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 04/03/2020] [Indexed: 02/07/2023] Open
Abstract
The Drosophila ventral nerve cord (VNC) receives and processes descending signals from the brain to produce a variety of coordinated locomotor outputs. It also integrates sensory information from the periphery and sends ascending signals to the brain. We used single-cell transcriptomics to generate an unbiased classification of cellular diversity in the VNC of five-day old adult flies. We produced an atlas of 26,000 high-quality cells, representing more than 100 transcriptionally distinct cell types. The predominant gene signatures defining neuronal cell types reflect shared developmental histories based on the neuroblast from which cells were derived, as well as their birth order. The relative position of cells along the anterior-posterior axis could also be assigned using adult Hox gene expression. This single-cell transcriptional atlas of the adult fly VNC will be a valuable resource for future studies of neurodevelopment and behavior.
Collapse
Affiliation(s)
- Aaron M Allen
- Centre for Neural Circuits and Behaviour, University of OxfordOxfordUnited Kingdom
| | - Megan C Neville
- Centre for Neural Circuits and Behaviour, University of OxfordOxfordUnited Kingdom
| | - Sebastian Birtles
- Centre for Neural Circuits and Behaviour, University of OxfordOxfordUnited Kingdom
| | - Vincent Croset
- Centre for Neural Circuits and Behaviour, University of OxfordOxfordUnited Kingdom
| | | | - Scott Waddell
- Centre for Neural Circuits and Behaviour, University of OxfordOxfordUnited Kingdom
| | - Stephen F Goodwin
- Centre for Neural Circuits and Behaviour, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
32
|
Lee YJ, Yang CP, Miyares RL, Huang YF, He Y, Ren Q, Chen HM, Kawase T, Ito M, Otsuna H, Sugino K, Aso Y, Ito K, Lee T. Conservation and divergence of related neuronal lineages in the Drosophila central brain. eLife 2020; 9:53518. [PMID: 32255422 PMCID: PMC7173964 DOI: 10.7554/elife.53518] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/06/2020] [Indexed: 12/31/2022] Open
Abstract
Wiring a complex brain requires many neurons with intricate cell specificity, generated by a limited number of neural stem cells. Drosophila central brain lineages are a predetermined series of neurons, born in a specific order. To understand how lineage identity translates to neuron morphology, we mapped 18 Drosophila central brain lineages. While we found large aggregate differences between lineages, we also discovered shared patterns of morphological diversification. Lineage identity plus Notch-mediated sister fate govern primary neuron trajectories, whereas temporal fate diversifies terminal elaborations. Further, morphological neuron types may arise repeatedly, interspersed with other types. Despite the complexity, related lineages produce similar neuron types in comparable temporal patterns. Different stem cells even yield two identical series of dopaminergic neuron types, but with unrelated sister neurons. Together, these phenomena suggest that straightforward rules drive incredible neuronal complexity, and that large changes in morphology can result from relatively simple fating mechanisms.
Collapse
Affiliation(s)
- Ying-Jou Lee
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Ching-Po Yang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Rosa L Miyares
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Yu-Fen Huang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Yisheng He
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Qingzhong Ren
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Hui-Min Chen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Takashi Kawase
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Masayoshi Ito
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Hideo Otsuna
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Ken Sugino
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Yoshi Aso
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Kei Ito
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Tzumin Lee
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
33
|
Samuels TJ, Järvelin AI, Ish-Horowicz D, Davis I. Imp/IGF2BP levels modulate individual neural stem cell growth and division through myc mRNA stability. eLife 2020; 9:e51529. [PMID: 31934860 PMCID: PMC7025822 DOI: 10.7554/elife.51529] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 01/13/2020] [Indexed: 12/24/2022] Open
Abstract
The numerous neurons and glia that form the brain originate from tightly controlled growth and division of neural stem cells, regulated systemically by important known stem cell-extrinsic signals. However, the cell-intrinsic mechanisms that control the distinctive proliferation rates of individual neural stem cells are unknown. Here, we show that the size and division rates of Drosophila neural stem cells (neuroblasts) are controlled by the highly conserved RNA binding protein Imp (IGF2BP), via one of its top binding targets in the brain, myc mRNA. We show that Imp stabilises myc mRNA leading to increased Myc protein levels, larger neuroblasts, and faster division rates. Declining Imp levels throughout development limit myc mRNA stability to restrain neuroblast growth and division, and heterogeneous Imp expression correlates with myc mRNA stability between individual neuroblasts in the brain. We propose that Imp-dependent regulation of myc mRNA stability fine-tunes individual neural stem cell proliferation rates.
