1
|
Gold WA, Percy AK, Neul JL, Cobb SR, Pozzo-Miller L, Issar JK, Ben-Zeev B, Vignoli A, Kaufmann WE. Rett syndrome. Nat Rev Dis Primers 2024; 10:84. [PMID: 39511247 DOI: 10.1038/s41572-024-00568-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 11/15/2024]
Abstract
Rett syndrome (RTT) is a severe, progressive, neurodevelopmental disorder, which affects predominantly females. In most cases, RTT is associated with pathogenic variants in MECP2. MeCP2, the protein product of MECP2, is known to regulate gene expression and is highly expressed in the brain. RTT is characterized by developmental regression of spoken language and hand use that, with hand stereotypies and impaired ambulation, constitute the four core diagnostic features. Affected individuals may present multiple other neurological impairments and comorbidities, such as seizures, breathing irregularities, anxiety and constipation. Studies employing neuroimaging, neuropathology, neurochemistry and animal models show reductions in brain size and global decreases in neuronal size, as well as alterations in multiple neurotransmitter systems. Management of RTT is mainly focused on preventing the progression of symptoms, currently improved by guidelines based on natural history studies. Animal and cellular models of MeCP2 deficiency have helped in understanding the pathophysiology of RTT and guided the development of trofinetide, an IGF1-related compound, which is an approved drug for RTT, as well as of other drugs and gene therapies currently under investigation.
Collapse
Affiliation(s)
- Wendy A Gold
- Molecular Neurobiology Research Laboratory, Kids Research and Kids Neuroscience Centre, The Children's Hospital at Westmead, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Kids Neuroscience Centre, Kids Research, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Alan K Percy
- Department of Pediatrics (Neurology), University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jeffrey L Neul
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stuart R Cobb
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh Medical School, Edinburgh, UK
| | - Lucas Pozzo-Miller
- Department of Pediatrics & Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Jasmeen K Issar
- Molecular Neurobiology Research Laboratory, Kids Research and Kids Neuroscience Centre, The Children's Hospital at Westmead, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Kids Neuroscience Centre, Kids Research, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Bruria Ben-Zeev
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
- Tel Aviv University School of Medicine, Tel Aviv, Israel
| | - Aglaia Vignoli
- Childhood and Adolescence Neurology & Psychiatry Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Walter E Kaufmann
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA.
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
2
|
Sebastiano MR, Hadano S, Cesca F, Ermondi G. Preclinical alternative drug discovery programs for monogenic rare diseases. Should small molecules or gene therapy be used? The case of hereditary spastic paraplegias. Drug Discov Today 2024; 29:104138. [PMID: 39154774 DOI: 10.1016/j.drudis.2024.104138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/28/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
Patients diagnosed with rare diseases and their and families search desperately to organize drug discovery campaigns. Alternative models that differ from default paradigms offer real opportunities. There are, however, no clear guidelines for the development of such models, which reduces success rates and raises costs. We address the main challenges in making the discovery of new preclinical treatments more accessible, using rare hereditary paraplegia as a paradigmatic case. First, we discuss the necessary expertise, and the patients' clinical and genetic data. Then, we revisit gene therapy, de novo drug development, and drug repurposing, discussing their applicability. Moreover, we explore a pool of recommended in silico tools for pathogenic variant and protein structure prediction, virtual screening, and experimental validation methods, discussing their strengths and weaknesses. Finally, we focus on successful case applications.
Collapse
Affiliation(s)
- Matteo Rossi Sebastiano
- University of Torino, Molecular Biotechnology and Health Sciences Department, CASSMedChem, Piazza Nizza, 10138 Torino, Italy
| | - Shinji Hadano
- Molecular Neuropathobiology Laboratory, Department of Physiology, Tokai University School of Medicine, Isehara, Japan
| | - Fabrizia Cesca
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Giuseppe Ermondi
- University of Torino, Molecular Biotechnology and Health Sciences Department, CASSMedChem, Piazza Nizza, 10138 Torino, Italy.
| |
Collapse
|
3
|
Ornoy A, Echefu B, Becker M. Animal Models of Autistic-like Behavior in Rodents: A Scoping Review and Call for a Comprehensive Scoring System. Int J Mol Sci 2024; 25:10469. [PMID: 39408797 PMCID: PMC11477392 DOI: 10.3390/ijms251910469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Appropriate animal models of human diseases are a cornerstone in the advancement of science and medicine. To create animal models of neuropsychiatric and neurobehavioral diseases such as autism spectrum disorder (ASD) necessitates the development of sufficient neurobehavioral measuring tools to translate human behavior to expected measurable behavioral features in animals. If possible, the severity of the symptoms should also be assessed. Indeed, at least in rodents, adequate neurobehavioral and neurological tests have been developed. Since ASD is characterized by a number of specific behavioral trends with significant severity, animal models of autistic-like behavior have to demonstrate the specific characteristic features, namely impaired social interactions, communication deficits, and restricted, repetitive behavioral patterns, with association to several additional impairments such as somatosensory, motor, and memory impairments. Thus, an appropriate model must show behavioral impairment of a minimal number of neurobehavioral characteristics using an adequate number of behavioral tests. The proper animal models enable the study of ASD-like-behavior from the etiologic, pathogenetic, and therapeutic aspects. From the etiologic aspects, models have been developed by the use of immunogenic substances like polyinosinic-polycytidylic acid (PolyIC), lipopolysaccharide (LPS), and propionic acid, or other well-documented immunogens or pathogens, like Mycobacterium tuberculosis. Another approach is the use of chemicals like valproic acid, polychlorinated biphenyls (PCBs), organophosphate pesticides like chlorpyrifos (CPF), and others. These substances were administered either prenatally, generally after the period of major organogenesis, or, especially in rodents, during early postnatal life. In addition, using modern genetic manipulation methods, genetic models have been created of almost all human genetic diseases that are manifested by autistic-like behavior (i.e., fragile X, Rett syndrome, SHANK gene mutation, neuroligin genes, and others). Ideally, we should not only evaluate the different behavioral modes affected by the ASD-like behavior, but also assess the severity of the behavioral deviations by an appropriate scoring system, as applied to humans. We therefore propose a scoring system for improved assessment of ASD-like behavior in animal models.
Collapse
Affiliation(s)
- Asher Ornoy
- Department of Morphological Sciences and Teratology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel; (B.E.); (M.B.)
- Hadassah Academic College, Jerusalem 9101001, Israel
- Hadassah Medical School, Hebrew University, Jerusalem 9112102, Israel
| | - Boniface Echefu
- Department of Morphological Sciences and Teratology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel; (B.E.); (M.B.)
| | - Maria Becker
- Department of Morphological Sciences and Teratology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel; (B.E.); (M.B.)
| |
Collapse
|
4
|
Cosentino L, Urbinati C, Lanzillotta C, De Rasmo D, Valenti D, Pellas M, Quattrini MC, Piscitelli F, Kostrzewa M, Di Domenico F, Pietraforte D, Bisogno T, Signorile A, Vacca RA, De Filippis B. Pharmacological inhibition of the CB1 cannabinoid receptor restores abnormal brain mitochondrial CB1 receptor expression and rescues bioenergetic and cognitive defects in a female mouse model of Rett syndrome. Mol Autism 2024; 15:39. [PMID: 39300547 PMCID: PMC11414047 DOI: 10.1186/s13229-024-00617-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 08/16/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Defective mitochondria and aberrant brain mitochondrial bioenergetics are consistent features in syndromic intellectual disability disorders, such as Rett syndrome (RTT), a rare neurologic disorder that severely affects mainly females carrying mutations in the X-linked MECP2 gene. A pool of CB1 cannabinoid receptors (CB1R), the primary receptor subtype of the endocannabinoid system in the brain, is located on brain mitochondrial membranes (mtCB1R), where it can locally regulate energy production, synaptic transmission and memory abilities through the inhibition of the intra-mitochondrial protein kinase A (mtPKA). In the present study, we asked whether an overactive mtCB1R-mtPKA signaling might underlie the brain mitochondrial alterations in RTT and whether its modulation by systemic administration of the CB1R inverse agonist rimonabant might improve bioenergetics and cognitive defects in mice modeling RTT. METHODS Rimonabant (0.3 mg/kg/day, intraperitoneal injections) was administered daily to symptomatic female mice carrying a truncating mutation of the Mecp2 gene and its effects on brain mitochondria functionality, systemic oxidative status, and memory function were assessed. RESULTS mtCB1R is overexpressed in the RTT mouse brain. Subchronic treatment with rimonabant normalizes mtCB1R expression in RTT mouse brains, boosts mtPKA signaling, and restores the defective brain mitochondrial bioenergetics, abnormal peripheral redox homeostasis, and impaired cognitive abilities in RTT mice. LIMITATIONS The lack of selectivity of the rimonabant treatment towards mtCB1R does not allow us to exclude that the beneficial effects exerted by the treatment in the RTT mouse model may be ascribed more broadly to the modulation of CB1R activity and distribution among intracellular compartments, rather than to a selective effect on mtCB1R-mediated signaling. The low sample size of few experiments is a further limitation that has been addressed replicating the main findings under different experimental conditions. CONCLUSIONS The present data identify mtCB1R overexpression as a novel molecular alteration in the RTT mouse brain that may underlie defective brain mitochondrial bioenergetics and cognitive dysfunction.
Collapse
Affiliation(s)
- Livia Cosentino
- Center for Behavioral Sciences and Mental Health, Italian National Institute of Health, Rome, Italy
| | - Chiara Urbinati
- Center for Behavioral Sciences and Mental Health, Italian National Institute of Health, Rome, Italy
| | - Chiara Lanzillotta
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Rome, Italy
| | - Domenico De Rasmo
- Institute of Biomembranes Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | - Daniela Valenti
- Institute of Biomembranes Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | - Mattia Pellas
- Center for Behavioral Sciences and Mental Health, Italian National Institute of Health, Rome, Italy
| | | | - Fabiana Piscitelli
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
| | - Magdalena Kostrzewa
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Rome, Italy
| | | | - Tiziana Bisogno
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Anna Signorile
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | - Rosa Anna Vacca
- Institute of Biomembranes Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy.
| | - Bianca De Filippis
- Center for Behavioral Sciences and Mental Health, Italian National Institute of Health, Rome, Italy.
| |
Collapse
|
5
|
Peters SU, Shelton AR, Malow BA, Neul JL. A clinical-translational review of sleep problems in neurodevelopmental disabilities. J Neurodev Disord 2024; 16:41. [PMID: 39033100 PMCID: PMC11265033 DOI: 10.1186/s11689-024-09559-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/05/2024] [Indexed: 07/23/2024] Open
Abstract
Sleep disorders are very common across neurodevelopmental disorders and place a large burden on affected children, adolescents, and their families. Sleep disturbances seem to involve a complex interplay of genetic, neurobiological, and medical/environmental factors in neurodevelopmental disorders. In this review, we discuss animal models of sleep problems and characterize their presence in two single gene disorders, Rett Syndrome, and Angelman Syndrome and two more commonly occurring neurodevelopmental disorders, Down Syndrome, and autism spectrum disorders. We then discuss strategies for novel methods of assessment using wearable sensors more broadly for neurodevelopmental disorders in general, including the importance of analytical validation. An increased understanding of the mechanistic contributions and potential biomarkers of disordered sleep may offer quantifiable targets for interventions that improve overall quality of life for affected individuals and their families.
Collapse
Affiliation(s)
- Sarika U Peters
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, USA.
- Vanderbilt Kennedy Center for Research on Human Development, One Magnolia Circle, Room 404B, Nashville, TN, 37203, USA.
| | - Althea Robinson Shelton
- Vanderbilt Kennedy Center for Research on Human Development, One Magnolia Circle, Room 404B, Nashville, TN, 37203, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, USA
| | - Beth A Malow
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, USA
- Vanderbilt Kennedy Center for Research on Human Development, One Magnolia Circle, Room 404B, Nashville, TN, 37203, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, USA
| | - Jeffrey L Neul
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, USA
- Vanderbilt Kennedy Center for Research on Human Development, One Magnolia Circle, Room 404B, Nashville, TN, 37203, USA
| |
Collapse
|
6
|
Medeiros D, Ayala-Baylon K, Egido-Betancourt H, Miller E, Chapleau C, Robinson H, Phillips ML, Yang T, Longo FM, Li W, Pozzo-Miller L. A small-molecule TrkB ligand improves dendritic spine phenotypes and atypical behaviors in female Rett syndrome mice. Dis Model Mech 2024; 17:dmm050612. [PMID: 38785269 PMCID: PMC11139040 DOI: 10.1242/dmm.050612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/06/2024] [Indexed: 05/25/2024] Open
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in MECP2, which encodes methyl-CpG-binding protein 2, a transcriptional regulator of many genes, including brain-derived neurotrophic factor (BDNF). BDNF levels are lower in multiple brain regions of Mecp2-deficient mice, and experimentally increasing BDNF levels improve atypical phenotypes in Mecp2 mutant mice. Due to the low blood-brain barrier permeability of BDNF itself, we tested the effects of LM22A-4, a brain-penetrant, small-molecule ligand of the BDNF receptor TrkB (encoded by Ntrk2), on dendritic spine density and form in hippocampal pyramidal neurons and on behavioral phenotypes in female Mecp2 heterozygous (HET) mice. A 4-week systemic treatment of Mecp2 HET mice with LM22A-4 restored spine volume in MeCP2-expressing neurons to wild-type (WT) levels, whereas spine volume in MeCP2-lacking neurons remained comparable to that in neurons from female WT mice. Female Mecp2 HET mice engaged in aggressive behaviors more than WT mice, the levels of which were reduced to WT levels by the 4-week LM22A-4 treatment. These data provide additional support to the potential usefulness of novel therapies not only for RTT but also to other BDNF-related disorders.
