1
|
Mergenthaler P, Balami JS, Neuhaus AA, Mottahedin A, Albers GW, Rothwell PM, Saver JL, Young ME, Buchan AM. Stroke in the Time of Circadian Medicine. Circ Res 2024; 134:770-790. [PMID: 38484031 DOI: 10.1161/circresaha.124.323508] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/15/2024] [Indexed: 03/19/2024]
Abstract
Time-of-day significantly influences the severity and incidence of stroke. Evidence has emerged not only for circadian governance over stroke risk factors, but also for important determinants of clinical outcome. In this review, we provide a comprehensive overview of the interplay between chronobiology and cerebrovascular disease. We discuss circadian regulation of pathophysiological mechanisms underlying stroke onset or tolerance as well as in vascular dementia. This includes cell death mechanisms, metabolism, mitochondrial function, and inflammation/immunity. Furthermore, we present clinical evidence supporting the link between disrupted circadian rhythms and increased susceptibility to stroke and dementia. We propose that circadian regulation of biochemical and physiological pathways in the brain increase susceptibility to damage after stroke in sleep and attenuate treatment effectiveness during the active phase. This review underscores the importance of considering circadian biology for understanding the pathology and treatment choice for stroke and vascular dementia and speculates that considering a patient's chronotype may be an important factor in developing precision treatment following stroke.
Collapse
Affiliation(s)
- Philipp Mergenthaler
- Center for Stroke Research Berlin (P.M., A.M.B.), Charité - Universitätsmedizin Berlin, Germany
- Department of Neurology with Experimental Neurology (P.M.), Charité - Universitätsmedizin Berlin, Germany
- Stroke Research, Radcliffe Department of Medicine (P.M., J.S.B., A.A.N., A.M., A.M.B.), University of Oxford, United Kingdom
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Joyce S Balami
- Stroke Research, Radcliffe Department of Medicine (P.M., J.S.B., A.A.N., A.M., A.M.B.), University of Oxford, United Kingdom
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Ain A Neuhaus
- Stroke Research, Radcliffe Department of Medicine (P.M., J.S.B., A.A.N., A.M., A.M.B.), University of Oxford, United Kingdom
- Department of Radiology, Oxford University Hospitals NHS Foundation Trust, United Kingdom (A.A.N.)
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Amin Mottahedin
- Stroke Research, Radcliffe Department of Medicine (P.M., J.S.B., A.A.N., A.M., A.M.B.), University of Oxford, United Kingdom
- Nuffield Department of Clinical Neurosciences (A.M., P.M.R.), University of Oxford, United Kingdom
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Gregory W Albers
- Department of Neurology, Stanford Hospital, Palo Alto, CA (G.W.A.)
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Peter M Rothwell
- Nuffield Department of Clinical Neurosciences (A.M., P.M.R.), University of Oxford, United Kingdom
- Wolfson Centre for Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences (P.M.R.), University of Oxford, United Kingdom
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Jeffrey L Saver
- Department of Neurology and Comprehensive Stroke Center, Geffen School of Medicine, University of Los Angeles, CA (J.L.S.)
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Martin E Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham (M.E.Y.)
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Alastair M Buchan
- Center for Stroke Research Berlin (P.M., A.M.B.), Charité - Universitätsmedizin Berlin, Germany
- Stroke Research, Radcliffe Department of Medicine (P.M., J.S.B., A.A.N., A.M., A.M.B.), University of Oxford, United Kingdom
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| |
Collapse
|
2
|
van der Knaap N, Franx BAA, Majoie CBLM, van der Lugt A, Dijkhuizen RM. Implications of Post-recanalization Perfusion Deficit After Acute Ischemic Stroke: a Scoping Review of Clinical and Preclinical Imaging Studies. Transl Stroke Res 2024; 15:179-194. [PMID: 36653525 PMCID: PMC10796479 DOI: 10.1007/s12975-022-01120-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/20/2023]
Abstract
The goal of reperfusion therapy for acute ischemic stroke (AIS) is to restore cerebral blood flow through recanalization of the occluded vessel. Unfortunately, successful recanalization does not always result in favorable clinical outcome. Post-recanalization perfusion deficits (PRPDs), constituted by cerebral hypo- or hyperperfusion, may contribute to lagging patient recovery rates, but its clinical significance remains unclear. This scoping review provides an overview of clinical and preclinical findings on post-ischemic reperfusion, aiming to elucidate the pattern and consequences of PRPD from a translational perspective. The MEDLINE database was searched for quantitative clinical and preclinical studies of AIS reporting PRPD based on cerebral circulation parameters acquired by translational tomographic imaging methods. PRPD and stroke outcome were mapped on a charting table, creating an overview of PRPD after AIS. Twenty-two clinical and twenty-two preclinical studies were included. Post-recanalization hypoperfusion is rarely reported in clinical studies (4/22) but unequivocally associated with detrimental outcome. Post-recanalization hyperperfusion is more commonly reported (18/22 clinical studies) and may be associated with positive or negative outcome. PRPD has been replicated in animal studies, offering mechanistic insights into causes and consequences of PRPD and allowing delineation of possible courses of PRPD. Complex relationships exist between PRPD and stroke outcome. Diversity in methods and lack of standardized definitions in reperfusion studies complicate the characterization of reperfusion patterns. Recommendations are made to advance the understanding of PRPD mechanisms and to further disentangle the relation between PRPD and disease outcome.
Collapse
Affiliation(s)
- Noa van der Knaap
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Bart A A Franx
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands.
| | - Charles B L M Majoie
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Location University of Amsterdam, Amsterdam, The Netherlands
| | - Aad van der Lugt
- Department of Radiology & Nuclear Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rick M Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
3
|
Walther J, Kirsch EM, Hellwig L, Schmerbeck SS, Holloway PM, Buchan AM, Mergenthaler P. Reinventing the Penumbra - the Emerging Clockwork of a Multi-modal Mechanistic Paradigm. Transl Stroke Res 2023; 14:643-666. [PMID: 36219377 PMCID: PMC10444697 DOI: 10.1007/s12975-022-01090-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022]
Abstract
The concept of the ischemic penumbra was originally defined as the area around a necrotic stroke core and seen as the tissue at imminent risk of further damage. Today, the penumbra is generally considered as time-sensitive hypoperfused brain tissue with decreased oxygen and glucose availability, salvageable tissue as treated by intervention, and the potential target for neuroprotection in focal stroke. The original concept entailed electrical failure and potassium release but one short of neuronal cell death and was based on experimental stroke models, later confirmed in clinical imaging studies. However, even though the basic mechanisms have translated well, conferring brain protection, and improving neurological outcome after stroke based on the pathophysiological mechanisms in the penumbra has yet to be achieved. Recent findings shape the modern understanding of the penumbra revealing a plethora of molecular and cellular pathophysiological mechanisms. We now propose a new model of the penumbra, one which we hope will lay the foundation for future translational success. We focus on the availability of glucose, the brain's central source of energy, and bioenergetic failure as core pathophysiological concepts. We discuss the relation of mitochondrial function in different cell types to bioenergetics and apoptotic cell death mechanisms, autophagy, and neuroinflammation, to glucose metabolism in what is a dynamic ischemic penumbra.
Collapse
Affiliation(s)
- Jakob Walther
- Charité - Universitätsmedizin Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Elena Marie Kirsch
- Charité - Universitätsmedizin Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Lina Hellwig
- Charité - Universitätsmedizin Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Sarah S Schmerbeck
- Charité - Universitätsmedizin Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Paul M Holloway
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Alastair M Buchan
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK.
| | - Philipp Mergenthaler
- Charité - Universitätsmedizin Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, NeuroCure Clinical Research Center, Charitéplatz 1, 10117, Berlin, Germany.
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK.
| |
Collapse
|
4
|
Kosugi A, Saga Y, Kudo M, Koizumi M, Umeda T, Seki K. Time course of recovery of different motor functions following a reproducible cortical infarction in non-human primates. Front Neurol 2023; 14:1094774. [PMID: 36846141 PMCID: PMC9947718 DOI: 10.3389/fneur.2023.1094774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/12/2023] [Indexed: 02/11/2023] Open
Abstract
A major challenge in human stroke research is interpatient variability in the extent of sensorimotor deficits and determining the time course of recovery following stroke. Although the relationship between the extent of the lesion and the degree of sensorimotor deficits is well established, the factors determining the speed of recovery remain uncertain. To test these experimentally, we created a cortical lesion over the motor cortex using a reproducible approach in four common marmosets, and characterized the time course of recovery by systematically applying several behavioral tests before and up to 8 weeks after creation of the lesion. Evaluation of in-cage behavior and reach-to-grasp movement revealed consistent motor impairments across the animals. In particular, performance in reaching and grasping movements continued to deteriorate until 4 weeks after creation of the lesion. We also found consistent time courses of recovery across animals for in-cage and grasping movements. For example, in all animals, the score for in-cage behaviors showed full recovery at 3 weeks after creation of the lesion, and the performance of grasping movement partially recovered from 4 to 8 weeks. In addition, we observed longer time courses of recovery for reaching movement, which may rely more on cortically initiated control in this species. These results suggest that different recovery speeds for each movement could be influenced by what extent the cortical control is required to properly execute each movement.
Collapse
Affiliation(s)
- Akito Kosugi
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yosuke Saga
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Moeko Kudo
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Masashi Koizumi
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tatsuya Umeda
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan,Department of Integrated Neuroanatomy and Neuroimaging, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuhiko Seki
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan,*Correspondence: Kazuhiko Seki ✉
| |
Collapse
|
5
|
A clinically relevant model of focal embolic cerebral ischemia by thrombus and thrombolysis in rhesus monkeys. Nat Protoc 2022; 17:2054-2084. [PMID: 35760857 DOI: 10.1038/s41596-022-00707-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 03/29/2022] [Indexed: 11/08/2022]
Abstract
Over decades of research into the treatment of stroke, nearly all attempts to translate experimental treatments from discovery in cells and rodents to use in humans have failed. The prevailing belief is that it might be necessary to pretest pharmacological neuroprotection in higher-order brains, especially those of nonhuman primates (NHPs). Over the past few years, chemical thrombolysis and mechanical thrombectomy have been established as the standard of care for ischemic stroke in patients. The spotlight is now shifting towards emphasizing both focal ischemia and subsequent reperfusion in developing a clinically relevant stroke model in NHPs. This protocol describes an embolic model of middle cerebral artery occlusion in adult rhesus monkeys. An autologous clot is combined with a microcatheter or microwire through endovascular procedures, and reperfusion is achieved through local intra-artery thrombolysis with tissue plasminogen activator. These NHP models formed relatively stable infarct sizes, delivered predictable reperfusion and survival outcomes, and recapitulated key characteristics of patients with ischemic stroke as observed on MRI images and behavioral assays. Importantly, treated animals could survive 30 d after the surgery for post-stroke neurologic deficit analyses. Thus far, this model has been used in several translational studies. Here we describe in detail the teamwork necessary for developing stroke models of NHPs, including the preoperation preparations, endovascular surgery, postoperation management and histopathological analysis. The model can be established by the following procedures over a 45-d period, including preparation steps (14 d), endovascular operation (1 d) and evaluation steps (30 d).
Collapse
|
6
|
Friedrich J, Lindauer U, Höllig A. Procedural and Methodological Quality in Preclinical Stroke Research-A Cohort Analysis of the Rat MCAO Model Comparing Periods Before and After the Publication of STAIR/ARRIVE. Front Neurol 2022; 13:834003. [PMID: 35707032 PMCID: PMC9190283 DOI: 10.3389/fneur.2022.834003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/12/2022] [Indexed: 11/24/2022] Open
Abstract
The translation of preclinical stroke research into successful human clinical trials remains a challenging task. The first Stroke Therapy Academic Industry Roundtable (STAIR) recommendations for preclinical research and several other guidelines were published to address these challenges. Most guidelines recommend the use of physiological monitoring to detect the occurrence of undesired pathologies such as subarachnoid hemorrhage and to limit the variability of the infarct volume and–therefore-homogenize the experimental result for complete reporting particularly with respect to transparency and methodological rigor. From the years 2009 and 2019, 100 published articles each using a rat stroke model were analyzed to quantify parameters related to anesthesia, physiological monitoring, stroke model type, ischemia verification, and overall study quality over time. No significant difference in the frequency of cerebral blood flow (CBF) measurements over time (28/34% for 2009/2019) was found. Notably, significantly fewer studies reported temperature, blood pressure, and blood gas monitoring data in 2019 compared to 2009. On the other hand, an increase in general study quality parameters (e.g., randomization, reporting of approval) was seen. In conclusion, the frequency of periinterventional monitoring has decreased over time. Some general methodological quality aspects, however, partially have increased. CBF measurement–the gold standard for ischemia verification-was applied rarely. Despite the growing recognition of current guidelines such as STAIR and ARRIVE (both widely approved in 2019) reporting, methods and procedures mostly do not follow these guidelines. These deficits may contribute to the translational failure of preclinical stroke research in search for neuroprotective therapies.
