1
|
Maniou E, Farah F, Marshall AR, Crane-Smith Z, Krstevski A, Stathopoulou A, Greene NDE, Copp AJ, Galea GL. Caudal Fgfr1 disruption produces localised spinal mis-patterning and a terminal myelocystocele-like phenotype in mice. Development 2023; 150:dev202139. [PMID: 37756583 PMCID: PMC10617625 DOI: 10.1242/dev.202139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
Closed spinal dysraphisms are poorly understood malformations classified as neural tube (NT) defects. Several, including terminal myelocystocele, affect the distal spine. We have previously identified a NT closure-initiating point, Closure 5, in the distal spine of mice. Here, we document equivalent morphology of the caudal-most closing posterior neuropore (PNP) in mice and humans. Closure 5 forms in a region of active FGF signalling, and pharmacological FGF receptor blockade impairs its formation in cultured mouse embryos. Conditional genetic deletion of Fgfr1 in caudal embryonic tissues with Cdx2Cre diminishes neuroepithelial proliferation, impairs Closure 5 formation and delays PNP closure. After closure, the distal NT of Fgfr1-disrupted embryos dilates to form a fluid-filled sac overlying ventrally flattened spinal cord. This phenotype resembles terminal myelocystocele. Histological analysis reveals regional and progressive loss of SHH- and FOXA2-positive ventral NT domains, resulting in OLIG2 labelling of the ventral-most NT. The OLIG2 domain is also subsequently lost, eventually producing a NT that is entirely positive for the dorsal marker PAX3. Thus, a terminal myelocystocele-like phenotype can arise after completion of NT closure with localised spinal mis-patterning caused by disruption of FGFR1 signalling.
Collapse
Affiliation(s)
- Eirini Maniou
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Faduma Farah
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Abigail R. Marshall
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Zoe Crane-Smith
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Andrea Krstevski
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Athanasia Stathopoulou
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Nicholas D. E. Greene
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Andrew J. Copp
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Gabriel L. Galea
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| |
Collapse
|
2
|
Escuin S, Rose Raza-Knight S, Savery D, Gaston-Massuet C, Galea GL, Greene NDE, Copp AJ. Dual mechanism underlying failure of neural tube closure in the Zic2 mutant mouse. Dis Model Mech 2023; 16:297163. [PMID: 36916392 PMCID: PMC10073009 DOI: 10.1242/dmm.049858] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/11/2023] [Indexed: 02/25/2023] Open
Abstract
Understanding the molecular mechanisms that lead to birth defects is an important step towards improved primary prevention. Mouse embryos homozygous for the Kumba (Ku) mutant allele of Zic2 develop severe spina bifida with complete lack of dorsolateral hinge points (DLHPs) in the neuroepithelium. Bone morphogenetic protein (BMP) signalling is overactivated in Zic2Ku/Ku embryos, and the BMP inhibitor dorsomorphin partially rescues neural tube closure in cultured embryos. RhoA signalling is also overactivated, with accumulation of actomyosin in the Zic2Ku/Ku neuroepithelium, and the myosin inhibitor Blebbistatin partially normalises neural tube closure. However, dorsomorphin and Blebbistatin differ in their effects at tissue and cellular levels: DLHP formation is rescued by dorsomorphin but not Blebbistatin, whereas abnormal accumulation of actomyosin is rescued by Blebbistatin but not dorsomorphin. These findings suggest a dual mechanism of spina bifida origin in Zic2Ku/Ku embryos: faulty BMP-dependent formation of DLHPs and RhoA-dependent F-actin accumulation in the neuroepithelium. Hence, we identify a multi-pathway origin of spina bifida in a mammalian system that may provide a developmental basis for understanding the corresponding multifactorial human defects.
Collapse
Affiliation(s)
- Sarah Escuin
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Saba Rose Raza-Knight
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Dawn Savery
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Carles Gaston-Massuet
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Gabriel L Galea
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Nicholas D E Greene
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Andrew J Copp
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| |
Collapse
|
3
|
Shi DL. Wnt/planar cell polarity signaling controls morphogenetic movements of gastrulation and neural tube closure. Cell Mol Life Sci 2022; 79:586. [PMID: 36369349 DOI: 10.1007/s00018-022-04620-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022]
Abstract
Gastrulation and neurulation are successive morphogenetic processes that play key roles in shaping the basic embryonic body plan. Importantly, they operate through common cellular and molecular mechanisms to set up the three spatially organized germ layers and to close the neural tube. During gastrulation and neurulation, convergent extension movements driven by cell intercalation and oriented cell division generate major forces to narrow the germ layers along the mediolateral axis and elongate the embryo in the anteroposterior direction. Apical constriction also makes an important contribution to promote the formation of the blastopore and the bending of the neural plate. Planar cell polarity proteins are major regulators of asymmetric cell behaviors and critically involved in a wide variety of developmental processes, from gastrulation and neurulation to organogenesis. Mutations of planar cell polarity genes can lead to general defects in the morphogenesis of different organs and the co-existence of distinct congenital diseases, such as spina bifida, hearing deficits, kidney diseases, and limb elongation defects. This review outlines our current understanding of non-canonical Wnt signaling, commonly known as Wnt/planar cell polarity signaling, in regulating morphogenetic movements of gastrulation and neural tube closure during development and disease. It also attempts to identify unanswered questions that deserve further investigations.
