1
|
Zhao S, Rong J. Single-cell RNA-seq reveals a link of ovule abortion and sugar transport in Camellia oleifera. FRONTIERS IN PLANT SCIENCE 2024; 15:1274013. [PMID: 38371413 PMCID: PMC10869455 DOI: 10.3389/fpls.2024.1274013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024]
Abstract
Camellia oleifera is the most important woody oil crop in China. Seed number per fruit is an important yield trait in C. oleifera. Ovule abortion is generally observed in C. oleifera and significantly decreases the seed number per fruit. However, the mechanisms of ovule abortion remain poorly understood at present. Single-cell RNA sequencing (scRNA-seq) was performed using mature ovaries of two C. oleifera varieties with different ovule abortion rates (OARs). In total, 20,526 high-quality cells were obtained, and 18 putative cell clusters were identified. Six cell types including female gametophyte, protoxylem, protophloem, procambium, epidermis, and parenchyma cells were identified from three main tissue types of ovule, placenta, and pericarp inner layer. A comparative analysis on scRNA-seq data between high- and low-OAR varieties demonstrated that the overall expression of CoSWEET and CoCWINV in procambium cells, and CoSTP in the integument was significantly upregulated in the low-OAR variety. Both the infertile ovule before pollination and the abortion ovule producing after compatible pollination might be attributed to selective abortion caused by low sugar levels in the apoplast around procambium cells and a low capability of hexose uptake in the integument. Here, the first single-cell transcriptional landscape is reported in woody crop ovaries. Our investigation demonstrates that ovule abortion may be related to sugar transport in placenta and ovules and sheds light on further deciphering the mechanism of regulating sugar transport and the improvement of seed yield in C. oleifera.
Collapse
Affiliation(s)
- Songzi Zhao
- Jiangxi Province Key Laboratory of Camellia Germplasm Conservation and Utilization, Jiangxi Academy of Forestry, Nanchang, China
| | - Jun Rong
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Center for Watershed Ecology, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Expression and Functional Analyses of the WIP Gene Family in Arabidopsis. PLANTS 2022; 11:plants11152010. [PMID: 35956487 PMCID: PMC9425439 DOI: 10.3390/plants11152010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022]
Abstract
The WIP family of transcription factors comprises the A1d subgroup of C2H2 zinc finger proteins. This family has six members in Arabidopsis thaliana and most of the known functions have been described by analyzing single knockout mutants. However, it has been shown that WIP2 and its closest paralogs WIP4 and WIP5 have a redundant and essential function in root meristems. It is likely that these and other WIP genes perform more, still unknown, functions. To obtain hints about these other functions, the expression of the six WIP genes was explored. Moreover, phenotypic ana-lyses of overexpressors and wip mutants revealed functions in modulating organ and cell size, stomatal density, and vasculature development.
Collapse
|
3
|
He S, Ma R, Liu Z, Zhang D, Wang S, Guo Y, Chen M. Overexpression of BnaAGL11, a MADS-Box Transcription Factor, Regulates Leaf Morphogenesis and Senescence in Brassica napus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3420-3434. [PMID: 35261232 DOI: 10.1021/acs.jafc.1c07622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Previous studies have reported that SEEDSTICK/AGAMOUS-LIKE 11 (AtSTK/AtAGL11), a MADS-box transcription factor, plays important roles in many biological processes in Arabidopsis thaliana. However, the function of BnaAGL11, an AtAGL11 homologous gene from Brassica napus, in leaf development remains unknown. Here, we found that the ectopic expression of any copy of Bna.C09.AGL11, Bna.A03.AGL11, and Bna.A09.AGL11 in A. thaliana led to smaller and curly leaves and promoted leaf senescence. Consistently, the overexpression of Bna.C09.AGL11 in B. napus also caused smaller and curly leaves and accelerated leaf senescence. Furthermore, we demonstrated that Bna.C09.AGL11 controlled leaf morphogenesis by indirectly downregulating the genes of Bna.A01.DWF4 and Bna.C07.PGX3 and promoted leaf senescence by indirectly upregulating the genes of Bna.A04.ABI5, Bna.A05.ABI5, Bna.C04.ABI5-1, and Bna.C01.SEN4 and directly activating the transcription of Bna.C04.ABI5-2 and Bna.C03.SEN4 genes. Our results provide new insights into the underlying regulatory mechanism of BnaAGL11 during leaf development in B. napus.