Collapse
Affiliation(s)
| | - Ute Lindauer
- Department of Neurosurgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Anke Höllig
- Department of Neurosurgery, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
7
|
Mostajeran M, Edvinsson L, Ahnstedt H, Arkelius K, Ansar S. Repair-related molecular changes during recovery phase of ischemic stroke in female rats. BMC Neurosci 2022; 23:23. [PMID: 35413803 PMCID: PMC9004052 DOI: 10.1186/s12868-022-00696-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Some degree of spontaneous recovery is usually observed after stroke. Experimental studies have provided information about molecular mechanisms underlying this recovery. However, the majority of pre-clinical stroke studies are performed in male rodents, and females are not well studied. This is a clear discrepancy when considering the clinical situation. Thus, it is important to include females in the evaluation of recovery mechanisms for future therapeutic strategies. This study aimed to evaluate spontaneous recovery and molecular mechanisms involved in the recovery phase two weeks after stroke in female rats. METHODS Transient middle cerebral artery occlusion was induced in female Wistar rats using a filament model. Neurological functions were assessed up to day 14 after stroke. Protein expression of interleukin 10 (IL-10), transforming growth factor (TGF)-β, neuronal specific nuclei protein (NeuN), nestin, tyrosine-protein kinase receptor Tie-2, extracellular signal-regulated kinase (ERK) 1/2, and Akt were evaluated in the peri-infarct and ischemic core compared to contralateral side of the brain at day 14 by western blot. Expression of TGF-β in middle cerebral arteries was evaluated by immunohistochemistry. RESULTS Spontaneous recovery after stroke was observed from day 2 to day 14 and was accompanied by a significantly higher expression of nestin, p-Akt, p-ERK1/2 and TGF-β in ischemic regions compared to contralateral side at day 14. In addition, a significantly higher expression of TGF-β was observed in occluded versus non-occluded middle cerebral arteries. The expression of Tie-2 and IL-10 did not differ between the ischemic and contralateral sides. CONCLUSION Spontaneous recovery after ischemic stroke in female rats was coincided by a difference observed in the expression of molecular markers. The alteration of these markers might be of importance to address future therapeutic strategies.
Collapse
Affiliation(s)
- Maryam Mostajeran
- Division of Experimental Vascular Research, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Lars Edvinsson
- Division of Experimental Vascular Research, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Hilda Ahnstedt
- Department of Neurology, McGovern Medical School at University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kajsa Arkelius
- Applied Neurovascular Research, Neurosurgery, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Saema Ansar
- Applied Neurovascular Research, Neurosurgery, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
8
|
Liu J, He J, Huang Y, Hu Z. Resveratrol has an Overall Neuroprotective Role in Ischemic Stroke: A Meta-Analysis in Rodents. Front Pharmacol 2022; 12:795409. [PMID: 34987407 PMCID: PMC8721173 DOI: 10.3389/fphar.2021.795409] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/03/2021] [Indexed: 12/16/2022] Open
Abstract
Background: Resveratrol, a natural polyphenolic phytoalexin, is broadly presented in dietary sources. Previous research has suggested its potential neuroprotective effects on ischemic stroke animal models. However, these results have been disputable. Here, we conducted a meta-analysis to comprehensively evaluate the effect of resveratrol treatment in ischemic stroke rodent models. Objective: To comprehensively evaluate the effect of resveratrol treatment in ischemic stroke rodent models. Methods: A literature search of the databases Pubmed, Embase, and Web of science identified 564 studies that were subjected to pre-defined inclusion criteria. 54 studies were included and analyzed using a random-effects model to calculate the standardized mean difference (SMD) with corresponding confidence interval (CI). Results: As compared with controls, resveratrol significantly decreased infarct volume (SMD −4.34; 95% CI −4.98 to −3.69; p < 0.001) and the neurobehavioral score (SMD −2.26; 95% CI −2.86 to −1.67; p < 0.001) in rodents with ischemic stroke. Quality assessment was performed using a 10-item checklist. Studies quality scores ranged from 3 to 8, with a mean value of 5.94. In the stratified analysis, a significant decrease of infarct volume and the neurobehavioral score was achieved in resveratrol sub-groups with a dosage of 20–50 mg/kg. In the meta-regression analysis, the impact of the delivery route on an outcome is the possible source of high heterogeneity. Conclusion: Generally, resveratrol treatment presented neuroprotective effects in ischemic stroke models. Furthermore, this study can direct future preclinical and clinical trials, with important implications for human health.
Collapse
Affiliation(s)
- Jianyang Liu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jialin He
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan Huang
- National Health Commission Key Laboratory of Birth Defects Research, Prevention, and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Huang J, Zhao K, Zhao Z, Qu Y. Neuroprotection by Transcranial Direct Current Stimulation in Rodent Models of Focal Ischemic Stroke: A Meta-Analysis. Front Neurosci 2021; 15:761971. [PMID: 34887723 PMCID: PMC8649802 DOI: 10.3389/fnins.2021.761971] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/25/2021] [Indexed: 02/05/2023] Open
Abstract
Infarct size is associated with stroke severity in clinical studies, so reducing it has become an important target and research hotspot in the treatment of ischemic stroke. Some preclinical studies have shown transcranial direct current stimulation (tDCS) reduced infarct size and improved neurological deficit, but others have not found beneficial effects. Besides, the optimal pattern of tDCS for ischemic stroke remains largely unknown. To shed light on the current circumstance and future research directions, the systematic review evaluated the effect of different tDCS paradigms in reducing infarct size and improving neurological deficit in rodent models of ischemic stroke and assessed the methodological quality of current literature. We searched the MEDLINE (via PubMed), EMBASE, Web of Science, and Scopus from their inception to August 18, 2021, to identify studies evaluating the effects of tDCS in rodent models of ischemic stroke. Eight studies were included, of which seven studies were included in the meta-analysis. The results showed cathodal tDCS, rather than anodal tDCS, reduced infarct size mainly measured by tetrazolium chloride and magnetic resonance imaging (standardized mean difference: -1.13; 95% CI: -1.72, -0.53; p = 0.0002) and improved neurological deficit assessed by a modified neurological severity score (standardized mean difference: -2.10; 95% CI: -3.78, -0.42; p = 0.01) in an early stage of focal ischemic stroke in rodent models. Subgroup analyses showed effects of cathodal tDCS on infarct size were not varied by ischemia duration (ischemia for 1, 1.5, and 2 h or permanent ischemia) and anesthesia (involving isoflurane and ketamine). The overall quality of studies included was low, thus the results must be interpreted cautiously. Published studies suggest that cathodal tDCS may be a promising avenue to explore for augmenting rehabilitation from focal ischemic stroke. Considering the methodological limitations, it is unreliable to blindly extrapolate the animal data to the clinical practice. Future research is needed to investigate the mechanism of tDCS in a randomized and blinded fashion in clinically relevant stroke models, such as elderly animals, female animals, and animals with comorbidities, to find an optimal treatment protocol.
Collapse
Affiliation(s)
- Jiapeng Huang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.,Research Laboratory of Neurorehabilitation, Research Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Kehong Zhao
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.,Research Laboratory of Neurorehabilitation, Research Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ziqi Zhao
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.,Research Laboratory of Neurorehabilitation, Research Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yun Qu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.,Research Laboratory of Neurorehabilitation, Research Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Affiliation(s)
- Kaj Fried
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Per T Hansson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Division of Emergencies and Critical Care, Department of Pain Management and Research & Norwegian National Advisory Unit on Neuropathic Pain, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
11
|
Chen W, Xie L, Yu F, Li Y, Chen C, Xie W, Huang T, Zhang Y, Zhang S, Li P. Zebrafish as a Model for In-Depth Mechanistic Study for Stroke. Transl Stroke Res 2021; 12:695-710. [PMID: 34050491 DOI: 10.1007/s12975-021-00907-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/22/2022]
Abstract
Stroke is one of the world's leading causes of death and disability, posing enormous burden to the society. However, the pathogenesis and mechanisms that underlie brain injury and brain repair remain largely unknown. There's an unmet need of in-depth mechanistic research in this field. Zebrafish (Danio rerio) is a powerful tool in brain science research mainly due to its small size and transparent body, high genome synteny with human, and similar nervous system structures. It can be used to establish both hemorrhagic and ischemic stroke models easily and effectively through different ways. After the establishment of stroke model, research methods including behavioral test, in vivo imaging, and drug screening are available to explore mechanisms that underlie the brain injury and brain repair after stroke. This review focuses on the advantages and the feasibility of zebrafish stroke model, and will also introduce the key methods available for stroke studies in zebrafish, which may drive future mechanistic studies in the pursuit of discovering novel therapeutic targets for stroke patients.
Collapse
Affiliation(s)
- Weijie Chen
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Lv Xie
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Fang Yu
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Yan Li
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Chen Chen
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Wanqing Xie
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Tingting Huang
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Yueman Zhang
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Song Zhang
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China.
| | - Peiying Li
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China.
| |
Collapse
|
12
|
Lourbopoulos A, Mourouzis I, Xinaris C, Zerva N, Filippakis K, Pavlopoulos A, Pantos C. Translational Block in Stroke: A Constructive and "Out-of-the-Box" Reappraisal. Front Neurosci 2021; 15:652403. [PMID: 34054413 PMCID: PMC8160233 DOI: 10.3389/fnins.2021.652403] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Why can we still not translate preclinical research to clinical treatments for acute strokes? Despite > 1000 successful preclinical studies, drugs, and concepts for acute stroke, only two have reached clinical translation. This is the translational block. Yet, we continue to routinely model strokes using almost the same concepts we have used for over 30 years. Methodological improvements and criteria from the last decade have shed some light but have not solved the problem. In this conceptual analysis, we review the current status and reappraise it by thinking "out-of-the-box" and over the edges. As such, we query why other scientific fields have also faced the same translational failures, to find common denominators. In parallel, we query how migraine, multiple sclerosis, and hypothermia in hypoxic encephalopathy have achieved significant translation successes. Should we view ischemic stroke as a "chronic, relapsing, vascular" disease, then secondary prevention strategies are also a successful translation. Finally, based on the lessons learned, we propose how stroke should be modeled, and how preclinical and clinical scientists, editors, grant reviewers, and industry should reconsider their routine way of conducting research. Translational success for stroke treatments may eventually require a bold change with solutions that are outside of the box.
Collapse
Affiliation(s)
- Athanasios Lourbopoulos
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Department of Neurointensive Care Unit, Schoen Klinik Bad Aibling, Bad Aibling, Germany
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University, Munich, Germany
| | - Iordanis Mourouzis
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christodoulos Xinaris
- IRCCS – Istituto di Ricerche Farmacologiche ‘Mario Negri’, Centro Anna Maria Astori, Bergamo, Italy
- University of Nicosia Medical School, Nicosia, Cyprus
| | - Nefeli Zerva
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Filippakis
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Angelos Pavlopoulos
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Constantinos Pantos
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
13
|
Amki ME, Wegener S. Reperfusion failure despite recanalization in stroke: New translational evidence. CLINICAL AND TRANSLATIONAL NEUROSCIENCE 2021. [DOI: 10.1177/2514183x211007137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Current treatment for acute ischemic stroke aims at recanalizing the occluded blood vessel to reperfuse ischemic brain tissue. Clot removal can be achieved pharmacologically with a thrombolytic drug, such as recombinant tissue plasminogen activator, or with mechanical thrombectomy. However, reopening the occluded vessel does not guarantee full tissue reperfusion, which has been referred to as reperfusion failure. When it occurs, reperfusion failure significantly attenuates the beneficial effect of recanalization therapy and severely affects functional recovery of stroke patients. The mechanisms of reperfusion failure are somewhat complex and not fully understood. Briefly, after stroke, capillaries show stalls, constriction and luminal narrowing, being crowded with neutrophils, and fibrin–platelet deposits. Furthermore, after recanalization in stroke patients, a primary clot can break, dislodge, and occlude distal arterial branches further downstream. In this review, we highlight a rodent model that allows studying the pathophysiological mechanisms underlying reperfusion failure after stroke. We also describe the vascular and intravascular changes involved in reperfusion, which may provide relevant therapeutic targets for improving treatment of stroke patients.