Collapse
Affiliation(s)
- De-Li Shi
- Institute of Medical Research, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China. .,Laboratory of Developmental Biology, CNRS-UMR7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne University, Paris, France.
| |
Collapse
|
4
|
Marshall AR, Maniou E, Moulding D, Greene NDE, Copp AJ, Galea GL. Two-Photon Cell and Tissue Level Laser Ablation Methods to Study Morphogenetic Biomechanics. Methods Mol Biol 2022; 2438:217-230. [PMID: 35147945 PMCID: PMC7614166 DOI: 10.1007/978-1-0716-2035-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Laser ablation is routinely performed to infer mechanical tension in cells and tissues. Here we describe our method of two-photon laser ablation at the cellular and tissue level in mouse embryos. The primary outcome of these experiments is initial retraction following ablation, which correlates with, and so can be taken as a measure of, the tensile stress that structure was under before ablation. Several experimental variables can affect interpretation of ablation tests. Pre-test factors include differences in physical properties such as viscoelasticity between experimental conditions. Factors relevant during the test include viability of the cells at the point of ablation, image acquisition rate and the potential for overzealous ablations to cause air bubbles through heat dissipation. Post-test factors include intensity-biased image registration that can artificially produce apparent directionality. Applied to the closing portion of the mouse spinal neural tube, these methods have demonstrated long-range biomechanical coupling of the embryonic structure and have identified highly contractile cell populations involved in its closure process.
Collapse
Affiliation(s)
- Abigail R Marshall
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Eirini Maniou
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Dale Moulding
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Nicholas D E Greene
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Andrew J Copp
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Gabriel L Galea
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK.
- Comparative Bioveterinary Sciences, Royal Veterinary College, London, UK.
- Birth Defects Research Centre, UCL GOS ICH, London, UK.
| |
Collapse
|
5
|
Nychyk O, Galea GL, Molè M, Savery D, Greene NDE, Stanier P, Copp AJ. Vangl2-environment interaction causes severe neural tube defects, without abnormal neuroepithelial convergent extension. Dis Model Mech 2021; 15:273565. [PMID: 34842271 PMCID: PMC8807581 DOI: 10.1242/dmm.049194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/19/2021] [Indexed: 11/20/2022] Open
Abstract
Planar cell polarity (PCP) signalling is vital for initiation of mouse neurulation, with diminished convergent extension (CE) cell movements leading to craniorachischisis, a severe neural tube defect (NTD). Some humans with NTDs also have PCP gene mutations but these are heterozygous, not homozygous as in mice. Other genetic or environmental factors may interact with partial loss of PCP function in human NTDs. We found that reduced sulfation of glycosaminoglycans interacts with heterozygosity for the Lp allele of Vangl2 (a core PCP gene), to cause craniorachischisis in cultured mouse embryos, with rescue by exogenous sulphate. We hypothesised this glycosaminoglycan-PCP interaction may regulate CE but, surprisingly, DiO labeling of the embryonic node demonstrates no abnormality of midline axial extension in sulfation-depleted Lp/+ embryos. Positive-control Lp/Lp embryos show severe CE defects. Abnormalities were detected in the size and shape of somites that flank the closing neural tube in sulfation-depleted Lp/+ embryos. We conclude that failure of closure initiation can arise by a mechanism other than faulty neuroepithelial CE, with possible involvement of matrix-mediated somite expansion, adjacent to the closing neural tube.
Collapse
Affiliation(s)
- Oleksandr Nychyk
- Developmental Biology & Cancer Research Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Gabriel L Galea
- Developmental Biology & Cancer Research Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Matteo Molè
- Developmental Biology & Cancer Research Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Dawn Savery
- Developmental Biology & Cancer Research Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Nicholas D E Greene
- Developmental Biology & Cancer Research Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Philip Stanier
- Genetics & Genomic Medicine Research Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Andrew J Copp
- Developmental Biology & Cancer Research Department, UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
6
|
Petzold J, Gentleman E. Intrinsic Mechanical Cues and Their Impact on Stem Cells and Embryogenesis. Front Cell Dev Biol 2021; 9:761871. [PMID: 34820380 PMCID: PMC8606660 DOI: 10.3389/fcell.2021.761871] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/14/2021] [Indexed: 12/25/2022] Open
Abstract
Although understanding how soluble cues direct cellular processes revolutionised the study of cell biology in the second half of the 20th century, over the last two decades, new insights into how mechanical cues similarly impact cell fate decisions has gained momentum. During development, extrinsic cues such as fluid flow, shear stress and compressive forces are essential for normal embryogenesis to proceed. Indeed, both adult and embryonic stem cells can respond to applied forces, but they can also detect intrinsic mechanical cues from their surrounding environment, such as the stiffness of the extracellular matrix, which impacts differentiation and morphogenesis. Cells can detect changes in their mechanical environment using cell surface receptors such as integrins and focal adhesions. Moreover, dynamic rearrangements of the cytoskeleton have been identified as a key means by which forces are transmitted from the extracellular matrix to the cell and vice versa. Although we have some understanding of the downstream mechanisms whereby mechanical cues are translated into changes in cell behaviour, many of the signalling pathways remain to be defined. This review discusses the importance of intrinsic mechanical cues on adult cell fate decisions, the emerging roles of cell surface mechano-sensors and the cytoskeleton in enabling cells to sense its microenvironment, and the role of intracellular signalling in translating mechanical cues into transcriptional outputs. In addition, the contribution of mechanical cues to fundamental processes during embryogenesis such as apical constriction and convergent extension is discussed. The continued development of tools to measure the biomechanical properties of soft tissues in vivo is likely to uncover currently underestimated contributions of these cues to adult stem cell fate decisions and embryogenesis, and may inform on regenerative strategies for tissue repair.
