1
|
Meng P, Pan C, Qin X, Cai Q, Zhao Y, Wei W, Cheng S, Yang X, Cheng B, Liu L, He D, Shi S, Chu X, Zhang N, Jia Y, Wen Y, Liu H, Zhang F. A genome-wide gene-environmental interaction study identified novel loci for the relationship between ambient air pollution exposure and depression, anxiety. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117121. [PMID: 39357380 DOI: 10.1016/j.ecoenv.2024.117121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/31/2024] [Revised: 09/11/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Genetic factors and environmental exposures, including air pollution, contribute to the risk of depression and anxiety. While the association between air pollution and depression and anxiety has been established in the UK Biobank, there has been limited research exploring this relationship from a genetic perspective. METHODS Based on individual genotypic and phenotypic data from a cohort of 104,385 participants in the UK Biobank, a polygenic risk score for depression and anxiety was constructed to explore the joint effects of nitric oxide (NO), nitrogen dioxide (NO2), particulate matter (PM) with a diameter of ⩽2.5 μm (PM2.5) and 2.5-10 μm (PMcoarse) with depression and anxiety by linear and logistic regression models. Subsequently, a genome-wide gene-environmental interaction study (GWEIS) was performed using PLINK 2.0 to identify the genes interacting with air pollution for depression and anxiety. RESULTS A substantial risk of depression and anxiety development was detected in participants exposed to the high air pollution concomitantly with high genetic risk. GWEIS identified 166, 23, 18, and 164 significant candidate loci interacting with NO, NO2, PM2.5, and PMcoarse for Patient Health Questionnaire-9 (PHQ-9) score, and detected 44, 10, 10, and 114 candidate loci associated with NO, NO2, PM2.5, and PMcoarse for General Anxiety Disorder (GAD-7) score, respectively. And some significant genes overlapped among four air pollutants, like TSN (rs184699498, PNO2 = 3.47 × 10-9; rs139212326, PPM2.5 = 1.51 × 10-8) and HSP90AB7P(rs150987455, PNO2 = 1.63 × 10-11; rs150987455, PPM2.5 = 7.64 × 10-11), which were common genes affecting PHQ-9 score for both NO2 and PM2.5. CONCLUSION Our study identified the joint effects of air pollution with genetic susceptibility on the risk of depression and anxiety, and provided several novel candidate genes for the interaction, contributing to an understanding of the genetic architecture of depression and anxiety.
Collapse
Affiliation(s)
- Peilin Meng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Chuyu Pan
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyue Qin
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Qingqing Cai
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yijing Zhao
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Wenming Wei
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Dan He
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Sirong Shi
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoge Chu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Na Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Huan Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China.
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
2
|
Li N, Li Y. Lysophosphatidic Acid (LPA) and Its Receptors in Mood Regulation: A Systematic Review of the Molecular Mechanisms and Therapeutic Potential. Int J Mol Sci 2024; 25:7440. [PMID: 39000547 PMCID: PMC11242315 DOI: 10.3390/ijms25137440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/29/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Mood disorders affect over 300 million individuals worldwide, often characterized by their chronic and refractory nature, posing significant threats to patient life. There has been a notable increase in mood disorders among American adolescents and young adults, with a rising number of suicide attempts and fatalities, highlighting a growing association between mood disorders and suicidal outcomes. Dysregulation within the neuroimmune-endocrine system is now recognized as one of the fundamental biological mechanisms underlying mood and mood disorders. Lysophosphatidic acid (LPA), a novel mediator of mood behavior, induces anxiety-like and depression-like phenotypes through its receptors LPA1 and LPA5, regulating synaptic neurotransmission and plasticity. Consequently, LPA has garnered substantial interest in the study of mood regulation. This study aimed to elucidate the molecular mechanisms of lysophosphatidic acid and its receptors, along with LPA receptor ligands, in mood regulation and to explore their potential therapeutic efficacy in treating mood disorders. A comprehensive literature search was conducted using the PubMed and Web of Science databases, identifying 208 articles through keyword searches up to June 2024. After excluding duplicates, irrelevant publications, and those restricted by open access limitations, 21 scientific papers were included in this review. The findings indicate that LPA/LPA receptor modulation could be beneficial in treating mood disorders, suggesting that pharmacological agents or gintonin, an extract from ginseng, may serve as effective therapeutic strategies. This study opens new avenues for future research into how lysophosphatidic acid and its receptors, as well as lysophosphatidic acid receptor ligands, influence emotional behavior in animals and humans.