Collapse
Affiliation(s)
- Tamsin J Samuels
- Department of BiochemistryThe University of OxfordOxfordUnited Kingdom
| | - Aino I Järvelin
- Department of BiochemistryThe University of OxfordOxfordUnited Kingdom
| | - David Ish-Horowicz
- Department of BiochemistryThe University of OxfordOxfordUnited Kingdom
- MRC Laboratory for Molecular Cell BiologyUniversity CollegeLondonUnited Kingdom
| | - Ilan Davis
- Department of BiochemistryThe University of OxfordOxfordUnited Kingdom
| |
Collapse
|
34
|
Genovese S, Clément R, Gaultier C, Besse F, Narbonne-Reveau K, Daian F, Foppolo S, Luis NM, Maurange C. Coopted temporal patterning governs cellular hierarchy, heterogeneity and metabolism in Drosophila neuroblast tumors. eLife 2019; 8:e50375. [PMID: 31566561 PMCID: PMC6791719 DOI: 10.7554/elife.50375] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/29/2019] [Indexed: 12/30/2022] Open
Abstract
It is still unclear what drives progression of childhood tumors. During Drosophila larval development, asymmetrically-dividing neural stem cells, called neuroblasts, progress through an intrinsic temporal patterning program that ensures cessation of divisions before adulthood. We previously showed that temporal patterning also delineates an early developmental window during which neuroblasts are susceptible to tumor initiation (Narbonne-Reveau et al., 2016). Using single-cell transcriptomics, clonal analysis and numerical modeling, we now identify a network of twenty larval temporal patterning genes that are redeployed within neuroblast tumors to trigger a robust hierarchical division scheme that perpetuates growth while inducing predictable cell heterogeneity. Along the hierarchy, temporal patterning genes define a differentiation trajectory that regulates glucose metabolism genes to determine the proliferative properties of tumor cells. Thus, partial redeployment of the temporal patterning program encoded in the cell of origin may govern the hierarchy, heterogeneity and growth properties of neural tumors with a developmental origin.
Collapse
Affiliation(s)
- Sara Genovese
- Aix Marseille Univ, CNRS, IBDM, Equipe Labellisée LIGUE Contre le CancerMarseilleFrance
| | - Raphaël Clément
- Aix Marseille Univ, CNRS, IBDM, Equipe Labellisée LIGUE Contre le CancerMarseilleFrance
| | - Cassandra Gaultier
- Aix Marseille Univ, CNRS, IBDM, Equipe Labellisée LIGUE Contre le CancerMarseilleFrance
| | - Florence Besse
- Université Côte d’Azur, CNRS, Inserm, Institut de Biologie ValroseNiceFrance
| | | | - Fabrice Daian
- Aix Marseille Univ, CNRS, IBDM, Equipe Labellisée LIGUE Contre le CancerMarseilleFrance
| | - Sophie Foppolo
- Aix Marseille Univ, CNRS, IBDM, Equipe Labellisée LIGUE Contre le CancerMarseilleFrance
| | - Nuno Miguel Luis
- Aix Marseille Univ, CNRS, IBDM, Equipe Labellisée LIGUE Contre le CancerMarseilleFrance
| | - Cédric Maurange
- Aix Marseille Univ, CNRS, IBDM, Equipe Labellisée LIGUE Contre le CancerMarseilleFrance
| |
Collapse
|
35
|
Liu LY, Long X, Yang CP, Miyares RL, Sugino K, Singer RH, Lee T. Mamo decodes hierarchical temporal gradients into terminal neuronal fate. eLife 2019; 8:e48056. [PMID: 31545163 PMCID: PMC6764822 DOI: 10.7554/elife.48056] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/20/2019] [Indexed: 12/20/2022] Open
Abstract
Temporal patterning is a seminal method of expanding neuronal diversity. Here we unravel a mechanism decoding neural stem cell temporal gene expression and transforming it into discrete neuronal fates. This mechanism is characterized by hierarchical gene expression. First, Drosophila neuroblasts express opposing temporal gradients of RNA-binding proteins, Imp and Syp. These proteins promote or inhibit chinmo translation, yielding a descending neuronal gradient. Together, first and second-layer temporal factors define a temporal expression window of BTB-zinc finger nuclear protein, Mamo. The precise temporal induction of Mamo is achieved via both transcriptional and post-transcriptional regulation. Finally, Mamo is essential for the temporally defined, terminal identity of α'/β' mushroom body neurons and identity maintenance. We describe a straightforward paradigm of temporal fate specification where diverse neuronal fates are defined via integrating multiple layers of gene regulation. The neurodevelopmental roles of orthologous/related mammalian genes suggest a fundamental conservation of this mechanism in brain development.