Collapse
Affiliation(s)
- Mohamad El Amki
- Department of Neurology, University Hospital Zürich (USZ) and University of Zurich (UZH), Clinical Neuroscience Center and Zurich Neuroscience Center (ZNZ), Zürich, Switzerland
| | - Susanne Wegener
- Department of Neurology, University Hospital Zürich (USZ) and University of Zurich (UZH), Clinical Neuroscience Center and Zurich Neuroscience Center (ZNZ), Zürich, Switzerland
| |
Collapse
|
14
|
Neuroprotection by Remote Ischemic Conditioning in Rodent Models of Focal Ischemia: a Systematic Review and Meta-Analysis. Transl Stroke Res 2021; 12:461-473. [PMID: 33405011 DOI: 10.1007/s12975-020-00882-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/29/2020] [Accepted: 12/22/2020] [Indexed: 01/11/2023]
Abstract
Remote ischemic conditioning (RIC) is a promising neuroprotective therapy for ischemic stroke. Preclinical studies investigating RIC have shown RIC reduced infarct volume, but clinical trials have been equivocal. Therefore, the efficacy of RIC in reducing infarct volume and quality of current literature needs to be evaluated to identify knowledge gaps to support future clinical trials. We performed a systematic review and meta-analysis of preclinical literature involving RIC in rodent models of focal ischemia. This review was registered with PROSPERO (CRD42019145441). Eligibility criteria included rat or mice models of focal ischemia that received RIC to a limb either before, during, or after stroke. MEDLINE and Embase databases were searched from 1946 to August 2019. Risk of bias was assessed using the SYRCLE risk of bias tool along with construct validity. Seventy-two studies were included in the systematic review. RIC was shown to reduce infarct volume (SMD - 2.19; CI - 2.48 to - 1.91) when compared to stroke-only controls and no adverse events were reported with regard to RIC. Remote ischemic conditioning was shown to be most efficacious in males (SMD - 2.26; CI - 2.58 to - 1.94) and when delivered poststroke (SMD - 1.34; CI - 1.95 to - 0.73). A high risk of bias was present; thus, measures of efficacy may be exaggerated. A limitation is the poor methodological reporting of many studies, resulting in unclear construct validity. We identified several important, but under investigated topics including the efficacy of RIC in different stroke models, varied infarct sizes and location, and potential sex differences.
Collapse
|
15
|
Liebenstund L, Coburn M, Fitzner C, Willuweit A, Langen KJ, Liu J, Veldeman M, Höllig A. Predicting experimental success: a retrospective case-control study using the rat intraluminal thread model of stroke. Dis Model Mech 2020; 13:dmm044651. [PMID: 33093066 PMCID: PMC7790196 DOI: 10.1242/dmm.044651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 10/13/2020] [Indexed: 12/23/2022] Open
Abstract
The poor translational success rate of preclinical stroke research may partly be due to inaccurate modelling of the disease. We provide data on transient middle cerebral artery occlusion (tMCAO) experiments, including detailed intraoperative monitoring to elaborate predictors indicating experimental success (ischemia without occurrence of confounding pathologies). The tMCAO monitoring data (bilateral cerebral blood flow, CBF; heart rate, HR; and mean arterial pressure, MAP) of 16 animals with an 'ideal' outcome (MCA-ischemia), and 48 animals with additional or other pathologies (subdural haematoma or subarachnoid haemorrhage), were checked for their prognostic performance (receiver operating characteristic curve and area under the curve, AUC). Animals showing a decrease in the contralateral CBF at the time of MCA occlusion suffered from unintended pathologies. Implementation of baseline MAP, in addition to baseline HR (AUC, 0.83, 95% c.i. 0.68 to 0.97), increased prognostic relevance (AUC, 0.89, 95% c.i. 0.79 to 0.98). Prediction performance improved when two additional predictors referring to differences in left and right CBF were considered (AUC, 1.00, 95% c.i. 1.0 to 1.0). Our data underline the importance of peri-interventional monitoring to verify a successful experimental performance in order to ensure a disease model as homogeneous as possible.
Collapse
Affiliation(s)
- Lisa Liebenstund
- Department of Anesthesiology, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, D-52074 Aachen, Germany
| | - Mark Coburn
- Department of Anesthesiology, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, D-52074 Aachen, Germany
| | - Christina Fitzner
- Department of Anesthesiology, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, D-52074 Aachen, Germany
- 3CARE, Cardiovascular Critical Care & Anesthesia Research, University Hospital Aachen, RWTH Aachen University, D-52047 Aachen, Germany
| | - Antje Willuweit
- Institute of Neuroscience and Medicine, Medical Imaging Physics (INM-4), Forschungszentrum Jülich GmbH, D-52428 Jülich, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine, Medical Imaging Physics (INM-4), Forschungszentrum Jülich GmbH, D-52428 Jülich, Germany
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, D-52047 Aachen, Germany
| | - Jingjin Liu
- Department of Anesthesiology, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, D-52074 Aachen, Germany
| | - Michael Veldeman
- Department of Neurosurgery, University Hospital Aachen, RWTH Aachen University, D-52047 Aachen, Germany
| | - Anke Höllig
- Department of Neurosurgery, University Hospital Aachen, RWTH Aachen University, D-52047 Aachen, Germany
| |
Collapse
|
16
|
Mangin G, Kubis N. Cell Therapy for Ischemic Stroke: How to Turn a Promising Preclinical Research into a Successful Clinical Story. Stem Cell Rev Rep 2020; 15:176-193. [PMID: 30443706 DOI: 10.1007/s12015-018-9864-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Stroke is a major public health issue with limited treatment. The pharmacologically or mechanically removing of the clot is accessible to less than 10% of the patients. Stem cell therapy is a promising alternative strategy since it increases the therapeutic time window but many issues remain unsolved. To avoid a new dramatic failure when translating experimental data on the bedside, this review aims to highlight the indispensable checkpoints to make a successful clinical trial based on the current preclinical literature. The large panel of progenitors/ stem cells at the researcher's disposal is to be used wisely, regarding the type of cells, the source of cells, the route of delivery, the time window, since it will directly affect the outcome. Mechanisms are still incompletely understood, although recent studies have focused on the inflammation modulation of most cells types.
Collapse
Affiliation(s)
| | - Nathalie Kubis
- INSERM U965, F-75475, Paris, France. .,Sorbonne Paris Cité, Université Paris Diderot, F-75475, Paris, France. .,Service de Physiologie Clinique-Explorations Fonctionnelles, AP-HP, Hôpital Lariboisière, 2 rue Ambroise Paré, F-75475, Paris, France.
| |
Collapse
|
17
|
Uzdensky AB. Apoptosis regulation in the penumbra after ischemic stroke: expression of pro- and antiapoptotic proteins. Apoptosis 2020; 24:687-702. [PMID: 31256300 DOI: 10.1007/s10495-019-01556-6] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ischemic stroke is the leading cause of human disability and mortality in the world. The main problem in stroke therapy is the search of efficient neuroprotector capable to rescue neurons in the potentially salvageable transition zone (penumbra), which is expanding after brain damage. The data on molecular mechanisms of penumbra formation and expression of diverse signaling proteins in the penumbra during first 24 h after ischemic stroke are discussed. Two basic features of cell death regulation in the ischemic penumbra were observed: (1) both apoptotic and anti-apoptotic proteins are simultaneously over-expressed in the penumbra, so that the fate of individual cells is determined by the balance between these opposite tendencies. (2) Similtaneous and concerted up-regulation in the ischemic penumbra of proteins that execute apoptosis (caspases 3, 6, 7; Bcl-10, SMAC/DIABLO, AIF, PSR), signaling proteins that regulate different apoptosis pathways (p38, JNK, DYRK1A, neurotrophin receptor p75); transcription factors that control expression of various apoptosis regulation proteins (E2F1, p53, c-Myc, GADD153); and proteins, which are normally involved in diverse cellular functions, but stimulate apoptosis in specific situations (NMDAR2a, Par4, GAD65/67, caspase 11). Hence, diverse apoptosis initiation and regulation pathways are induced simultaneously in penumbra from very different initial positions. Similarly, various anti-apoptotic proteins (Bcl-x, p21/WAF-1, MDM2, p63, PKBα, ERK1, RAF1, ERK5, MAKAPK2, protein phosphatases 1α and MKP-1, estrogen and EGF receptors, calmodulin, CaMKII, CaMKIV) are upregulated. These data provide an integral view of neurodegeneration and neuroprotection in penumbra. Some discussed proteins may serve as potential targets for anti-stroke therapy.
Collapse
Affiliation(s)
- Anatoly B Uzdensky
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky Prospect, Rostov-on-Don, Russia, 344090.
| |
Collapse
|
18
|
Dolezyczek H, Tamborski S, Majka P, Sampson D, Wojtkowski M, Wilczyński G, Szkulmowski M, Malinowska M. In vivo brain imaging with multimodal optical coherence microscopy in a mouse model of thromboembolic photochemical stroke. NEUROPHOTONICS 2020; 7:015002. [PMID: 32016131 PMCID: PMC6977401 DOI: 10.1117/1.nph.7.1.015002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
We used a new multimodal imaging system that combines optical coherence microscopy and brightfield microscopy. Using this in vivo brain monitoring approach and cranial window implantation, we three-dimensionally visualized the vascular network during thrombosis, with high temporal (18 s) and spatial (axial, 2.5 μ m ; lateral, 2.2 μ m ) resolution. We used a modified mouse model of photochemical thromboembolic stroke in order to more accurately parallel human stroke. Specifically, we applied green laser illumination to focally occlude a branch of the middle cerebral artery. Despite the recanalization of the superficial arteries at 24 h after stroke, no blood flow was detected in the small vessels within deeper regions. Moreover, after 24 h of stroke progression, scattering signal enhancement was observed within the stroke region. We also evaluated the infarct extent and shape histologically. In summary, we present a novel approach for real-time mouse brain monitoring and ischemic variability analysis. This multimodal imaging method permits the analysis of thrombosis progression and reperfusion. Additionally and importantly, the system could be used to study the effect of poststroke drug treatments on blood flow in small arteries and capillaries of the brain.
Collapse
Affiliation(s)
- Hubert Dolezyczek
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Szymon Tamborski
- Nicolaus Copernicus University, Institute of Physics, Faculty of Physics, Astronomy and Informatics, Torun, Poland
| | - Piotr Majka
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Danuta Sampson
- University of Surrey, Surrey Biophotonics, Centre for Vision, Speech and Signal Processing, School of Biosciences and Medicine, Guildford, United Kingdom
| | - Maciej Wojtkowski
- Institute of Physical Chemistry of the Polish Academy of Sciences, Warsaw, Poland
| | - Grzegorz Wilczyński
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Maciej Szkulmowski
- Nicolaus Copernicus University, Institute of Physics, Faculty of Physics, Astronomy and Informatics, Torun, Poland
| | - Monika Malinowska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
19
|
Kamarudin SN, Iezhitsa I, Tripathy M, Alyautdin R, Ismail NM. Neuroprotective effect of poly(lactic-co-glycolic acid) nanoparticle-bound brain-derived neurotrophic factor in a permanent middle cerebral artery occlusion model of ischemia in rats. Acta Neurobiol Exp (Wars) 2020. [DOI: 10.21307/ane-2020-001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
Mages B, Aleithe S, Blietz A, Krueger M, Härtig W, Michalski D. Simultaneous alterations of oligodendrocyte-specific CNP, astrocyte-specific AQP4 and neuronal NF-L demarcate ischemic tissue after experimental stroke in mice. Neurosci Lett 2019; 711:134405. [PMID: 31374325 DOI: 10.1016/j.neulet.2019.134405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/11/2019] [Accepted: 07/27/2019] [Indexed: 12/16/2022]
Abstract
Ischemic stroke not only affects neurons, but also glial and vascular elements. The development of novel neuroprotective strategies thus requires an improved pathophysiological understanding of ischemia-affected cell types that comprise the 'neurovascular unit' (NVU). To explore spatiotemporal alterations of oligodendrocytes, astrocytes and neurons after experimental ischemic stroke, we applied a permanent middle cerebral artery occlusion model in mice for 4 and 24 h. Using fluorescence microscopy, the oligodendrocyte marker 2',3'-cyclic nucleotide phosphodiesterase (CNP), the neuronal neurofilament light chain (NF-L) and the astroglial aquaporin-4 (AQP4) were analyzed in regional relation to one another. Immunofluorescence intensities of CNP and NF-L were simultaneously increased in the ischemic neocortex and striatum. AQP4 immunoreactivity was decreased in the ischemic striatum, which represents the initial and potentially strongest affected site of infarction. The more distant ischemic neocortex and infarct border zones exhibited areas with alternately increased or decreased AQP4 immunoreactivity, leading to an increase of fluorescence intensity in total. Further, deformed CNP-immunopositive processes were found around axonal spheroids, indicating a combined affection of oligodendrocytes and neurons due to ischemia. Importantly, altered AQP4 immunosignals were not limited to the ischemic core, but were also detectable in penumbral areas. This applies for CNP and NF-L also, since altered immunosignals of all three markers coincided regionally at both time points. In conclusion, the present study provides evidence for a simultaneous affection of oligodendrocytes, astrocytes and neurons after experimental focal cerebral ischemia. Consequently, CNP, AQP4 and NF-L immunofluorescence alterations can be utilized to identify ischemia-affected tissue. The simultaneity of the described alterations further strengthens the concept of interdependent NVU components and distinguishes NF-L, CNP and AQP4 as highly ischemia-sensitive elements. Consequently, future therapeutic approaches might influence stroke evolution via strategies simultaneously addressing both neuronal and glial functions.
