1
|
Morales EA, Wang S. Salivary gland developmental mechanics. Curr Top Dev Biol 2024; 160:1-30. [PMID: 38937029 DOI: 10.1016/bs.ctdb.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The salivary gland undergoes branching morphogenesis to elaborate into a tree-like structure with numerous saliva-secreting acinar units, all joined by a hierarchical ductal system. The expansive epithelial surface generated by branching morphogenesis serves as the structural basis for the efficient production and delivery of saliva. Here, we elucidate the process of salivary gland morphogenesis, emphasizing the role of mechanics. Structurally, the developing salivary gland is characterized by a stratified epithelium tightly encased by the basement membrane, which is in turn surrounded by a mesenchyme consisting of a dense network of interstitial matrix and mesenchymal cells. Diverse cell types and extracellular matrices bestow this developing organ with organized, yet spatially varied mechanical properties. For instance, the surface epithelial sheet of the bud is highly fluidic due to its high cell motility and weak cell-cell adhesion, rendering it highly pliable. In contrast, the inner core of the bud is more rigid, characterized by reduced cell motility and strong cell-cell adhesion, which likely provide structural support for the tissue. The interactions between the surface epithelial sheet and the inner core give rise to budding morphogenesis. Furthermore, the basement membrane and the mesenchyme offer mechanical constraints that could play a pivotal role in determining the higher-order architecture of a fully mature salivary gland.
Collapse
Affiliation(s)
- E Angelo Morales
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - Shaohe Wang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States.
| |
Collapse
|
2
|
Chen YP, Shao Y, Chen PC, Li K, Li JY, Meng J, Lv CL, Liu HY, Lv C, Feng XQ, Li B. Substrate nesting guides cyst morphogenesis of human pluripotent stem cells without 3D extracellular matrix overlay. Acta Biomater 2023; 170:519-531. [PMID: 37659729 DOI: 10.1016/j.actbio.2023.08.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 08/20/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
Understanding the principles underlying the self-organization of stem cells into tissues is fundamental for deciphering human embryo development. Here, we report that, without three-dimensional (3D) extracellular matrix (ECM) overlay, human pluripotent stem cells (hPSCs) cultured on two-dimensional soft elastic substrates can self-organize into 3D cysts resembling the human epiblast sac in a stiffness-dependent manner. Our theoretical modeling predicts that this cyst organization is facilitated and guided by the spontaneous nesting of the soft substrate, which results from the adhesion-dependent mechanical interaction between cells and substrate. Such substrate nesting is sufficient for the 3D assembly and polarization of hPSCs required for cyst organization, even without 3D ECM overlay. Furthermore, we identify that the reversible substrate nesting and cyst morphogenesis also require appropriate activation of ROCK-Myosin II pathway. This indicates a unique set of tissue morphomechanical signaling mechanisms that clearly differ from the canonical cystogenic mechanism previously reported in 3D ECM. Our findings highlight an unanticipated synergy between mechanical microenvironment and mechanotransduction in controlling tissue morphogenesis and suggest a mechanics-based strategy for generation of hPSCs-derived models for early human embryogenesis. STATEMENT OF SIGNIFICANCE: Soft substrates can induce the self-organization of human pluripotent stem cells (hPSCs) into cysts without three-dimensional (3D) extracellular matrix (ECM) overlay. However, the underlying mechanisms by which soft substrate guides cystogenesis are largely unknown. This study shows that substrate nesting, resulting from cell-substrate interaction, plays an important role in cyst organization, including 3D assembly and apical-basal polarization. Additionally, actomyosin contractility mediated by the ROCK-Myosin II pathway also contributes to the substrate deformation and cyst morphology. These findings demonstrate the interplay between the mechanical microenvironment and cells in tissue morphogenesis, suggesting a mechanics-based strategy in building hPSC-derived models for early human embryo development.