Collapse
Affiliation(s)
- Jonna Petzold
- Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
| | - Eileen Gentleman
- Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
| |
Collapse
|
7
|
Basta LP, Hill-Oliva M, Paramore SV, Sharan R, Goh A, Biswas A, Cortez M, Little KA, Posfai E, Devenport D. New mouse models for high resolution and live imaging of planar cell polarity proteins in vivo. Development 2021; 148:271988. [PMID: 34463728 DOI: 10.1242/dev.199695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/24/2021] [Indexed: 01/10/2023]
Abstract
The collective polarization of cellular structures and behaviors across a tissue plane is a near universal feature of epithelia known as planar cell polarity (PCP). This property is controlled by the core PCP pathway, which consists of highly conserved membrane-associated protein complexes that localize asymmetrically at cell junctions. Here, we introduce three new mouse models for investigating the localization and dynamics of transmembrane PCP proteins: Celsr1, Fz6 and Vangl2. Using the skin epidermis as a model, we characterize and verify the expression, localization and function of endogenously tagged Celsr1-3xGFP, Fz6-3xGFP and tdTomato-Vangl2 fusion proteins. Live imaging of Fz6-3xGFP in basal epidermal progenitors reveals that the polarity of the tissue is not fixed through time. Rather, asymmetry dynamically shifts during cell rearrangements and divisions, while global, average polarity of the tissue is preserved. We show using super-resolution STED imaging that Fz6-3xGFP and tdTomato-Vangl2 can be resolved, enabling us to observe their complex localization along junctions. We further explore PCP fusion protein localization in the trachea and neural tube, and discover new patterns of PCP expression and localization throughout the mouse embryo.
Collapse
Affiliation(s)
- Lena P Basta
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544USA
| | - Michael Hill-Oliva
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544USA.,Department of Medicine, Columbia University, New York, NY 10032USA
| | - Sarah V Paramore
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544USA
| | - Rishabh Sharan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544USA
| | - Audrey Goh
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544USA
| | - Abhishek Biswas
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544USA.,Research Computing, Office of Information Technology, Princeton University, Princeton, NJ 08544, USA
| | - Marvin Cortez
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544USA
| | - Katherine A Little
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544USA
| | - Eszter Posfai
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544USA
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544USA
| |
Collapse
|
8
|
Flasse L, Yennek S, Cortijo C, Barandiaran IS, Kraus MRC, Grapin-Botton A. Apical Restriction of the Planar Cell Polarity Component VANGL in Pancreatic Ducts Is Required to Maintain Epithelial Integrity. Cell Rep 2021; 31:107677. [PMID: 32460029 DOI: 10.1016/j.celrep.2020.107677] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 03/31/2020] [Accepted: 04/30/2020] [Indexed: 12/17/2022] Open
Abstract
Cell polarity is essential for the architecture and function of numerous epithelial tissues. Here, we show that apical restriction of planar cell polarity (PCP) components is necessary for the maintenance of epithelial integrity. Using the mammalian pancreas as a model, we find that components of the core PCP pathway, such as the transmembrane protein Van Gogh-like (VANGL), become apically restricted over a period of several days. Expansion of VANGL localization to the basolateral membranes of progenitors leads to their death and disruption of the epithelial integrity. VANGL basolateral expansion does not affect apico-basal polarity but acts in the cells where Vangl is mislocalized by reducing Dishevelled and its downstream target ROCK. This reduction in ROCK activity culminates in progenitor cell egression, death, and eventually pancreatic hypoplasia. Thus, precise spatiotemporal modulation of VANGL-dependent PCP signaling is crucial for proper pancreatic morphogenesis.
Collapse
Affiliation(s)
- Lydie Flasse
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
| | - Siham Yennek
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Cédric Cortijo
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausannne, Switzerland
| | | | - Marine R-C Kraus
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausannne, Switzerland
| | - Anne Grapin-Botton
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
| |
Collapse
|
9
|
Maniou E, Staddon MF, Marshall AR, Greene NDE, Copp AJ, Banerjee S, Galea GL. Hindbrain neuropore tissue geometry determines asymmetric cell-mediated closure dynamics in mouse embryos. Proc Natl Acad Sci U S A 2021; 118:e2023163118. [PMID: 33941697 PMCID: PMC8126771 DOI: 10.1073/pnas.2023163118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gap closure is a common morphogenetic process. In mammals, failure to close the embryonic hindbrain neuropore (HNP) gap causes fatal anencephaly. We observed that surface ectoderm cells surrounding the mouse HNP assemble high-tension actomyosin purse strings at their leading edge and establish the initial contacts across the embryonic midline. Fibronectin and laminin are present, and tensin 1 accumulates in focal adhesion-like puncta at this leading edge. The HNP gap closes asymmetrically, faster from its rostral than caudal end, while maintaining an elongated aspect ratio. Cell-based physical modeling identifies two closure mechanisms sufficient to account for tissue-level HNP closure dynamics: purse-string contraction and directional cell motion implemented through active crawling. Combining both closure mechanisms hastens gap closure and produces a constant rate of gap shortening. Purse-string contraction reduces, whereas crawling increases gap aspect ratio, and their combination maintains it. Closure rate asymmetry can be explained by asymmetric embryo tissue geometry, namely a narrower rostral gap apex, whereas biomechanical tension inferred from laser ablation is equivalent at the gaps' rostral and caudal closure points. At the cellular level, the physical model predicts rearrangements of cells at the HNP rostral and caudal extremes as the gap shortens. These behaviors are reproducibly live imaged in mouse embryos. Thus, mammalian embryos coordinate cellular- and tissue-level mechanics to achieve this critical gap closure event.