Collapse
Affiliation(s)
- Shuangcheng He
- State Key Laboratory of Crop Stress Biology for Arid Areas, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Rong Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zijin Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Da Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shixiang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuan Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mingxun Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
4
|
Abstract
Flowering plants produce flowers and one of the most complex floral structures is the pistil or the gynoecium. All the floral organs differentiate from the floral meristem. Various reviews exist on molecular mechanisms controlling reproductive development, but most focus on a short time window and there has been no recent review on the complete developmental time frame of gynoecium and fruit formation. Here, we highlight recent discoveries, including the players, interactions and mechanisms that govern gynoecium and fruit development in Arabidopsis. We also present the currently known gene regulatory networks from gynoecium initiation until fruit maturation.
Collapse
Affiliation(s)
- Humberto Herrera-Ubaldo
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Km. 9.6 Libramiento Norte, Carretera Irapuato-León, Irapuato 36824, Guanajuato, México
| | - Stefan de Folter
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Km. 9.6 Libramiento Norte, Carretera Irapuato-León, Irapuato 36824, Guanajuato, México
| |
Collapse
|
5
|
Paolo D, Orozco-Arroyo G, Rotasperti L, Masiero S, Colombo L, de Folter S, Ambrose BA, Caporali E, Ezquer I, Mizzotti C. Genetic Interaction of SEEDSTICK, GORDITA and AUXIN RESPONSE FACTOR 2 during Seed Development. Genes (Basel) 2021; 12:1189. [PMID: 34440362 PMCID: PMC8393894 DOI: 10.3390/genes12081189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
Seed development is under the control of complex and coordinated molecular networks required for the formation of its different components. The seed coat development largely determines final seed size and shape, in addition to playing a crucial role in protecting the embryo and promoting germination. In this study, we investigated the role of three transcription factors known to be active during seed development in Arabidopsis thaliana: SEEDSTICK (STK) and GORDITA (GOA), two MADS-domain proteins, and AUXIN RESPONSE FACTOR 2 (ARF2), belonging to the ARF family. Through a reverse genetic approach, we characterized the seed phenotypes of all the single, double and triple loss-of-function mutants in relation to seed size/shape and the effects on metabolic pathways occurring in the seed coat. This approach revealed that dynamic networks involving these TFs are active throughout ovule and seed development, affecting the formation of the seed coat. Notably, while the genetic interaction among these genes results in synergies that control the promotion of cell expansion in the seed coat upon pollination and production of proanthocyanidins, functional antagonists arise in the control of cell proliferation and release of mucilage.
Collapse
Affiliation(s)
- Dario Paolo
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milano, Italy; (D.P.); (G.O.-A.); (L.R.); (S.M.); (L.C.); (E.C.); (I.E.)
| | - Gregorio Orozco-Arroyo
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milano, Italy; (D.P.); (G.O.-A.); (L.R.); (S.M.); (L.C.); (E.C.); (I.E.)
| | - Lisa Rotasperti
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milano, Italy; (D.P.); (G.O.-A.); (L.R.); (S.M.); (L.C.); (E.C.); (I.E.)
| | - Simona Masiero
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milano, Italy; (D.P.); (G.O.-A.); (L.R.); (S.M.); (L.C.); (E.C.); (I.E.)
| | - Lucia Colombo
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milano, Italy; (D.P.); (G.O.-A.); (L.R.); (S.M.); (L.C.); (E.C.); (I.E.)
| | - Stefan de Folter
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato CP 36824, Guanajuato, Mexico;
| | | | - Elisabetta Caporali
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milano, Italy; (D.P.); (G.O.-A.); (L.R.); (S.M.); (L.C.); (E.C.); (I.E.)
| | - Ignacio Ezquer
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milano, Italy; (D.P.); (G.O.-A.); (L.R.); (S.M.); (L.C.); (E.C.); (I.E.)
| | - Chiara Mizzotti
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milano, Italy; (D.P.); (G.O.-A.); (L.R.); (S.M.); (L.C.); (E.C.); (I.E.)