Collapse
Affiliation(s)
- Ling-Yu Liu
- Howard Hughes Medical Institute, Janelia Research CampusAshburnUnited States
| | - Xi Long
- Howard Hughes Medical Institute, Janelia Research CampusAshburnUnited States
| | - Ching-Po Yang
- Howard Hughes Medical Institute, Janelia Research CampusAshburnUnited States
| | - Rosa L Miyares
- Howard Hughes Medical Institute, Janelia Research CampusAshburnUnited States
| | - Ken Sugino
- Howard Hughes Medical Institute, Janelia Research CampusAshburnUnited States
| | - Robert H Singer
- Howard Hughes Medical Institute, Janelia Research CampusAshburnUnited States
- Department of Anatomy and Structural Biology, Gruss Lipper Biophotonics CenterAlbert Einstein College of MedicineNew YorkUnited States
- Dominick P Purpura Department of Neuroscience, Gruss Lipper Biophotonics CenterAlbert Einstein College of MedicineNew YorkUnited States
| | - Tzumin Lee
- Howard Hughes Medical Institute, Janelia Research CampusAshburnUnited States
| |
Collapse
|
36
|
van den Ameele J, Brand AH. Neural stem cell temporal patterning and brain tumour growth rely on oxidative phosphorylation. eLife 2019; 8:47887. [PMID: 31513013 PMCID: PMC6763261 DOI: 10.7554/elife.47887] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/11/2019] [Indexed: 02/07/2023] Open
Abstract
Translating advances in cancer research to clinical applications requires better insight into the metabolism of normal cells and tumour cells in vivo. Much effort has focused on understanding how glycolysis and oxidative phosphorylation (OxPhos) support proliferation, while their impact on other aspects of development and tumourigenesis remain largely unexplored. We found that inhibition of OxPhos in neural stem cells (NSCs) or tumours in the Drosophila brain not only decreases proliferation, but also affects many different aspects of stem cell behaviour. In NSCs, OxPhos dysfunction leads to a protracted G1/S-phase and results in delayed temporal patterning and reduced neuronal diversity. As a consequence, NSCs fail to undergo terminal differentiation, leading to prolonged neurogenesis into adulthood. Similarly, in brain tumours inhibition of OxPhos slows proliferation and prevents differentiation, resulting in reduced tumour heterogeneity. Thus, in vivo, highly proliferative stem cells and tumour cells require OxPhos for efficient growth and generation of diversity.
Collapse
Affiliation(s)
- Jelle van den Ameele
- The Gurdon Institute, Cambridge, United Kingdom.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Andrea H Brand
- The Gurdon Institute, Cambridge, United Kingdom.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
37
|
Hakes AE, Brand AH. Neural stem cell dynamics: the development of brain tumours. Curr Opin Cell Biol 2019; 60:131-138. [PMID: 31330360 DOI: 10.1016/j.ceb.2019.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 02/08/2023]
Abstract
Determining the premalignant lesions that develop into malignant tumours remains a daunting task. Brain tumours are frequently characterised by a block in differentiation, implying that normal developmental pathways become hijacked during tumourigenesis. However, the heterogeneity of stem cells and their progenitors in the brain suggests there are many potential routes to tumour initiation. Studies in Drosophila melanogaster have enhanced our understanding of the tumourigenic potential of distinct cell types in the brain. Here we review recent studies that have improved our knowledge of neural stem cell behaviour during development and in brain tumour models.