Collapse
Affiliation(s)
- Eirini Maniou
- Department of Developmental Biology and Cancer Researching and Teaching, University College London Great Ormond Street Institute of Child Health, WC1N 1EH London, United Kingdom
| | - Michael F Staddon
- Department of Physics and Astronomy, University College London, WC1E 6BT London, United Kingdom
| | - Abigail R Marshall
- Department of Developmental Biology and Cancer Researching and Teaching, University College London Great Ormond Street Institute of Child Health, WC1N 1EH London, United Kingdom
| | - Nicholas D E Greene
- Department of Developmental Biology and Cancer Researching and Teaching, University College London Great Ormond Street Institute of Child Health, WC1N 1EH London, United Kingdom
| | - Andrew J Copp
- Department of Developmental Biology and Cancer Researching and Teaching, University College London Great Ormond Street Institute of Child Health, WC1N 1EH London, United Kingdom
| | | | - Gabriel L Galea
- Department of Developmental Biology and Cancer Researching and Teaching, University College London Great Ormond Street Institute of Child Health, WC1N 1EH London, United Kingdom;
- Department of Comparative Bioveterinary Sciences, Royal Veterinary College, NW1 0TU London, United Kingdom
| |
Collapse
|
10
|
Jaffe E, Niswander L. Loss of Grhl3 is correlated with altered cellular protrusions in the non-neural ectoderm during neural tube closure. Dev Dyn 2021; 250:732-744. [PMID: 33378081 DOI: 10.1002/dvdy.292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The transcription factor Grainyhead-like 3 (GRHL3) has multiple roles in a variety of tissues during development including epithelial patterning and actin cytoskeletal regulation. During neural tube closure (NTC) in the mouse embryo, GRHL3 is expressed and functions in the non-neural ectoderm (NNE). Two important functions of GRHL3 are regulating the actin cytoskeleton during NTC and regulating the boundary between the NNE and neural ectoderm. However, an open question that remains is whether these functions explain the caudally restricted neural tube defect (NTD) of spina bifida observed in Grhl3 mutants. RESULTS Using scanning electron microscopy and immunofluorescence based imaging on Grhl3 mutants and wildtype controls, we show that GRHL3 is dispensable for NNE identity or epithelial maintenance in the caudal NNE but is needed for regulation of cellular protrusions during NTC. Grhl3 mutants have decreased lamellipodia relative to wildtype embryos during caudal NTC, first observed at the onset of delays when lamellipodia become prominent in wildtype embryos. At the axial level of NTD, half of the mutants show increased and disorganized filopodia and half lack cellular protrusions. CONCLUSION These data suggest that altered cellular protrusions during NTC contribute to the etiology of NTD in Grhl3 mutants.
Collapse
Affiliation(s)
- Eric Jaffe
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Lee Niswander
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
11
|
Tian T, Cao X, Chen Y, Jin L, Li Z, Han X, Lin Y, Wlodarczyk BJ, Finnell RH, Yuan Z, Wang L, Ren A, Lei Y. Somatic and de novo Germline Variants of MEDs in Human Neural Tube Defects. Front Cell Dev Biol 2021; 9:641831. [PMID: 33748132 PMCID: PMC7969791 DOI: 10.3389/fcell.2021.641831] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/15/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Neural tube defects (NTDs) are among the most common and severe congenital defects in humans. Their genetic etiology is complex and remains poorly understood. The Mediator complex (MED) plays a vital role in neural tube development in animal models. However, no studies have yet examined the role of its human homolog in the etiology of NTDs. METHODS In this study, 48 pairs of neural lesion site and umbilical cord tissues from NTD and 21 case-parent trios were involved in screening for NTD-related somatic and germline de novo variants. A series of functional cell assays were performed. We generated a Med12 p.Arg1784Cys knock-in mouse using CRISPR/Cas9 technology to validate the human findings. RESULTS One somatic variant, MED12 p.Arg1782Cys, was identified in the lesion site tissue from an NTD fetus. This variant was absent in any other normal tissue from different germ layers of the same case. In 21 case-parent trios, one de novo stop-gain variant, MED13L p.Arg1760∗, was identified. Cellular functional studies showed that MED12 p.Arg1782Cys decreased MED12 protein level and affected the regulation of MED12 on the canonical-WNT signaling pathway. The Med12 p.Arg1784Cys knock-in mouse exhibited exencephaly and spina bifida. CONCLUSION These findings provide strong evidence that functional variants of MED genes are associated with the etiology of some NTDs. We demonstrated a potentially important role for somatic variants in the occurrence of NTDs. Our study is the first study in which an NTD-related variant identified in humans was validated in mice using CRISPR/Cas9 technology.