| |
Collapse
|
6
|
Cruz-Valderrama JE, Bernal-Gallardo JJ, Herrera-Ubaldo H, de Folter S. Building a Flower: The Influence of Cell Wall Composition on Flower Development and Reproduction. Genes (Basel) 2021; 12:genes12070978. [PMID: 34206830 PMCID: PMC8304806 DOI: 10.3390/genes12070978] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/22/2022] Open
Abstract
Floral patterning is a complex task. Various organs and tissues must be formed to fulfill reproductive functions. Flower development has been studied, mainly looking for master regulators. However, downstream changes such as the cell wall composition are relevant since they allow cells to divide, differentiate, and grow. In this review, we focus on the main components of the primary cell wall-cellulose, hemicellulose, and pectins-to describe how enzymes involved in the biosynthesis, modifications, and degradation of cell wall components are related to the formation of the floral organs. Additionally, internal and external stimuli participate in the genetic regulation that modulates the activity of cell wall remodeling proteins.
Collapse
|
7
|
Di Marzo M, Herrera-Ubaldo H, Caporali E, Novák O, Strnad M, Balanzà V, Ezquer I, Mendes MA, de Folter S, Colombo L. SEEDSTICK Controls Arabidopsis Fruit Size by Regulating Cytokinin Levels and FRUITFULL. Cell Rep 2021; 30:2846-2857.e3. [PMID: 32101756 DOI: 10.1016/j.celrep.2020.01.101] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/13/2019] [Accepted: 01/29/2020] [Indexed: 12/29/2022] Open
Abstract
Upon fertilization, the ovary increases in size and undergoes a complex developmental process to become a fruit. We show that cytokinins (CKs), which are required to determine ovary size before fertilization, have to be degraded to facilitate fruit growth. The expression of CKX7, which encodes a cytosolic CK-degrading enzyme, is directly positively regulated post-fertilization by the MADS-box transcription factor STK. Similar to stk, two ckx7 mutants possess shorter fruits than wild type. Quantification of CKs reveals that stk and ckx7 mutants have high CK levels, which negatively control cell expansion during fruit development, compromising fruit growth. Overexpression of CKX7 partially complements the stk fruit phenotype, confirming a role for CK degradation in fruit development. Finally, we show that STK is required for the expression of FUL, which is essential for valve elongation. Overall, we provide insights into the link between CKs and molecular pathways that control fruit growth.
Collapse
Affiliation(s)
- Maurizio Di Marzo
- Dipartimento di BioScienze, Università degli Studi di Milano, Milan, Milan 20133, Italy
| | - Humberto Herrera-Ubaldo
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36824, México
| | - Elisabetta Caporali
- Dipartimento di BioScienze, Università degli Studi di Milano, Milan, Milan 20133, Italy
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science of Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Olomouc 78371, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Faculty of Science of Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Olomouc 78371, Czech Republic
| | - Vicente Balanzà
- Dipartimento di BioScienze, Università degli Studi di Milano, Milan, Milan 20133, Italy; Instituto de Biologia Molecular y Celular de Plantas, Consejo Superior de Investigacione Cientificas, Universidad Politecnica de Valencia, Valencia, Valencia 46022, Spain
| | - Ignacio Ezquer
- Dipartimento di BioScienze, Università degli Studi di Milano, Milan, Milan 20133, Italy
| | - Marta A Mendes
- Dipartimento di BioScienze, Università degli Studi di Milano, Milan, Milan 20133, Italy
| | - Stefan de Folter
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36824, México
| | - Lucia Colombo
- Dipartimento di BioScienze, Università degli Studi di Milano, Milan, Milan 20133, Italy.