Collapse
Affiliation(s)
- Anna E Hakes
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Andrea H Brand
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.
| |
Collapse
|
38
|
E93 Integrates Neuroblast Intrinsic State with Developmental Time to Terminate MB Neurogenesis via Autophagy. Curr Biol 2019; 29:750-762.e3. [PMID: 30773368 DOI: 10.1016/j.cub.2019.01.039] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/05/2018] [Accepted: 01/14/2019] [Indexed: 12/17/2022]
Abstract
Most neurogenesis occurs during development, driven by the cell divisions of neural stem cells (NSCs). We use Drosophila to understand how neurogenesis terminates once development is complete, a process critical for neural circuit formation. We identified E93, a steroid-hormone-induced transcription factor that downregulates phosphatidylinositol 3-kinase (PI3K) levels to activate autophagy for elimination of mushroom body (MB) neuroblasts. MB neuroblasts are a subset of Drosophila NSCs that generate neurons important for memory and learning. MB neurogenesis extends into adulthood when E93 is reduced and terminates prematurely when E93 is overexpressed. E93 is expressed in MB neuroblasts during later stages of pupal development only, which includes the time when MB neuroblasts normally terminate their divisions. Cell intrinsic Imp and Syp temporal factors regulate timing of E93 expression in MB neuroblasts, and extrinsic steroid hormone receptor (EcR) activation boosts E93 levels high for termination. Imp inhibits premature expression of E93 in a Syp-dependent manner, and Syp positively regulates E93 to promote neurogenesis termination. Imp and Syp together with E93 form a temporal cassette, which consequently links early developmental neurogenesis with termination. Altogether, E93 functions as a late-acting temporal factor integrating extrinsic hormonal cues linked to developmental timing with neuroblast intrinsic temporal cues to precisely time neurogenesis ending during development.
Collapse
|
39
|
Guo H, Duyzend MH, Coe BP, Baker C, Hoekzema K, Gerdts J, Turner TN, Zody MC, Beighley JS, Murali SC, Nelson BJ, Bamshad MJ, Nickerson DA, Bernier RA, Eichler EE. Genome sequencing identifies multiple deleterious variants in autism patients with more severe phenotypes. Genet Med 2018; 21:1611-1620. [PMID: 30504930 DOI: 10.1038/s41436-018-0380-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/13/2018] [Indexed: 12/11/2022] Open
Abstract
PURPOSE To maximize the discovery of potentially pathogenic variants to better understand the diagnostic utility of genome sequencing (GS) and to assess how the presence of multiple risk events might affect the phenotypic severity in autism spectrum disorders (ASD). METHODS GS was applied to 180 simplex and multiplex ASD families (578 individuals, 213 patients) with exome sequencing and array comparative genomic hybridization further applied to a subset for validation and cross-platform comparisons. RESULTS We found that 40.8% of patients carried variants with evidence of disease risk, including a de novo frameshift variant in NR4A2 and two de novo missense variants in SYNCRIP, while 21.1% carried clinically relevant pathogenic or likely pathogenic variants. Patients with more than one risk variant (9.9%) were more severely affected with respect to cognitive ability compared with patients with a single or no-risk variant. We observed no instance among the 27 multiplex families where a pathogenic or likely pathogenic variant was transmitted to all affected members in the family. CONCLUSION The study demonstrates the diagnostic utility of GS, especially for multiple risk variants that contribute to the phenotypic severity, shows the genetic heterogeneity in multiplex families, and provides evidence for new genes for follow up.