Collapse
Affiliation(s)
- Tian Tian
- National Health Commission Key Laboratory of Reproductive Health, Institute of Reproductive and Child Health, Peking University, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Xuanye Cao
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| | - Yongyan Chen
- National Health Commission Key Laboratory of Reproductive Health, Institute of Reproductive and Child Health, Peking University, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Lei Jin
- National Health Commission Key Laboratory of Reproductive Health, Institute of Reproductive and Child Health, Peking University, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Zhiwen Li
- National Health Commission Key Laboratory of Reproductive Health, Institute of Reproductive and Child Health, Peking University, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Xiao Han
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| | - Ying Lin
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| | - Bogdan J. Wlodarczyk
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| | - Richard H. Finnell
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
- Departments of Molecular and Human Genetics and Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Linlin Wang
- National Health Commission Key Laboratory of Reproductive Health, Institute of Reproductive and Child Health, Peking University, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Aiguo Ren
- National Health Commission Key Laboratory of Reproductive Health, Institute of Reproductive and Child Health, Peking University, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Yunping Lei
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
12
|
Papakrivopoulou E, Jafree DJ, Dean CH, Long DA. The Biological Significance and Implications of Planar Cell Polarity for Nephrology. Front Physiol 2021; 12:599529. [PMID: 33716764 PMCID: PMC7952641 DOI: 10.3389/fphys.2021.599529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
The orientation of cells in two-dimensional and three-dimensional space underpins how the kidney develops and responds to disease. The process by which cells orientate themselves within the plane of a tissue is termed planar cell polarity. In this Review, we discuss how planar cell polarity and the proteins that underpin it govern kidney organogenesis and pathology. The importance of planar cell polarity and its constituent proteins in multiple facets of kidney development is emphasised, including ureteric bud branching, tubular morphogenesis and nephron maturation. An overview is given of the relevance of planar cell polarity and its proteins for inherited human renal diseases, including congenital malformations with unknown aetiology and polycystic kidney disease. Finally, recent work is described outlining the influence of planar cell polarity proteins on glomerular diseases and highlight how this fundamental pathway could yield a new treatment paradigm for nephrology.
Collapse
Affiliation(s)
- Eugenia Papakrivopoulou
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,Department of Internal Medicine and Nephrology, Clinique Saint Jean, Brussels, Belgium
| | - Daniyal J Jafree
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,UCL MB/Ph.D. Programme, Faculty of Medical Science, University College London, London, United Kingdom
| | - Charlotte H Dean
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - David A Long
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
13
|
Galea GL, Maniou E, Edwards TJ, Marshall AR, Ampartzidis I, Greene NDE, Copp AJ. Cell non-autonomy amplifies disruption of neurulation by mosaic Vangl2 deletion in mice. Nat Commun 2021; 12:1159. [PMID: 33608529 PMCID: PMC7895924 DOI: 10.1038/s41467-021-21372-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 01/22/2021] [Indexed: 01/31/2023] Open
Abstract
Post-zygotic mutations that generate tissue mosaicism are increasingly associated with severe congenital defects, including those arising from failed neural tube closure. Here we report that neural fold elevation during mouse spinal neurulation is vulnerable to deletion of the VANGL planar cell polarity protein 2 (Vangl2) gene in as few as 16% of neuroepithelial cells. Vangl2-deleted cells are typically dispersed throughout the neuroepithelium, and each non-autonomously prevents apical constriction by an average of five Vangl2-replete neighbours. This inhibition of apical constriction involves diminished myosin-II localisation on neighbour cell borders and shortening of basally-extending microtubule tails, which are known to facilitate apical constriction. Vangl2-deleted neuroepithelial cells themselves continue to apically constrict and preferentially recruit myosin-II to their apical cell cortex rather than to apical cap localisations. Such non-autonomous effects can explain how post-zygotic mutations affecting a minority of cells can cause catastrophic failure of morphogenesis leading to clinically important birth defects.
Collapse
Affiliation(s)
- Gabriel L Galea
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK.
- Comparative Bioveterinary Sciences, Royal Veterinary College, London, UK.
| | - Eirini Maniou
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Timothy J Edwards
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Abigail R Marshall
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Ioakeim Ampartzidis
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Nicholas D E Greene
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Andrew J Copp
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| |
Collapse
|
14
|
Leung KY, De Castro SCP, Galea GL, Copp AJ, Greene NDE. Glycine Cleavage System H Protein Is Essential for Embryonic Viability, Implying Additional Function Beyond the Glycine Cleavage System. Front Genet 2021; 12:625120. [PMID: 33569080 PMCID: PMC7868403 DOI: 10.3389/fgene.2021.625120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/04/2021] [Indexed: 12/03/2022] Open
Abstract
Glycine cleavage system H protein (GCSH) is a component of the glycine cleavage system (GCS), a conserved protein complex that acts to decarboxylate glycine. Mutation of AMT or GLDC, encoding the GCS components aminomethyltransferase and glycine decarboxylase, can cause malformations of the developing CNS (neural tube defects (NTDs) and ventriculomegaly) as well as a post-natal life-limiting neurometabolic disorder, Non-Ketotic Hyperglycinemia. In contrast, it is unclear whether mutation of GCSH contributes to these conditions and we therefore investigated GCSH loss of function in mice. Mice that were heterozygous for a Gcsh null allele were viable and did not exhibit elevated plasma glycine. Moreover, heterozygous mutation of Gcsh did not increase the frequency of NTDs in Gldc mutant embryos. Homozygous Gcsh null mice were not recovered at post-natal stages. Analysis of litters at E8.5-10.5, revealed the presence of homozygous null embryos which were much smaller than littermates and had failed to develop beyond early post-implantation stages with no visible somites or head-folds. Hence, unlike null mutations of Gldc or Amt, which are compatible with embryonic survival despite the presence of NTDs, loss of Gcsh causes embryonic death prior to mid-gestation. Maternal supplementation with formate did not restore embryonic development beyond E7.5, suggesting that the primary cause of lethality was not loss of glycine cleavage activity or suppression of folate one-carbon metabolism. These findings suggest that GCSH has additional roles beyond function in the glycine cleavage system. We hypothesize that GCSH potentially acts in lipoylation of 2-oxoacid dehydrogenase proteins, as reported in bacteria.