| |
Collapse
|
8
|
Paving the Way for Fertilization: The Role of the Transmitting Tract. Int J Mol Sci 2021; 22:ijms22052603. [PMID: 33807566 PMCID: PMC7961442 DOI: 10.3390/ijms22052603] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 01/12/2023] Open
Abstract
Angiosperm reproduction relies on the precise growth of the pollen tube through different pistil tissues carrying two sperm cells into the ovules’ embryo sac, where they fuse with the egg and the central cell to accomplish double fertilization and ultimately initiate seed development. A network of intrinsic and tightly regulated communication and signaling cascades, which mediate continuous interactions between the pollen tube and the sporophytic and gametophytic female tissues, ensures the fast and meticulous growth of pollen tubes along the pistil, until it reaches the ovule embryo sac. Most of the pollen tube growth occurs in a specialized tissue—the transmitting tract—connecting the stigma, the style, and the ovary. This tissue is composed of highly secretory cells responsible for producing an extensive extracellular matrix. This multifaceted matrix is proposed to support and provide nutrition and adhesion for pollen tube growth and guidance. Insights pertaining to the mechanisms that underlie these processes remain sparse due to the difficulty of accessing and manipulating the female sporophytic tissues enclosed in the pistil. Here, we summarize the current knowledge on this key step of reproduction in flowering plants with special emphasis on the female transmitting tract tissue.
Collapse
|
9
|
Paolo D, Rotasperti L, Schnittger A, Masiero S, Colombo L, Mizzotti C. The Arabidopsis MADS-Domain Transcription Factor SEEDSTICK Controls Seed Size via Direct Activation of E2Fa. PLANTS 2021; 10:plants10020192. [PMID: 33498552 PMCID: PMC7909557 DOI: 10.3390/plants10020192] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/08/2021] [Accepted: 01/16/2021] [Indexed: 02/06/2023]
Abstract
Seed size is the result of complex molecular networks controlling the development of the seed coat (of maternal origin) and the two fertilization products, the embryo and the endosperm. In this study we characterized the role of Arabidopsis thaliana MADS-domain transcription factor SEEDSTICK (STK) in seed size control. STK is known to regulate the differentiation of the seed coat as well as the structural and mechanical properties of cell walls in developing seeds. In particular, we further characterized stk mutant seeds. Genetic evidence (reciprocal crosses) of the inheritance of the small-seed phenotype, together with the provided analysis of cell division activity (flow cytometry), demonstrate that STK acts in the earlier phases of seed development as a maternal activator of growth. Moreover, we describe a molecular mechanism underlying this activity by reporting how STK positively regulates cell cycle progression via directly activating the expression of E2Fa, a key regulator of the cell cycle. Altogether, our results unveil a new genetic network active in the maternal control of seed size in Arabidopsis.
Collapse
Affiliation(s)
- Dario Paolo
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milano, Italy; (D.P.); (L.R.); (S.M.); (L.C.)
| | - Lisa Rotasperti
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milano, Italy; (D.P.); (L.R.); (S.M.); (L.C.)
| | - Arp Schnittger
- Abteilung für Entwicklungsbiologie, Institut für Pflanzenforschung und Mikrobiologie, Universität Hamburg, 22609 Hamburg, Germany;
| | - Simona Masiero
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milano, Italy; (D.P.); (L.R.); (S.M.); (L.C.)
| | - Lucia Colombo
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milano, Italy; (D.P.); (L.R.); (S.M.); (L.C.)
| | - Chiara Mizzotti
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milano, Italy; (D.P.); (L.R.); (S.M.); (L.C.)
- Correspondence: ; Tel.: +39-02-503-14838
| |
Collapse
|
10
|
Mendes MA, Petrella R, Cucinotta M, Vignati E, Gatti S, Pinto SC, Bird DC, Gregis V, Dickinson H, Tucker MR, Colombo L. The RNA-dependent DNA methylation pathway is required to restrict SPOROCYTELESS/NOZZLE expression to specify a single female germ cell precursor in Arabidopsis. Development 2020; 147:dev194274. [PMID: 33158925 PMCID: PMC7758631 DOI: 10.1242/dev.194274] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022]
Abstract
In higher plants, the female germline is formed from the megaspore mother cell (MMC), a single cell in the premeiotic ovule. Previously, it was reported that mutants in the RNA-dependent DNA methylation (RdDM) pathway might be involved in restricting the female germline to a single nucellus cell. We show that the DRM methyltransferase double mutant drm1drm2 also presents ectopic enlarged cells, consistent with supernumerary MMC-like cells. In wild-type ovules, MMC differentiation requires SPOROCYTELESS/NOZZLE (SPL/NZZ), as demonstrated by the spl/nzz mutant failing to develop an MMC. We address the poorly understood upstream regulation of SPL/NZZ in ovules, showing that the RdDM pathway is important to restrict SPL/NZZ expression. In ago9, rdr6 and drm1drm2 mutants, SPL/NZZ is expressed ectopically, suggesting that the multiple MMC-like cells observed might be attributable to the ectopic expression of SPL/NZZ. We show that the ovule identity gene, SEEDSTICK, directly regulates AGO9 and RDR6 expression in the ovule and therefore indirectly regulates SPL/NZZ expression. A model is presented describing the network required to restrict SPL/NZZ expression to specify a single MMC.