Collapse
Affiliation(s)
- Nan Li
- School of Competitive Sports, Beijing Sport University, Beijing 100084, China
| | - Yanchun Li
- China Institute of Sports and Health Science, Beijing Sport University, Beijing 100084, China
- Beijing Key Laboratory of Sports Performance and Skill Assessment, Beijing 100084, China
- Key Laboratory for Performance Training & Recovery of General Administration of Sport, Beijing 100084, China
| |
Collapse
|
3
|
Kajitani N, Okada-Tsuchioka M, Inoue A, Miyano K, Masuda T, Boku S, Iwamoto K, Ohtsuki S, Uezono Y, Aoki J, Takebayashi M. G protein-biased LPAR1 agonism of prototypic antidepressants: Implication in the identification of novel therapeutic target for depression. Neuropsychopharmacology 2024; 49:561-572. [PMID: 37673966 PMCID: PMC10789764 DOI: 10.1038/s41386-023-01727-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/09/2023] [Revised: 08/01/2023] [Accepted: 08/24/2023] [Indexed: 09/08/2023]
Abstract
Prototypic antidepressants, such as tricyclic/tetracyclic antidepressants (TCAs), have multiple pharmacological properties and have been considered to be more effective than newer antidepressants, such as selective serotonin reuptake inhibitors, in treating severe depression. However, the clinical contribution of non-monoaminergic effects of TCAs remains elusive. In this study, we discovered that amitriptyline, a typical TCA, directly binds to the lysophosphatidic acid receptor 1 (LPAR1), a G protein-coupled receptor, and activates downstream G protein signaling, while exerting a little effect on β-arrestin recruitment. This suggests that amitriptyline acts as a G protein-biased agonist of LPAR1. This biased agonism was specific to TCAs and was not observed with other antidepressants. LPAR1 was found to be involved in the behavioral effects of amitriptyline. Notably, long-term infusion of mouse hippocampus with the potent G protein-biased LPAR agonist OMPT, but not the non-biased agonist LPA, induced antidepressant-like behavior, indicating that G protein-biased agonism might be necessary for the antidepressant-like effects. Furthermore, RNA-seq analysis revealed that LPA and OMPT have opposite patterns of gene expression changes in the hippocampus. Pathway analysis indicated that long-term treatment with OMPT activated LPAR1 downstream signaling (Rho and MAPK), whereas LPA suppressed LPAR1 signaling. Our findings provide insights into the mechanisms underlying the non-monoaminergic antidepressant effects of TCAs and identify the G protein-biased agonism of LPAR1 as a promising target for the development of novel antidepressants.
Collapse
Affiliation(s)
- Naoto Kajitani
- Department of Neuropsychiatry, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
- Division of Psychiatry and Neuroscience, Institute for Clinical Research, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, 737-0023, Japan
| | - Mami Okada-Tsuchioka
- Division of Psychiatry and Neuroscience, Institute for Clinical Research, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, 737-0023, Japan
| | - Asuka Inoue
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Kanako Miyano
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Shuken Boku
- Department of Neuropsychiatry, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Kazuya Iwamoto
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Yasuhito Uezono
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Minoru Takebayashi
- Department of Neuropsychiatry, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.
- Division of Psychiatry and Neuroscience, Institute for Clinical Research, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, 737-0023, Japan.