Collapse
Affiliation(s)
- Bianca Mages
- Department of Neurology, University of Leipzig, Germany; Institute of Anatomy, University of Leipzig, Germany.
| | | | | | | | - Wolfgang Härtig
- Paul Flechsig Institute of Brain Research, University of Leipzig, Germany
| | | |
Collapse
|
21
|
Castillo X, Castro-Obregón S, Gutiérrez-Becker B, Gutiérrez-Ospina G, Karalis N, Khalil AA, Lopez-Noguerola JS, Rodríguez LL, Martínez-Martínez E, Perez-Cruz C, Pérez-Velázquez J, Piña AL, Rubio K, García HPS, Syeda T, Vanoye-Carlo A, Villringer A, Winek K, Zille M. Re-thinking the Etiological Framework of Neurodegeneration. Front Neurosci 2019; 13:728. [PMID: 31396030 PMCID: PMC6667555 DOI: 10.3389/fnins.2019.00728] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases are among the leading causes of disability and death worldwide. The disease-related socioeconomic burden is expected to increase with the steadily increasing life expectancy. In spite of decades of clinical and basic research, most strategies designed to manage degenerative brain diseases are palliative. This is not surprising as neurodegeneration progresses "silently" for decades before symptoms are noticed. Importantly, conceptual models with heuristic value used to study neurodegeneration have been constructed retrospectively, based on signs and symptoms already present in affected patients; a circumstance that may confound causes and consequences. Hence, innovative, paradigm-shifting views of the etiology of these diseases are necessary to enable their timely prevention and treatment. Here, we outline four alternative views, not mutually exclusive, on different etiological paths toward neurodegeneration. First, we propose neurodegeneration as being a secondary outcome of a primary cardiovascular cause with vascular pathology disrupting the vital homeostatic interactions between the vasculature and the brain, resulting in cognitive impairment, dementia, and cerebrovascular events such as stroke. Second, we suggest that the persistence of senescent cells in neuronal circuits may favor, together with systemic metabolic diseases, neurodegeneration to occur. Third, we argue that neurodegeneration may start in response to altered body and brain trophic interactions established via the hardwire that connects peripheral targets with central neuronal structures or by means of extracellular vesicle (EV)-mediated communication. Lastly, we elaborate on how lifespan body dysbiosis may be linked to the origin of neurodegeneration. We highlight the existence of bacterial products that modulate the gut-brain axis causing neuroinflammation and neuronal dysfunction. As a concluding section, we end by recommending research avenues to investigate these etiological paths in the future. We think that this requires an integrated, interdisciplinary conceptual research approach based on the investigation of the multimodal aspects of physiology and pathophysiology. It involves utilizing proper conceptual models, experimental animal units, and identifying currently unused opportunities derived from human data. Overall, the proposed etiological paths and experimental recommendations will be important guidelines for future cross-discipline research to overcome the translational roadblock and to develop causative treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Ximena Castillo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Institute of Neurobiology, University of Puerto Rico, San Juan, PR, United States
| | - Susana Castro-Obregón
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Benjamin Gutiérrez-Becker
- Artificial Intelligence in Medical Imaging KJP, Ludwig Maximilian University of Munich, Munich, Germany
| | - Gabriel Gutiérrez-Ospina
- Laboratorio de Biología de Sistemas, Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas y Coordinación de Psicobiología y Neurociencias, Facultad de Psicología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Nikolaos Karalis
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Ahmed A. Khalil
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | - Liliana Lozano Rodríguez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Eduardo Martínez-Martínez
- Cell Communication & Extracellular Vesicles Laboratory, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Claudia Perez-Cruz
- National Polytechnic Institute, Center of Research in Advanced Studies, Mexico City, Mexico
| | - Judith Pérez-Velázquez
- Departamento de Matemáticas y Mecánica, Instituto de Investigaciones en Matemáticas Aplicadas y Sistemas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Mathematische Modellierung Biologischer Systeme, Fakultät für Mathematik, Technische Universität München, Munich, Germany
| | - Ana Luisa Piña
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Karla Rubio
- Lung Cancer Epigenetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | | | - Tauqeerunnisa Syeda
- National Polytechnic Institute, Center of Research in Advanced Studies, Mexico City, Mexico
| | - America Vanoye-Carlo
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, Mexico
| | - Arno Villringer
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Katarzyna Winek
- The Shimon Peres Postdoctoral Fellow at the Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Marietta Zille
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
- Institute for Medical and Marine Biotechnology, University of Lübeck, Lübeck, Germany
- Fraunhofer Research Institution for Marine Biotechnology and Cell Technology, Lübeck, Germany
| |
Collapse
|
22
|
Yeh CF, Chuang TY, Hung YW, Lan MY, Tsai CH, Huang HX, Lin YY. Soluble epoxide hydrolase inhibition enhances anti-inflammatory and antioxidative processes, modulates microglia polarization, and promotes recovery after ischemic stroke. Neuropsychiatr Dis Treat 2019; 15:2927-2941. [PMID: 31686827 PMCID: PMC6800549 DOI: 10.2147/ndt.s210403] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/04/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Ischemic stroke triggers inflammatory responses and oxidative stress in the brain, and microglia polarization affects the degree of neuroinflammation. It has been reported that the inhibition of soluble epoxide hydrolase (sEH) activity protects brain tissue. However, the anti-inflammatory and antioxidative effects of sEH inhibition in the ischemic brain are not fully understood. This study aimed to investigate the effects of a selective sEH inhibitor, 12-(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA), after ischemic stroke. METHODS Adult male rats with middle cerebral artery occlusion (MCAO) were administered with AUDA or a vehicle. Behavioral outcome, infarct volume, microglia polarization, and gene expression were assessed. RESULTS Rats treated with AUDA showed better behavioral outcomes and smaller infarct volumes after MCAO. After AUDA treatment, a reduction of M1 microglia and an increase of M2 microglia occurred at the ischemic cortex of rats. Additionally, there was an increase in the mRNA expressions of antioxidant enzymes and anti-inflammatory interleukin-10, and pro-inflammatory mediators were decreased after AUDA administration. Heme oxygenase-1 was mainly expressed by neurons, and AUDA was found to improve the survival of neurons. CONCLUSION The results of this study provided novel and significant insights into how AUDA can improve outcomes and modulate inflammation and oxidative stress after ischemic stroke.
Collapse
Affiliation(s)
- Chien-Fu Yeh
- Institute of Brain Science, National Yang-Ming University, Taipei 11221, Taiwan.,Department of Otorhinolaryngology, National Yang-Ming University, Taipei 11221, Taiwan.,Department of Otolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Tung-Yueh Chuang
- Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yu-Wen Hung
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Ming-Ying Lan
- Department of Otorhinolaryngology, National Yang-Ming University, Taipei 11221, Taiwan.,Department of Otolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Ching-Han Tsai
- Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Hao-Xiang Huang
- Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yung-Yang Lin
- Institute of Brain Science, National Yang-Ming University, Taipei 11221, Taiwan.,Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan.,Institute of Physiology, National Yang-Ming University, Taipei 11221, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei 11221, Taiwan.,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| |
Collapse
|
23
|
Suzuki E, Nishimura N, Yoshikawa T, Kunikiyo Y, Hasegawa K, Hasumi K. Efficacy of SMTP-7, a small-molecule anti-inflammatory thrombolytic, in embolic stroke in monkeys. Pharmacol Res Perspect 2018; 6:e00448. [PMID: 30546909 PMCID: PMC6282002 DOI: 10.1002/prp2.448] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/05/2018] [Accepted: 11/05/2018] [Indexed: 01/06/2023] Open
Abstract
SMTP-7 (Stachybotrys microspora triprenyl phenol-7) is a small molecule that promotes thrombolysis and suppresses inflammation possibly through plasminogen modulation and soluble epoxide hydrolase (sEH) inhibition, respectively. Here, we demonstrate an efficacy of SMTP-7 in a severe embolic stroke model in monkeys. The middle cerebral artery was embolized by an autologous blood clot. Saline, SMTP-7, or tissue-type plasminogen activator (t-PA) (n = 5 in each group) was given after 3 hours, and neurologic deficit scoring and infarct characterization were performed after 24 hours. Hemorrhagic infarct-accompanied premature death was observed for two animals in t-PA group. SMTP-7 treatment significantly reduced the sizes of infarct by 65%, edema by 37%, and clot by 55% compared to saline treatment. Plasma levels of the products of plasminogen activation (plasmin-α2-antiplasmin complex) and sEH reaction (dihydroxyeicosatrienoic acid) in SMTP-7 group were 794% (P < 0.05) and 60% (P = 0.085) compared to saline group, respectively. No significant changes in the plasma levels of MMP-9, CRP, MCP-1, and S100B were found. There was an inverse correlation between plasmin-α2-antiplasmin complex level and infarct volume (r = 0.93, P < 0.05), suggesting a role of thrombolysis in the SMTP-7 action to limit infarct development. In conclusion, SMTP-7 is effective in treating severe embolic stroke in monkeys under conditions where t-PA treatment tends to cause hemorrhagic infarct-associated premature death.
Collapse
Affiliation(s)
- Eriko Suzuki
- Department of Applied Biological ScienceTokyo Noko University (Tokyo University of Agriculture and Technology)TokyoJapan
| | | | | | - Yudai Kunikiyo
- Department of Applied Biological ScienceTokyo Noko University (Tokyo University of Agriculture and Technology)TokyoJapan
| | - Keiko Hasegawa
- Division of Research and DevelopmentTMS Co., Ltd.TokyoJapan
| | - Keiji Hasumi
- Department of Applied Biological ScienceTokyo Noko University (Tokyo University of Agriculture and Technology)TokyoJapan
- Division of Research and DevelopmentTMS Co., Ltd.TokyoJapan
| |
Collapse
|
24
|
Dames C, Winek K, Beckers Y, Engel O, Meisel A, Meisel C. Immunomodulatory treatment with systemic GM-CSF augments pulmonary immune responses and improves neurological outcome after experimental stroke. J Neuroimmunol 2018; 321:144-149. [DOI: 10.1016/j.jneuroim.2018.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/26/2018] [Accepted: 03/08/2018] [Indexed: 11/29/2022]
|
25
|
Mostajeran M, Wetterling F, W. Blixt F, Edvinsson L, Ansar S. Acute mitogen-activated protein kinase 1/2 inhibition improves functional recovery and vascular changes after ischaemic stroke in rat-monitored by 9.4 T magnetic resonance imaging. Acta Physiol (Oxf) 2018; 223:e12985. [PMID: 29055086 DOI: 10.1111/apha.12985] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/27/2017] [Accepted: 10/15/2017] [Indexed: 11/30/2022]
Abstract
AIM The aim was to evaluate the beneficial effect of early mitogen-activated protein kinase (MEK)1/2 inhibition administered at a clinical relevant time-point using the transient middle cerebral artery occlusion model and a dedicated rodent magnetic resonance imaging system (9.4T) to monitor cerebrovascular changes non-invasively for 2 weeks. METHOD Transient middle cerebral artery occlusion was induced in male rats for two hours followed by reperfusion. The specific MEK1/2 inhibitor U0126 was administered ip at 6 and 24 hours post-reperfusion. Neurological functions were evaluated by 6- and 28-point tests. 9.4 T magnetic resonance imaging was used to monitor morphological infarct changes at day 2, 8 and 14 after stroke and to evaluate cerebral perfusion at day 14. Immunohistochemistry evaluation of Ki67 was performed 14 days post-stroke. RESULTS U0126 improved long-term behavioural outcome and significantly reduced infarct size. In addition, cerebral perfusion in U0126-treated animals was improved compared to the vehicle group. Immunohistochemistry showed a significant increase in Ki67+ cells in U0126-treated animals compared to the vehicle group. CONCLUSION Early MEK1/2 inhibition improves long-term functional outcome, promotes recovery processes after stroke and most importantly provides a realistic time window for therapy.