Collapse
Affiliation(s)
- Destynie Medeiros
- Department of Neurobiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Karen Ayala-Baylon
- Department of Neurobiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hailey Egido-Betancourt
- Department of Neurobiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Eric Miller
- Department of Neurobiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christopher Chapleau
- Department of Neurobiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Holly Robinson
- Department of Neurobiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mary L. Phillips
- Department of Neurobiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Tao Yang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Frank M. Longo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Wei Li
- Department of Neurobiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lucas Pozzo-Miller
- Department of Neurobiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
7
|
Jagadeeswaran I, Oh J, Sinnett SE. Preclinical Milestones in MECP2 Gene Transfer for Treating Rett Syndrome. Dev Neurosci 2024:1-10. [PMID: 38723617 DOI: 10.1159/000539267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/06/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the transcriptional regulator methyl-CpG-binding protein 2 (MeCP2). After gene transfer in mice, exogenous MeCP2 expression must be regulated to avoid dose-dependent toxicity. SUMMARY The preclinical gene therapy literature for treating RTT illustrates a duly diligent progression that begins with proof-of-concept studies and advances toward the development of safer, regulated MECP2 viral genome designs. This design progression was partly achieved through international collaborative studies. In 2023, clinicians administered investigational gene therapies for RTT to patients a decade after the first preclinical gene therapy publications for RTT (clinical trial numbers NCT05606614 and NCT05898620). As clinicians take on a more prominent role in MECP2 gene therapy research, preclinical researchers may continue to test more nuanced hypotheses regarding the safety, efficacy, and mechanism of MECP2 gene transfer. KEY MESSAGE This review summarizes the history of preclinical MECP2 gene transfer for treating RTT and acknowledges major contributions among colleagues in the field. The first clinical injections are a shared milestone.
Collapse
Affiliation(s)
- Indumathy Jagadeeswaran
- Department of Pediatrics, The University of Texas Southwestern Medical Center (UTSWMC), Dallas, Texas, USA,
| | - Jiyoung Oh
- Department of Pediatrics, The University of Texas Southwestern Medical Center (UTSWMC), Dallas, Texas, USA
| | - Sarah E Sinnett
- Department of Pediatrics, The University of Texas Southwestern Medical Center (UTSWMC), Dallas, Texas, USA
- Eugene McDermott Center for Human Growth and Development, The University of Texas Southwestern Medical Center (UTSWMC), Dallas, Texas, USA
- Peter O'Donnell Jr. Brain Institute, The University of Texas Southwestern Medical Center (UTSWMC), Dallas, Texas, USA
| |
Collapse
|
8
|
Khoury ES, Patel RV, O’Ferrall C, Fowler A, Sah N, Sharma A, Gupta S, Scafidi S, Kurtz J, Olmstead SJ, Kudchadkar SR, Kannan RM, Blue ME, Kannan S. Dendrimer nanotherapy targeting of glial dysfunction improves inflammation and neurobehavioral phenotype in adult female Mecp2-heterozygous mouse model of Rett syndrome. J Neurochem 2024; 168:841-854. [PMID: 37777475 PMCID: PMC11002961 DOI: 10.1111/jnc.15960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/19/2023] [Accepted: 08/29/2023] [Indexed: 10/02/2023]
Abstract
Rett syndrome is an X-linked neurodevelopmental disorder caused by mutation of Mecp2 gene and primarily affects females. Glial cell dysfunction has been implicated in in Rett syndrome (RTT) both in patients and in mouse models of this disorder and can affect synaptogenesis, glial metabolism and inflammation. Here we assessed whether treatment of adult (5-6 months old) symptomatic Mecp2-heterozygous female mice with N-acetyl cysteine conjugated to dendrimer (D-NAC), which is known to target glia and modulate inflammation and oxidative injury, results in improved behavioral phenotype, sleep and glial inflammatory profile. We show that unbiased global metabolomic analysis of the hippocampus and striatum in adult Mecp2-heterozygous mice demonstrates significant differences in lipid metabolism associated with neuroinflammation, providing the rationale for targeting glial inflammation in this model. Our results demonstrate that treatment with D-NAC (10 mg/kg NAC) once weekly is more efficacious than equivalently dosed free NAC in improving the gross neurobehavioral phenotype in symptomatic Mecp2-heterozygous female mice. We also show that D-NAC therapy is significantly better than saline in ameliorating several aspects of the abnormal phenotype including paw clench, mobility, fear memory, REM sleep and epileptiform activity burden. Systemic D-NAC significantly improves microglial proinflammatory cytokine production and is associated with improvements in several aspects of the phenotype including paw clench, mobility, fear memory, and REM sleep, and epileptiform activity burden in comparison to saline-treated Mecp2-hetereozygous mice. Systemic glial-targeted delivery of D-NAC after symptom onset in an older clinically relevant Rett syndrome model shows promise in improving neurobehavioral impairments along with sleep pattern and epileptiform activity burden. These findings argue for the translational value of this approach for treatment of patients with Rett Syndrome.
Collapse
Affiliation(s)
- Elizabeth Smith Khoury
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ruchit V. Patel
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Caroline O’Ferrall
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Amanda Fowler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Nirnath Sah
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Anjali Sharma
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Siddharth Gupta
- Kennedy Krieger Institute, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Susanna Scafidi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Josh Kurtz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sarah J. Olmstead
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sapna R. Kudchadkar
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Departments of Pediatrics and Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Rangaramanujam M. Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore MD, 21205
- Kennedy Krieger Institute – Johns Hopkins University for Cerebral Palsy Research Excellence, Baltimore, MD 21287
- Departments of Chemical and Biomolecular Engineering, and Materials Science and Engineering, Johns Hopkins University, Baltimore MD, 21218
| | - Mary E. Blue
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore MD, 21205
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore MD, 21205
- Hugo W. Moser Research Institute at Kennedy Krieger Inc., Baltimore MD, 21205
| | - Sujatha Kannan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore MD, 21205
- Hugo W. Moser Research Institute at Kennedy Krieger Inc., Baltimore MD, 21205
- Kennedy Krieger Institute – Johns Hopkins University for Cerebral Palsy Research Excellence, Baltimore, MD 21287
| |
Collapse
|
9
|
Smith M, Dodis GE, Vanderplow AM, Gonzalez S, Rhee Y, Gogliotti RG. Potentiation of the M 1 muscarinic acetylcholine receptor normalizes neuronal activation patterns and improves apnea severity in Mecp2+/- mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.586099. [PMID: 38659804 PMCID: PMC11042204 DOI: 10.1101/2024.04.15.586099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder that is caused by loss-of-function mutations in the methyl-CpG binding protein 2 ( MeCP2 ) gene. RTT patients experience a myriad of debilitating symptoms, which include respiratory phenotypes that are often associated with lethality. Our previous work established that expression of the M 1 muscarinic acetylcholine receptor (mAchR) is decreased in RTT autopsy samples, and that potentiation of the M 1 receptor improves apneas in a mouse model of RTT; however, the population of neurons driving this rescue is unclear. Loss of Mecp2 correlates with excessive neuronal activity in cardiorespiratory nuclei. Since M 1 is found on cholinergic interneurons, we hypothesized that M 1 -potentiating compounds decrease apnea frequency by tempering brainstem hyperactivity. To test this, Mecp2 +/- and Mecp2 +/+ mice were screened for apneas before and after administration of the M 1 positive allosteric modulator (PAM) VU0453595 (VU595). Brains from the same mice were then imaged for c-Fos, ChAT, and Syto16 using whole-brain light-sheet microscopy to establish genotype and drug-dependent activation patterns that could be correlated with VU595's efficacy on apneas. The vehicle-treated Mecp2 +/- brain exhibited broad hyperactivity when coupled with the phenotypic prescreen, which was significantly decreased by administration of VU595, particularly in regions known to modulate the activity of respiratory nuclei (i.e. hippocampus and striatum). Further, the extent of apnea rescue in each mouse showed a significant positive correlation with c-Fos expression in non-cholinergic neurons in the striatum, thalamus, dentate gyrus, and within the cholinergic neurons of the brainstem. These results indicate that Mecp2 +/- mice are prone to hyperactivity in brain regions that regulate respiration, which can be normalized through M 1 potentiation.
Collapse
|
10
|
Severino L, Kim J, Nam MH, McHugh TJ. From synapses to circuits: What mouse models have taught us about how autism spectrum disorder impacts hippocampal function. Neurosci Biobehav Rev 2024; 158:105559. [PMID: 38246230 DOI: 10.1016/j.neubiorev.2024.105559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/23/2024]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that impacts a variety of cognitive and behavioral domains. While a genetic component of ASD has been well-established, none of the numerous syndromic genes identified in humans accounts for more than 1% of the clinical patients. Due to this large number of target genes, numerous mouse models of the disorder have been generated. However, the focus on distinct brain circuits, behavioral phenotypes and diverse experimental approaches has made it difficult to synthesize the overwhelming number of model animal studies into concrete throughlines that connect the data across levels of investigation. Here we chose to focus on one circuit, the hippocampus, and one hypothesis, a shift in excitatory/inhibitory balance, to examine, from the level of the tripartite synapse up to the level of in vivo circuit activity, the key commonalities across disparate models that can illustrate a path towards a better mechanistic understanding of ASD's impact on hippocampal circuit function.
Collapse
Affiliation(s)
- Leandra Severino
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea; Division of Bio-Medical Science & Technology, KIST-School, University of Science and Technology, Seoul, South Korea
| | - Jinhyun Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea; Division of Bio-Medical Science & Technology, KIST-School, University of Science and Technology, Seoul, South Korea
| | - Min-Ho Nam
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea; Division of Bio-Medical Science & Technology, KIST-School, University of Science and Technology, Seoul, South Korea.
| | - Thomas J McHugh
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea; Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi Saitama, Japan.
| |
Collapse
|
11
|
Seigfried FA, Britsch S. The Role of Bcl11 Transcription Factors in Neurodevelopmental Disorders. BIOLOGY 2024; 13:126. [PMID: 38392344 PMCID: PMC10886639 DOI: 10.3390/biology13020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024]
Abstract
Neurodevelopmental disorders (NDDs) comprise a diverse group of diseases, including developmental delay, autism spectrum disorder (ASD), intellectual disability (ID), and attention-deficit/hyperactivity disorder (ADHD). NDDs are caused by aberrant brain development due to genetic and environmental factors. To establish specific and curative therapeutic approaches, it is indispensable to gain precise mechanistic insight into the cellular and molecular pathogenesis of NDDs. Mutations of BCL11A and BCL11B, two closely related, ultra-conserved zinc-finger transcription factors, were recently reported to be associated with NDDs, including developmental delay, ASD, and ID, as well as morphogenic defects such as cerebellar hypoplasia. In mice, Bcl11 transcription factors are well known to orchestrate various cellular processes during brain development, for example, neural progenitor cell proliferation, neuronal migration, and the differentiation as well as integration of neurons into functional circuits. Developmental defects observed in both, mice and humans display striking similarities, suggesting Bcl11 knockout mice provide excellent models for analyzing human disease. This review offers a comprehensive overview of the cellular and molecular functions of Bcl11a and b and links experimental research to the corresponding NDDs observed in humans. Moreover, it outlines trajectories for future translational research that may help to better understand the molecular basis of Bcl11-dependent NDDs as well as to conceive disease-specific therapeutic approaches.
Collapse
Affiliation(s)
| | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany;
| |
Collapse
|
12
|
Sadhu C, Lyons C, Oh J, Jagadeeswaran I, Gray SJ, Sinnett SE. The Efficacy of a Human-Ready mini MECP2 Gene Therapy in a Pre-Clinical Model of Rett Syndrome. Genes (Basel) 2023; 15:31. [PMID: 38254921 PMCID: PMC10815157 DOI: 10.3390/genes15010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Inactivating mutations and the duplication of methyl-CpG binding protein 2 (MeCP2), respectively, mediate Rett syndrome (RTT) and MECP2 duplication syndrome. These disorders underscore the conceptual dose-dependent risk posed by MECP2 gene therapy for mosaic RTT patients. Recently, a miRNA-Responsive Autoregulatory Element (miRARE) mitigated the dose-dependent toxicity posed by self-complementary adeno-associated viral vector serotype 9 (AAV9) miniMECP2 gene therapy (scAAV9/miniMECP2-myc) in mice. Here, we report an efficacy assessment for the human-ready version of this regulated gene therapy (TSHA-102) in male Mecp2-/y knockout (KO) mice after intracerebroventricular (ICV) administration at postnatal day 2 (P2) and after intrathecal (IT) administration at P7, P14 (±immunosuppression), and P28 (±immunosuppression). We also report qPCR studies on KO mice treated at P7-P35; protein analyses in KO mice treated at P38; and a survival safety study in female adult Mecp2-/+ mice. In KO mice, TSHA-102 improved respiration, weight, and survival across multiple doses and treatment ages. TSHA-102 significantly improved the front average stance and swing times relative to the front average stride time after P14 administration of the highest dose for that treatment age. Viral genomic DNA and miniMECP2 mRNA were present in the CNS. MiniMeCP2 protein expression was higher in the KO spinal cord compared to the brain. In female mice, TSHA-102 permitted survivals that were similar to those of vehicle-treated controls. In all, these pivotal data helped to support the regulatory approval to initiate a clinical trial for TSHA-102 in RTT patients (clinical trial identifier number NCT05606614).