| |
Collapse
|
4
|
Ren Z, Hou J, Li W, Tang Y, Wang M, Ding R, Liu S, Fu Y, Mai Y, Xia J, Zuo W, Zhou LH, Ye JH, Fu R. LPA1 receptors in the lateral habenula regulate negative affective states associated with alcohol withdrawal. Neuropsychopharmacology 2023; 48:1567-1578. [PMID: 37059867 PMCID: PMC10516930 DOI: 10.1038/s41386-023-01582-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/24/2022] [Revised: 02/17/2023] [Accepted: 03/30/2023] [Indexed: 04/16/2023]
Abstract
The role of lysophosphatidic acid (LPA) signaling in psychiatric disorders and drug abuse is significant. LPA receptors are widely expressed in the central nervous system, including the lateral habenula (LHb). Recent studies suggest that LHb is involved in a negative emotional state during alcohol withdrawal, which can lead to relapse. The current study examines the role of LHb LPA signaling in the negative affective state associated with alcohol withdrawal. Adult male Long-Evans rats were trained to consume either alcohol or water for eight weeks. At 48 h of withdrawal, alcohol-drinking rats showed anxiety- and depression-like symptoms, along with a significant increase in LPA signaling and related neuronal activation molecules, including autotaxin (ATX, Enpp2), LPA receptor 1/3 (LPA1/3), βCaMKII, and c-Fos. However, there was a decrease in lipid phosphate phosphatase-related protein type 4 (LPPR4) in the LHb. Intra-LHb infusion of the LPA1/3 receptor antagonist ki-16425 or PKC-γ inhibitor Go-6983 reduced the abnormal behaviors and elevated relapse-like ethanol drinking. It also normalized high LPA1/3 receptors and enhanced AMPA GluA1 phosphorylation in Ser831 and GluA1/GluA2 ratio. Conversely, selective activation of LPA1/3 receptors by intra-LHb infusion of 18:1 LPA induced negative affective states and upregulated βCaMKII-AMPA receptor phosphorylation in Naive rats, which were reversed by pretreatment with intra-LHb Go-6983. Our findings suggest that disturbances in LPA signaling contribute to adverse affective disorders during alcohol withdrawal, likely through PKC-γ/βCaMKII-linked glutamate signaling. Targeting LPA may therefore be beneficial for individuals suffering from alcohol use disorders.
Collapse
Affiliation(s)
- Zhiheng Ren
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518106, China
| | - Jiawei Hou
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518106, China
| | - Wenfu Li
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518106, China
| | - Ying Tang
- Department of Biology, School of Life Science, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Basic and Clinical Medicine Teaching Laboratory, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518100, China
| | - Molin Wang
- Basic and Clinical Medicine Teaching Laboratory, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518100, China
| | - Ruxuan Ding
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518106, China
| | - Songlin Liu
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518106, China
| | - Yixin Fu
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518106, China
| | - Yunlin Mai
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518106, China
| | - Jianxun Xia
- Department of Basic Medical Sciences, Yunkang School of Medicine and Health, Nanfang College, Guangzhou, Guangdong, 510970, China
| | - Wanhong Zuo
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Li-Hua Zhou
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518106, China
| | - Jiang-Hong Ye
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA.
| | - Rao Fu
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518106, China.
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518106, China.
| |
Collapse
|
5
|
Olabiyi BF, Schmoele AC, Beins EC, Zimmer A. Pharmacological blockade of cannabinoid receptor 2 signaling does not affect LPS/IFN-γ-induced microglial activation. Sci Rep 2023; 13:11105. [PMID: 37429837 PMCID: PMC10333177 DOI: 10.1038/s41598-023-37702-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/28/2023] [Accepted: 06/26/2023] [Indexed: 07/12/2023] Open
Abstract
Cannabinoid receptor 2 (CB2) signaling modulates microglial responses to inflammatory stimuli. Our previous studies demonstrated that genetic deletion of CB2 inhibits microglial activation during inflammatory stimulation of toll-like receptors (TLRs) or in neurodegenerative conditions. However, we cannot exclude developmental effects of the constitutive CB2 knockout (CB2-/-), which could mediate compensatory outcomes in CB2-/- mice. In the present study, we therefore tested whether acute pharmacological inhibition of CB2 receptor has a similar effect on microglial activation as in CB2-/- in response to inflammatory stimulation. Our findings suggest that the CB2-specific antagonist SR144528 has little or no effect on LPS/IFN-γ-induced activation in primary microglia or organotypic hippocampal slice cultures at nanomolar concentrations. We show that SR144528 did not alter LPS/IFN-γ-mediated microglial cytokine secretion, Iba1 and CD68 staining intensity or morphology at 1 and 10 nM. Although SR144528 suppressed LPS/IFN-γ-induced microglial activation at 1 µM, this anti-inflammatory effect was not dependent on CB2 receptors and exceeded the Ki on CB2 receptors by more than a thousand-fold. Thus, SR144528 does not mimic the anti-inflammatory effects observed in the CB2-/- microglia after LPS/IFN-γ stimulation. Therefore, we propose that the deletion of CB2 probably triggered an adaptive mechanism, making microglia less responsive to inflammatory stimulation.