Collapse
Affiliation(s)
- M. Mostajeran
- Division of Experimental Vascular Research; Department of Clinical Sciences; Lund University; Lund Sweden
| | - F. Wetterling
- Trinity College Institute of Neuroscience; University of Dublin; Dublin Ireland
| | - F. W. Blixt
- Division of Experimental Vascular Research; Department of Clinical Sciences; Lund University; Lund Sweden
| | - L. Edvinsson
- Division of Experimental Vascular Research; Department of Clinical Sciences; Lund University; Lund Sweden
| | - S. Ansar
- Division of Experimental Vascular Research; Department of Clinical Sciences; Lund University; Lund Sweden
| |
Collapse
|
26
|
Glebova KV, Veiko NN, Nikonov AA, Porokhovnik LN, Kostuyk SV. Cell-free DNA as a biomarker in stroke: Current status, problems and perspectives. Crit Rev Clin Lab Sci 2018; 55:55-70. [PMID: 29303618 DOI: 10.1080/10408363.2017.1420032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
There is currently no proposed stroke biomarker with consistent application in clinical practice. A number of studies have examined cell-free DNA (cfDNA), which circulates in biological fluids during stroke, as a potential biomarker of this disease. The data available suggest that dynamically-determined levels of blood cfDNA may provide new prognostic information for assessment of stroke severity and outcome. However, such an approach has its own difficulties and limitations. This review covers the potential role of cfDNA as a biomarker in stroke, and includes evidence from both animal models and clinical studies, protocols used to analyze cfDNA, and hypotheses on the origin of cfDNA.
Collapse
Affiliation(s)
- Kristina V Glebova
- a Laboratory of Molecular Biology , Federal State Budgetary Institution "Research Centre for Medical Genetics" , Moscow , Russia
| | - Natalya N Veiko
- a Laboratory of Molecular Biology , Federal State Budgetary Institution "Research Centre for Medical Genetics" , Moscow , Russia
| | - Aleksey A Nikonov
- b Department of Neurology, Neurosurgery and Medical Genetics , Pirogov Russian National Research Medical University , Moscow , Russia
| | - Lev N Porokhovnik
- a Laboratory of Molecular Biology , Federal State Budgetary Institution "Research Centre for Medical Genetics" , Moscow , Russia
| | - Svetlana V Kostuyk
- a Laboratory of Molecular Biology , Federal State Budgetary Institution "Research Centre for Medical Genetics" , Moscow , Russia
| |
Collapse
|
27
|
Cerebrovascular Gene Expression in Spontaneously Hypertensive Rats After Transient Middle Cerebral Artery Occlusion. Neuroscience 2017; 367:219-232. [PMID: 29102661 DOI: 10.1016/j.neuroscience.2017.10.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 10/22/2017] [Accepted: 10/24/2017] [Indexed: 12/12/2022]
Abstract
Hypertension is a major risk factor for stroke, which is one of the leading global causes of death. In the search for new and effective therapeutic targets in stroke research, we need to understand the influence of hypertension in the vasculature following stroke. We used Affymetrix whole-transcriptome expression profiling as a tool to address gene expression differences between the occluded and non-occluded middle cerebral arteries (MCAs) from spontaneously hypertensive rats (SHRs) and normotensive Wistar-Kyoto (WKY) rats after transient middle cerebral artery occlusion (tMCAO), to provide clues about the pathological mechanisms set in play after stroke. Verified by quantitative PCR, expression of Ccl2, Edn1, Tgfβ2, Olr1 and Serpine1 was significantly increased in the occluded compared to non-occluded MCAs from both SHRs and WKY rats. Additionally, expression of Mmp9, Icam1, Hif1α and Timp1 was increased in the occluded compared to non-occluded MCAs isolated from WKY rats. In comparison between occluded MCAs from SHRs versus occluded MCAs from WKY rats, expression of Ccl2, Olr1 and Serpine1 was significantly increased in SHR MCAs. However, the opposite was observed regarding expression of Edn1. Thus these data suggest that Ccl2, Edn1, Tgfβ2, Olr1 and Serpine1 may be possible mediators of the vascular changes in the occluded MCAs from both SHRs and WKY rats after tMCAO. The aforementioned genes possess biological functions that are consistent with early stroke injuries. In conclusion, these genes may be potential targets in future strategies for acute stroke treatments that can be used in patients with and without hypertension.
Collapse
|
28
|
Photothrombotic Stroke as a Model of Ischemic Stroke. Transl Stroke Res 2017; 9:437-451. [DOI: 10.1007/s12975-017-0593-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/14/2017] [Accepted: 11/24/2017] [Indexed: 12/20/2022]
|
29
|
Verma R, Cronin CG, Hudobenko J, Venna VR, McCullough LD, Liang BT. Deletion of the P2X4 receptor is neuroprotective acutely, but induces a depressive phenotype during recovery from ischemic stroke. Brain Behav Immun 2017; 66:302-312. [PMID: 28751018 PMCID: PMC5650951 DOI: 10.1016/j.bbi.2017.07.155] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/23/2017] [Accepted: 07/23/2017] [Indexed: 01/17/2023] Open
Abstract
INTRODUCTION Acute ischemic injury leads to severe neuronal loss. One of the key mechanisms responsible for this effect is inflammation, which is characterized by the activation of myeloid cells, including resident microglia and infiltrating monocytes/macrophages. P2X4 receptors (P2X4Rs) present on these immune cells modulate the inflammatory response. For example, excessive release of adenosine triphosphate during acute ischemic stroke triggers stimulation of P2X4Rs, leading to myeloid cell activation and proliferation and further exacerbating post-ischemic inflammation. In contrast, during recovery P2X4Rs activation on microglia leads to the release of brain-derived neurotrophic factor (BDNF), which alleviate depression, maintain synaptic plasticity and hasten post-stroke behavioral recovery. Therefore, we hypothesized that deletion of the P2X4R specifically from myeloid cells would have differential effects on acute versus chronic recovery following stroke. METHODS We subjected global or myeloid-specific (MS) P2X4R knock-out (KO) mice and wild-type littermates of both sexes to right middle cerebral artery occlusion (60min). We performed histological, behavioral (sensorimotor and depressive), and biochemical (quantitative PCR and flow cytometry) analyses to determine the acute (three days after occlusion) and chronic (30days after occlusion) effects of receptor deletion. RESULTS Global P2X4R deletion led to reduced infarct size in both sexes. In MS P2X4R KO mice, only females showed reduced infarct size, an effect that did not change with ovariectomy. MS P2X4R KO mice of both sexes showed swift recovery from sensorimotor deficits during acute recovery but exhibited a more pronounced post-stroke depressive behavior phenotype that was independent of infarct size. Quantitative PCR analysis of whole cell lysate as well as flow-sorted myeloid cells from the perilesional cortex showed increased cellular interleukin 1 beta (IL-1β), interleukin 6 (IL-6), and tumor necrosis factor alpha (TNF-α) mRNA levels but reduced plasma levels of these cytokines in MS P2X4R KO mice after stroke. The expression levels of BDNF and other depression-associated genes were reduced in MS P2X4R KO mice after stroke. CONCLUSIONS P2X4R deletion protects against stroke acutely but predisposes to depression-like behavior chronically after stroke. Thus, a time-sensitive approach should be considered when targeting P2X4Rs after stroke.
Collapse
Affiliation(s)
- Rajkumar Verma
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06032, USA; Calhoun Cardiology Center, University of Connecticut Health Center, Farmington, CT 06032, USA.
| | - Chunxia G Cronin
- Calhoun Cardiology Center, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Jacob Hudobenko
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06032, USA; Department of Neurology, McGovern Medical School University of Texas, Houston, TX 77030, USA
| | - Venugopal R Venna
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06032, USA; Department of Neurology, McGovern Medical School University of Texas, Houston, TX 77030, USA
| | - Louise D McCullough
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06032, USA; Department of Neurology, McGovern Medical School University of Texas, Houston, TX 77030, USA
| | - Bruce T Liang
- Calhoun Cardiology Center, University of Connecticut Health Center, Farmington, CT 06032, USA
| |
Collapse
|
30
|
O'Connell GC, Tennant CS, Lucke-Wold N, Kabbani Y, Tarabishy AR, Chantler PD, Barr TL. Monocyte-lymphocyte cross-communication via soluble CD163 directly links innate immune system activation and adaptive immune system suppression following ischemic stroke. Sci Rep 2017; 7:12940. [PMID: 29021532 PMCID: PMC5636885 DOI: 10.1038/s41598-017-13291-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/19/2017] [Indexed: 12/27/2022] Open
Abstract
CD163 is a scavenger receptor expressed on innate immune cell populations which can be shed from the plasma membrane via the metalloprotease ADAM17 to generate a soluble peptide with lympho-inhibitory properties. The purpose of this study was to investigate CD163 as a possible effector of stroke-induced adaptive immune system suppression. Liquid biopsies were collected from ischemic stroke patients (n = 39), neurologically asymptomatic controls (n = 20), and stroke mimics (n = 20) within 24 hours of symptom onset. Peripheral blood ADAM17 activity and soluble CD163 levels were elevated in stroke patients relative to non-stroke control groups, and negatively associated with post-stroke lymphocyte counts. Subsequent in vitro experiments suggested that this stroke-induced elevation in circulating soluble CD163 likely originates from activated monocytic cells, as serum from stroke patients stimulated ADAM17-dependant CD163 shedding from healthy donor-derived monocytes. Additional in vitro experiments demonstrated that stroke-induced elevations in circulating soluble CD163 can elicit direct suppressive effects on the adaptive immune system, as serum from stroke patients inhibited the proliferation of healthy donor-derived lymphocytes, an effect which was attenuated following serum CD163 depletion. Collectively, these observations provide novel evidence that the innate immune system employs protective mechanisms aimed at mitigating the risk of post-stroke autoimmune complications driven by adaptive immune system overactivation, and that CD163 is key mediator of this phenomenon.
Collapse
Affiliation(s)
- Grant C O'Connell
- Center for Basic and Translational Stroke Research, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia, USA. .,Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA.
| | - Connie S Tennant
- Center for Basic and Translational Stroke Research, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia, USA
| | - Noelle Lucke-Wold
- Center for Basic and Translational Stroke Research, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia, USA
| | - Yasser Kabbani
- Department of Neuroradiology, Ruby Memorial Hospital, Morgantown, WV, USA
| | - Abdul R Tarabishy
- Department of Neuroradiology, Ruby Memorial Hospital, Morgantown, WV, USA
| | - Paul D Chantler
- Center for Cardiovascular and Respiratory Sciences, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia, USA.,Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Taura L Barr
- Center for Basic and Translational Stroke Research, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia, USA.,School of Nursing, West Virginia University, Morgantown, West Virginia, USA.,Valtari Bio Incorporated, Morgantown, WV, USA
| |
Collapse
|
31
|
Corbett D, Carmichael ST, Murphy TH, Jones TA, Schwab ME, Jolkkonen J, Clarkson AN, Dancause N, Weiloch T, Johansen-Berg H, Nilsson M, McCullough LD, Joy MT. Enhancing the Alignment of the Preclinical and Clinical Stroke Recovery Research Pipeline: Consensus-Based Core Recommendations From the Stroke Recovery and Rehabilitation Roundtable Translational Working Group. Neurorehabil Neural Repair 2017; 31:699-707. [DOI: 10.1177/1545968317724285] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Stroke recovery research involves distinct biological and clinical targets compared to the study of acute stroke. Guidelines are proposed for the pre-clinical modeling of stroke recovery and for the alignment of pre-clinical studies to clinical trials in stroke recovery.
Collapse
Affiliation(s)
- Dale Corbett
- Department of Cellular and Molecular Medicine, University of Ottawa, Canadian Partnership for Stroke Recovery, Ottawa, Canada
| | - S. Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
| | - Timothy H. Murphy
- Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Theresa A. Jones
- Department of Psychology and Neuroscience Institute, University of Texas at Austin, Austin, TX, USA
| | - Martin E. Schwab
- Institute for Brain Research, University of Zurich, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Jukka Jolkkonen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland and Neurocenter, Neurology, University Hospital of Kuopio, Kuopio, Finland
| | - Andrew N. Clarkson
- Department of Anatomy, Brain Health Research Center, and Brain Research New Zealand, University of Otago, Dunedin, New Zealand
- Faculty of Pharmacy, The University of Sydney, Sydney, Australia
| | - Numa Dancause
- Groupe de Recherche sur le Système Nerveux Central (GRSNC), Département de Neurosciences, Université de Montréal, Montréal, Canada
| | - Tadeusz Weiloch
- Department of Clinical Sciences, Laboratory for Experimental Brain Research, Lund, Sweden
| | - Heidi Johansen-Berg
- Oxford Centre for Functional MRI of the Brain, John Radcliffe Hospital, Headington, Oxford, UK
| | - Michael Nilsson
- Hunter Medical Research Institute, University of Newcastle, New Lambton, Australia
| | - Louise D. McCullough
- Department of Neurology, University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Mary T. Joy
- Department of Neurology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
| |
Collapse
|
32
|
Le Gal R, Bernaudin M, Toutain J, Touzani O. Assessment of behavioural deficits following ischaemic stroke in the marmoset. Behav Brain Res 2017; 352:151-160. [PMID: 28760698 DOI: 10.1016/j.bbr.2017.07.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/11/2017] [Accepted: 07/27/2017] [Indexed: 11/29/2022]
Abstract
Stroke is a common and devastating disease worldwide. Over the last two decades, many therapeutic approaches to ameliorate ischaemic stroke have been promising in animal studies but failed when transferred to the clinical situation. One of the possible explanations for these failures is the widespread use of animal models of cerebral ischemia that do not mimic the pathology encountered in the clinic. Accordingly, many expert committees recommended the integration of higher order species such as non-human primates in pre-clinical stroke studies. The common marmoset (Callithrix jacchus), a small New World monkey, start to stand out in the neuroscience field as a good compromise between larger primates and rodents. In this review, we discuss the relevance of the use of the marmoset in stroke studies. We will focus on behavioural tests developed in this species to assess sensorimotor deficits and their recovery during acute and chronic stages of brain ischaemia. The aim of this appraisal is to provide a comprehensive overview of the existing approaches to induce stroke in the marmoset as well as the paradigms for behavioural testing in this species. The data summarized in this review should contribute to the improvement of future stoke studies in the marmoset and accordingly improve the translation of the results from bench to bed.