Collapse
Affiliation(s)
- Chanchal Sadhu
- Formerly of Taysha Gene Therapies, Dallas, TX 75247, USA
| | - Christopher Lyons
- Formerly of the Department of Pediatrics, University of Texas Southwestern Medical Center (UTSWMC), Dallas, TX 75390, USA
| | - Jiyoung Oh
- Department of Pediatrics, University of Texas Southwestern Medical Center (UTSWMC), Dallas, TX 75390, USA
| | - Indumathy Jagadeeswaran
- Department of Pediatrics, University of Texas Southwestern Medical Center (UTSWMC), Dallas, TX 75390, USA
| | - Steven J. Gray
- Department of Pediatrics, University of Texas Southwestern Medical Center (UTSWMC), Dallas, TX 75390, USA
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center (UTSWMC), Dallas, TX 75390, USA
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center (UTSWMC), Dallas, TX 75390, USA
| | - Sarah E. Sinnett
- Department of Pediatrics, University of Texas Southwestern Medical Center (UTSWMC), Dallas, TX 75390, USA
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center (UTSWMC), Dallas, TX 75390, USA
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center (UTSWMC), Dallas, TX 75390, USA
| |
Collapse
|
13
|
Medeiros D, Ayala-Baylon K, Egido-Betancourt H, Miller E, Chapleau CA, Robinson HA, Phillips ML, Yang T, Longo F, Li W, Pozzo-Miller L. A small-molecule TrkB ligand improves dendritic spine phenotypes and atypical behaviors in female Rett syndrome mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.09.566435. [PMID: 37986936 PMCID: PMC10659425 DOI: 10.1101/2023.11.09.566435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in methyl-CpG-binding protein-2 (MECP2), encoding a transcriptional regulator of many genes, including brain-derived neurotrophic factor (Bdnf). BDNF mRNA and protein levels are lower in RTT autopsy brains and in multiple brain regions of Mecp2-deficient mice, and experimentally increasing BDNF levels improve atypical phenotypes in Mecp2 mutant mice. Due to the low blood-brain barrier permeability of BDNF itself, we tested the effects of a brain penetrant, small molecule ligand of its TrkB receptors. Applied in vitro, LM22A-4 increased dendritic spine density in pyramidal neurons in cultured hippocampal slices from postnatal day (P) 7 male Mecp2 knockout (KO) mice as much as recombinant BDNF, and both effects were prevented by the TrkB receptor inhibitors K-252a and ANA-12. Consistent with its partial agonist activity, LM22A-4 did not affect spine density in CA1 pyramidal neurons in slice cultures from male wildtype (WT) mice, where typical BDNF levels outcompete its binding to TrkB. To identify neurons of known genotypes in the "mosaic" brain of female Mecp2 heterozygous (HET) mice, we treated 4-6-month-old female MeCP2-GFP WT and HET mice with peripheral injections of LM22A-4 for 4 weeks. Surprisingly, mutant neurons lacking MeCP2-GFP showed dendritic spine volumes comparable to that in WT controls, while MeCP2-GFP-expressing neurons showed larger spines, similar to the phenotype we described in symptomatic male Mecp2 KO mice where all neurons lack MeCP2. Consistent with this non-cell-autonomous mechanism, a 4-week systemic treatment with LM22A-4 had an effect only in MeCP2-GFP-expressing neurons in female Mecp2 HET mice, bringing dendritic spine volumes down to WT control levels, and without affecting spines of MeCP2-GFP-lacking neurons. At the behavioral level, we found that female Mecp2 HET mice engaged in aggressive behaviors significantly more than WT controls, which were reduced to WT levels by a 4-week systemic treatment with LM22A-4. Altogether, these data revealed differences in dendritic spine size and altered behaviors in Mecp2 HET mice, while providing support to the potential usefulness of BDNF-related therapeutic approaches such as the partial TrkB agonist LM22A-4.
Collapse
|
14
|
Neul JL, Benke TA, Marsh ED, Suter B, Silveira L, Fu C, Peters SU, Percy AK. Top caregiver concerns in Rett syndrome and related disorders: data from the US natural history study. J Neurodev Disord 2023; 15:33. [PMID: 37833681 PMCID: PMC10571464 DOI: 10.1186/s11689-023-09502-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
OBJECTIVE Recent advances in the understanding of neurodevelopmental disorders such as Rett syndrome (RTT) have enabled the discovery of novel therapeutic approaches that require formal clinical evaluation of efficacy. Clinical trial success depends on outcome measures that assess clinical features that are most impactful for affected individuals. To determine the top concerns in RTT and RTT-related disorders we asked caregivers to list the top caregiver concerns to guide the development and selection of appropriate clinical trial outcome measures for these disorders. METHODS Caregivers of participants enrolled in the US Natural History Study of RTT and RTT-related disorders (n = 925) were asked to identify the top 3 concerning problems impacting the affected participant. We generated a weighted list of top caregiver concerns for each of the diagnostic categories and compared results between the disorders. Further, for classic RTT, caregiver concerns were analyzed by age, clinical severity, and common RTT-causing mutations in MECP2. RESULTS The top caregiver concerns for classic RTT were effective communication, seizures, walking/balance issues, lack of hand use, and constipation. The frequency of the top caregiver concerns for classic RTT varied by age, clinical severity, and specific mutations, consistent with known variation in the frequency of clinical features across these domains. Caregivers of participants with increased seizure severity often ranked seizures as the first concern, whereas caregivers of participants without active seizures often ranked hand use or communication as the top concern. Comparison across disorders found commonalities in the top caregiver concerns between classic RTT, atypical RTT, MECP2 duplication syndrome, CDKL5 deficiency disorder, and FOXG1 syndrome; however, distinct differences in caregiver concerns between these disorders are consistent with the relative prevalence and impact of specific clinical features. CONCLUSION The top caregiver concerns for individuals with RTT and RTT-related disorders reflect the impact of the primary clinical symptoms of these disorders. This work is critical in the development of meaningful therapies, as optimal therapy should address these concerns. Further, outcome measures to be utilized in clinical trials should assess these clinical issues identified as most concerning by caregivers.
Collapse
Affiliation(s)
- Jeffrey L Neul
- Department of Pediatrics, Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Timothy A Benke
- University of Colorado School of Medicine/Children's Hospital Colorado, Aurora, CO, USA
| | - Eric D Marsh
- Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Lori Silveira
- University of Colorado School of Medicine/Children's Hospital Colorado, Aurora, CO, USA
| | - Cary Fu
- Department of Pediatrics, Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sarika U Peters
- Department of Pediatrics, Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alan K Percy
- University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
15
|
Palmieri M, Pozzer D, Landsberger N. Advanced genetic therapies for the treatment of Rett syndrome: state of the art and future perspectives. Front Neurosci 2023; 17:1172805. [PMID: 37304036 PMCID: PMC10248472 DOI: 10.3389/fnins.2023.1172805] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Loss and gain of functions mutations in the X-linked MECP2 (methyl-CpG-binding protein 2) gene are responsible for a set of generally severe neurological disorders that can affect both genders. In particular, Mecp2 deficiency is mainly associated with Rett syndrome (RTT) in girls, while duplication of the MECP2 gene leads, mainly in boys, to the MECP2 duplication syndrome (MDS). No cure is currently available for MECP2 related disorders. However, several studies have reported that by re-expressing the wild-type gene is possible to restore defective phenotypes of Mecp2 null animals. This proof of principle endorsed many laboratories to search for novel therapeutic strategies to cure RTT. Besides pharmacological approaches aimed at modulating MeCP2-downstream pathways, genetic targeting of MECP2 or its transcript have been largely proposed. Remarkably, two studies focused on augmentative gene therapy were recently approved for clinical trials. Both use molecular strategies to well-control gene dosage. Notably, the recent development of genome editing technologies has opened an alternative way to specifically target MECP2 without altering its physiological levels. Other attractive approaches exclusively applicable for nonsense mutations are the translational read-through (TR) and t-RNA suppressor therapy. Reactivation of the MECP2 locus on the silent X chromosome represents another valid choice for the disease. In this article, we intend to review the most recent genetic interventions for the treatment of RTT, describing the current state of the art, and the related advantages and concerns. We will also discuss the possible application of other advanced therapies, based on molecular delivery through nanoparticles, already proposed for other neurological disorders but still not tested in RTT.
Collapse
Affiliation(s)
- Michela Palmieri
- Rett Research Unit, Division of Neuroscience, San Raffaele Hospital (IRCCS), Milan, Italy
| | - Diego Pozzer
- Rett Research Unit, Division of Neuroscience, San Raffaele Hospital (IRCCS), Milan, Italy
| | - Nicoletta Landsberger
- Rett Research Unit, Division of Neuroscience, San Raffaele Hospital (IRCCS), Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Faculty of Medicine and Surgery, University of Milan, Milan, Italy
| |
Collapse
|
16
|
Neul JL, Benke TA, Marsh ED, Suter B, Silveira L, Fu C, Peters SU, Percy AK. Top Caregiver Concerns in Rett syndrome and related disorders: data from the US Natural History Study. RESEARCH SQUARE 2023:rs.3.rs-2566253. [PMID: 36993737 PMCID: PMC10055548 DOI: 10.21203/rs.3.rs-2566253/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Objective Recent advances in the understanding of neurodevelopmental disorders such as Rett syndrome (RTT) has enabled development of novel therapeutic approaches that are currently undergoing clinical evaluation or are proposed to move into clinical development. Clinical trial success depends on outcome measures that assess clinical features that are most impactful for affected individuals. To determine the top concerns in RTT and RTT-related disorders we asked caregivers to list the top clinical concerns in order to gain information to guide the development and selection of outcome measures for future clinical trials. Methods Caregivers of participants enrolled in the US Natural History Study of RTT and related disorders were asked to identify the top 3 concerning problems impacting the affected participant. We generated a weighted list of top caregiver concerns for each of the diagnostic categories and compared results between the disorders. Further, for Classic RTT, caregiver concerns were analyzed by age, clinical severity, and common RTT-causing mutations in MECP2. Results The top caregiver concerns for Classic RTT were effective communication, seizures, walking/balance issues, lack of hand use, and constipation. The rank order of the frequency of the top caregiver concerns for Classic RTT varied by age, clinical severity, and specific mutations, consistent with known variation in the frequency of clinical features across these domains. The frequency of caregiver concern for seizures, hand use, and spoken language increased in relation to clinician assessed severity in these clinical domains, showing consistency between clinician assessments and caregiver concerns. Comparison across disorders found commonalities in the top caregiver concerns between Classic RTT, Atypical RTT, MECP2 Duplication Syndrome, CDKL5 Deficiency Disorder, and FOXG1 Syndrome; however, distinct differences in caregiver concerns between these disorders are consistent with the relative prevalence and impact of specific clinical features. Conclusion The top caregiver concerns for individuals with RTT and the RTT-related disorders reflect the impact of the primary clinical symptoms of these disorders. This work is critical in the development of meaningful therapies, as optimal therapy should address these concerns. Further, outcome measures to be utilized in clinical trials should assess these clinical issues identified as most concerning by caregivers.
Collapse
Affiliation(s)
| | - Timothy A Benke
- University of Colorado School of Medicine: University of Colorado Anschutz Medical Campus School of Medicine
| | | | | | - Lori Silveira
- University of Colorado School of Medicine: University of Colorado Anschutz Medical Campus School of Medicine
| | - Cary Fu
- Vanderbilt University Medical Center
| | | | | |
Collapse
|
17
|
Bajikar SS, Anderson AG, Zhou J, Durham MA, Trostle AJ, Wan YW, Liu Z, Zoghbi HY. MeCP2 regulates Gdf11, a dosage-sensitive gene critical for neurological function. eLife 2023; 12:e83806. [PMID: 36848184 PMCID: PMC9977283 DOI: 10.7554/elife.83806] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/09/2023] [Indexed: 03/01/2023] Open
Abstract
Loss- and gain-of-function of MeCP2 causes Rett syndrome (RTT) and MECP2 duplication syndrome (MDS), respectively. MeCP2 binds methyl-cytosines to finely tune gene expression in the brain, but identifying genes robustly regulated by MeCP2 has been difficult. By integrating multiple transcriptomics datasets, we revealed that MeCP2 finely regulates growth differentiation factor 11 (Gdf11). Gdf11 is down-regulated in RTT mouse models and, conversely, up-regulated in MDS mouse models. Strikingly, genetically normalizing Gdf11 dosage levels improved several behavioral deficits in a mouse model of MDS. Next, we discovered that losing one copy of Gdf11 alone was sufficient to cause multiple neurobehavioral deficits in mice, most notably hyperactivity and decreased learning and memory. This decrease in learning and memory was not due to changes in proliferation or numbers of progenitor cells in the hippocampus. Lastly, loss of one copy of Gdf11 decreased survival in mice, corroborating its putative role in aging. Our data demonstrate that Gdf11 dosage is important for brain function.
Collapse
Affiliation(s)
- Sameer S Bajikar
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Ashley G Anderson
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Jian Zhou
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Mark A Durham
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
- Medical Scientist Training Program, Baylor College of MedicineHoustonUnited States
| | - Alexander J Trostle
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Pediatrics, Baylor College of MedicineHoustonUnited States
| | - Ying-Wooi Wan
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Zhandong Liu
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Pediatrics, Baylor College of MedicineHoustonUnited States
| | - Huda Y Zoghbi
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
- Department of Pediatrics, Baylor College of MedicineHoustonUnited States
- Howard Hughes Medical Institute, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
18
|
Urbinati C, Lanzillotta C, Cosentino L, Valenti D, Quattrini MC, Di Crescenzo L, Prestia F, Pietraforte D, Perluigi M, Di Domenico F, Vacca RA, De Filippis B. Chronic treatment with the anti-diabetic drug metformin rescues impaired brain mitochondrial activity and selectively ameliorates defective cognitive flexibility in a female mouse model of Rett syndrome. Neuropharmacology 2023; 224:109350. [PMID: 36442649 DOI: 10.1016/j.neuropharm.2022.109350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/26/2022] [Accepted: 11/19/2022] [Indexed: 11/26/2022]
Abstract
Metformin is the most common anti-diabetic drug and a promising therapy for disorders beyond diabetes, including Rett syndrome (RTT), a rare neurologic disease characterized by severe intellectual disability. A 10-day-long treatment rescued aberrant mitochondrial activity and restrained oxidative stress in a female RTT mouse model. However, this treatment regimen did not improve the phenotype of RTT mice. In the present study, we demonstrate that a 4-month-long treatment with metformin (150 mg/Kg/day, delivered in drinking bottles) provides a selective normalization of cognitive flexibility defects in RTT female mice at an advanced stage of disease, but it does not affect their impaired general health status and abnormal motor skills. The 4-month-long treatment also rescues the reduced activity of mitochondrial respiratory chain complex activities, the defective brain ATP production and levels as well as the increased production of reactive oxidizing species in the whole blood of RTT mice. A significant boost of PGC-1α-dependent pathways related to mitochondrial biogenesis and antioxidant defense occurs in the brain of RTT mice that received the metformin treatment. Further studies will have to verify whether these effects may underlie its long-lasting beneficial effects on brain energy metabolism.
Collapse
Affiliation(s)
- Chiara Urbinati
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| | - Chiara Lanzillotta
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy.
| | - Livia Cosentino
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| | - Daniela Valenti
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, Bari, Italy.
| | | | - Livia Di Crescenzo
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| | - Francesca Prestia
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy.
| | | | - Marzia Perluigi
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy.
| | - Fabio Di Domenico
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy.