Collapse
Affiliation(s)
| | | | - Eva Carolina Beins
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn, Germany
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Andreas Zimmer
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn, Germany.
| |
Collapse
|
6
|
Liang Z, Yun CC. Compensatory Upregulation of LPA 2 and Activation of the PI3K-Akt Pathway Prevent LPA 5-Dependent Loss of Intestinal Epithelial Cells in Intestinal Organoids. Cells 2022; 11:2243. [PMID: 35883686 PMCID: PMC9324510 DOI: 10.3390/cells11142243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/07/2022] [Revised: 07/11/2022] [Accepted: 07/16/2022] [Indexed: 02/05/2023] Open
Abstract
Renewal of the intestinal epithelium is orchestrated by regenerative epithelial proliferation within crypts. Recent studies have shown that lysophosphatidic acid (LPA) can maintain intestinal epithelial renewal in vitro and conditional deletion of Lpar5 (Lpar5iKO) in mice ablates the intestinal epithelium and increases morbidity. In contrast, constitutive Lpar5 deletion (Lpar5cKO) does not cause a defect in intestinal crypt regeneration. In this study, we investigated whether another LPA receptor (LPAR) compensates for constitutive loss of LPA5 function to allow regeneration of intestinal epithelium. In Lpar5cKO intestinal epithelial cells (IECs), Lpar2 was upregulated and blocking LPA2 function reduced proliferation and increased apoptosis of Lpar5cKO IECs. Similar to Lpar5cKO mice, the absence of Lpar2 (Lpar2-/-) resulted in upregulation of Lpar5 in IECs, indicating that LPA2 and LPA5 reciprocally compensate for the loss of each other. Blocking LPA2 in Lpar5cKO enteroids reduced phosphorylation of Akt, indicating that LPA2 maintains the growth of Lpar5cKO enteroids through activation of the PI3K-Akt pathway. The present study provides evidence that loss of an LPAR can be compensated by another LPAR. This ability to compensate needs to be considered in studies aimed to define receptor functions or test the efficacy of a LPAR-targeting drug using genetically engineered animal models.
Collapse
Affiliation(s)
- Zhongxing Liang
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - C. Chris Yun
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Gastroenterology Research, Atlanta Veterans Administration Medical Center, Decatur, GA 30322, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
7
|
Jia A, Yang X, Zou B, Li J, Wang Y, Ma R, Li J, Yao Y. Saikosaponins: A Review of Structures and Pharmacological Activities. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221094908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/15/2022] Open
Abstract
Radix Bupleuri is a traditional medicine widely used in China and other Asian countries. Phytochemistry and pharmacology study reveal that saikosaponins(SSs) are the main bioactive compounds in Radix Bupleuri. SSs are complex compounds composed of triterpene aglycone and carbohydrate part containing 1-13 monosaccharides, which can be divided into seven types based on their structural characteristics. Many different kinds of SSs have been isolated from plants of Bupleurum L. SSs show a variety of biological activities, such as central nervous system protection, liver protection, antivirus, anti-tumor, anti-inflammation, hormone-like effects, and immune regulation functions. Due to their broad activity and favorable safety profile, SSs attract an increasing amount of attention in recent years. In this review, the structures of 86 SSs are summarized based on the different aglycones due to the diverse structures of saikosaponin(SS). The pharmacological effects and related mechanism of SSs are thoroughly reviewed, and perspectives for future research are further discussed.