Collapse
Affiliation(s)
- Rozenn Le Gal
- Normandie-Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Caen, France
| | - Myriam Bernaudin
- Normandie-Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Caen, France
| | - Jérôme Toutain
- Normandie-Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Caen, France
| | - Omar Touzani
- Normandie-Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Caen, France.
| |
Collapse
|
33
|
Corbett D, Carmichael ST, Murphy TH, Jones TA, Schwab ME, Jolkkonen J, Clarkson AN, Dancause N, Weiloch T, Johansen-Berg H, Nilsson M, McCullough LD, Joy MT. Enhancing the alignment of the preclinical and clinical stroke recovery research pipeline: Consensus-based core recommendations from the Stroke Recovery and Rehabilitation Roundtable translational working group. Int J Stroke 2017; 12:462-471. [DOI: 10.1177/1747493017711814] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Stroke recovery research involves distinct biological and clinical targets compared to the study of acute stroke. Guidelines are proposed for the pre-clinical modeling of stroke recovery and for the alignment of pre-clinical studies to clinical trials in stroke recovery.
Collapse
Affiliation(s)
- Dale Corbett
- Department of Cellular and Molecular Medicine, University of Ottawa, Canadian Partnership for Stroke Recovery, Ottawa, Canada
| | - S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
| | - Timothy H Murphy
- Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Theresa A Jones
- Department of Psychology and Neuroscience Institute, University of Texas at Austin, Austin, TX, USA
| | - Martin E Schwab
- Institute for Brain Research, University of Zurich
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Jukka Jolkkonen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland and Neurocenter, Neurology, University Hospital of Kuopio, Kuopio, Finland
| | - Andrew N Clarkson
- Department of Anatomy, Brain Health Research Center, and Brain Research New Zealand, University of Otago, Dunedin, New Zealand
- Faculty of Pharmacy, The University of Sydney, Sydney, Australia
| | - Numa Dancause
- Groupe de Recherche sur le Système Nerveux central (GRSNC), Département de Neurosciences, Université de Montréal, Montréal, Canada
| | - Tadeusz Weiloch
- Department of Clinical Sciences, Laboratory for Experimental Brain Research, Lund, Sweden
| | - Heidi Johansen-Berg
- Oxford Centre for Functional MRI of the Brain, John Radcliffe Hospital, Headington, Oxford, UK
| | - Michael Nilsson
- Hunter Medical Research Institute, University of Newcastle, New Lambton, Australia
| | - Louise D McCullough
- Department of Neurology, University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Mary T Joy
- Department of Neurology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
| |
Collapse
|
34
|
Lourbopoulos A, Mamrak U, Roth S, Balbi M, Shrouder J, Liesz A, Hellal F, Plesnila N. Inadequate food and water intake determine mortality following stroke in mice. J Cereb Blood Flow Metab 2017; 37:2084-2097. [PMID: 27449604 PMCID: PMC5464703 DOI: 10.1177/0271678x16660986] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Experimental stroke models producing clinically relevant functional deficits are often associated with high mortality. Because the mechanisms that underlie post-stroke mortality are largely unknown, results obtained using these models are often difficult to interpret, thereby limiting their translational potential. Given that specific forms of post-stroke care reduce mortality in patients, we hypothesized that inadequate food and water intake may underlie mortality following experimental stroke. C57BL/6 mice were subjected to 1 h of intraluminal filament middle cerebral artery occlusion. Nutritional support beginning on the second day after filament middle cerebral artery occlusion reduced the 14-day mortality rate from 59% to 15%. The surviving mice in the post-stroke support group had the same infarct size as non-surviving control mice, suggesting that post-stroke care was not neuroprotective and that inadequate food and/or water intake are the main reasons for filament middle cerebral artery occlusion-induced mortality. This notion was supported by the presence of significant hypoglycemia, ketonemia, and dehydration in control mice. Taken together, these data suggest that post-filament middle cerebral artery occlusion mortality in mice is not primarily caused by ischemic brain damage, but secondarily by inadequate food and/or water intake. Thus, providing nutritional support following filament middle cerebral artery occlusion greatly minimizes mortality bias and allows the study of long-term morphological and functional sequelae of stroke in mice.
Collapse
Affiliation(s)
- Athanasios Lourbopoulos
- 1 Laboratory of Experimental Stroke Research, Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center, Munich, Germany
| | - Uta Mamrak
- 1 Laboratory of Experimental Stroke Research, Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center, Munich, Germany
| | - Stefan Roth
- 1 Laboratory of Experimental Stroke Research, Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center, Munich, Germany
| | - Matilde Balbi
- 1 Laboratory of Experimental Stroke Research, Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center, Munich, Germany
| | - Joshua Shrouder
- 1 Laboratory of Experimental Stroke Research, Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center, Munich, Germany
| | - Arthur Liesz
- 1 Laboratory of Experimental Stroke Research, Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center, Munich, Germany.,2 Munich Cluster for Systems Neurology (Synergy), LMU Munich, Munich, Germany
| | - Farida Hellal
- 1 Laboratory of Experimental Stroke Research, Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center, Munich, Germany
| | - Nikolaus Plesnila
- 1 Laboratory of Experimental Stroke Research, Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center, Munich, Germany.,2 Munich Cluster for Systems Neurology (Synergy), LMU Munich, Munich, Germany
| |
Collapse
|
35
|
Evolution of ischemic damage and behavioural deficit over 6 months after MCAo in the rat: Selecting the optimal outcomes and statistical power for multi-centre preclinical trials. PLoS One 2017; 12:e0171688. [PMID: 28182727 PMCID: PMC5300105 DOI: 10.1371/journal.pone.0171688] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 01/24/2017] [Indexed: 12/30/2022] Open
Abstract
Key disparities between the timing and methods of assessment in animal stroke studies and clinical trial may be part of the reason for the failure to translate promising findings. This study investigates the development of ischemic damage after thread occlusion MCAo in the rat, using histological and behavioural outcomes. Using the adhesive removal test we investigate the longevity of behavioural deficit after ischemic stroke in rats, and examine the practicality of using such measures as the primary outcome for future studies. Ischemic stroke was induced in 132 Spontaneously Hypertensive Rats which were assessed for behavioural and histological deficits at 1, 3, 7, 14, 21, 28 days, 12 and 24 weeks (n>11 per timepoint). The basic behavioural score confirmed induction of stroke, with deficits specific to stroke animals. Within 7 days, these deficits resolved in 50% of animals. The adhesive removal test revealed contralateral neglect for up to 6 months following stroke. Sample size calculations to facilitate the use of this test as the primary experimental outcome resulted in cohort sizes much larger than are the norm for experimental studies. Histological damage progressed from a necrotic infarct to a hypercellular area that cleared to leave a fluid filled cavity. Whilst absolute volume of damage changed over time, when corrected for changes in hemispheric volume, an equivalent area of damage was lost at all timepoints. Using behavioural measures at chronic timepoints presents significant challenges to the basic science community in terms of the large number of animals required and the practicalities associated with this. Multicentre preclinical randomised controlled trials as advocated by the MultiPART consortium may be the only practical way to deal with this issue.
Collapse
|
36
|
Davis CK, Laud PJ, Bahor Z, Rajanikant GK, Majid A. Systematic review and stratified meta-analysis of the efficacy of carnosine in animal models of ischemic stroke. J Cereb Blood Flow Metab 2016; 36:1686-1694. [PMID: 27401803 PMCID: PMC5046161 DOI: 10.1177/0271678x16658302] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/13/2016] [Accepted: 06/13/2016] [Indexed: 01/20/2023]
Abstract
Carnosine is a naturally occurring pleotropic dipeptide which influences multiple deleterious mechanisms that are activated during stroke. Numerous published studies have reported that carnosine has robust efficacy in ischemic stroke models. To further evaluate these data, we have conducted a systematic review and meta-analysis of published studies. We included publications describing in vivo models of ischemic stroke where the neuroprotective efficacy of carnosine was being evaluated through the reporting of infarct volume and/or neurological score as outcomes. Overall efficacy was evaluated using weighted mean difference random effects meta-analysis. We also evaluated for study quality and publication bias. We identified eight publications that met our inclusion criteria describing a total of 29 comparisons and 454 animals. Overall methodological quality of studies was moderate (median = 4/9). Carnosine reduced infarct volume by 29.4% (95% confidence interval (CI), 24.0% to 34.9%; 29 comparisons). A clear dose-response effect was observed, and efficacy was reduced when carnosine was administered more than 6 h after ischemia. Our findings suggest that carnosine administered before or after the onset of ischemia exhibits robust efficacy in experimental ischemic stroke. However, the methodological quality of some of the studies was low and testing occurred only in healthy young male animals.
Collapse
Affiliation(s)
- Charles K Davis
- School of Biotechnology, National Institute of Technology Calicut, Calicut, India
| | - Peter J Laud
- Statistical Services Unit, University of Sheffield, Sheffield, UK
| | - Zsanett Bahor
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - GK Rajanikant
- School of Biotechnology, National Institute of Technology Calicut, Calicut, India
| | - Arshad Majid
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| |
Collapse
|
37
|
Cassarly C, Martin RH, Chimowitz M, Peña EA, Ramakrishnan V, Palesch YY. Assessing type I error and power of multistate Markov models for panel data-A simulation study. COMMUN STAT-SIMUL C 2016; 46:7040-7061. [PMID: 29225407 PMCID: PMC5722228 DOI: 10.1080/03610918.2016.1222425] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/29/2016] [Indexed: 01/21/2023]
Abstract
Ordinal outcomes collected at multiple follow-up visits are common in clinical trials. Sometimes, one visit is chosen for the primary analysis and the scale is dichotomized amounting to loss of information. Multistate Markov models describe how a process moves between states over time. Here, simulation studies are performed to investigate the type I error and power characteristics of multistate Markov models for panel data with limited non-adjacent state transitions. The results suggest that the multistate Markov models preserve the type I error and adequate power is achieved with modest sample sizes for panel data with limited non-adjacent state transitions.
Collapse
Affiliation(s)
- Christy Cassarly
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC
| | - Renee’ H. Martin
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC
| | - Marc Chimowitz
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC
| | - Edsel A. Peña
- Department of Statistics, University of South Carolina, Columbia, SC
| | | | - Yuko Y. Palesch
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
38
|
Vahidy FS, Rahbar MH, Zhu H, Rowan PJ, Bambhroliya AB, Savitz SI. Systematic Review and Meta-Analysis of Bone Marrow-Derived Mononuclear Cells in Animal Models of Ischemic Stroke. Stroke 2016; 47:1632-9. [PMID: 27165959 DOI: 10.1161/strokeaha.116.012701] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 04/05/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND PURPOSE Bone marrow-derived mononuclear cells (BMMNCs) offer the promise of augmenting poststroke recovery. There is mounting evidence of safety and efficacy of BMMNCs from preclinical studies of ischemic stroke; however, their pooled effects have not been described. METHODS Using Preferred Reporting Items for Systematic Review and Meta-Analysis guidelines, we conducted a systematic review of preclinical literature for intravenous use of BMMNCs followed by meta-analyses of histological and behavioral outcomes. Studies were selected based on predefined criteria. Data were abstracted by 2 independent investigators. After quality assessment, the pooled effects were generated using mixed-effect models. Impact of possible biases on estimated effect size was evaluated. RESULTS Standardized mean difference and 95% confidence interval for reduction in lesion volume was significantly beneficial for BMMNC treatment (standardized mean difference: -3.3; 95% confidence interval, -4.3 to -2.3). n=113 each for BMMNC and controls. BMMNC-treated animals (n=161) also had improved function measured by cylinder test (standardized mean difference: -2.4; 95% confidence interval, -3.1 to -1.6), as compared with controls (n=205). A trend for benefit was observed for adhesive removal test and neurological deficit score. Study quality score (median: 6; Q1-Q3: 5-7) was correlated with year of publication. There was funnel plot asymmetry; however, the pooled effects were robust to the correction of this bias and remained significant in favor of BMMNC treatment. CONCLUSIONS BMMNCs demonstrate beneficial effects across histological and behavioral outcomes in animal ischemic stroke models. Although study quality has improved over time, considerable degree of heterogeneity calls for standardization in the conduct and reporting of experimentation.