Collapse
Affiliation(s)
- Hui Guo
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA.,Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Michael H Duyzend
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Bradley P Coe
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Carl Baker
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Jennifer Gerdts
- Department of Psychiatry, University of Washington, Seattle, WA, USA
| | - Tychele N Turner
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | | | | | - Shwetha C Murali
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Bradley J Nelson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Michael J Bamshad
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Raphael A Bernier
- Department of Psychiatry, University of Washington, Seattle, WA, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA. .,Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
40
|
Miyares RL, Lee T. Temporal control of Drosophila central nervous system development. Curr Opin Neurobiol 2018; 56:24-32. [PMID: 30500514 DOI: 10.1016/j.conb.2018.10.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 10/30/2018] [Indexed: 12/19/2022]
Abstract
A complex nervous system requires precise numbers of various neuronal types produced with exquisite spatiotemporal control. This striking diversity is generated by a limited number of neural stem cells (NSC), where spatial and temporal patterning intersect. Drosophila is a genetically tractable model system that has significant advantages for studying stem cell biology and neuronal fate specification. Here we review the latest findings in the rich literature of temporal patterning of neuronal identity in the Drosophila central nervous system. Rapidly changing consecutive transcription factors expressed in NSCs specify short series of neurons with considerable differences. More slowly progressing changes are orchestrated by NSC intrinsic temporal factor gradients which integrate extrinsic signals to coordinate nervous system and organismal development.
Collapse
Affiliation(s)
- Rosa Linda Miyares
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Tzumin Lee
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA.
| |
Collapse
|
41
|
Harding K, White K. Drosophila as a Model for Developmental Biology: Stem Cell-Fate Decisions in the Developing Nervous System. J Dev Biol 2018; 6:E25. [PMID: 30347666 PMCID: PMC6315890 DOI: 10.3390/jdb6040025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/25/2022] Open
Abstract
Stem cells face a diversity of choices throughout their lives. At specific times, they may decide to initiate cell division, terminal differentiation, or apoptosis, or they may enter a quiescent non-proliferative state. Neural stem cells in the Drosophila central nervous system do all of these, at stereotypical times and anatomical positions during development. Distinct populations of neural stem cells offer a unique system to investigate the regulation of a particular stem cell behavior, while comparisons between populations can lead us to a broader understanding of stem cell identity. Drosophila is a well-described and genetically tractable model for studying fundamental stem cell behavior and the mechanisms that underlie cell-fate decisions. This review will focus on recent advances in our understanding of the factors that contribute to distinct stem cell-fate decisions within the context of the Drosophila nervous system.
Collapse
Affiliation(s)
- Katherine Harding
- Massachusetts General Hospital Cutaneous Biology Research Center, Harvard Medical School, Boston, MA 02129, USA
| | - Kristin White
- Massachusetts General Hospital Cutaneous Biology Research Center, Harvard Medical School, Boston, MA 02129, USA.
| |
Collapse
|
42
|
Olesnicky EC, Wright EG. Drosophila as a Model for Assessing the Function of RNA-Binding Proteins during Neurogenesis and Neurological Disease. J Dev Biol 2018; 6:E21. [PMID: 30126171 PMCID: PMC6162566 DOI: 10.3390/jdb6030021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/15/2018] [Accepted: 08/15/2018] [Indexed: 12/16/2022] Open
Abstract
An outstanding question in developmental neurobiology is how RNA processing events contribute to the regulation of neurogenesis. RNA processing events are increasingly recognized as playing fundamental roles in regulating multiple developmental events during neurogenesis, from the asymmetric divisions of neural stem cells, to the generation of complex and diverse neurite morphologies. Indeed, both asymmetric cell division and neurite morphogenesis are often achieved by mechanisms that generate asymmetric protein distributions, including post-transcriptional gene regulatory mechanisms such as the transport of translationally silent messenger RNAs (mRNAs) and local translation of mRNAs within neurites. Additionally, defects in RNA splicing have emerged as a common theme in many neurodegenerative disorders, highlighting the importance of RNA processing in maintaining neuronal circuitry. RNA-binding proteins (RBPs) play an integral role in splicing and post-transcriptional gene regulation, and mutations in RBPs have been linked with multiple neurological disorders including autism, dementia, amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), Fragile X syndrome (FXS), and X-linked intellectual disability disorder. Despite their widespread nature and roles in neurological disease, the molecular mechanisms and networks of regulated target RNAs have been defined for only a small number of specific RBPs. This review aims to highlight recent studies in Drosophila that have advanced our knowledge of how RBP dysfunction contributes to neurological disease.