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, Bari, Italy.
| | - Bianca De Filippis
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
19
|
Schwartz CE, Louie RJ, Toutain A, Skinner C, Friez MJ, Stevenson RE. X-Linked intellectual disability update 2022. Am J Med Genet A 2023; 191:144-159. [PMID: 36300573 DOI: 10.1002/ajmg.a.63008] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/28/2022] [Accepted: 09/29/2022] [Indexed: 12/14/2022]
Abstract
Genes that are involved in the transcription process, mitochondrial function, glycoprotein metabolism, and ubiquitination dominate the list of 21 new genes associated with X-linked intellectual disability since the last update in 2017. The new genes were identified by sequencing of candidate genes (2), the entire X-chromosome (2), the whole exome (15), or the whole genome (2). With these additions, 42 (21%) of the 199 named XLID syndromes and 27 (25%) of the 108 numbered nonsyndromic XLID families remain to be resolved at the molecular level. Although the pace of discovery of new XLID genes has slowed during the past 5 years, the density of genes on the X chromosome that cause intellectual disability still appears to be twice the density of intellectual disability genes on the autosomes.
Collapse
Affiliation(s)
| | | | - Annick Toutain
- Department of Medical Genetics, Centre Hospitalier Universitaire, Tours, France
| | - Cindy Skinner
- Greenwood Genetic Center, Greenwood, South Carolina, USA
| | | | | |
Collapse
|
20
|
Cheng H, Charles I, James AF, Abdala AP, Hancox JC. QT c interval and ventricular action potential prolongation in the Mecp2 Null/+ murine model of Rett syndrome. Physiol Rep 2022; 10:e15437. [PMID: 36200140 PMCID: PMC9535259 DOI: 10.14814/phy2.15437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/27/2022] [Accepted: 08/06/2022] [Indexed: 06/16/2023] Open
Abstract
Rett Syndrome (RTT) is a congenital, X-chromosome-linked developmental disorder characterized by developmental delay, dysautonomia, and breathing irregularities. RTT is also associated with sudden death and QT intervals are prolonged in some RTT patients. Most individuals with RTT have mutations in the MECP2 gene. Whilst there is some evidence for QT prolongation in mouse models of RTT, there is comparatively little information on how loss of Mecp2 function affects ventricular action potentials (APs) and, to-date, none on ventricular APs from female RTT mice. Accordingly, the present study was conducted to determine ECG and ventricular AP characteristics of Mecp2Null/+ female mice. ECG recordings from 12-13 month old female Mecp2Null/+ mice showed prolonged rate corrected QT (QTc) intervals compared to wild-type (WT) controls. Although Mecp2Null/+ animals exhibited longer periods of apnoea than did controls, no correlation between apnoea length and QTc interval was observed. Action potentials (APs) from Mecp2Null/+ myocytes had longer APD90 values than those from WT myocytes and showed augmented triangulation. Application of the investigational INa,Late inhibitor GS-6615 (eleclazine; 10 μM) reduced both APD90 and AP triangulation in Mecp2Null/+ and WT myocytes. These results constitute the first direct demonstration of delayed repolarization in Mecp2Null/+ myocytes and provide further evidence that GS-6615 may have potential as an intervention against QT prolongation in RTT.
Collapse
Affiliation(s)
- Hongwei Cheng
- School of Physiology, Pharmacology and NeuroscienceUniversity WalkBristolUK
| | - Ian Charles
- School of Physiology, Pharmacology and NeuroscienceUniversity WalkBristolUK
| | - Andrew F. James
- School of Physiology, Pharmacology and NeuroscienceUniversity WalkBristolUK
| | - Ana P. Abdala
- School of Physiology, Pharmacology and NeuroscienceUniversity WalkBristolUK
| | - Jules C. Hancox
- School of Physiology, Pharmacology and NeuroscienceUniversity WalkBristolUK
| |
Collapse
|
21
|
Smith M, Arthur B, Cikowski J, Holt C, Gonzalez S, Fisher NM, Vermudez SAD, Lindsley CW, Niswender CM, Gogliotti RG. Clinical and Preclinical Evidence for M 1 Muscarinic Acetylcholine Receptor Potentiation as a Therapeutic Approach for Rett Syndrome. Neurotherapeutics 2022; 19:1340-1352. [PMID: 35670902 PMCID: PMC9587166 DOI: 10.1007/s13311-022-01254-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder that is characterized by developmental regression, loss of communicative ability, stereotyped hand wringing, cognitive impairment, and central apneas, among many other symptoms. RTT is caused by loss-of-function mutations in a methyl-reader known as methyl-CpG-binding protein 2 (MeCP2), a protein that links epigenetic changes on DNA to larger chromatin structure. Historically, target identification for RTT has relied heavily on Mecp2 knockout mice; however, we recently adopted the alternative approach of performing transcriptional profiling in autopsy samples from RTT patients. Through this mechanism, we identified muscarinic acetylcholine receptors (mAChRs) as potential therapeutic targets. Here, we characterized a cohort of 40 temporal cortex samples from individuals with RTT and quantified significantly decreased levels of the M1, M2, M3, and M5 mAChRs subtypes relative to neurotypical controls. Of these four subtypes, M1 expression demonstrated a linear relationship with MeCP2 expression, such that M1 levels were only diminished in contexts where MeCP2 was also significantly decreased. Further, we show that M1 potentiation with the positive allosteric modulator (PAM) VU0453595 (VU595) rescued social preference, spatial memory, and associative memory deficits, as well as decreased apneas in Mecp2+/- mice. VU595's efficacy on apneas in Mecp2+/- mice was mediated by the facilitation of the transition from inspiration to expiration. Molecular analysis correlated rescue with normalized global gene expression patterns in the brainstem and hippocampus, as well as increased Gsk3β inhibition and NMDA receptor trafficking. Together, these data suggest that M1 PAMs could represent a new class of RTT therapeutics.
Collapse
Affiliation(s)
- Mackenzie Smith
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Maywood, IL, 60153, USA
- Edward Hines Jr. VA Hospital, Hines, IL, 60141, USA
| | - Bright Arthur
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Jakub Cikowski
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Maywood, IL, 60153, USA
- Edward Hines Jr. VA Hospital, Hines, IL, 60141, USA
| | - Calista Holt
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Maywood, IL, 60153, USA
- Edward Hines Jr. VA Hospital, Hines, IL, 60141, USA
| | - Sonia Gonzalez
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Maywood, IL, 60153, USA
- Edward Hines Jr. VA Hospital, Hines, IL, 60141, USA
| | - Nicole M Fisher
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Sheryl Anne D Vermudez
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37232, USA
| | - Colleen M Niswender
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA
| | - Rocco G Gogliotti
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Maywood, IL, 60153, USA.
- Edward Hines Jr. VA Hospital, Hines, IL, 60141, USA.
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA.
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
22
|
Cikowski J, Holt C, Arthur B, Smith M, Gonzalez S, Lindsley CW, Niswender CM, Gogliotti RG. Optimized Administration of the M 4 PAM VU0467154 Demonstrates Broad Efficacy, but Limited Effective Concentrations in Mecp2+/- Mice. ACS Chem Neurosci 2022; 13:1891-1901. [PMID: 35671352 PMCID: PMC9266622 DOI: 10.1021/acschemneuro.2c00113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Hypofunction of cholinergic circuits and diminished cholinergic tone have been associated with the neurodevelopmental disorder Rett syndrome (RTT). Specifically, deletion of Mecp2 in cholinergic neurons evokes the same social and cognitive phenotypes in mice seen with global Mecp2 knockout, and decreased choline acetyltransferase activity and vesamicol binding have been reported in RTT autopsy samples. Further, we recently identified significant decreases in muscarinic acetylcholine receptor subtype 4 (M4) expression in both the motor cortex and cerebellum of RTT patient autopsies and established proof of concept that an acute dose of the positive allosteric modulator (PAM) VU0467154 (VU154) rescued phenotypes in Mecp2+/- mice. Here, we expand the assessment of M4 PAMs in RTT to address clinically relevant questions of tolerance, scope of benefit, dose response, chronic treatment, and mechanism. We show that VU154 has efficacy on anxiety, social preference, cognitive, and respiratory phenotypes in Mecp2+/- mice; however, the therapeutic range is narrow, with benefits seen at 3 mg/kg concentrations, but not 1 or 10 mg/kg. Further, sociability was diminished in VU154-treated Mecp2+/- mice, suggestive of a potential adverse effect. Compound efficacy on social, cognitive, and respiratory phenotypes was conserved with a 44-day treatment paradigm, with the caveat that breath rate was moderately decreased with chronic treatment in Mecp2+/+ and Mecp2+/- mice. VU154 effects on respiratory function correlated with an increase in Gsk3β inhibition in the brainstem. These results identify the core symptom domains where efficacy and adverse effects may present with M4 administration in RTT model mice and advocate for the continued evaluation as potential RTT therapeutics.
Collapse
Affiliation(s)
- Jakub Cikowski
- Department
of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Maywood, Illinois 60153, United States,Edward
Hines Jr. VA Hospital, Hines, Illinois 60141, United States
| | - Calista Holt
- Department
of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Maywood, Illinois 60153, United States,Edward
Hines Jr. VA Hospital, Hines, Illinois 60141, United States
| | - Bright Arthur
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States,Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States,Vanderbilt
Kennedy Center, Vanderbilt University Medical
Center, Nashville, Tennessee 37232, United States
| | - Mackenzie Smith
- Department
of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Maywood, Illinois 60153, United States,Edward
Hines Jr. VA Hospital, Hines, Illinois 60141, United States
| | - Sonia Gonzalez
- Department
of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Maywood, Illinois 60153, United States,Edward
Hines Jr. VA Hospital, Hines, Illinois 60141, United States
| | - Craig W. Lindsley
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States,Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States,Vanderbilt
Kennedy Center, Vanderbilt University Medical
Center, Nashville, Tennessee 37232, United States,Vanderbilt
Institute of Chemical Biology, Vanderbilt
University, Nashville, Tennessee 37232, United States,Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Colleen M. Niswender
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States,Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States,Vanderbilt
Kennedy Center, Vanderbilt University Medical
Center, Nashville, Tennessee 37232, United States,Vanderbilt
Institute of Chemical Biology, Vanderbilt
University, Nashville, Tennessee 37232, United States,Vanderbilt
Brain Institute, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Rocco G. Gogliotti
- Department
of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Maywood, Illinois 60153, United States,Edward
Hines Jr. VA Hospital, Hines, Illinois 60141, United States,Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States,Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States,. Phone: 708-216-9021. Fax: 708-216-8318
| |
Collapse
|
23
|
Albizzati E, Florio E, Miramondi F, Sormonta I, Landsberger N, Frasca A. Identification of Region-Specific Cytoskeletal and Molecular Alterations in Astrocytes of Mecp2 Deficient Animals. Front Neurosci 2022; 16:823060. [PMID: 35242007 PMCID: PMC8886113 DOI: 10.3389/fnins.2022.823060] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder that represents the most common genetic cause of severe intellectual disability in females. Most patients carry mutations in the X-linked MECP2 gene, coding for the methyl-CpG-binding protein 2 (MeCP2), originally isolated as an epigenetic transcriptional factor able to bind methylated DNA and repress transcription. Recent data implicated a role for glia in RTT, showing that astrocytes express Mecp2 and that its deficiency affects their ability to support neuronal maturation by non-cell autonomous mechanisms. To date, some molecular, structural and functional alterations have been attributed to Mecp2 null astrocytes, but how they evolve over time and whether they follow a spatial heterogeneity are two aspects which deserve further investigations. In this study, we assessed cytoskeletal features of astrocytes in Mecp2 deficient brains by analyzing their arbor complexity and processes in reconstructed GFAP+ cells at different ages, corresponding to peculiar stages of the disorder, and in different cerebral regions (motor and somatosensory cortices and CA1 layer of hippocampus). Our findings demonstrate the presence of defects in Mecp2 null astrocytes that worsen along disease progression and strictly depend on the brain area, highlighting motor and somatosensory cortices as the most affected regions. Of relevance, astrocyte cytoskeleton is impaired also in the somatosensory cortex of symptomatic heterozygous animals, with Mecp2 + astrocytes showing slightly more pronounced defects with respect to the Mecp2 null cells, emphasizing the importance of non-cell autonomous effects. We reported a temporal correlation between the progressive thinning of layer I and the atrophy of astrocytes, suggesting that their cytoskeletal dysfunctions might contribute to cortical defects. Considering the reciprocal link between morphology and function in astrocytes, we analyzed the effect of Mecp2 deficiency on the expression of selected astrocyte-enriched genes, which describe typical astrocytic features. qRT-PCR data corroborated our results, reporting an overall decrement of gene expression, which is area and age-dependent. In conclusion, our data show that Mecp2 deficiency causes structural and molecular alterations in astrocytes, which progress along with the severity of symptoms and diversely occur in the different cerebral regions, highlighting the importance of considering heterogeneity when studying astrocytes in RTT.
Collapse
Affiliation(s)
- Elena Albizzati
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Elena Florio
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Federica Miramondi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Irene Sormonta
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nicoletta Landsberger
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy.,Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angelisa Frasca
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
24
|
Gutiérrez JF, Natali G, Giorgi J, De Leonibus E, Tongiorgi E. Mirtazapine treatment in a young female mouse model of Rett syndrome identifies time windows for the rescue of early phenotypes. Exp Neurol 2022; 353:114056. [DOI: 10.1016/j.expneurol.2022.114056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/10/2022] [Accepted: 03/24/2022] [Indexed: 11/26/2022]
|
25
|
Bassuk AG. Gene therapy for Rett syndrome. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12754. [PMID: 34053173 PMCID: PMC9744469 DOI: 10.1111/gbb.12754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Alexander G Bassuk
- Pediatrics Child Neurology, Neurology, Neurology, Genetics, Molecular and Cellular Biology, The Iowa Neuroscience Institute (INI), The Medical Scientist Training Program, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
26
|
Collins BE, Merritt JK, Erickson KR, Neul JL. Safety and efficacy of genetic MECP2 supplementation in the R294X mouse model of Rett syndrome. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12739. [PMID: 33942492 PMCID: PMC8563491 DOI: 10.1111/gbb.12739] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 01/03/2023]
Abstract
Rett syndrome is a neurodevelopmental disorder caused predominantly by loss-of-function mutations in MECP2, encoding transcriptional modulator methyl-CpG-binding protein 2 (MeCP2). Although no disease-modifying therapies exist at this time, some proposed therapeutic strategies aim to supplement the mutant allele with a wild-type allele producing typical levels of functional MeCP2, such as gene therapy. Because MECP2 is a dosage-sensitive gene, with both loss and gain of function causing disease, these approaches must achieve a narrow therapeutic window to be both safe and effective. While MeCP2 supplementation rescues RTT-like phenotypes in mouse models, the tolerable threshold of MeCP2 is not clear, particularly for partial loss-of-function mutations. We assessed the safety of genetically supplementing full-length human MeCP2 in the context of the R294X allele, a common partial loss-of-function mutation retaining DNA-binding capacity. We assessed the potential for adverse effects from MeCP2 supplementation of a partial loss-of-function mutant and the potential for dominant negative interactions between mutant and full-length MeCP2. In male hemizygous R294X mice, MeCP2 supplementation rescued RTT-like behavioral phenotypes and did not elicit behavioral evidence of excess MeCP2. In female heterozygous R294X mice, RTT-specific phenotypes were similarly rescued. However, MeCP2 supplementation led to evidence of excess MeCP2 activity in a motor coordination assay, suggesting that the underlying motor circuitry is particularly sensitive to MeCP2 dosage in females. These results show that genetic supplementation of full-length MeCP2 is safe in males and largely so females. However, careful consideration of risk for adverse motor effects may be warranted for girls and women with RTT.