Collapse
Affiliation(s)
- Farhaan S Vahidy
- From the Department of Neurology, McGovern Medical School (F.S.V., A.B.B., S.I.S.), Department of Epidemiology, Human Genetics and Environmental Sciences (M.H.R.), Department of Biostatistics (H.Z.), and Department of Management, Policy and Community Health (P.J.R.), School of Public Health, University of Texas Health at Houston.
| | - Mohammad H Rahbar
- From the Department of Neurology, McGovern Medical School (F.S.V., A.B.B., S.I.S.), Department of Epidemiology, Human Genetics and Environmental Sciences (M.H.R.), Department of Biostatistics (H.Z.), and Department of Management, Policy and Community Health (P.J.R.), School of Public Health, University of Texas Health at Houston
| | - Hongjian Zhu
- From the Department of Neurology, McGovern Medical School (F.S.V., A.B.B., S.I.S.), Department of Epidemiology, Human Genetics and Environmental Sciences (M.H.R.), Department of Biostatistics (H.Z.), and Department of Management, Policy and Community Health (P.J.R.), School of Public Health, University of Texas Health at Houston
| | - Paul J Rowan
- From the Department of Neurology, McGovern Medical School (F.S.V., A.B.B., S.I.S.), Department of Epidemiology, Human Genetics and Environmental Sciences (M.H.R.), Department of Biostatistics (H.Z.), and Department of Management, Policy and Community Health (P.J.R.), School of Public Health, University of Texas Health at Houston
| | - Arvind B Bambhroliya
- From the Department of Neurology, McGovern Medical School (F.S.V., A.B.B., S.I.S.), Department of Epidemiology, Human Genetics and Environmental Sciences (M.H.R.), Department of Biostatistics (H.Z.), and Department of Management, Policy and Community Health (P.J.R.), School of Public Health, University of Texas Health at Houston
| | - Sean I Savitz
- From the Department of Neurology, McGovern Medical School (F.S.V., A.B.B., S.I.S.), Department of Epidemiology, Human Genetics and Environmental Sciences (M.H.R.), Department of Biostatistics (H.Z.), and Department of Management, Policy and Community Health (P.J.R.), School of Public Health, University of Texas Health at Houston
| |
Collapse
|
39
|
Arends MJ, White ES, Whitelaw CBA. Animal and cellular models of human disease. J Pathol 2016; 238:137-40. [PMID: 26482929 DOI: 10.1002/path.4662] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 10/17/2015] [Indexed: 02/02/2023]
Abstract
In this eighteenth (2016) Annual Review Issue of The Journal of Pathology, we present a collection of 19 invited review articles that cover different aspects of cellular and animal models of disease. These include genetically-engineered models, chemically-induced models, naturally-occurring models, and combinations thereof, with the focus on recent methodological and conceptual developments across a wide range of human diseases.
Collapse
Affiliation(s)
- Mark J Arends
- Centre for Comparative Pathology, University of Edinburgh, Edinburgh, UK
| | - Eric S White
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, University of Michigan Medical School, Ann Arbor, USA
| | | |
Collapse
|
40
|
Orset C, Haelewyn B, Allan SM, Ansar S, Campos F, Cho TH, Durand A, El Amki M, Fatar M, Garcia-Yébenes I, Gauberti M, Grudzenski S, Lizasoain I, Lo E, Macrez R, Margaill I, Maysami S, Meairs S, Nighoghossian N, Orbe J, Paramo JA, Parienti JJ, Rothwell NJ, Rubio M, Waeber C, Young AR, Touzé E, Vivien D. Efficacy of Alteplase in a Mouse Model of Acute Ischemic Stroke: A Retrospective Pooled Analysis. Stroke 2016; 47:1312-1318. [PMID: 27032444 DOI: 10.1161/strokeaha.116.012238] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/01/2016] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND PURPOSE The debate over the fact that experimental drugs proposed for the treatment of stroke fail in the translation to the clinical situation has attracted considerable attention in the literature. In this context, we present a retrospective pooled analysis of a large data set from preclinical studies, to examine the effects of early versus late administration of intravenous recombinant tissue-type plasminogen activator. METHODS We collected data from 26 individual studies from 9 international centers (13 researchers; 716 animals) that compared recombinant tissue-type plasminogen activator with controls, in a unique mouse model of thromboembolic stroke induced by an in situ injection of thrombin into the middle cerebral artery. Studies were classified into early (<3 hours) versus late (≥3 hours) drug administration. Final infarct volumes, assessed by histology or magnetic resonance imaging, were compared in each study, and the absolute differences were pooled in a random-effect meta-analysis. The influence of time of administration was tested. RESULTS When compared with saline controls, early recombinant tissue-type plasminogen activator administration was associated with a significant benefit (absolute difference, -6.63 mm(3); 95% confidence interval, -9.08 to -4.17; I(2)=76%), whereas late recombinant tissue-type plasminogen activator treatment showed a deleterious effect (+5.06 mm(3); 95% confidence interval, +2.78 to +7.34; I(2)=42%; Pint<0.00001). Results remained unchanged after subgroup analyses. CONCLUSIONS Our results provide the basis needed for the design of future preclinical studies on recanalization therapies using this model of thromboembolic stroke in mice. The power analysis reveals that a multicenter trial would require 123 animals per group instead of 40 for a single-center trial.
Collapse
Affiliation(s)
- Cyrille Orset
- Inserm UMR-S U919, University Caen Normandie, GIP Cyceron, Caen, France.,Experimental Stroke Research Platform, CURB, University Caen Normandie, Caen, France
| | - Benoit Haelewyn
- Experimental Stroke Research Platform, CURB, University Caen Normandie, Caen, France
| | - Stuart M Allan
- University of Manchester, Faculty of Medical and Health Sciences, Manchester, United Kingdom
| | - Saema Ansar
- Neurologische Universitätsklinik, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.,Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Francesco Campos
- Dept of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.,Department of Neurology, Neurovascular Area, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Tae Hee Cho
- Inserm UMR-S U919, University Caen Normandie, GIP Cyceron, Caen, France.,Dept of Stroke Medicine and Department of Neuroradiology; Université Lyon 1; CREATIS, CNRS UMR 5220-INSERM U1044 ; Hospices Civils de Lyon ; Lyon, France
| | - Anne Durand
- Dept of Stroke Medicine and Department of Neuroradiology; Université Lyon 1; CREATIS, CNRS UMR 5220-INSERM U1044 ; Hospices Civils de Lyon ; Lyon, France
| | - Mohamad El Amki
- EA4475 Pharmacologie de la Circulation Cérébrale, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | - Marc Fatar
- Department of Neurology, Universitätsmedizin Mannheim, University of Heidelberg, Germany
| | - Isaac Garcia-Yébenes
- Unidad de Investigación Neurovascular, Departamento Farmacología, Facultad de Medicina, Universidad Complutense and Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Maxime Gauberti
- Inserm UMR-S U919, University Caen Normandie, GIP Cyceron, Caen, France
| | - Saskia Grudzenski
- Department of Neurology, Universitätsmedizin Mannheim, University of Heidelberg, Germany
| | - Ignacio Lizasoain
- Unidad de Investigación Neurovascular, Departamento Farmacología, Facultad de Medicina, Universidad Complutense and Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Eng Lo
- Departments of Radiology, and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | - Richard Macrez
- Inserm UMR-S U919, University Caen Normandie, GIP Cyceron, Caen, France
| | - Isabelle Margaill
- EA4475 Pharmacologie de la Circulation Cérébrale, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | - Samaneh Maysami
- University of Manchester, Faculty of Medical and Health Sciences, Manchester, United Kingdom
| | - Stephen Meairs
- Neurologische Universitätsklinik, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Norbert Nighoghossian
- Dept of Stroke Medicine and Department of Neuroradiology; Université Lyon 1; CREATIS, CNRS UMR 5220-INSERM U1044 ; Hospices Civils de Lyon ; Lyon, France
| | - Josune Orbe
- Inserm UMR-S U919, University Caen Normandie, GIP Cyceron, Caen, France.,Inserm UMR-S U919, University Caen Normandie, GIP Cyceron, Caen, France
| | - Jose Antonio Paramo
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, CIMA-University of Navarra, Pamplona, Spain
| | - Jean-Jacques Parienti
- Departments of Biostatistics and Clinical Research, Centre Hospitalier Universitaire (CHU), Caen ; EA4655 Risques Microbiens, Université de Caen Normandie, Caen, France
| | - Nancy J Rothwell
- University of Manchester, Faculty of Medical and Health Sciences, Manchester, United Kingdom
| | - Marina Rubio
- Inserm UMR-S U919, University Caen Normandie, GIP Cyceron, Caen, France
| | - Christian Waeber
- Dept of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.,School of Pharmacy and Dept. of Pharmacology/Therapeutics, University College Cork, Ireland
| | - Alan R Young
- Inserm UMR-S U919, University Caen Normandie, GIP Cyceron, Caen, France
| | - Emmanuel Touzé
- Inserm UMR-S U919, University Caen Normandie, GIP Cyceron, Caen, France.,Department of Neurology, CHU Côte de Nacre, Caen
| | - Denis Vivien
- Inserm UMR-S U919, University Caen Normandie, GIP Cyceron, Caen, France
| |
Collapse
|
41
|
Llovera G, Liesz A. The next step in translational research: lessons learned from the first preclinical randomized controlled trial. J Neurochem 2016; 139 Suppl 2:271-279. [PMID: 26968835 DOI: 10.1111/jnc.13516] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 12/15/2015] [Accepted: 12/17/2015] [Indexed: 12/13/2022]
Abstract
For years, low reproducibility of preclinical trials and poor translation of promising preclinical therapies to the clinic have posed major challenges to translational research in most biomedical fields. To overcome the limitations that stand between experimental and clinical research, international consortia have attempted to establish standardized guidelines for study design and for reporting the resulting data. In addition, multicenter preclinical randomized controlled trials (pRCTs) have been proposed as a suitable tool for 'bridging the gap' between experimental research and clinical trials. We recently reported the design and results of the first such pRCT in which we confirmed the feasibility of using a coordinated approach with standardized protocols in collaboration with independent multinational research centers. However, despite its successes, this first pRCT also had several difficulties, particularly with respect to following the protocols established in the study design and analyzing the data. Here, we review our experiences performing the study, and we analyze and discuss the lessons learned from performing the first pRCT. Moreover, we provide suggestions regarding how obstacles can be overcome to improve the performance and outcome of future pRCT studies. Translational research is hampered by low reproducibility of preclinical studies and countless failed clinical trials. International consortia have proposed preclinical multicenter trials as an intermediate step to overcome this 'translational roadblock'. We have recently performed the first such preclinical randomized controlled trial (pRCT) by adopting key elements of clinical study design to preclinical research. In this review, we discuss the lessons learned from this trial and provide suggestions how to optimize future pRCTs. This article is part of the 60th Anniversary special issue.