Collapse
Affiliation(s)
- Eugenia C Olesnicky
- Department of Biology, University of Colorado Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, CO 80918, USA.
| | - Ethan G Wright
- Department of Biology, University of Colorado Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, CO 80918, USA.
| |
Collapse
|
43
|
Bakshi A, Joshi R. Understanding the regulation of neural stem cell proliferation in Drosophila central nervous system. J Neurosci Res 2018; 96:1119-1120. [PMID: 29577373 DOI: 10.1002/jnr.24234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 02/28/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Asif Bakshi
- Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India.,Manipal Academy of Higher Education, Manipal, India
| | - Rohit Joshi
- Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| |
Collapse
|
44
|
Abstract
A long non-coding RNA molecule called cherub is a driver of tumor development.
Collapse
Affiliation(s)
- Jennifer A Malin
- Department of Biology, New York University, New York, United States
| | - Claude Desplan
- Department of Biology, New York University, New York, United States
| |
Collapse
|
45
|
Landskron L, Steinmann V, Bonnay F, Burkard TR, Steinmann J, Reichardt I, Harzer H, Laurenson AS, Reichert H, Knoblich JA. The asymmetrically segregating lncRNA cherub is required for transforming stem cells into malignant cells. eLife 2018; 7:31347. [PMID: 29580384 PMCID: PMC5871330 DOI: 10.7554/elife.31347] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 02/06/2018] [Indexed: 12/20/2022] Open
Abstract
Tumor cells display features that are not found in healthy cells. How they become immortal and how their specific features can be exploited to combat tumorigenesis are key questions in tumor biology. Here we describe the long non-coding RNA cherub that is critically required for the development of brain tumors in Drosophila but is dispensable for normal development. In mitotic Drosophila neural stem cells, cherub localizes to the cell periphery and segregates into the differentiating daughter cell. During tumorigenesis, de-differentiation of cherub-high cells leads to the formation of tumorigenic stem cells that accumulate abnormally high cherub levels. We show that cherub establishes a molecular link between the RNA-binding proteins Staufen and Syncrip. As Syncrip is part of the molecular machinery specifying temporal identity in neural stem cells, we propose that tumor cells proliferate indefinitely, because cherub accumulation no longer allows them to complete their temporal neurogenesis program. Many biological signals control how cells grow and divide. However, cancer cells do not obey these growth-restricting signals, and as a result large tumors may develop. Recent experiments have suggested that stem cells – the precursors to the different types of specialized cells found in the body – are particularly important for generating tumors. A stem cell normally divides unequally to form a self-renewing cell and a more specialized cell (often a progenitor cell that will give rise to increasingly specialized cell types). The timing of when the specialization occurs can be key to guiding the ultimately produced cell progenies to their final identity. However, in a tumor cells can retain the ability to self-renew. Ultimately, the resulting ‘tumor stem cells’ become immortal and proliferate indefinitely. It is not fully understood why this uncontrolled proliferation occurs. Just like mammals (including humans), fruit flies can develop tumors. Some of the DNA mutations responsible for tumor development were already identified in flies as early as in the 1970s. This has made fruit flies a well-studied model system for uncovering the principle defects that cause tumors to form. Landskron et al. have now studied the neural stem cells found in brain tumors in fruit flies. Additional DNA mutations were not responsible for these cells becoming immortal. Instead, certain RNA molecules – products that are ‘transcribed’ from the DNA – were present in different amounts in tumor cells. The RNA that showed the greatest increase in tumor cells is a so-called long non-coding RNA named cherub. This RNA molecule has no important role in normal fruit flies, but is critical for tumor formation. Landskron et al. found that during cell division cherub segregates from the neural stem cells to the newly formed progenitor cells, where it breaks down over time. Progenitor cells that contain high levels of cherub give rise to tumor-generating neural stem cells. At the molecular level, cherubhelps two proteins to interact with each other: one called Syncrip that makes the neural stem cells take on a older identity, and another one (Staufen) that tethers it to the cell membrane. By restricting Syncrip to a particular location in the cell, cherub alters the timing of stem cell specialization, which contributes to tumor formation. Overall, the results presented by Landskron et al. reveal a new role for long non-coding RNAs: controlling the localization of the proteins that determine the fate of the cell. They also highlight a critical link between the timing of stem cell development and the proliferation of the cells. Further work is now needed to test whether the same control mechanism works in species other than fruit flies.