Collapse
Affiliation(s)
- Yun-Ping Chen
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Yue Shao
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Peng-Cheng Chen
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Kun Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Jing-Yi Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Jie Meng
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Cheng-Lin Lv
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Hao-Yu Liu
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Cunjing Lv
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.
| | - Bo Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
3
|
Bai Y, Zhao F, Wu T, Chen F, Pang X. Actin polymerization and depolymerization in developing vertebrates. Front Physiol 2023; 14:1213668. [PMID: 37745245 PMCID: PMC10515290 DOI: 10.3389/fphys.2023.1213668] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Development is a complex process that occurs throughout the life cycle. F-actin, a major component of the cytoskeleton, is essential for the morphogenesis of tissues and organs during development. F-actin is formed by the polymerization of G-actin, and the dynamic balance of polymerization and depolymerization ensures proper cellular function. Disruption of this balance results in various abnormalities and defects or even embryonic lethality. Here, we reviewed recent findings on the structure of G-actin and F-actin and the polymerization of G-actin to F-actin. We also focused on the functions of actin isoforms and the underlying mechanisms of actin polymerization/depolymerization in cellular and organic morphogenesis during development. This information will extend our understanding of the role of actin polymerization in the physiologic or pathologic processes during development and may open new avenues for developing therapeutics for embryonic developmental abnormalities or tissue regeneration.
Collapse
Affiliation(s)
- Yang Bai
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Feng Zhao
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Tingting Wu
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Fangchun Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xiaoxiao Pang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
4
|
Myllymäki SM, Kaczyńska B, Lan Q, Mikkola ML. Spatially coordinated cell cycle activity and motility govern bifurcation of mammary branches. J Cell Biol 2023; 222:e202209005. [PMID: 37367826 PMCID: PMC10300433 DOI: 10.1083/jcb.202209005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 03/03/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Branching morphogenesis is an evolutionary solution to maximize epithelial function in a compact organ. It involves successive rounds of branch elongation and branch point formation to generate a tubular network. In all organs, branch points can form by tip splitting, but it is unclear how tip cells coordinate elongation and branching. Here, we addressed these questions in the embryonic mammary gland. Live imaging revealed that tips advance by directional cell migration and elongation relies upon differential cell motility that feeds a retrograde flow of lagging cells into the trailing duct, supported by tip proliferation. Tip bifurcation involved localized repression of cell cycle and cell motility at the branch point. Cells in the nascent daughter tips remained proliferative but changed their direction to elongate new branches. We also report the fundamental importance of epithelial cell contractility for mammary branching morphogenesis. The co-localization of cell motility, non-muscle myosin II, and ERK activities at the tip front suggests coordination/cooperation between these functions.
Collapse
Affiliation(s)
- Satu-Marja Myllymäki
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Beata Kaczyńska
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Qiang Lan
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Marja L. Mikkola
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Sampietro M, Cassina V, Salerno D, Barbaglio F, Buglione E, Marrano CA, Campanile R, Scarfò L, Biedenweg D, Fregin B, Zamai M, Díaz Torres A, Labrador Cantarero V, Ghia P, Otto O, Mantegazza F, Caiolfa VR, Scielzo C. The Nanomechanical Properties of CLL Cells Are Linked to the Actin Cytoskeleton and Are a Potential Target of BTK Inhibitors. Hemasphere 2023; 7:e931. [PMID: 37492437 PMCID: PMC10365208 DOI: 10.1097/hs9.0000000000000931] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/15/2023] [Indexed: 07/27/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is an incurable disease characterized by an intense trafficking of the leukemic cells between the peripheral blood and lymphoid tissues. It is known that the ability of lymphocytes to recirculate strongly depends on their capability to rapidly rearrange their cytoskeleton and adapt to external cues; however, little is known about the differences occurring between CLL and healthy B cells during these processes. To investigate this point, we applied a single-cell optical (super resolution microscopy) and nanomechanical approaches (atomic force microscopy, real-time deformability cytometry) to both CLL and healthy B lymphocytes and compared their behavior. We demonstrated that CLL cells have a specific actomyosin complex organization and altered mechanical properties in comparison to their healthy counterpart. To evaluate the clinical relevance of our findings, we treated the cells in vitro with the Bruton's tyrosine kinase inhibitors and we found for the first time that the drug restores the CLL cells mechanical properties to a healthy phenotype and activates the actomyosin complex. We further validated these results in vivo on CLL cells isolated from patients undergoing ibrutinib treatment. Our results suggest that CLL cells' mechanical properties are linked to their actin cytoskeleton organization and might be involved in novel mechanisms of drug resistance, thus becoming a new potential therapeutic target aiming at the normalization of the mechanical fingerprints of the leukemic cells.