Collapse
Affiliation(s)
- Gemma Llovera
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Arthur Liesz
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Munich, Germany. .,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
42
|
Sobowale OA, Parry-Jones AR, Smith CJ, Tyrrell PJ, Rothwell NJ, Allan SM. Interleukin-1 in Stroke: From Bench to Bedside. Stroke 2016; 47:2160-7. [PMID: 26931154 DOI: 10.1161/strokeaha.115.010001] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 01/14/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Oluwaseun A Sobowale
- From the Manchester Academic Health Sciences Centre, Salford Royal NHS Foundation Trust, University of Manchester, Salford, United Kingdom (O.A.S., A.R.P.-J., C.J.S., P.J.T.); Greater Manchester Neuroscience Centre, Salford Royal NHS Foundation Trust, Salford, United Kingdom (O.A.S., A.R.P.-J., C.J.S., P.J.T.); and Faculty of Life Sciences, The University of Manchester, Manchester, United Kingdom (N.J.R., S.M.A.)
| | - Adrian R Parry-Jones
- From the Manchester Academic Health Sciences Centre, Salford Royal NHS Foundation Trust, University of Manchester, Salford, United Kingdom (O.A.S., A.R.P.-J., C.J.S., P.J.T.); Greater Manchester Neuroscience Centre, Salford Royal NHS Foundation Trust, Salford, United Kingdom (O.A.S., A.R.P.-J., C.J.S., P.J.T.); and Faculty of Life Sciences, The University of Manchester, Manchester, United Kingdom (N.J.R., S.M.A.)
| | - Craig J Smith
- From the Manchester Academic Health Sciences Centre, Salford Royal NHS Foundation Trust, University of Manchester, Salford, United Kingdom (O.A.S., A.R.P.-J., C.J.S., P.J.T.); Greater Manchester Neuroscience Centre, Salford Royal NHS Foundation Trust, Salford, United Kingdom (O.A.S., A.R.P.-J., C.J.S., P.J.T.); and Faculty of Life Sciences, The University of Manchester, Manchester, United Kingdom (N.J.R., S.M.A.)
| | - Pippa J Tyrrell
- From the Manchester Academic Health Sciences Centre, Salford Royal NHS Foundation Trust, University of Manchester, Salford, United Kingdom (O.A.S., A.R.P.-J., C.J.S., P.J.T.); Greater Manchester Neuroscience Centre, Salford Royal NHS Foundation Trust, Salford, United Kingdom (O.A.S., A.R.P.-J., C.J.S., P.J.T.); and Faculty of Life Sciences, The University of Manchester, Manchester, United Kingdom (N.J.R., S.M.A.)
| | - Nancy J Rothwell
- From the Manchester Academic Health Sciences Centre, Salford Royal NHS Foundation Trust, University of Manchester, Salford, United Kingdom (O.A.S., A.R.P.-J., C.J.S., P.J.T.); Greater Manchester Neuroscience Centre, Salford Royal NHS Foundation Trust, Salford, United Kingdom (O.A.S., A.R.P.-J., C.J.S., P.J.T.); and Faculty of Life Sciences, The University of Manchester, Manchester, United Kingdom (N.J.R., S.M.A.)
| | - Stuart M Allan
- From the Manchester Academic Health Sciences Centre, Salford Royal NHS Foundation Trust, University of Manchester, Salford, United Kingdom (O.A.S., A.R.P.-J., C.J.S., P.J.T.); Greater Manchester Neuroscience Centre, Salford Royal NHS Foundation Trust, Salford, United Kingdom (O.A.S., A.R.P.-J., C.J.S., P.J.T.); and Faculty of Life Sciences, The University of Manchester, Manchester, United Kingdom (N.J.R., S.M.A.).
| |
Collapse
|
43
|
Systematic review of survival time in experimental mouse stroke with impact on reliability of infarct estimation. J Neurosci Methods 2016; 261:10-8. [PMID: 26620203 DOI: 10.1016/j.jneumeth.2015.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/24/2015] [Accepted: 11/17/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND Stroke is the second most common cause of death worldwide. Only one treatment for acute ischemic stroke is currently available, thrombolysis with rt-PA, but it is limited in its use. Many efforts have been invested in order to find additive treatments, without success. A multitude of reasons for the translational problems from mouse experimental stroke to clinical trials probably exists, including infarct size estimations around the peak time of edema formation. Furthermore, edema is a more prominent feature of stroke in mice than in humans, because of the tendency to produce larger infarcts with more substantial edema. PURPOSE This paper will give an overview of previous studies of experimental mouse stroke, and correlate survival time to peak time of edema formation. Furthermore, investigations of whether the included studies corrected the infarct measurements for edema and a comparison of correction methods will be discussed. METHOD Relevant terms were searched in the National Library of Medicine PubMed database. A method for classification of infarct measurement methods was made using a naming convention. CONCLUSION Our study shows that infarct size estimations are often performed around the peak time of edema, with a median of 24h. Most studies do consider edema formation, however, there is no consensus on what method to use to correct for edema. Furthermore, investigations into neuroprotective drugs should use longer survival times to ensure completion of the investigated process. Our findings indicate a need for more research in this area, and establishment of common correction methodology.
Collapse
|
44
|
Wali B, Ishrat T, Stein DG, Sayeed I. Progesterone improves long-term functional and histological outcomes after permanent stroke in older rats. Behav Brain Res 2016; 305:46-56. [PMID: 26921692 DOI: 10.1016/j.bbr.2016.02.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 02/16/2016] [Accepted: 02/21/2016] [Indexed: 12/22/2022]
Abstract
Previous studies have shown progesterone to be beneficial in animal models of central nervous system injury, but less is known about its longer-term sustained effects on recovery of function following stroke. We evaluated progesterone's effects on a panel of behavioral tests up to 8 weeks after permanent middle cerebral artery occlusion (pMCAO). Male Sprague-Dawley rats 12m.o. were subjected to pMCAO and, beginning 3h post-pMCAO, given intraperitoneal injections of progesterone (8mg/kg) or vehicle, followed by subcutaneous injections at 8h and then every 24h for 7 days, with tapering of the last 2 treatments. The rats were then tested on functional recovery at 3, 6 and 8 weeks post-stroke. We observed that progesterone-treated animals showed attenuation of infarct volume and improved functional outcomes at 8 weeks after stroke on grip strength, sensory neglect, motor coordination and spatial navigation tests. Progesterone treatments significantly improved motor deficits in the affected limb on a number of gait parameters. Glial fibrillary acidic protein expression was increased in the vehicle group and considerably lowered in the progesterone group at 8 weeks post-stroke. With repeated post-stroke testing, sensory neglect and some aspects of spatial learning performance showed spontaneous recovery, but on gait and grip-strength measres progesterone given only in the acute stage of stroke (first 7 days) showed sustained beneficial effects on all other measures of functional recovery up to 8 weeks post-stroke.
Collapse
Affiliation(s)
- Bushra Wali
- Department of Emergency Medicine, Brain Research Laboratory, Emory University, Atlanta, GA, USA.
| | - Tauheed Ishrat
- Department of Emergency Medicine, Brain Research Laboratory, Emory University, Atlanta, GA, USA.
| | - Donald G Stein
- Department of Emergency Medicine, Brain Research Laboratory, Emory University, Atlanta, GA, USA.
| | - Iqbal Sayeed
- Department of Emergency Medicine, Brain Research Laboratory, Emory University, Atlanta, GA, USA.
| |
Collapse
|
45
|
|
46
|
Scudamore CL, Soilleux EJ, Karp NA, Smith K, Poulsom R, Herrington CS, Day MJ, Brayton CF, Bolon B, Whitelaw B, White ES, Everitt JI, Arends MJ. Recommendations for minimum information for publication of experimental pathology data: MINPEPA guidelines. J Pathol 2015; 238:359-67. [PMID: 26387837 DOI: 10.1002/path.4642] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/01/2015] [Accepted: 09/13/2015] [Indexed: 12/27/2022]
Abstract
Animal models are essential research tools in modern biomedical research, but there are concerns about their lack of reproducibility and the failure of animal data to translate into advances in human medical therapy. A major factor in improving experimental reproducibility is thorough communication of research methodologies. The recently published ARRIVE guidelines outline basic information that should be provided when reporting animal studies. This paper builds on ARRIVE by providing the minimum information needed in reports to allow proper assessment of pathology data gathered from animal tissues. This guidance covers aspects of experimental design, technical procedures, data gathering, analysis, and presentation that are potential sources of variation when creating morphological, immunohistochemical (IHC) or in situ hybridization (ISH) datasets. This reporting framework will maximize the likelihood that pathology data derived from animal experiments can be reproduced by ensuring that sufficient information is available to allow for replication of the methods and facilitate inter-study comparison by identifying potential interpretative confounders.
Collapse
Affiliation(s)
| | - Elizabeth J Soilleux
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Natasha A Karp
- Mouse Informatics Group, Wellcome Trust Sanger Institute, Cambridge, UK
| | - Ken Smith
- Pathology and Pathogen Biology, Royal Veterinary College, Hertfordshire, UK
| | - Richard Poulsom
- Blizard Institute, Queen Mary University of London, UK and Scientific Editor, The Journal of Pathology
| | - C Simon Herrington
- Edinburgh Cancer Research Centre, Institute of Genetics & Molecular Medicine, Edinburgh, UK and Editor in Chief, The Journal of Pathology
| | - Michael J Day
- School of Veterinary Sciences, University of Bristol, Langford, UK
| | - Cory F Brayton
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, USA
| | | | - Bruce Whitelaw
- The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Eric S White
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, University of Michigan Medical School, Ann Arbor, USA
| | | | - Mark J Arends
- Centre for Comparative Pathology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
47
|
Palmitoylethanolamide, a Natural Retinoprotectant: Its Putative Relevance for the Treatment of Glaucoma and Diabetic Retinopathy. J Ophthalmol 2015; 2015:430596. [PMID: 26664738 PMCID: PMC4667059 DOI: 10.1155/2015/430596] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/11/2015] [Accepted: 11/01/2015] [Indexed: 12/11/2022] Open
Abstract
Retinopathy is a threat to the eyesight, and glaucoma and diabetes are the main causes for the damage of retinal cells. Recent insights pointed out a common pathogenetic pathway for both disorders, based on chronic inflammation. Palmitoylethanolamide (PEA) is an endogenous cell protective lipid. Since its discovery in 1957 as a biologically active component in foods and in many living organisms, around 500 scientific papers have been published on PEA's anti-inflammatory and neuron-protective properties. PEA has been evaluated for glaucoma, diabetic retinopathy, and uveitis, pathological states based on chronic inflammation, respiratory disorders, and various pain syndromes in a number of clinical trials since the 70s of 20th century. PEA is available as a food supplement (PeaPure) and as diet food for medical purposes in Italy (Normast, PeaVera, and Visimast). These products are notified in Italy for the nutritional support in glaucoma and neuroinflammation. PEA has been tested in at least 9 double blind placebo controlled studies, among which two studies were in glaucoma, and found to be safe and effective up to 1.8 g/day, with excellent tolerability. PEA therefore holds a promise in the treatment of a number of retinopathies. We discuss PEA as a putative anti-inflammatory and retinoprotectant compound in the treatment of retinopathies, especially related to glaucoma and diabetes.
Collapse
|
48
|
Graham ML, Prescott MJ. The multifactorial role of the 3Rs in shifting the harm-benefit analysis in animal models of disease. Eur J Pharmacol 2015; 759:19-29. [PMID: 25823812 PMCID: PMC4441106 DOI: 10.1016/j.ejphar.2015.03.040] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/05/2015] [Accepted: 03/12/2015] [Indexed: 12/12/2022]
Abstract
Ethics on animal use in science in Western society is based on utilitarianism, weighing the harms and benefits to the animals involved against those of the intended human beneficiaries. The 3Rs concept (Replacement, Reduction, Refinement) is both a robust framework for minimizing animal use and suffering (addressing the harms to animals) and a means of supporting high quality science and translation (addressing the benefits). The ambiguity of basic research performed early in the research continuum can sometimes make harm-benefit analysis more difficult since anticipated benefit is often an incremental contribution to a field of knowledge. On the other hand, benefit is much more evident in translational research aimed at developing treatments for direct application in humans or animals suffering from disease. Though benefit may be easier to define, it should certainly not be considered automatic. Issues related to model validity seriously compromise experiments and have been implicated as a major impediment in translation, especially in complex disease models where harms to animals can be intensified. Increased investment and activity in the 3Rs is delivering new research models, tools and approaches with reduced reliance on animal use, improved animal welfare, and improved scientific and predictive value.
Collapse
Affiliation(s)
- Melanie L Graham
- University of Minnesota, Department of Surgery, St. Paul, MN, USA; University of Minnesota, Veterinary Population Medicine Department, St. Paul, MN, USA.
| | - Mark J Prescott
- National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), London, UK
| |
Collapse
|
49
|
Neuroprotection for ischaemic stroke: Current status and challenges. Pharmacol Ther 2015; 146:23-34. [DOI: 10.1016/j.pharmthera.2014.09.003] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 09/02/2014] [Indexed: 12/31/2022]
|
50
|
Dames C, Akyüz L, Reppe K, Tabeling C, Dietert K, Kershaw O, Gruber AD, Meisel C, Meisel A, Witzenrath M, Engel O. Miniaturized bronchoscopy enables unilateral investigation, application, and sampling in mice. Am J Respir Cell Mol Biol 2015; 51:730-7. [PMID: 24960575 DOI: 10.1165/rcmb.2014-0052ma] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Lung diseases, including pneumonia and asthma, are among the most prevalent human disorders, and murine models have been established to investigate their pathobiology and develop novel treatment approaches. Whereas bronchoscopy is valuable for diagnostic and therapeutic procedures in patients, no equivalent for small rodents has been established. Here, we introduce a miniaturized video-bronchoscopy system offering new opportunities in experimental lung research. With an outer diameter of 0.75 mm, it is possible to advance the optics into the main bronchi of mice. An irrigation channel allows bronchoalveolar lavage and unilateral application of substances to one lung. Even a unilateral infection is possible, enabling researchers to use the contralateral lung as internal control.
Collapse
Affiliation(s)
- Claudia Dames
- 1 Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|