Collapse
Affiliation(s)
| | - Jonathan K. Merritt
- Department of PediatricsVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Kirsty R. Erickson
- Department of PediatricsVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Jeffrey L. Neul
- Vanderbilt Kennedy Center, Departments of Pediatrics, Pharmacology, and Special EducationVanderbilt University Medical Center and Vanderbilt UniversityNashvilleTennesseeUSA
| |
Collapse
|
27
|
Shovlin S, Delepine C, Swanson L, Bach S, Sahin M, Sur M, Kaufmann WE, Tropea D. Molecular Signatures of Response to Mecasermin in Children With Rett Syndrome. Front Neurosci 2022; 16:868008. [PMID: 35712450 PMCID: PMC9197456 DOI: 10.3389/fnins.2022.868008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/26/2022] [Indexed: 11/21/2022] Open
Abstract
Rett syndrome (RTT) is a devastating neurodevelopmental disorder without effective treatments. Attempts at developing targetted therapies have been relatively unsuccessful, at least in part, because the genotypical and phenotypical variability of the disorder. Therefore, identification of biomarkers of response and patients' stratification are high priorities. Administration of Insulin-like Growth Factor 1 (IGF-1) and related compounds leads to significant reversal of RTT-like symptoms in preclinical mouse models. However, improvements in corresponding clinical trials have not been consistent. A 20-weeks phase I open label trial of mecasermin (recombinant human IGF-1) in children with RTT demonstrated significant improvements in breathing phenotypes. However, a subsequent randomised controlled phase II trial did not show significant improvements in primary outcomes although two secondary clinical endpoints showed positive changes. To identify molecular biomarkers of response and surrogate endpoints, we used RNA sequencing to measure differential gene expression in whole blood samples of participants in the abovementioned phase I mecasermin trial. When all participants (n = 9) were analysed, gene expression was unchanged during the study (baseline vs. end of treatment, T0-T3). However, when participants were subclassified in terms of breathing phenotype improvement, specifically by their plethysmography-based apnoea index, individuals with moderate-severe apnoea and breathing improvement (Responder group) displayed significantly different transcript profiles compared to the other participants in the study (Mecasermin Study Reference group, MSR). Many of the differentially expressed genes are involved in the regulation of cell cycle processes and immune responses, as well as in IGF-1 signalling and breathing regulation. While the Responder group showed limited gene expression changes in response to mecasermin, the MSR group displayed marked differences in the expression of genes associated with inflammatory processes (e.g., neutrophil activation, complement activation) throughout the trial. Our analyses revealed gene expression profiles associated with severe breathing phenotype and its improvement after mecasermin administration in RTT, and suggest that inflammatory/immune pathways and IGF-1 signalling contribute to treatment response. Overall, these data support the notion that transcript profiles have potential as biomarkers of response to IGF-1 and related compounds.
Collapse
Affiliation(s)
- Stephen Shovlin
- Neuropsychiatric Genetics, Trinity Center for Health Sciences, Trinity Translational Medicine Institute, St James Hospital, Dublin, Ireland
| | - Chloe Delepine
- Department of Brain and Cognitive Sciences, Simons Center for the Social Brain, Picower Institute for Learning and Memory, MIT, Cambridge, MA, United States
| | - Lindsay Swanson
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Snow Bach
- Neuropsychiatric Genetics, Trinity Center for Health Sciences, Trinity Translational Medicine Institute, St James Hospital, Dublin, Ireland
| | - Mustafa Sahin
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Mriganka Sur
- Department of Brain and Cognitive Sciences, Simons Center for the Social Brain, Picower Institute for Learning and Memory, MIT, Cambridge, MA, United States
| | - Walter E Kaufmann
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States.,Department of Neurology, Boston Children's Hospital, Boston, MA, United States
| | - Daniela Tropea
- Neuropsychiatric Genetics, Trinity Center for Health Sciences, Trinity Translational Medicine Institute, St James Hospital, Dublin, Ireland.,Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.,FutureNeuro, The SFI Research Centre for Chronic and Rare Neurological Diseases, Dublin, Ireland
| |
Collapse
|
28
|
Ramirez JM, Karlen-Amarante M, Wang JDJ, Huff A, Burgraff N. Breathing disturbances in Rett syndrome. HANDBOOK OF CLINICAL NEUROLOGY 2022; 189:139-151. [PMID: 36031301 PMCID: PMC10029146 DOI: 10.1016/b978-0-323-91532-8.00018-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Rett Syndrome is an X-linked neurological disorder characterized by behavioral and neurological regression, seizures, motor deficits, and dysautonomia. A particularly prominent presentation includes breathing abnormalities characterized by breathing irregularities, hyperventilation, repetitive breathholding during wakefulness, obstructive and central apneas during sleep, and abnormal responses to hypoxia and hypercapnia. The condition and pathology of the respiratory system is further complicated by dysfunctions of breathing-motor coordination, which is reflected in dysphagia. The discovery of the X-linked mutations in the MECP2 gene has transformed our understanding of the cellular and molecular mechanisms that are at the root of various clinical phenotypes. However, the genotype-phenotype relationship is complicated by various factors which include not only X-inactivation but also consequences of the intermittent hypoxia and oxidative stress associated with the breathing abnormalities.
Collapse
Affiliation(s)
- Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States; Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, United States.
| | - Marlusa Karlen-Amarante
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Jia-Der Ju Wang
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Alyssa Huff
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Nicholas Burgraff
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| |
Collapse
|
29
|
Ribeiro MC, MacDonald JL. Vitamin D modulates cortical transcriptome and behavioral phenotypes in an Mecp2 heterozygous Rett syndrome mouse model. Neurobiol Dis 2022; 165:105636. [PMID: 35091041 PMCID: PMC8864637 DOI: 10.1016/j.nbd.2022.105636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 12/14/2022] Open
Abstract
Rett syndrome (RTT) is an X-linked neurological disorder caused by mutations in the transcriptional regulator MECP2. Mecp2 loss-of-function leads to the disruption of many cellular pathways, including aberrant activation of the NF-κB pathway. Genetically attenuating the NF-κB pathway in Mecp2-null mice ameliorates hallmark phenotypes of RTT, including reduced dendritic complexity, raising the question of whether NF-κB pathway inhibitors could provide a therapeutic avenue for RTT. Vitamin D is a known inhibitor of NF-κB signaling; further, vitamin D deficiency is prevalent in RTT patients and male Mecp2-null mice. We previously demonstrated that vitamin D rescues the aberrant NF-κB activity and reduced neurite outgrowth of Mecp2-knockdown cortical neurons in vitro, and that dietary vitamin D supplementation rescues decreased dendritic complexity and soma size of neocortical projection neurons in both male hemizygous Mecp2-null and female heterozygous mice in vivo. Here, we have identified over 200 genes whose dysregulated expression in the Mecp2+/- cortex is modulated by dietary vitamin D. Genes normalized with vitamin D supplementation are involved in dendritic complexity, synapses, and neuronal projections, suggesting that the rescue of their expression could underpin the rescue of neuronal morphology. Further, there is a disruption in the homeostasis of the vitamin D synthesis pathway in Mecp2+/- mice, and motor and anxiety-like behavioral phenotypes in Mecp2+/- mice correlate with circulating vitamin D levels. Thus, our data indicate that vitamin D modulates RTT pathology and its supplementation could provide a simple and cost-effective partial therapeutic for RTT.
Collapse
Affiliation(s)
- Mayara C Ribeiro
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY 13244, United States of America
| | - Jessica L MacDonald
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY 13244, United States of America.
| |
Collapse
|
30
|
Carstens KE, Lustberg DJ, Shaughnessy EK, McCann KE, Alexander GM, Dudek SM. Perineuronal net degradation rescues CA2 plasticity in a mouse model of Rett syndrome. J Clin Invest 2021; 131:e137221. [PMID: 34228646 DOI: 10.1172/jci137221] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/25/2021] [Indexed: 12/14/2022] Open
Abstract
Perineuronal nets (PNNs), a specialized form of extracellular matrix, are abnormal in the brains of people with Rett syndrome (RTT). We previously reported that PNNs function to restrict synaptic plasticity in hippocampal area CA2, which is unusually resistant to long-term potentiation (LTP) and has been linked to social learning in mice. Here we report that PNNs appear elevated in area CA2 of the hippocampus of an individual with RTT and that PNNs develop precociously and remain elevated in area CA2 of a mouse model of RTT (Mecp2-null). Further, we provide evidence that LTP could be induced at CA2 synapses prior to PNN maturation (postnatal day 8-11) in wild-type mice and that this window of plasticity was prematurely restricted at CA2 synapses in Mecp2-null mice. Degrading PNNs in Mecp2-null hippocampus was sufficient to rescue the premature disruption of CA2 plasticity. We identified several molecular targets that were altered in the developing Mecp2-null hippocampus that may explain aberrant PNNs and CA2 plasticity, and we discovered that CA2 PNNs are negatively regulated by neuronal activity. Collectively, our findings demonstrate that CA2 PNN development is regulated by Mecp2 and identify a window of hippocampal plasticity that is disrupted in a mouse model of RTT.
Collapse
|
31
|
Asahina M, Fujinawa R, Nakamura S, Yokoyama K, Tozawa R, Suzuki T. Ngly1 -/- rats develop neurodegenerative phenotypes and pathological abnormalities in their peripheral and central nervous systems. Hum Mol Genet 2021; 29:1635-1647. [PMID: 32259258 PMCID: PMC7322575 DOI: 10.1093/hmg/ddaa059] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/10/2020] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
N-glycanase 1 (NGLY1) deficiency, an autosomal recessive disease caused by mutations in the NGLY1 gene, is characterized by developmental delay, hypolacrima or alacrima, seizure, intellectual disability, movement disorders and other neurological phenotypes. Because of few animal models that recapitulate these clinical signatures, the mechanisms of the onset of the disease and its progression are poorly understood, and the development of therapies is hindered. In this study, we generated the systemic Ngly1-deficient rodent model, Ngly1−/− rats, which showed developmental delay, movement disorder, somatosensory impairment and scoliosis. These phenotypes in Ngly1−/− rats are consistent with symptoms in human patients. In accordance with the pivotal role played by NGLY1 in endoplasmic reticulum-associated degradation processes, cleaving N-glycans from misfolded glycoproteins in the cytosol before they can be degraded by the proteasome, loss of Ngly1 led to accumulation of cytoplasmic ubiquitinated proteins, a marker of misfolded proteins in the neurons of the central nervous system of Ngly1−/− rats. Histological analysis identified prominent pathological abnormalities, including necrotic lesions, mineralization, intra- and extracellular eosinophilic bodies, astrogliosis, microgliosis and significant loss of mature neurons in the thalamic lateral and the medial parts of the ventral posterior nucleus and ventral lateral nucleus of Ngly1−/− rats. Axonal degradation in the sciatic nerves was also observed, as in human subjects. Ngly1−/− rats, which mimic the symptoms of human patients, will be a useful animal model for preclinical testing of therapeutic options and understanding the detailed mechanisms of NGLY1 deficiency.
Collapse
Affiliation(s)
- Makoto Asahina
- Takeda-CiRA Joint Program (T-CiRA), Kanagawa 2518555, Japan.,T-CiRA Discovery, Takeda Pharmaceutical Company Ltd., Kanagawa 2518555, Japan
| | - Reiko Fujinawa
- Takeda-CiRA Joint Program (T-CiRA), Kanagawa 2518555, Japan.,Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama 3510198, Japan
| | - Sayuri Nakamura
- Nonclinical Safety Research, Axcelead Drug Discovery Partners Inc., Kanagawa 2510012, Japan
| | - Kotaro Yokoyama
- Nonclinical Safety Research, Axcelead Drug Discovery Partners Inc., Kanagawa 2510012, Japan
| | - Ryuichi Tozawa
- Takeda-CiRA Joint Program (T-CiRA), Kanagawa 2518555, Japan.,T-CiRA Discovery, Takeda Pharmaceutical Company Ltd., Kanagawa 2518555, Japan
| | - Tadashi Suzuki
- Takeda-CiRA Joint Program (T-CiRA), Kanagawa 2518555, Japan.,Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama 3510198, Japan
| |
Collapse
|
32
|
Abstract
Rett syndrome (RTT) is a severe X-linked neurodevelopmental disorder characterized by neurodevelopmental regression between 6 and 18 months of life and associated with multi-system comorbidities. Caused mainly by pathogenic variants in the MECP2 (methyl CpG binding protein 2) gene, it is the second leading genetic cause of intellectual disability in girls after Down syndrome. RTT affects not only neurological function but also a wide array of non-neurological organs. RTT-related disorders involve abnormalities of the respiratory, cardiovascular, digestive, metabolic, skeletal, endocrine, muscular, and urinary systems and immune response. Here, we review the different aspects of RTT affecting the main peripheral groups of organs and sometimes occurring independently of nervous system defects.