Collapse
Affiliation(s)
- Ao Jia
- School of pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xinhe Yang
- School of pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Bin Zou
- School of pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Jia Li
- School of pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Yefeng Wang
- School of Public Health & Management, Ningxia Medical University, Yinchuan 750004, China
| | - Ruixia Ma
- School of pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Juan Li
- School of pharmacy, Ningxia Medical University, Yinchuan 750004, China
- Key Laboratory of Modernization of Traditional Chinese Medicine, Ministry of Education, Yinchuan 750004, China
| | - Yao Yao
- School of Basic Medical Science, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
8
|
Xiao D, Su X, Gao H, Li X, Qu Y. The Roles of Lpar1 in Central Nervous System Disorders and Diseases. Front Neurosci 2021; 15:710473. [PMID: 34385905 PMCID: PMC8353257 DOI: 10.3389/fnins.2021.710473] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/16/2021] [Accepted: 07/09/2021] [Indexed: 12/16/2022] Open
Abstract
Lysophosphatidic acid receptor 1 (Lpar1), which is found in almost all human tissues but is most abundant in the brain, can couple to G protein-coupled receptors (GPCRs) and participate in regulating cell proliferation, migration, survival, and apoptosis. Endothelial differentiation gene-2 receptor (Edg2), the protein encoded by the Lpar1 gene, is present on various cell types in the central nervous system (CNS), such as neural stem cells (NSCs), oligodendrocytes, neurons, astrocytes, and microglia. Lpar1 deletion causes neurodevelopmental disorders and CNS diseases, such as brain cancer, neuropsychiatric disorders, demyelination diseases, and neuropathic pain. Here, we summarize the possible roles and mechanisms of Lpar1/Edg2 in CNS disorders and diseases and propose that Lpar1/Edg2 might be a potential therapeutic target for CNS disorders and diseases.
Collapse
Affiliation(s)
- Dongqiong Xiao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Emergency, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiaojuan Su
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hu Gao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Emergency, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xihong Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Emergency, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yi Qu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Rosell-Valle C, Pedraza C, Manuel I, Moreno-Rodríguez M, Rodríguez-Puertas R, Castilla-Ortega E, Caramés JM, Gómez Conde AI, Zambrana-Infantes E, Ortega-Pinazo J, Serrano-Castro PJ, Chun J, Rodríguez De Fonseca F, Santín LJ, Estivill-Torrús G. Chronic central modulation of LPA/LPA receptors-signaling pathway in the mouse brain regulates cognition, emotion, and hippocampal neurogenesis. Prog Neuropsychopharmacol Biol Psychiatry 2021; 108:110156. [PMID: 33152386 DOI: 10.1016/j.pnpbp.2020.110156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 07/16/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 02/05/2023]
Abstract
Several studies have demonstrated that lysophosphatidic acid (LPA) acts through its LPA receptors in multiple biological and behavioral processes, including adult hippocampal neurogenesis, hippocampal-dependent memory, and emotional regulation. However, analyses of the effects have typically involved acute treatments, and there is no information available regarding the effect of the chronic pharmacological modulation of the LPA/LPA receptors-signaling pathway. Thus, we analyzed the effect of the chronic (21 days) and continuous intracerebroventricular (ICV) infusion of C18:1 LPA and the LPA1-3 receptor antagonist Ki16425 in behavior and adult hippocampal neurogenesis. Twenty-one days after continuous ICV infusions, mouse behaviors in the open field test, Y-maze test and forced swimming test were assessed. In addition, the hippocampus was examined for c-Fos expression and α-CaMKII and phospho-α-CaMKII levels. The current study demonstrates that chronic C18:1 LPA produced antidepressant effects, improved spatial working memory, and enhanced adult hippocampal neurogenesis. In contrast, chronic LPA1-3 receptor antagonism disrupted exploratory activity and spatial working memory, induced anxiety and depression-like behaviors and produced an impairment of hippocampal neurogenesis. While these effects were accompanied by an increase in neuronal activation in the DG of C18:1 LPA-treated mice, Ki16425-treated mice showed reduced neuronal activation in CA3 and CA1 hippocampal subfields. Treatment with the antagonist also induced an imbalance in the expression of basal/activated α-CaMKII protein forms. These outcomes indicate that the chronic central modulation of the LPA receptors-signaling pathway in the brain regulates cognition and emotion, likely comprising hippocampal-dependent mechanisms. The use of pharmacological modulation of this pathway in the brain may potentially be targeted for the treatment of several neuropsychiatric conditions.