Collapse
Affiliation(s)
- Kit-Yi Leung
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Sandra C P De Castro
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Gabriel L Galea
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Andrew J Copp
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Nicholas D E Greene
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
15
|
Ortiz-Cruz G, Aguayo-Gómez A, Luna-Muñoz L, Muñoz-Téllez LA, Mutchinick OM. Myelomeningocele genotype-phenotype correlation findings in cilia, HH, PCP, and WNT signaling pathways. Birth Defects Res 2021; 113:371-381. [PMID: 33470056 DOI: 10.1002/bdr2.1872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/27/2020] [Accepted: 01/09/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND Myelomeningocele (MMC) is the most severe and frequent type of spina bifida. Its etiology remains poorly understood. The Hedgehog (Hh), Wnt, and planar cell polarity (PCP) signaling pathways are essential for normal tube closure, needing a structural-functional cilium for its adequate function. The present study aimed to investigate the impact of different gene variants (GV) from those pathways on MMC genotype-subphenotype correlations. METHODS The study comprised 500 MMC trios and 500 controls, from 16 Telethon centers of 16 Mexican states. Thirty-four GVs of 29 genes from cilia, Hh, PCP, and Wnt pathways, were analyzed, by an Illumina on design microarray. The total sample (T-MMC) was stratified in High-MMC (H-MMC) when thoracic and Low-MMC (L-MMC) when lumbar-sacral vertebrae affected. STATA/SE-12.1 and PLINK software were used for allelic association, TDT, and gene-gene interaction (GGI) analyses, considering p value <.01 as statistically significant differences (SSD). RESULTS Association analysis showed SSD for COBL-rs10230120, DVL2-rs2074216, PLCB4-rs6077510 GVs in T-MMC and L-MMC, and VANGL2-rs120886448 in T-MMC and H-MMC, and INVS-rs7024375 exclusively in L-MMC. TDT assay showed SSD preferential transmissions of C2CD3-rs826058 in H-MMC, and LRP5-rs3736228, and BBS2-rs1373 in L-MMC. Statistically significant GGI was observed in four in T-MMC, four completely different in L-MMC, and one in H-MMC. Interestingly, no one repeated in subphenotypes. CONCLUSIONS Our results support an association of GVs in Hh, Wnt, PCP, and cilia pathways, with MMC occurrence location, although further validation is needed. Furthermore, present results show a distinctive panel of gene-variants in H-MMC and LMMC subphenotypes, suggesting a feasible genotype-phenotype correlation.
Collapse
Affiliation(s)
- Gabriela Ortiz-Cruz
- Department of Genetics, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - Adolfo Aguayo-Gómez
- Department of Genetics, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - Leonora Luna-Muñoz
- Department of Genetics, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - Luis A Muñoz-Téllez
- Department of Genetics, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - Osvaldo M Mutchinick
- Department of Genetics, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| |
Collapse
|
16
|
Abstract
During embryonic development, the central nervous system forms as the neural plate and then rolls into a tube in a complex morphogenetic process known as neurulation. Neural tube defects (NTDs) occur when neurulation fails and are among the most common structural birth defects in humans. The frequency of NTDs varies greatly anywhere from 0.5 to 10 in 1000 live births, depending on the genetic background of the population, as well as a variety of environmental factors. The prognosis varies depending on the size and placement of the lesion and ranges from death to severe or moderate disability, and some NTDs are asymptomatic. This chapter reviews how mouse models have contributed to the elucidation of the genetic, molecular, and cellular basis of neural tube closure, as well as to our understanding of the causes and prevention of this devastating birth defect.
Collapse
Affiliation(s)
- Irene E Zohn
- Center for Genetic Medicine, Children's Research Institute, Children's National Medical Center, Washington, DC, USA.
| |
Collapse
|
17
|
Molè MA, Galea GL, Rolo A, Weberling A, Nychyk O, De Castro SC, Savery D, Fässler R, Ybot-González P, Greene NDE, Copp AJ. Integrin-Mediated Focal Anchorage Drives Epithelial Zippering during Mouse Neural Tube Closure. Dev Cell 2020; 52:321-334.e6. [PMID: 32049039 PMCID: PMC7008250 DOI: 10.1016/j.devcel.2020.01.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 10/24/2019] [Accepted: 01/07/2020] [Indexed: 12/17/2022]
Abstract
Epithelial fusion is a key process of morphogenesis by which tissue connectivity is established between adjacent epithelial sheets. A striking and poorly understood feature of this process is "zippering," whereby a fusion point moves directionally along an organ rudiment. Here, we uncover the molecular mechanism underlying zippering during mouse spinal neural tube closure. Fusion is initiated via local activation of integrin β1 and focal anchorage of surface ectoderm cells to a shared point of fibronectin-rich basement membrane, where the neural folds first contact each other. Surface ectoderm cells undergo proximal junction shortening, establishing a transitory semi-rosette-like structure at the zippering point that promotes juxtaposition of cells across the midline enabling fusion propagation. Tissue-specific ablation of integrin β1 abolishes the semi-rosette formation, preventing zippering and causing spina bifida. We propose integrin-mediated anchorage as an evolutionarily conserved mechanism of general relevance for zippering closure of epithelial gaps whose disturbance can produce clinically important birth defects.