Collapse
Affiliation(s)
- Marta A Mendes
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Rosanna Petrella
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Mara Cucinotta
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Edoardo Vignati
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Stefano Gatti
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Sara C Pinto
- LAQV REQUIMTE, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Dayton C Bird
- School of Agriculture, Food, and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Veronica Gregis
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Hugh Dickinson
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Matthew R Tucker
- School of Agriculture, Food, and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Lucia Colombo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| |
Collapse
|
11
|
Three STIGMA AND STYLE STYLISTs Pattern the Fine Architectures of Apical Gynoecium and Are Critical for Male Gametophyte-Pistil Interaction. Curr Biol 2020; 30:4780-4788.e5. [PMID: 33007250 DOI: 10.1016/j.cub.2020.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 08/02/2020] [Accepted: 09/03/2020] [Indexed: 11/22/2022]
Abstract
The gynoecium is derived from the fusion of carpels and is considered to have evolved from a simple setup followed by adaptive adjustment in cell type and tissue distribution to facilitate efficient sexual reproduction [1, 2]. As a sequence of the adjustment, the apical gynoecium differentiates into a stigma and a style. Both the structural patterning and functional specification of the apical gynoecium are critical for plant fertility [3, 4]. However, how the fine structures of the apical gynoecium are established at the interface interacting with pollen and pollen tubes remain to be elucidated. Here, we report a novel angiosperm-specific gene family, STIGMA AND STYLE STYLIST 1-3 (SSS1, SSS2, and SSS3). The SSS1 expresses predominately in the transmitting tract tissue of style, SSS2 expresses intensively in stigma, and SSS3 expresses mainly in stylar peripheral region round the transmitting tract. SSSs coregulate the patterning of the apical gynoecium via controlling cell expansion or elongation. Both the architecture and function of apical gynoecium can be affected by the alteration of SSS expression, indicating their critical roles in the establishment of a proper female interface for communication with pollen tubes. The NGATHA3 (NGA3) transcription factor [5, 6] can directly bind to SSSs promoter and control SSSs expression. Overexpression of SSSs could rescue the stylar defect of nga1nga3 double mutant, indicating their context in the same regulatory pathway. Our findings reveal a novel molecular mechanism responsible for patterning the fine architecture of apical gynoecium and establishing a proper interface for pollen tube growth, which is therefore crucial for plant sexual reproduction.
Collapse
|
12
|
Petrella R, Caselli F, Roig-Villanova I, Vignati V, Chiara M, Ezquer I, Tadini L, Kater MM, Gregis V. BPC transcription factors and a Polycomb Group protein confine the expression of the ovule identity gene SEEDSTICK in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:582-599. [PMID: 31909505 DOI: 10.1111/tpj.14673] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 12/05/2019] [Accepted: 12/20/2019] [Indexed: 05/26/2023]
Abstract
The BASIC PENTACYSTEINE (BPC) GAGA (C-box) binding proteins belong to a small plant transcription factor family. We previously reported that class I BPCs bind directly to C-boxes in the SEEDSTICK (STK) promoter and the mutagenesis of these cis-elements affects STK expression in the flower. The MADS-domain factor SHORT VEGETATIVE PHASE (SVP) is another key regulator of STK. Direct binding of SVP to CArG-boxes in the STK promoter are required to repress its expression during the first stages of flower development. Here we show that class II BPCs directly interact with SVP and that MADS-domain binding sites in the STK promoter region are important for the correct spatial and temporal expression of this homeotic gene. Furthermore, we show that class I and class II BPCs act redundantly to repress STK expression in the flower, most likely by recruiting TERMINAL FLOWER 2/LIKE HETEROCHROMATIN PROTEIN 1 (TFL2/LHP1) and mediating the establishment and the maintenance of H3K27me3 repressive marks on DNA. We investigate the role of LHP1 in the regulation of STK expression. In addition to providing a better understanding of the role of BPC transcription factors in the regulation of STK expression, our results suggest the existence of a more general regulatory complex composed of BPCs, MADS-domain factors and Polycomb Repressive Complexes that co-operate to regulate gene expression in reproductive tissues. We believe that our data along with the molecular model described here could provide significant insights for a more comprehensive understanding of gene regulation in plants.