Collapse
Affiliation(s)
- Cristina Rosell-Valle
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain; Unidad de Gestión Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain; Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Málaga, Spain; Unidad de Producción de Reprogramación Celular, Red Andaluza para el diseño y traslación de Terapias Avanzadas, Junta de Andalucía, Spain
| | - Carmen Pedraza
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain; Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Málaga, Spain
| | - Iván Manuel
- Departamento de Farmacología, Facultad de Medicina y Enfermería, Universidad del País Vasco (UPV/EHU), Leioa, Spain
| | - Marta Moreno-Rodríguez
- Departamento de Farmacología, Facultad de Medicina y Enfermería, Universidad del País Vasco (UPV/EHU), Leioa, Spain
| | - Rafael Rodríguez-Puertas
- Departamento de Farmacología, Facultad de Medicina y Enfermería, Universidad del País Vasco (UPV/EHU), Leioa, Spain
| | - Estela Castilla-Ortega
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain; Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - José María Caramés
- Centre for Discovery Brain Sciences, Edinburgh Neuroscience, University of Edinburgh, Edinburgh, UK
| | - Ana I Gómez Conde
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain; ECAI de Microscopía, Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
| | - Emma Zambrana-Infantes
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain; Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Málaga, Spain
| | - Jesús Ortega-Pinazo
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain; Unidad de Gestión Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Pedro J Serrano-Castro
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain; Unidad de Gestión Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Fernando Rodríguez De Fonseca
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain; Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Luis J Santín
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain; Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Málaga, Spain.
| | - Guillermo Estivill-Torrús
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain; Unidad de Gestión Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain.
| |
Collapse
|
10
|
Rosell-Valle C, Martínez-Losa M, Matas-Rico E, Castilla-Ortega E, Zambrana-Infantes E, Gómez-Conde AI, Sánchez-Salido L, Ladrón de Guevara-Miranda D, Pedraza C, Serrano-Castro PJ, Chun J, Rodríguez de Fonseca F, Álvarez-Dolado M, Santín LJ, Estivill-Torrús G. GABAergic deficits in absence of LPA 1 receptor, associated anxiety-like and coping behaviors, and amelioration by interneuron precursor transplants into the dorsal hippocampus. Brain Struct Funct 2021; 226:1479-1495. [PMID: 33792787 DOI: 10.1007/s00429-021-02261-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/20/2020] [Accepted: 03/17/2021] [Indexed: 02/05/2023]
Abstract
Defects in GABAergic function can cause anxiety- and depression-like behaviors among other neuropsychiatric disorders. Therapeutic strategies using the transplantation of GABAergic interneuron progenitors derived from the medial ganglionic eminence (MGE) into the adult hippocampus reversed the symptomatology in multiple rodent models of interneuron-related pathologies. In turn, the lysophosphatidic acid receptor LPA1 has been reported to be essential for hippocampal function. Converging evidence suggests that deficits in LPA1 receptor signaling represent a core feature underlying comparable hippocampal dysfunction and behaviors manifested in common neuropsychiatric conditions. Here, we first analyzed the GABAergic interneurons in the hippocampus of wild-type and maLPA1-null mice, lacking the LPA1 receptor. Our data revealed a reduction in the number of neurons expressing GABA, calcium-binding proteins, and neuropeptides such as somatostatin and neuropeptide Y in the hippocampus of maLPA1-null mice. Then, we used interneuron precursor transplants to test links between hippocampal GABAergic interneuron deficit, cell-based therapy, and LPA1 receptor-dependent psychiatric disease-like phenotypes. For this purpose, we transplanted MGE-derived interneuron precursors into the adult hippocampus of maLPA1-null mice, to test their effects on GABAergic deficit and behavioral symptoms associated with the absence of the LPA1 receptor. Transplant studies in maLPA1-null mice showed that grafted cells were able to restore the hippocampal host environment, decrease the anxiety-like behaviors and neutralize passive coping, with no abnormal effects on motor activity. Furthermore, grafted MGE-derived cells maintained their normal differentiation program. These findings reinforce the use of cell-based strategies for brain disorders and suggest that the LPA1 receptor represents a potential target for interneuron-related neuropsychiatric disorders.