Collapse
Affiliation(s)
- Lisa Landskron
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Victoria Steinmann
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Francois Bonnay
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Thomas R Burkard
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Jonas Steinmann
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Ilka Reichardt
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Heike Harzer
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | | | | | - Jürgen A Knoblich
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
46
|
Dillard C, Narbonne-Reveau K, Foppolo S, Lanet E, Maurange C. Two distinct mechanisms silence chinmo in Drosophila neuroblasts and neuroepithelial cells to limit their self-renewal. Development 2018; 145:dev.154534. [PMID: 29361557 DOI: 10.1242/dev.154534] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 12/18/2017] [Indexed: 02/03/2023]
Abstract
Whether common principles regulate the self-renewing potential of neural stem cells (NSCs) throughout the developing central nervous system is still unclear. In the Drosophila ventral nerve cord and central brain, asymmetrically dividing NSCs, called neuroblasts (NBs), progress through a series of sequentially expressed transcription factors that limits self-renewal by silencing a genetic module involving the transcription factor Chinmo. Here, we find that Chinmo also promotes neuroepithelium growth in the optic lobe during early larval stages by boosting symmetric self-renewing divisions while preventing differentiation. Neuroepithelium differentiation in late larvae requires the transcriptional silencing of chinmo by ecdysone, the main steroid hormone, therefore allowing coordination of neural stem cell self-renewal with organismal growth. In contrast, chinmo silencing in NBs is post-transcriptional and does not require ecdysone. Thus, during Drosophila development, humoral cues or tissue-intrinsic temporal specification programs respectively limit self-renewal in different types of neural progenitors through the transcriptional and post-transcriptional regulation of the same transcription factor.
Collapse
Affiliation(s)
- Caroline Dillard
- Aix Marseille Univ, CNRS, IBDM, Campus de Luminy Case 907, 13288 Marseille Cedex 9, France
| | - Karine Narbonne-Reveau
- Aix Marseille Univ, CNRS, IBDM, Campus de Luminy Case 907, 13288 Marseille Cedex 9, France
| | - Sophie Foppolo
- Aix Marseille Univ, CNRS, IBDM, Campus de Luminy Case 907, 13288 Marseille Cedex 9, France
| | - Elodie Lanet
- Aix Marseille Univ, CNRS, IBDM, Campus de Luminy Case 907, 13288 Marseille Cedex 9, France
| | - Cédric Maurange
- Aix Marseille Univ, CNRS, IBDM, Campus de Luminy Case 907, 13288 Marseille Cedex 9, France
| |
Collapse
|
47
|
Syed MH, Mark B, Doe CQ. Playing Well with Others: Extrinsic Cues Regulate Neural Progenitor Temporal Identity to Generate Neuronal Diversity. Trends Genet 2017; 33:933-942. [PMID: 28899597 DOI: 10.1016/j.tig.2017.08.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 08/18/2017] [Accepted: 08/18/2017] [Indexed: 11/27/2022]
Abstract
During neurogenesis, vertebrate and Drosophila progenitors change over time as they generate a diverse population of neurons and glia. Vertebrate neural progenitors have long been known to use both progenitor-intrinsic and progenitor-extrinsic cues to regulate temporal patterning. In contrast, virtually all temporal patterning mechanisms discovered in Drosophila neural progenitors (neuroblasts) involve progenitor-intrinsic temporal transcription factor cascades. Recent results, however, have revealed several extrinsic pathways that regulate Drosophila neuroblast temporal patterning: nutritional cues regulate the timing of neuroblast proliferation/quiescence and a steroid hormone cue that is required for temporal transcription factor expression. Here, we discuss newly discovered extrinsic cues regulating neural progenitor temporal identity in Drosophila, highlight conserved mechanisms, and raise open questions for the future.
Collapse
Affiliation(s)
- Mubarak Hussain Syed
- Institute of Neuroscience, Institute of Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| | - Brandon Mark
- Institute of Neuroscience, Institute of Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| | - Chris Q Doe
- Institute of Neuroscience, Institute of Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|