Collapse
Affiliation(s)
- Rosanna Petrella
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Francesca Caselli
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Irma Roig-Villanova
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
- Department of Agri-Food Engineering and Biotechnology, Barcelona School of Agricultural Engineering, UPC, Esteve Terrades 8, Building 4, 08860, Castelldefels, Spain
| | - Valentina Vignati
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Matteo Chiara
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Ignacio Ezquer
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Luca Tadini
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Martin M Kater
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Veronica Gregis
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| |
Collapse
|
13
|
Ezquer I, Salameh I, Colombo L, Kalaitzis P. Plant Cell Walls Tackling Climate Change: Insights into Plant Cell Wall Remodeling, Its Regulation, and Biotechnological Strategies to Improve Crop Adaptations and Photosynthesis in Response to Global Warming. PLANTS (BASEL, SWITZERLAND) 2020; 9:E212. [PMID: 32041306 PMCID: PMC7076711 DOI: 10.3390/plants9020212] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/24/2020] [Accepted: 02/03/2020] [Indexed: 11/16/2022]
Abstract
Plant cell wall (CW) is a complex and intricate structure that performs several functions throughout the plant life cycle. The CW of plants is critical to the maintenance of cells' structural integrity by resisting internal hydrostatic pressures, providing flexibility to support cell division and expansion during tissue differentiation, and acting as an environmental barrier that protects the cells in response to abiotic stress. Plant CW, comprised primarily of polysaccharides, represents the largest sink for photosynthetically fixed carbon, both in plants and in the biosphere. The CW structure is highly varied, not only between plant species but also among different organs, tissues, and cell types in the same organism. During the developmental processes, the main CW components, i.e., cellulose, pectins, hemicelluloses, and different types of CW-glycoproteins, interact constantly with each other and with the environment to maintain cell homeostasis. Differentiation processes are altered by positional effect and are also tightly linked to environmental changes, affecting CW both at the molecular and biochemical levels. The negative effect of climate change on the environment is multifaceted, from high temperatures, altered concentrations of greenhouse gases such as increasing CO2 in the atmosphere, soil salinity, and drought, to increasing frequency of extreme weather events taking place concomitantly, therefore, climate change affects crop productivity in multiple ways. Rising CO2 concentration in the atmosphere is expected to increase photosynthetic rates, especially at high temperatures and under water-limited conditions. This review aims to synthesize current knowledge regarding the effects of climate change on CW biogenesis and modification. We discuss specific cases in crops of interest carrying cell wall modifications that enhance tolerance to climate change-related stresses; from cereals such as rice, wheat, barley, or maize to dicots of interest such as brassica oilseed, cotton, soybean, tomato, or potato. This information could be used for the rational design of genetic engineering traits that aim to increase the stress tolerance in key crops. Future growing conditions expose plants to variable and extreme climate change factors, which negatively impact global agriculture, and therefore further research in this area is critical.
Collapse
Affiliation(s)
- Ignacio Ezquer
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Ilige Salameh
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania (MAICh), P.O. Box 85, 73100 Chania, Greece; (I.S.); (P.K.)
| | - Lucia Colombo
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Panagiotis Kalaitzis
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania (MAICh), P.O. Box 85, 73100 Chania, Greece; (I.S.); (P.K.)