Collapse
Affiliation(s)
- Emilie Borloz
- Aix Marseille Univ, INSERM, MMG, U1251, Faculté de médecine Timone, 13385, Marseille, France
| | - Laurent Villard
- Aix Marseille Univ, INSERM, MMG, U1251, Faculté de médecine Timone, 13385, Marseille, France
| | - Jean-Christophe Roux
- Aix Marseille Univ, INSERM, MMG, U1251, Faculté de médecine Timone, 13385, Marseille, France
| |
Collapse
|
33
|
Ghirardini E, Calugi F, Sagona G, Di Vetta F, Palma M, Battini R, Cioni G, Pizzorusso T, Baroncelli L. The Role of Preclinical Models in Creatine Transporter Deficiency: Neurobiological Mechanisms, Biomarkers and Therapeutic Development. Genes (Basel) 2021; 12:genes12081123. [PMID: 34440297 PMCID: PMC8392480 DOI: 10.3390/genes12081123] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022] Open
Abstract
Creatine (Cr) Transporter Deficiency (CTD) is an X-linked metabolic disorder, mostly caused by missense mutations in the SLC6A8 gene and presenting with intellectual disability, autistic behavior, and epilepsy. There is no effective treatment for CTD and patients need lifelong assistance. Thus, the research of novel intervention strategies is a major scientific challenge. Animal models are an excellent tool to dissect the disease pathogenetic mechanisms and drive the preclinical development of therapeutics. This review illustrates the current knowledge about Cr metabolism and CTD clinical aspects, with a focus on mainstay diagnostic and therapeutic options. Then, we discuss the rodent models of CTD characterized in the last decade, comparing the phenotypes expressed within clinically relevant domains and the timeline of symptom development. This analysis highlights that animals with the ubiquitous deletion/mutation of SLC6A8 genes well recapitulate the early onset and the complex pathological phenotype of the human condition. Thus, they should represent the preferred model for preclinical efficacy studies. On the other hand, brain- and cell-specific conditional mutants are ideal for understanding the basis of CTD at a cellular and molecular level. Finally, we explain how CTD models might provide novel insight about the pathogenesis of other disorders, including cancer.
Collapse
MESH Headings
- Animals
- Biomarkers/metabolism
- Brain Diseases, Metabolic, Inborn/metabolism
- Brain Diseases, Metabolic, Inborn/pathology
- Brain Diseases, Metabolic, Inborn/therapy
- Central Nervous System/pathology
- Creatine/deficiency
- Creatine/metabolism
- Disease Models, Animal
- Humans
- Mental Retardation, X-Linked/metabolism
- Mental Retardation, X-Linked/pathology
- Mental Retardation, X-Linked/therapy
- Mice
- Plasma Membrane Neurotransmitter Transport Proteins/deficiency
- Plasma Membrane Neurotransmitter Transport Proteins/metabolism
- Rats
Collapse
Affiliation(s)
- Elsa Ghirardini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, I-56128 Pisa, Italy; (E.G.); (G.S.); (R.B.); (G.C.)
- Institute of Neuroscience, National Research Council (CNR), I-56124 Pisa, Italy; (F.C.); (F.D.V.); (M.P.); (T.P.)
| | - Francesco Calugi
- Institute of Neuroscience, National Research Council (CNR), I-56124 Pisa, Italy; (F.C.); (F.D.V.); (M.P.); (T.P.)
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, I-50135 Florence, Italy
| | - Giulia Sagona
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, I-56128 Pisa, Italy; (E.G.); (G.S.); (R.B.); (G.C.)
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, I-50135 Florence, Italy
| | - Federica Di Vetta
- Institute of Neuroscience, National Research Council (CNR), I-56124 Pisa, Italy; (F.C.); (F.D.V.); (M.P.); (T.P.)
- Department of Biology, University of Pisa, I-56126 Pisa, Italy
| | - Martina Palma
- Institute of Neuroscience, National Research Council (CNR), I-56124 Pisa, Italy; (F.C.); (F.D.V.); (M.P.); (T.P.)
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, I-50135 Florence, Italy
| | - Roberta Battini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, I-56128 Pisa, Italy; (E.G.); (G.S.); (R.B.); (G.C.)
- Department of Clinical and Experimental Medicine, University of Pisa, I-56126 Pisa, Italy
| | - Giovanni Cioni
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, I-56128 Pisa, Italy; (E.G.); (G.S.); (R.B.); (G.C.)
- Department of Clinical and Experimental Medicine, University of Pisa, I-56126 Pisa, Italy
| | - Tommaso Pizzorusso
- Institute of Neuroscience, National Research Council (CNR), I-56124 Pisa, Italy; (F.C.); (F.D.V.); (M.P.); (T.P.)
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, I-50135 Florence, Italy
| | - Laura Baroncelli
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, I-56128 Pisa, Italy; (E.G.); (G.S.); (R.B.); (G.C.)
- Institute of Neuroscience, National Research Council (CNR), I-56124 Pisa, Italy; (F.C.); (F.D.V.); (M.P.); (T.P.)
- Correspondence:
| |
Collapse
|
34
|
Music-Based Intervention Ameliorates Mecp2-Loss-Mediated Sociability Repression in Mice through the Prefrontal Cortex FNDC5/BDNF Pathway. Int J Mol Sci 2021; 22:ijms22137174. [PMID: 34281226 PMCID: PMC8269182 DOI: 10.3390/ijms22137174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/22/2021] [Accepted: 06/30/2021] [Indexed: 11/19/2022] Open
Abstract
Patients with Rett syndrome (RTT) show severe difficulties with communication, social withdrawl, and learning. Music-based interventions improve social interaction, communication skills, eye contact, and physical skills and reduce seizure frequency in patients with RTT. This study aimed to investigate the mechanism by which music-based interventions compromise sociability impairments in mecp2 null/y mice as an experimental RTT model. Male mecp2 null/y mice and wild-type mice (24 days old) were randomly divided into control, noise, and music-based intervention groups. Mice were exposed to music or noise for 6 h/day for 3 consecutive weeks. Behavioral patterns, including anxiety, spontaneous exploration, and sociability, were characterized using open-field and three-chamber tests. BDNF, TrkB receptor motif, and FNDC5 expression in the prefrontal cortex (PFC), hippocampus, basal ganglia, and amygdala were probed using RT-PCR or immunoblotting. mecp2 null/y mice showed less locomotion in an open field than wild-type mice. The social novelty rather than the sociability of these animals increased following a music-based intervention, suggesting that music influenced the mecp2-deletion-induced social interaction repression rather than motor deficit. Mechanically, the loss of BDNF signaling in the prefrontal cortex and hippocampal regions, but not in the basal ganglia and amygdala, was compromised following the music-based intervention in mecp2 null/y mice, whereas TrkB signaling was not significantly changed in either region. FNDC5 expression in the prefrontal cortex region in mecp2 null/y mice also increased following the music-based intervention. Collective evidence reveals that music-based interventions improve mecp2-loss-induced social dysfunction. BDNF and FNDC5 signaling in the prefrontal cortex region mediates the music-based-intervention promotion of social interactions. This study gives new insight into the mechanisms underlying the improvement of social behaviors in mice suffering from experimental Rett syndrome following a music-based intervention.
Collapse
|
35
|
Urbinati C, Cosentino L, Germinario EAP, Valenti D, Vigli D, Ricceri L, Laviola G, Fiorentini C, Vacca RA, Fabbri A, De Filippis B. Treatment with the Bacterial Toxin CNF1 Selectively Rescues Cognitive and Brain Mitochondrial Deficits in a Female Mouse Model of Rett Syndrome Carrying a MeCP2-Null Mutation. Int J Mol Sci 2021; 22:6739. [PMID: 34201747 PMCID: PMC8269120 DOI: 10.3390/ijms22136739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/25/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022] Open
Abstract
Rett syndrome (RTT) is a rare neurological disorder caused by mutations in the X-linked MECP2 gene and a major cause of intellectual disability in females. No cure exists for RTT. We previously reported that the behavioural phenotype and brain mitochondria dysfunction are widely rescued by a single intracerebroventricular injection of the bacterial toxin CNF1 in a RTT mouse model carrying a truncating mutation of the MeCP2 gene (MeCP2-308 mice). Given the heterogeneity of MECP2 mutations in RTT patients, we tested the CNF1 therapeutic efficacy in a mouse model carrying a null mutation (MeCP2-Bird mice). CNF1 selectively rescued cognitive defects, without improving other RTT-related behavioural alterations, and restored brain mitochondrial respiratory chain complex activity in MeCP2-Bird mice. To shed light on the molecular mechanisms underlying the differential CNF1 effects on the behavioural phenotype, we compared treatment effects on relevant signalling cascades in the brain of the two RTT models. CNF1 provided a significant boost of the mTOR activation in MeCP2-308 hippocampus, which was not observed in the MeCP2-Bird model, possibly explaining the differential effects of CNF1. These results demonstrate that CNF1 efficacy depends on the mutation beared by MeCP2-mutated mice, stressing the need of testing potential therapeutic approaches across RTT models.
Collapse
Affiliation(s)
- Chiara Urbinati
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.U.); (L.C.); (D.V.); (L.R.); (G.L.)
| | - Livia Cosentino
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.U.); (L.C.); (D.V.); (L.R.); (G.L.)
| | - Elena Angela Pia Germinario
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.A.P.G.); (A.F.)
| | - Daniela Valenti
- Bioenergetics and Molecular Biotechnologies, Institute of Biomembranes, National Council of Research, 70126 Bari, Italy; (D.V.); (R.A.V.)
| | - Daniele Vigli
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.U.); (L.C.); (D.V.); (L.R.); (G.L.)
| | - Laura Ricceri
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.U.); (L.C.); (D.V.); (L.R.); (G.L.)
| | - Giovanni Laviola
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.U.); (L.C.); (D.V.); (L.R.); (G.L.)
| | - Carla Fiorentini
- Association for Research on Integrative Oncology Therapies (ARTOI), 00165 Rome, Italy;
| | - Rosa Anna Vacca
- Bioenergetics and Molecular Biotechnologies, Institute of Biomembranes, National Council of Research, 70126 Bari, Italy; (D.V.); (R.A.V.)
| | - Alessia Fabbri
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.A.P.G.); (A.F.)
| | - Bianca De Filippis
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.U.); (L.C.); (D.V.); (L.R.); (G.L.)
| |
Collapse
|
36
|
Presymptomatic training mitigates functional deficits in a mouse model of Rett syndrome. Nature 2021; 592:596-600. [PMID: 33762729 DOI: 10.1038/s41586-021-03369-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 02/17/2021] [Indexed: 01/26/2023]
Abstract
Mutations in the X-linked gene MECP2 cause Rett syndrome, a progressive neurological disorder in which children develop normally for the first one or two years of life before experiencing profound motor and cognitive decline1-3. At present there are no effective treatments for Rett syndrome, but we hypothesized that using the period of normal development to strengthen motor and memory skills might confer some benefit. Here we find, using a mouse model of Rett syndrome, that intensive training beginning in the presymptomatic period dramatically improves the performance of specific motor and memory tasks, and significantly delays the onset of symptoms. These benefits are not observed when the training begins after symptom onset. Markers of neuronal activity and chemogenetic manipulation reveal that task-specific neurons that are repeatedly activated during training develop more dendritic arbors and have better neurophysiological responses than those in untrained animals, thereby enhancing their functionality and delaying symptom onset. These results provide a rationale for genetic screening of newborns for Rett syndrome, as presymptomatic intervention might mitigate symptoms or delay their onset. Similar strategies should be studied for other childhood neurological disorders.
Collapse
|
37
|
Cosentino L, Bellia F, Pavoncello N, Vigli D, D'Addario C, De Filippis B. Methyl-CpG binding protein 2 dysfunction provides stress vulnerability with sex- and zygosity-dependent outcomes. Eur J Neurosci 2021; 55:2766-2776. [PMID: 33655553 DOI: 10.1111/ejn.15165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 10/22/2022]
Abstract
Stress vulnerability is a critical factor for the development of trauma-related disorders; however, its biological underpinnings are not clear. We demonstrated that dysfunctions in the X-linked epigenetic factor methyl-CpG binding protein 2 (MeCP2) provide trauma vulnerability in male mice. Given the prominent role of sex in stress outcomes, we explored the effects of MeCP2 hypofunctionality in females. Female mice carrying truncated MeCP2 (heterozygous and homozygous) and wild type controls (wt) were tested for fear memory. Stress-induced corticosterone release and brain expression of hypothalamic-pituitary-adrenal (HPA) axis regulatory genes were also evaluated in wt and mutant mice of both sexes. Although heterozygous females displayed a normal stress-related behavioural profile, homozygous mice showed enhanced memory recall for the threatening context compared to wt, thus recapitulating the phenotype previously evidenced in hemizygous males. Interestingly, MeCP2 truncation abolished the sex differences in stress-induced corticosterone release, which was found increased in mutant males, whereas blunted in mutant females in a zygosity-independent manner. Although heterozygous mice did not differ from controls, homozygous females and hemizygous males showed increased hypotalamic Crh and Avp mRNAs and a differentially altered expression of Fkbp5 in cortical areas. Present results demonstrate that in female mice carrying truncated MeCP2, altered stress responsivity is driven by homozygosity, whereas heterozygosity does not lead to maladaptive stress outcomes. MeCP2 dysfunctions thus provide stress vulnerability in mice with sex- and zygosity-dependent outcomes.
Collapse
Affiliation(s)
- Livia Cosentino
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | | | - Nicole Pavoncello
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Daniele Vigli
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Claudio D'Addario
- Università degli Studi di Teramo, Teramo, Italy.,Department of Clinical Neuroscience, Karolinska Institute, Solna, Sweden
| | - Bianca De Filippis
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
38
|
Crivellari I, Pecorelli A, Cordone V, Marchi S, Pinton P, Hayek J, Cervellati C, Valacchi G. Impaired mitochondrial quality control in Rett Syndrome. Arch Biochem Biophys 2021; 700:108790. [PMID: 33549528 DOI: 10.1016/j.abb.2021.108790] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/25/2021] [Accepted: 01/31/2021] [Indexed: 01/22/2023]
Abstract
Rett Syndrome (RTT) is a rare neurodevelopmental disorder caused in the 95% of cases by mutations in the X-linked MECP2 gene, affecting almost exclusively females. While the genetic basis of RTT is known, the exact pathogenic mechanisms that lead to the broad spectrum of symptoms still remain enigmatic. Alterations in the redox homeostasis have been proposed among the contributing factors to the development and progression of the syndrome. Mitochondria appears to play a central role in RTT oxidative damage and a plethora of mitochondrial defects has already been recognized. However, mitochondrial dynamics and mitophagy, which represent critical pathways in regulating mitochondrial quality control (QC), have not yet been investigated in RTT. The present work showed that RTT fibroblasts have networks of hyperfused mitochondria with morphological abnormalities and increased mitochondrial volume. Moreover, analysis of mitophagic flux revealed an impaired PINK1/Parkin-mediated mitochondrial removal associated with an increase of mitochondrial fusion proteins Mitofusins 1 and 2 (MFN1 and 2) and a decrease of fission mediators including Dynamin related protein 1 (DRP1) and Mitochondrial fission 1 protein (FIS1). Finally, challenging RTT fibroblasts with FCCP and 2,4-DNP did not trigger a proper apoptotic cell death due to a defective caspase 3/7 activation. Altogether, our findings shed light on new aspects of mitochondrial dysfunction in RTT that are represented by defective mitochondrial QC pathways, also providing new potential targets for a therapeutic intervention aimed at slowing down clinical course and manifestations in the affected patients.