Collapse
Affiliation(s)
- Matteo A Molè
- Newlife Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK; Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK.
| | - Gabriel L Galea
- Newlife Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Ana Rolo
- Newlife Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Antonia Weberling
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Oleksandr Nychyk
- Newlife Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK; Neuro-endocrinology/Nutrition, Food Bioscience Department, Teagasc Moorepark, Fermoy, Co. Cork, Ireland
| | - Sandra C De Castro
- Newlife Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Dawn Savery
- Newlife Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Patricia Ybot-González
- Department of Neurology and Neurophysiology, Hospital Virgen de Macarena, Sevilla, Spain
| | - Nicholas D E Greene
- Newlife Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Andrew J Copp
- Newlife Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK.
| |
Collapse
|
18
|
Nielsen BF, Nissen SB, Sneppen K, Mathiesen J, Trusina A. Model to Link Cell Shape and Polarity with Organogenesis. iScience 2020; 23:100830. [PMID: 31986479 PMCID: PMC6994644 DOI: 10.1016/j.isci.2020.100830] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/04/2019] [Accepted: 01/07/2020] [Indexed: 12/15/2022] Open
Abstract
How do flat sheets of cells form gut and neural tubes? Across systems, several mechanisms are at play: cells wedge, form actomyosin cables, or intercalate. As a result, the cell sheet bends, and the tube elongates. It is unclear to what extent each mechanism can drive tube formation on its own. To address this question, we computationally probe if one mechanism, either cell wedging or intercalation, may suffice for the entire sheet-to-tube transition. Using a physical model with epithelial cells represented by polarized point particles, we show that either cell intercalation or wedging alone can be sufficient and that each can both bend the sheet and extend the tube. When working in parallel, the two mechanisms increase the robustness of the tube formation. The successful simulations of the key features in Drosophila salivary gland budding, sea urchin gastrulation, and mammalian neurulation support the generality of our results. Cell wedging and intercalation are modeled using a polarized point-particle approach Cell intercalation is sufficient for tube budding Tube budding is more robust when intercalation is complemented by wedging Wedging and differential proliferation are sufficient for mammalian neurulation
Collapse
Affiliation(s)
- Bjarke Frost Nielsen
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| | - Silas Boye Nissen
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| | - Kim Sneppen
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| | - Joachim Mathiesen
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark.
| | - Ala Trusina
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark.
| |
Collapse
|
19
|
Sutherland A, Keller R, Lesko A. Convergent extension in mammalian morphogenesis. Semin Cell Dev Biol 2019; 100:199-211. [PMID: 31734039 DOI: 10.1016/j.semcdb.2019.11.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Abstract
Convergent extension is a fundamental morphogenetic process that underlies not only the generation of the elongated vertebrate body plan from the initially radially symmetrical embryo, but also the specific shape changes characteristic of many individual tissues. These tissue shape changes are the result of specific cell behaviors, coordinated in time and space, and affected by the physical properties of the tissue. While mediolateral cell intercalation is the classic cellular mechanism for producing tissue convergence and extension, other cell behaviors can also provide similar tissue-scale distortions or can modulate the effects of mediolateral cell intercalation to sculpt a specific shape. Regulation of regional tissue morphogenesis through planar polarization of the variety of underlying cell behaviors is well-recognized, but as yet is not well understood at the molecular level. Here, we review recent advances in understanding the cellular basis for convergence and extension and its regulation.
Collapse
Affiliation(s)
- Ann Sutherland
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, 22908, USA.
| | - Raymond Keller
- Department of Biology, University of Virginia, Charlottesville, VA, 22903, USA.
| | - Alyssa Lesko
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, 22908, USA.
| |
Collapse
|
20
|
Butler MB, Short NE, Maniou E, Alexandre P, Greene NDE, Copp AJ, Galea GL. Rho kinase-dependent apical constriction counteracts M-phase apical expansion to enable mouse neural tube closure. J Cell Sci 2019; 132:jcs.230300. [PMID: 31182644 PMCID: PMC6633395 DOI: 10.1242/jcs.230300] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/30/2019] [Indexed: 12/18/2022] Open
Abstract
Cellular generation of mechanical forces required to close the presumptive spinal neural tube, the 'posterior neuropore' (PNP), involves interkinetic nuclear migration (INM) and apical constriction. Both processes change the apical surface area of neuroepithelial cells, but how they are biomechanically integrated is unknown. Rho kinase (Rock; herein referring to both ROCK1 and ROCK2) inhibition in mouse whole embryo culture progressively widens the PNP. PNP widening is not caused by increased mechanical tension opposing closure, as evidenced by diminished recoil following laser ablation. Rather, Rock inhibition diminishes neuroepithelial apical constriction, producing increased apical areas in neuroepithelial cells despite diminished tension. Neuroepithelial apices are also dynamically related to INM progression, with the smallest dimensions achieved in cells positive for the pan-M phase marker Rb phosphorylated at S780 (pRB-S780). A brief (2 h) Rock inhibition selectively increases the apical area of pRB-S780-positive cells, but not pre-anaphase cells positive for phosphorylated histone 3 (pHH3+). Longer inhibition (8 h, more than one cell cycle) increases apical areas in pHH3+ cells, suggesting cell cycle-dependent accumulation of cells with larger apical surfaces during PNP widening. Consequently, arresting cell cycle progression with hydroxyurea prevents PNP widening following Rock inhibition. Thus, Rock-dependent apical constriction compensates for the PNP-widening effects of INM to enable progression of closure.This article has an associated First Person interview with the first authors of the paper.