| |
Collapse
|
14
|
Becker A. A molecular update on the origin of the carpel. CURRENT OPINION IN PLANT BIOLOGY 2020; 53:15-22. [PMID: 31622798 DOI: 10.1016/j.pbi.2019.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/16/2019] [Accepted: 08/27/2019] [Indexed: 05/29/2023]
Abstract
Carpels, the female reproductive organs of flowering plants, are of major economic importance since much of our food is ultimately derived from carpel tissue and they are a defining innovation for flowering plants. Amazingly, little is known about the origin and conservation of the developmental program of the carpel besides the knowledge generated by utilizing Arabidopsis thaliana. However, in the past few years advances in ancestral state reconstruction, developmental genetics, and phylogenetic analyses led to advances in the field of flower evodevo. Here, I summarize recent work on ancestral state reconstructions of carpels, and the functions of the major components of the genetic networks governing carpel development described for Arabidopsis. Then, I point out how the stepwise addition of genes during land plant evolution has generated the A. thaliana carpel's developmental toolkit. By merging these observations, I propose a basic version of the ancestral angiosperm carpel developmental network.
Collapse
Affiliation(s)
- Annette Becker
- Justus-Liebig-University, Department of Biology and Chemistry, Institute of Botany, Heinrich-Buff-Ring 38, 35392 Gießen, Germany.
| |
Collapse
|
15
|
Di Marzo M, Roig-Villanova I, Zanchetti E, Caselli F, Gregis V, Bardetti P, Chiara M, Guazzotti A, Caporali E, Mendes MA, Colombo L, Kater MM. MADS-Box and bHLH Transcription Factors Coordinate Transmitting Tract Development in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:526. [PMID: 32435255 PMCID: PMC7219087 DOI: 10.3389/fpls.2020.00526] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/07/2020] [Indexed: 05/14/2023]
Abstract
The MADS-domain transcription factor SEEDSTICK (STK) controls several aspects of plant reproduction. STK is co-expressed with CESTA (CES), a basic Helix-Loop-Helix (bHLH) transcription factor-encoding gene. CES was reported to control redundantly with the brassinosteroid positive signaling factors BRASSINOSTEROID ENHANCED EXPRESSION1 (BEE1) and BEE3 the development of the transmitting tract. Combining the stk ces-4 mutants led to a reduction in ovule fertilization due to a defect in carpel fusion which, caused the formation of holes at the center of the septum where the transmitting tract differentiates. Combining the stk mutant with the bee1 bee3 ces-4 triple mutant showed an increased number of unfertilized ovules and septum defects. The transcriptome profile of this quadruple mutant revealed a small subset of differentially expressed genes which are mainly involved in cell death, extracellular matrix and cell wall development. Our data evidence a regulatory gene network controlling transmitting tract development regulated directly or indirectly by a STK-CES containing complex and reveal new insights in the regulation of transmitting tract development by bHLH and MADS-domain transcription factors.
Collapse
|
16
|
Zúñiga-Mayo VM, Gómez-Felipe A, Herrera-Ubaldo H, de Folter S. Gynoecium development: networks in Arabidopsis and beyond. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1447-1460. [PMID: 30715461 DOI: 10.1093/jxb/erz026] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/14/2019] [Indexed: 05/27/2023]
Abstract
Life has always found a way to preserve itself. One strategy that has been developed for this purpose is sexual reproduction. In land plants, the gynoecium is considered to be at the top of evolutionary innovation, since it has been a key factor in the success of the angiosperms. The gynoecium is composed of carpels with different tissues that need to develop and differentiate in the correct way. In order to control and guide gynoecium development, plants have adapted elements of pre-existing gene regulatory networks (GRNs) but new ones have also evolved. The GRNs can interact with internal factors (e.g. hormones and other metabolites) and external factors (e.g. mechanical signals and temperature) at different levels, giving robustness and flexibility to gynoecium development. Here, we review recent findings regarding the role of cytokinin-auxin crosstalk and the genes that connect these hormonal pathways during early gynoecium development. We also discuss some examples of internal and external factors that can modify GRNs. Finally, we make a journey through the flowering plant lineage to determine how conserved are these GRNs that regulate gynoecium and fruit development.
Collapse
Affiliation(s)
- Victor M Zúñiga-Mayo
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Guanajuato, México
| | - Andrea Gómez-Felipe
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Guanajuato, México
| | - Humberto Herrera-Ubaldo
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Guanajuato, México
| | - Stefan de Folter
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Guanajuato, México
| |
Collapse
|