Collapse
Affiliation(s)
- Ilaria Crivellari
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Alessandra Pecorelli
- Plants for Human Health Institute, Animal Science Dept., North Carolina State University, Kannapolis, NC, USA
| | - Valeria Cordone
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Saverio Marchi
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - Paolo Pinton
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| | - Joussef Hayek
- Toscana Life Science Foundation, Via Fiorentina 1, 53100, Siena, Italy
| | - Carlo Cervellati
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.
| | - Giuseppe Valacchi
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy; Plants for Human Health Institute, Animal Science Dept., North Carolina State University, Kannapolis, NC, USA; Kyung Hee University, Department of Food and Nutrition, Seoul, South Korea.
| |
Collapse
|
39
|
Belaïdouni Y, Diabira D, Zhang J, Graziano JC, Bader F, Montheil A, Menuet C, Wayman GA, Gaiarsa JL. The Chloride Homeostasis of CA3 Hippocampal Neurons Is Not Altered in Fully Symptomatic Mepc2-null Mice. Front Cell Neurosci 2021; 15:724976. [PMID: 34602980 PMCID: PMC8484709 DOI: 10.3389/fncel.2021.724976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/27/2021] [Indexed: 02/05/2023] Open
Abstract
Rett syndrome (RTT) is an X-linked neurodevelopmental disorder caused mainly by mutations in the MECP2 gene. Mouse models of RTT show reduced expression of the cation-chloride cotransporter KCC2 and altered chloride homeostasis at presymptomatic stages. However, whether these alterations persist to late symptomatic stages has not been studied. Here we assess KCC2 and NKCC1 expressions and chloride homeostasis in the hippocampus of early [postnatal (P) day 30-35] and late (P50-60) symptomatic male Mecp2-null (Mecp2 -/y) mice. We found (i) no difference in the relative amount, but an over-phosphorylation, of KCC2 and NKCC1 between wild-type (WT) and Mecp2 -/y hippocampi and (ii) no difference in the inhibitory strength, nor reversal potential, of GABA A -receptor-mediated responses in Mecp2 -/y CA3 pyramidal neurons compared to WT at any stages studied. Altogether, these data indicate the presence of a functional chloride extrusion mechanism in Mecp2 -/y CA3 pyramidal neurons at symptomatic stages.
Collapse
Affiliation(s)
- Yasmine Belaïdouni
- Aix-Marseille University UMR 1249, Institut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale Unité 1249, Parc Scientifique de Luminy, Marseille, France
| | - Diabe Diabira
- Aix-Marseille University UMR 1249, Institut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale Unité 1249, Parc Scientifique de Luminy, Marseille, France
| | - Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter, United Kingdom
| | - Jean-Charles Graziano
- Aix-Marseille University 105, Institut Paoli Calmettes, U1068, Institut National de la Santé et de la Recherche Médicale U7258, Centre National de Recherche Scientifique, Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | - Francesca Bader
- Aix-Marseille University UMR 1249, Institut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale Unité 1249, Parc Scientifique de Luminy, Marseille, France
| | - Aurelie Montheil
- Aix-Marseille University UMR 1249, Institut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale Unité 1249, Parc Scientifique de Luminy, Marseille, France
| | - Clément Menuet
- Aix-Marseille University UMR 1249, Institut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale Unité 1249, Parc Scientifique de Luminy, Marseille, France
| | - Gary A. Wayman
- Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, United States
| | - Jean-Luc Gaiarsa
- Aix-Marseille University UMR 1249, Institut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale Unité 1249, Parc Scientifique de Luminy, Marseille, France
- *Correspondence: Jean-Luc Gaiarsa,
| |
Collapse
|
40
|
Matagne V, Borloz E, Ehinger Y, Saidi L, Villard L, Roux JC. Severe offtarget effects following intravenous delivery of AAV9-MECP2 in a female mouse model of Rett syndrome. Neurobiol Dis 2020; 149:105235. [PMID: 33383186 DOI: 10.1016/j.nbd.2020.105235] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/18/2020] [Accepted: 12/26/2020] [Indexed: 01/06/2023] Open
Abstract
Rett syndrome (RTT) is a severe X-linked neurodevelopmental disorder that is primarily caused by mutations in the methyl CpG binding protein 2 gene (MECP2). RTT is the second most prevalent genetic cause of intellectual disability in girls, and there is currently no cure for the disease. We have previously shown that gene therapy using a self-complementary AAV9 viral vector expressing a codon-optimized Mecp2 version (AAV9-MCO) significantly improved symptoms and increased survival in male Mecp2-deficient mice. Here, we pursued our studies and investigated the safety and efficacy of long-term gene therapy in the genetically relevant RTT mouse model: the heterozygous (HET) Mecp2 deficient female mouse. These mice were injected with the AAV9-MCO vector through the tail vein and an array of behavioral tests was performed. At 16- and 30-weeks post-injection, this treatment was able to rescue apneas and improved the spontaneous locomotor deficits and circadian locomotor activity in Mecp2 HET mice treated with AAV9-MCO at a dose of 5 × 1011 vg/mouse. To examine whether a higher dose of vector could result in increased improvements, we injected Mecp2 HET mice with a higher MCO vector dose (1012 vg/mouse), which resulted in some severe, sometimes lethal, side effects. In order to confirm these effects, a new cohort of Mecp2 HET mice were administered increasing doses of MCO vector (1011, 5 × 1011 and 1012 vg/mouse). Again, two weeks after vector administration, some Mecp2 HET mice were found dead while others displayed severe side effects and had to be euthanized. These deleterious effects were not observed in Mecp2 HET mice injected with a high dose of AAV9-GFP and were directly proportionate to vector dosage (0, 23 or 54% mortality at an AAV9-MCO dose of 1011, 5 × 1011, 1012 vg/mouse, respectively), and no such lethality was observed in wild-type (WT) mice. In the Mecp2 HET mice treated with the high and medium AAV9-MCO doses, blood chemistry analysis and post-mortem histology showed liver damage with drastically elevated levels of liver transaminases and disorganized liver architecture. Apoptosis was confirmed by the presence of TUNEL- and cleaved-caspase 3-positive cells in the Mecp2 HET mice treated with the higher doses of AAV9-MCO. We then studied the involvement of the unfolded protein response (UPR) in triggering apoptosis since it can be activated by AAV vectors. Increased expression of the C/EBP homologous protein (CHOP), one of UPR downstream effectors, was confirmed in Mecp2 HET mice after vector administration. The toxic reaction seen in some treated mice indicates that, although gene therapy for RTT improved breathing deficits observed in Mecp2 HET mice, further studies are needed to better understand the underlying mechanisms and caution must be exercised before similar attempts are undertaken in female Rett patients.
Collapse
Affiliation(s)
- Valerie Matagne
- Aix Marseille Univ, INSERM, MMG, U1251, Faculté de médecine Timone, 13385 Marseille, France
| | - Emilie Borloz
- Aix Marseille Univ, INSERM, MMG, U1251, Faculté de médecine Timone, 13385 Marseille, France
| | - Yann Ehinger
- Aix Marseille Univ, INSERM, MMG, U1251, Faculté de médecine Timone, 13385 Marseille, France
| | - Lydia Saidi
- Aix Marseille Univ, INSERM, MMG, U1251, Faculté de médecine Timone, 13385 Marseille, France
| | - Laurent Villard
- Aix Marseille Univ, INSERM, MMG, U1251, Faculté de médecine Timone, 13385 Marseille, France
| | - Jean-Christophe Roux
- Aix Marseille Univ, INSERM, MMG, U1251, Faculté de médecine Timone, 13385 Marseille, France.
| |
Collapse
|
41
|
Adams I, Yang T, Longo FM, Katz DM. Restoration of motor learning in a mouse model of Rett syndrome following long-term treatment with a novel small-molecule activator of TrkB. Dis Model Mech 2020; 13:13/11/dmm044685. [PMID: 33361117 PMCID: PMC7710018 DOI: 10.1242/dmm.044685] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 09/23/2020] [Indexed: 12/23/2022] Open
Abstract
Reduced expression of brain-derived neurotrophic factor (BDNF) and impaired activation of the BDNF receptor, tropomyosin receptor kinase B (TrkB; also known as Ntrk2), are thought to contribute significantly to the pathophysiology of Rett syndrome (RTT), a severe neurodevelopmental disorder caused by loss-of-function mutations in the X-linked gene encoding methyl-CpG-binding protein 2 (MeCP2). Previous studies from this and other laboratories have shown that enhancing BDNF expression and/or TrkB activation in Mecp2-deficient mouse models of RTT can ameliorate or reverse abnormal neurological phenotypes that mimic human RTT symptoms. The present study reports on the preclinical efficacy of a novel, small-molecule, non-peptide TrkB partial agonist, PTX-BD4-3, in heterozygous female Mecp2 mutant mice, a well-established RTT model that recapitulates the genetic mosaicism of the human disease. PTX-BD4-3 exhibited specificity for TrkB in cell-based assays of neurotrophin receptor activation and neuronal cell survival and in in vitro receptor binding assays. PTX-BD4-3 also activated TrkB following systemic administration to wild-type and Mecp2 mutant mice and was rapidly cleared from the brain and plasma with a half-life of ∼2 h. Chronic intermittent treatment of Mecp2 mutants with a low dose of PTX-BD4-3 (5 mg/kg, intraperitoneally, once every 3 days for 8 weeks) reversed deficits in two core RTT symptom domains – respiration and motor control – and symptom rescue was maintained for at least 24 h after the last dose. Together, these data indicate that significant clinically relevant benefit can be achieved in a mouse model of RTT with a chronic intermittent, low-dose treatment paradigm targeting the neurotrophin receptor TrkB. Editor's choice: Long-term intermittent treatment with a newly developed partial agonist of the TrkB neurotrophin receptor reverses deficits in motor learning and respiration in a mouse model of Rett syndrome.
Collapse
Affiliation(s)
- Ian Adams
- Department of Neurosciences, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106-4975, USA
| | - Tao Yang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Frank M Longo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David M Katz
- Department of Neurosciences, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106-4975, USA
| |
Collapse
|
42
|
Gomathi M, Padmapriya S, Balachandar V. Drug Studies on Rett Syndrome: From Bench to Bedside. J Autism Dev Disord 2020; 50:2740-2764. [PMID: 32016693 DOI: 10.1007/s10803-020-04381-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Drug studies on Rett syndrome (RTT) have drastically increased over the past few decades. This review aims to provide master data on bench-to-bedside drug studies involving RTT. A comprehensive literature review was performed by searching in PUBMED, MEDLINE and Google Scholar, international, national and regional clinical trial registries and pharmaceutical companies using the keywords "Rett syndrome treatment and/or drug or compound or molecule". Seventy drugs were investigated in non-clinical (N = 65 animal/cell line-based studies; N = 5 iPSC-based study) and clinical trials (N = 34) for ameliorating the symptoms of RTT. Though there is good progress in both clinical and non-clinical studies, none of these drugs entered phase III/IV for being launched as a therapeutic agent for RTT.
Collapse
Affiliation(s)
- Mohan Gomathi
- Human Molecular Genetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | | | - Vellingiri Balachandar
- Human Molecular Genetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India.
| |
Collapse
|
43
|
Ramirez JM, Karlen-Amarante M, Wang JDJ, Bush NE, Carroll MS, Weese-Mayer DE, Huff A. The Pathophysiology of Rett Syndrome With a Focus on Breathing Dysfunctions. Physiology (Bethesda) 2020; 35:375-390. [PMID: 33052774 PMCID: PMC7864239 DOI: 10.1152/physiol.00008.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
Rett syndrome (RTT), an X-chromosome-linked neurological disorder, is characterized by serious pathophysiology, including breathing and feeding dysfunctions, and alteration of cardiorespiratory coupling, a consequence of multiple interrelated disturbances in the genetic and homeostatic regulation of central and peripheral neuronal networks, redox state, and control of inflammation. Characteristic breath-holds, obstructive sleep apnea, and aerophagia result in intermittent hypoxia, which, combined with mitochondrial dysfunction, causes oxidative stress-an important driver of the clinical presentation of RTT.
Collapse
Affiliation(s)
- Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Washington
- Departments of Neurological Surgery and Pediatrics, University of Washington School of Medicine, Seattle, Washington
| | - Marlusa Karlen-Amarante
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Washington
- Department of Physiology and Pathology, School of Dentistry of Araraquara, São Paulo State University (UNESP), Araraquara, Brazil
| | - Jia-Der Ju Wang
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Washington
| | - Nicholas E Bush
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Washington
| | - Michael S Carroll
- Data Analytics and Reporting, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Division of Autonomic Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Debra E Weese-Mayer
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Division of Autonomic Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Alyssa Huff
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
44
|
Ghatak S, Talantova M, McKercher SR, Lipton SA. Novel Therapeutic Approach for Excitatory/Inhibitory Imbalance in Neurodevelopmental and Neurodegenerative Diseases. Annu Rev Pharmacol Toxicol 2020; 61:701-721. [PMID: 32997602 DOI: 10.1146/annurev-pharmtox-032320-015420] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Excitatory/inhibitory (E/I) balance, defined as the balance between excitation and inhibition of synaptic activity in a neuronal network, accounts in part for the normal functioning of the brain, controlling, for example, normal spike rate. In many pathological conditions, this fine balance is perturbed, leading to excessive or diminished excitation relative to inhibition, termed E/I imbalance, reflected in network dysfunction. E/I imbalance has emerged as a contributor to neurological disorders that occur particularly at the extremes of life, including autism spectrum disorder and Alzheimer's disease, pointing to the vulnerability of neuronal networks at these critical life stages. Hence, it is important to develop approaches to rebalance neural networks. In this review, we describe emerging therapies that can normalize the E/I ratio or the underlying abnormality that contributes to the imbalance in electrical activity, thus improving neurological function in these maladies.