Collapse
Affiliation(s)
- Max B Butler
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London WC1N 1EH, UK
| | - Nina E Short
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London WC1N 1EH, UK
| | - Eirini Maniou
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London WC1N 1EH, UK
| | - Paula Alexandre
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London WC1N 1EH, UK
| | - Nicholas D E Greene
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London WC1N 1EH, UK
| | - Andrew J Copp
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London WC1N 1EH, UK
| | - Gabriel L Galea
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London WC1N 1EH, UK .,Comparative Bioveterinary Sciences, Royal Veterinary College, London NW1 0TU, UK
| |
Collapse
|
21
|
Spinal neural tube closure depends on regulation of surface ectoderm identity and biomechanics by Grhl2. Nat Commun 2019; 10:2487. [PMID: 31171776 PMCID: PMC6554357 DOI: 10.1038/s41467-019-10164-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 04/25/2019] [Indexed: 02/07/2023] Open
Abstract
Lack or excess expression of the surface ectoderm-expressed transcription factor Grainyhead-like2 (Grhl2), each prevent spinal neural tube closure. Here we investigate the causative mechanisms and find reciprocal dysregulation of epithelial genes, cell junction components and actomyosin properties in Grhl2 null and over-expressing embryos. Grhl2 null surface ectoderm shows a shift from epithelial to neuroepithelial identity (with ectopic expression of N-cadherin and Sox2), actomyosin disorganisation, cell shape changes and diminished resistance to neural fold recoil upon ablation of the closure point. In contrast, excessive abundance of Grhl2 generates a super-epithelial surface ectoderm, in which up-regulation of cell-cell junction proteins is associated with an actomyosin-dependent increase in local mechanical stress. This is compatible with apposition of the neural folds but not with progression of closure, unless myosin activity is inhibited. Overall, our findings suggest that Grhl2 plays a crucial role in regulating biomechanical properties of the surface ectoderm that are essential for spinal neurulation. Loss or over-expression of Grainyhead-like transcription factors (Grhl) prevents closure of the neural tube but the mechanism underlying this is unclear. Here, the authors show that Grhl2 regulates murine posterior-neuropore closure via changes in the identity and biomechanics of the non-neural, surface ectoderm cells.
Collapse
|
22
|
Verification and rectification of cell type-specific splicing of a Seckel syndrome-associated ATR mutation using iPS cell model. J Hum Genet 2019; 64:445-458. [PMID: 30846821 PMCID: PMC8075875 DOI: 10.1038/s10038-019-0574-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/25/2018] [Accepted: 01/18/2019] [Indexed: 11/08/2022]
Abstract
Seckel syndrome (SS) is a rare spectrum of congenital severe microcephaly and dwarfism. One SS-causative gene is Ataxia Telangiectasia and Rad3-Related Protein (ATR), and ATR (c.2101 A>G) mutation causes skipping of exon 9, resulting in a hypomorphic ATR defect. This mutation is considered the cause of an impaired response to DNA replication stress, the main function of ATR, contributing to the pathogenesis of microcephaly. However, the precise behavior and impact of this splicing defect in human neural progenitor cells (NPCs) is unclear. To address this, we established induced pluripotent stem cells (iPSCs) from fibroblasts carrying the ATR mutation and an isogenic ATR-corrected counterpart iPSC clone. SS-patient-derived iPSCs (SS-iPSCs) exhibited cell type-specific splicing; exon 9 was dominantly skipped in fibroblasts and iPSC-derived NPCs, but it was included in undifferentiated iPSCs and definitive endodermal cells. SS-iPSC-derived NPCs (SS-NPCs) showed distinct expression profiles from ATR non-mutated NPCs with negative enrichment of neuronal genesis-related gene sets. In SS-NPCs, abnormal mitotic spindles occurred more frequently than in gene-corrected counterparts, and the alignment of NPCs in the surface of the neurospheres was perturbed. Finally, we tested several splicing-modifying compounds and found that TG003, a CLK1 inhibitor, could pharmacologically rescue the exon 9 skipping in SS-NPCs. Treatment with TG003 restored the ATR kinase activity in SS-NPCs and decreased the frequency of abnormal mitotic events. In conclusion, our iPSC model revealed a novel effect of the ATR mutation in mitotic processes of NPCs and NPC-specific missplicing, accompanied by the recovery of neuronal defects using a splicing rectifier.
Collapse
|
23
|
Henderson DJ, Long DA, Dean CH. Planar cell polarity in organ formation. Curr Opin Cell Biol 2018; 55:96-103. [PMID: 30015152 DOI: 10.1016/j.ceb.2018.06.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/07/2018] [Accepted: 06/18/2018] [Indexed: 01/11/2023]
Abstract
The planar cell polarity (PCP) pathway controls a variety of morphological events across many species. During embryonic development, the PCP pathway regulates coordinated behaviour of groups of cells to direct morphogenetic processes such as convergent extension and collective cell migration. In this review we discuss the increasingly prominent role of the PCP pathway in organogenesis, focusing on the lungs, kidneys and heart. We also highlight emerging evidence that PCP gene mutations are associated with adult diseases.
Collapse
Affiliation(s)
- Deborah J Henderson
- Cardiovascular Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - David A Long
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Charlotte H Dean
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College, London, UK.
| |
Collapse
|
24
|
Nowlan NC, Francis-West P, Nelson C. Mechanics of development. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2017.0316. [PMID: 30249768 DOI: 10.1098/rstb.2017.0316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2018] [Indexed: 12/13/2022] Open
Affiliation(s)
- Niamh C Nowlan
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Philippa Francis-West
- Centre for Craniofacial and Regenerative Biology, King's College London, London WC2R 2LS, UK
| | - Celeste Nelson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|