Collapse
Affiliation(s)
- Marta Sampietro
- School of Medicine and Surgery, BioNanoMedicine Center NANOMIB, Università di Milano-Bicocca, Vedano al Lambro, Italy
- Unit of Malignant B cells biology and 3D modelling, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
- Unit of Microscopy and Dynamic Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Valeria Cassina
- School of Medicine and Surgery, BioNanoMedicine Center NANOMIB, Università di Milano-Bicocca, Vedano al Lambro, Italy
| | - Domenico Salerno
- School of Medicine and Surgery, BioNanoMedicine Center NANOMIB, Università di Milano-Bicocca, Vedano al Lambro, Italy
| | - Federica Barbaglio
- Unit of Malignant B cells biology and 3D modelling, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Enrico Buglione
- School of Medicine and Surgery, BioNanoMedicine Center NANOMIB, Università di Milano-Bicocca, Vedano al Lambro, Italy
| | - Claudia Adriana Marrano
- School of Medicine and Surgery, BioNanoMedicine Center NANOMIB, Università di Milano-Bicocca, Vedano al Lambro, Italy
| | - Riccardo Campanile
- School of Medicine and Surgery, BioNanoMedicine Center NANOMIB, Università di Milano-Bicocca, Vedano al Lambro, Italy
| | - Lydia Scarfò
- Unit B Cell Neoplasia, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
- Strategic Research Program on CLL, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Doreen Biedenweg
- Klinik für Innere Medizin B, Universitätsmedizin Greifswald, Fleischmannstr, Germany
| | - Bob Fregin
- Deutsches Zentrum für Herz-Kreislauf-Forschung e.V., Standort Greifswald, Universitätsmedizin Greifswald, Fleischmannstr, Germany
- Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären Erkrankungen, Universität Greifswald, Fleischmannstr, Germany
- Institute of Physics, Universität Greifswald, Felix-Hausdorff-Strasse, Germany
| | - Moreno Zamai
- Unit of Microscopy and Dynamic Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Alfonsa Díaz Torres
- Unit of Microscopy and Dynamic Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Veronica Labrador Cantarero
- Unit of Microscopy and Dynamic Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Paolo Ghia
- Unit B Cell Neoplasia, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
- Strategic Research Program on CLL, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Oliver Otto
- Deutsches Zentrum für Herz-Kreislauf-Forschung e.V., Standort Greifswald, Universitätsmedizin Greifswald, Fleischmannstr, Germany
- Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären Erkrankungen, Universität Greifswald, Fleischmannstr, Germany
- Institute of Physics, Universität Greifswald, Felix-Hausdorff-Strasse, Germany
| | - Francesco Mantegazza
- School of Medicine and Surgery, BioNanoMedicine Center NANOMIB, Università di Milano-Bicocca, Vedano al Lambro, Italy
| | - Valeria R. Caiolfa
- Unit of Microscopy and Dynamic Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Experimental Imaging Center, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Cristina Scielzo
- Unit of Malignant B cells biology and 3D modelling, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
6
|
Paramore SV, Goodwin K, Nelson CM. How to build an epithelial tree. Phys Biol 2022; 19. [DOI: 10.1088/1478-3975/ac9e38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022]
Abstract
Abstract
Nature has evolved a variety of mechanisms to build epithelial trees of diverse architectures within different organs and across species. Epithelial trees are elaborated through branch initiation and extension, and their morphogenesis ends with branch termination. Each of these steps of the branching process can be driven by the actions of epithelial cells themselves (epithelial-intrinsic mechanisms) or by the cells of their surrounding tissues (epithelial-extrinsic mechanisms). Here, we describe examples of how these mechanisms drive each stage of branching morphogenesis, drawing primarily from studies of the lung, kidney, salivary gland, mammary gland, and pancreas, all of which contain epithelial trees that form through collective cell behaviors. Much of our understanding of epithelial branching comes from experiments using mice, but we also include examples here from avian and reptilian models. Throughout, we highlight how distinct mechanisms are employed in different organs and species to build epithelial trees. We also highlight how similar morphogenetic motifs are used to carry out conserved developmental programs or repurposed to support novel ones. Understanding the unique strategies used by nature to build branched epithelia from across the tree of life can help to inspire creative solutions to problems in tissue engineering and regenerative medicine.
Collapse
|