Collapse
Affiliation(s)
- Swagata Ghatak
- Department of Molecular Medicine and Neuroscience Translational Center, The Scripps Research Institute, La Jolla, California 92037, USA;
| | - Maria Talantova
- Department of Molecular Medicine and Neuroscience Translational Center, The Scripps Research Institute, La Jolla, California 92037, USA;
| | - Scott R McKercher
- Department of Molecular Medicine and Neuroscience Translational Center, The Scripps Research Institute, La Jolla, California 92037, USA;
| | - Stuart A Lipton
- Department of Molecular Medicine and Neuroscience Translational Center, The Scripps Research Institute, La Jolla, California 92037, USA; .,Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
45
|
Flores Gutiérrez J, De Felice C, Natali G, Leoncini S, Signorini C, Hayek J, Tongiorgi E. Protective role of mirtazapine in adult female Mecp2 +/- mice and patients with Rett syndrome. J Neurodev Disord 2020; 12:26. [PMID: 32988385 PMCID: PMC7523042 DOI: 10.1186/s11689-020-09328-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/27/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Rett syndrome (RTT), an X-linked neurodevelopmental rare disease mainly caused by MECP2-gene mutations, is a prototypic intellectual disability disorder. Reversibility of RTT-like phenotypes in an adult mouse model lacking the Mecp2-gene has given hope of treating the disease at any age. However, adult RTT patients still urge for new treatments. Given the relationship between RTT and monoamine deficiency, we investigated mirtazapine (MTZ), a noradrenergic and specific-serotonergic antidepressant, as a potential treatment. METHODS Adult heterozygous-Mecp2 (HET) female mice (6-months old) were treated for 30 days with 10 mg/kg MTZ and assessed for general health, motor skills, motor learning, and anxiety. Motor cortex, somatosensory cortex, and amygdala were analyzed for parvalbumin expression. Eighty RTT adult female patients harboring a pathogenic MECP2 mutation were randomly assigned to treatment to MTZ for insomnia and mood disorders (mean age = 23.1 ± 7.5 years, range = 16-47 years; mean MTZ-treatment duration = 1.64 ± 1.0 years, range = 0.08-5.0 years). Rett clinical severity scale (RCSS) and motor behavior assessment scale (MBAS) were retrospectively analyzed. RESULTS In HET mice, MTZ preserved motor learning from deterioration and normalized parvalbumin levels in the primary motor cortex. Moreover, MTZ rescued the aberrant open-arm preference behavior observed in HET mice in the elevated plus-maze (EPM) and normalized parvalbumin expression in the barrel cortex. Since whisker clipping also abolished the EPM-related phenotype, we propose it is due to sensory hypersensitivity. In patients, MTZ slowed disease progression or induced significant improvements for 10/16 MBAS-items of the M1 social behavior area: 4/7 items of the M2 oro-facial/respiratory area and 8/14 items of the M3 motor/physical signs area. CONCLUSIONS This study provides the first evidence that long-term treatment of adult female heterozygous Mecp2tm1.1Bird mice and adult Rett patients with the antidepressant mirtazapine is well tolerated and that it protects from disease progression and improves motor, sensory, and behavioral symptoms.
Collapse
Affiliation(s)
- Javier Flores Gutiérrez
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri, 5 - 34127, Trieste, Italy
| | - Claudio De Felice
- Neonatal Intensive Care Unit, Azienda Ospedaliera Universitaria Senese, 53100, Siena, Italy
| | - Giulia Natali
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri, 5 - 34127, Trieste, Italy
| | - Silvia Leoncini
- Neonatal Intensive Care Unit, Azienda Ospedaliera Universitaria Senese, 53100, Siena, Italy.,Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, 53100, Siena, Italy
| | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, 53100, Siena, Italy
| | - Joussef Hayek
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, 53100, Siena, Italy.,Pediatric Speciality Center "L'Isola di Bau", 50052 Certaldo, Florence, Italy
| | - Enrico Tongiorgi
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri, 5 - 34127, Trieste, Italy.
| |
Collapse
|
46
|
Turner TJ, Zourray C, Schorge S, Lignani G. Recent advances in gene therapy for neurodevelopmental disorders with epilepsy. J Neurochem 2020; 157:229-262. [PMID: 32880951 PMCID: PMC8436749 DOI: 10.1111/jnc.15168] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022]
Abstract
Neurodevelopmental disorders can be caused by mutations in neuronal genes fundamental to brain development. These disorders have severe symptoms ranging from intellectually disability, social and cognitive impairments, and a subset are strongly linked with epilepsy. In this review, we focus on those neurodevelopmental disorders that are frequently characterized by the presence of epilepsy (NDD + E). We loosely group the genes linked to NDD + E with different neuronal functions: transcriptional regulation, intrinsic excitability and synaptic transmission. All these genes have in common a pivotal role in defining the brain architecture and function during early development, and when their function is altered, symptoms can present in the first stages of human life. The relationship with epilepsy is complex. In some NDD + E, epilepsy is a comorbidity and in others seizures appear to be the main cause of the pathology, suggesting that either structural changes (NDD) or neuronal communication (E) can lead to these disorders. Furthermore, grouping the genes that cause NDD + E, we review the uses and limitations of current models of the different disorders, and how different gene therapy strategies are being developed to treat them. We highlight where gene replacement may not be a treatment option, and where innovative therapeutic tools, such as CRISPR‐based gene editing, and new avenues of delivery are required. In general this group of genetically defined disorders, supported increasing knowledge of the mechanisms leading to neurological dysfunction serve as an excellent collection for illustrating the translational potential of gene therapy, including newly emerging tools.
Collapse
Affiliation(s)
- Thomas J Turner
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Clara Zourray
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.,Department of Pharmacology, UCL School of Pharmacy, London, UK
| | | | - Gabriele Lignani
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
47
|
Qin J, Zhang M, Guan Y, Li C, Ma X, Rankl C, Tang J. Investigation of the interaction between MeCP2 methyl-CpG binding domain and methylated DNA by single molecule force spectroscopy. Anal Chim Acta 2020; 1124:52-59. [PMID: 32534675 DOI: 10.1016/j.aca.2020.05.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 11/19/2022]
Abstract
MeCP2 is an essential transcriptional repressor that mediates transcriptional inhibition by binding to methylated DNA. The binding specificity of MeCP2 protein to methylated DNA was considered to depend on its methyl-CpG binding domain (MBD). In this study, we used atomic force microscope based single-molecular force spectroscopy to investigate the interaction of MeCP2 MBD and methylated DNA. The specific interaction forces of the MeCP2 MBD-methylated DNA complexes were measured for the first time. The dynamics was also investigated by measuring the unbinding force of the complex at different loading rates. In addition, the distribution of unbinding forces and binding probabilities of MeCP2 MBD and different DNA were studied at the same loading rate. It was found that MeCP2 MBD had weak interaction with hemi-methylated and unmethylated DNA compared to methylated DNA. This work revealed the binding characteristics of MeCP2 MBD and methylated DNA at the single-molecule level. It provides a new idea for exploring the molecular mechanism of MeCP2 in regulating methylation signals.
Collapse
Affiliation(s)
- Juan Qin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; University of Science and Technology of China, Hefei, 230026, PR China
| | - Miaomiao Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; University of Science and Technology of China, Hefei, 230026, PR China
| | - Yanxue Guan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; University of Science and Technology of China, Hefei, 230026, PR China
| | - Chen Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; University of Science and Technology of China, Hefei, 230026, PR China
| | - Xingxing Ma
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; University of Science and Technology of China, Hefei, 230026, PR China
| | - Christian Rankl
- RECENDT Research Center for Non Destructive Testing GmbH, Science Park 2/2.OG, Altenberger Straße 69, 4040 Linz, Austria
| | - Jilin Tang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; University of Science and Technology of China, Hefei, 230026, PR China.
| |
Collapse
|
48
|
Fluoxetine rescues rotarod motor deficits in Mecp2 heterozygous mouse model of Rett syndrome via brain serotonin. Neuropharmacology 2020; 176:108221. [PMID: 32652084 DOI: 10.1016/j.neuropharm.2020.108221] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 05/24/2020] [Accepted: 06/20/2020] [Indexed: 01/28/2023]
Abstract
Motor skill is a specific area of disability of Rett syndrome (RTT), a rare disorder occurring almost exclusively in girls, caused by loss-of-function mutations of the X-linked methyl-CpG-binding protein2 (MECP2) gene, encoding the MECP2 protein, a member of the methyl-CpG-binding domain nuclear proteins family. Brain 5-HT, which is defective in RTT patients and Mecp2 mutant mice, regulates motor circuits and SSRIs enhance motor skill learning and plasticity. In the present study, we used heterozygous (Het) Mecp2 female and Mecp2-null male mice to investigate whether fluoxetine, a SSRI with pleiotropic effects on neuronal circuits, rescues motor coordination deficits. Repeated administration of 10 mg/kg fluoxetine fully rescued rotarod deficit in Mecp2 Het mice regardless of age, route of administration or pre-training to rotarod. The motor improvement was confirmed in the beam walking test while no effect was observed in the hanging-wire test, suggesting a preferential action of fluoxetine on motor coordination. Citalopram mimicked the effects of fluoxetine, while the inhibition of 5-HT synthesis abolished the fluoxetine-induced improvement of motor coordination. Mecp2 null mice, which responded poorly to fluoxetine in the rotarod, showed reduced 5-HT synthesis in the prefrontal cortex, hippocampus and striatum, and reduced efficacy of fluoxetine in raising extracellular 5-HT as compared to female mutants. No sex differences were observed in the ability of fluoxetine to desensitize 5-HT1A autoreceptors upon repeated administration. These findings indicate that fluoxetine rescues motor coordination in Mecp2 Het mice through its ability to enhance brain 5-HT and suggest that drugs enhancing 5-HT neurotransmission may have beneficial effects on motor symptoms of RTT.
Collapse
|
49
|
Zuliani I, Urbinati C, Valenti D, Quattrini MC, Medici V, Cosentino L, Pietraforte D, Di Domenico F, Perluigi M, Vacca RA, De Filippis B. The Anti-Diabetic Drug Metformin Rescues Aberrant Mitochondrial Activity and Restrains Oxidative Stress in a Female Mouse Model of Rett Syndrome. J Clin Med 2020; 9:jcm9061669. [PMID: 32492904 PMCID: PMC7355965 DOI: 10.3390/jcm9061669] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/25/2022] Open
Abstract
Metformin is the first-line therapy for diabetes, even in children, and a promising attractive candidate for drug repurposing. Mitochondria are emerging as crucial targets of metformin action both in the periphery and in the brain. The present study evaluated whether treatment with metformin may rescue brain mitochondrial alterations and contrast the increased oxidative stress in a validated mouse model of Rett syndrome (RTT), a rare neurologic disorder of monogenic origin characterized by severe behavioral and physiological symptoms. No cure for RTT is available. In fully symptomatic RTT mice (12 months old MeCP2-308 heterozygous female mice), systemic treatment with metformin (100 mg/kg ip for 10 days) normalized the reduced mitochondrial ATP production and ATP levels in the whole-brain, reduced brain oxidative damage, and rescued the increased production of reactive oxidizing species in blood. A 10-day long treatment with metformin also boosted pathways related to mitochondrial biogenesis and antioxidant defense in the brain of metformin-treated RTT mice. This treatment regimen did not improve general health status and motor dysfunction in RTT mice at an advanced stage of the disease. Present results provide evidence that systemic treatment with metformin may represent a novel, repurposable therapeutic strategy for RTT.
Collapse
Affiliation(s)
- Ilaria Zuliani
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (I.Z.); (F.D.D.); (M.P.)
| | - Chiara Urbinati
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.U.); (V.M.); (L.C.)
| | - Daniela Valenti
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, 70126 Bari, Italy; (D.V.); (R.A.V.)
| | | | - Vanessa Medici
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.U.); (V.M.); (L.C.)
| | - Livia Cosentino
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.U.); (V.M.); (L.C.)
| | | | - Fabio Di Domenico
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (I.Z.); (F.D.D.); (M.P.)
| | - Marzia Perluigi
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (I.Z.); (F.D.D.); (M.P.)
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, 70126 Bari, Italy; (D.V.); (R.A.V.)
| | - Bianca De Filippis
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.U.); (V.M.); (L.C.)
- Correspondence:
| |
Collapse
|
50
|
Vitamin D Supplementation Rescues Aberrant NF-κB Pathway Activation and Partially Ameliorates Rett Syndrome Phenotypes in Mecp2 Mutant Mice. eNeuro 2020; 7:ENEURO.0167-20.2020. [PMID: 32393583 PMCID: PMC7253640 DOI: 10.1523/eneuro.0167-20.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 01/28/2023] Open
Abstract
Rett syndrome (RTT) is a severe, progressive X-linked neurodevelopmental disorder caused by mutations in the transcriptional regulator MECP2. We previously identified aberrant NF-κB pathway upregulation in brains of Mecp2-null mice and demonstrated that genetically attenuating NF-κB rescues some characteristic neuronal RTT phenotypes. These results raised the intriguing question of whether NF-κB pathway inhibitors might provide a therapeutic avenue in RTT. Here, we investigate whether the known NF-κB pathway inhibitor vitamin D ameliorates neuronal phenotypes in Mecp2-mutant mice. Vitamin D deficiency is prevalent among RTT patients, and we find that Mecp2-null mice similarly have significantly reduced 25(OH)D serum levels compared with wild-type littermates. We identify that vitamin D rescues aberrant NF-κB pathway activation and reduced neurite outgrowth of Mecp2 knock-down cortical neurons in vitro. Further, dietary supplementation with vitamin D in early symptomatic male Mecp2 hemizygous null and female Mecp2 heterozygous mice ameliorates reduced neocortical dendritic morphology and soma size phenotypes and modestly improves reduced lifespan of Mecp2-nulls. These results elucidate fundamental neurobiology of RTT and provide foundation that NF-κB pathway inhibition might be a therapeutic target for RTT.
Collapse
|