Collapse
Grants
- PSI2017-82604R Spanish Ministry of Science, Innovation and Universities, co-funded by European Regional Development Fund (ERDF, EU)
- PSI2017-83408P Spanish Ministry of Science, Innovation and Universities, co-funded by European Regional Development Fund (ERDF, EU)
- SAF-09-07746 Spanish Ministry of Science, Innovation and Universities, co-funded by European Regional Development Fund (ERDF, EU)
- PI16/01510 Spanish Ministry of Science, Innovation and Universities, co-funded by European Regional Development Fund (ERDF, EU)
- SEJ-4515 Andalusian Regional Ministry of Economy, Knowledge, Business and University
- SEJ-1863 Andalusian Regional Ministry of Economy, Knowledge, Business and University
Collapse
Affiliation(s)
- Cristina Rosell-Valle
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Unidad Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Málaga, Spain
- Unidad de Producción de Reprogramación Celular, Red Andaluza Para El Diseño Y Traslación de Terapias Avanzadas, Junta de Andalucía, Spain
| | - Magdalena Martínez-Losa
- Laboratorio de Terapia Celular en Neuropatologías, Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, CSIC, Sevilla, Spain
| | - Elisa Matas-Rico
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Málaga, Spain
| | - Estela Castilla-Ortega
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Unidad Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Emma Zambrana-Infantes
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Málaga, Spain
| | - Ana Isabel Gómez-Conde
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- ECAI de Microscopía, Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
| | - Lourdes Sánchez-Salido
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- ECAI de Microscopía, Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
| | - David Ladrón de Guevara-Miranda
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Málaga, Spain
| | - Carmen Pedraza
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Málaga, Spain
| | - Pedro Jesús Serrano-Castro
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Unidad Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Unidad Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Manuel Álvarez-Dolado
- Laboratorio de Terapia Celular en Neuropatologías, Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, CSIC, Sevilla, Spain
| | - Luis Javier Santín
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Málaga, Spain
| | - Guillermo Estivill-Torrús
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain.
- Unidad Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain.
| |
Collapse
|
11
|
Birgbauer E. Lysophosphatidic Acid Signalling in Nervous System Development and Function. Neuromolecular Med 2021; 23:68-85. [PMID: 33151452 PMCID: PMC11420905 DOI: 10.1007/s12017-020-08630-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/12/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023]
Abstract
One class of molecules that are now coming to be recognized as essential for our understanding of the nervous system are the lysophospholipids. One of the major signaling lysophospholipids is lysophosphatidic acid, also known as LPA. LPA activates a variety of G protein-coupled receptors (GPCRs) leading to a multitude of physiological responses. In this review, I describe our current understanding of the role of LPA and LPA receptor signaling in the development and function of the nervous system, especially the central nervous system (CNS). In addition, I highlight how aberrant LPA receptor signaling may underlie neuropathological conditions, with important clinical application.
Collapse
Affiliation(s)
- Eric Birgbauer
- Department of Biology, Winthrop University, Rock Hill, SC, USA.
| |
Collapse
|
12
|
LPA 1 receptor and chronic stress: Effects on behaviour and the genes involved in the hippocampal excitatory/inhibitory balance. Neuropharmacology 2020; 164:107896. [PMID: 31811875 DOI: 10.1016/j.neuropharm.2019.107896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/14/2019] [Revised: 11/27/2019] [Accepted: 11/30/2019] [Indexed: 11/22/2022]
Abstract
The LPA1 receptor, one of the six characterized G protein-coupled receptors (LPA1-6) through which lysophosphatidic acid acts, is likely involved in promoting normal emotional behaviours. Current data suggest that the LPA-LPA1-receptor pathway may be involved in mediating the negative consequences of stress on hippocampal function. However, to date, there is no available information regarding the mechanisms whereby the LPA1 receptor mediates this adaptation. To gain further insight into how the LPA-LPA1 pathway may prevent the negative consequences of chronic stress, we assessed the effects of the continuous delivery of LPA on depressive-like behaviours induced by a chronic restraint stress protocol. Because a proper excitatory/inhibitory balance seems to be key for controlling the stress response system, the gene expression of molecular markers of excitatory and inhibitory neurotransmission was also determined. In addition, the hippocampal expression of mineralocorticoid receptor genes and glucocorticoid receptor genes and proteins as well as plasma corticosterone levels were determined. Contrary to our expectations, the continuous delivery of LPA in chronically stressed animals potentiated rather than inhibited some (e.g., anhedonia, reduced latency to the first immobility period), though not all, behavioural effects of stress. Furthermore, this treatment led to an alteration in the genes coding for proteins involved in the excitatory/inhibitory balance in the ventral hippocampus and to changes in corticosterone levels. In conclusion, the results of this study reinforce the assumption that LPA is involved in emotional regulation, mainly through the LPA1 receptor, and regulates the effects of stress on hippocampal gene expression and hippocampus-dependent behaviour.
Collapse
|
13
|
Yanagida K, Valentine WJ. Druggable Lysophospholipid Signaling Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1274:137-176. [DOI: 10.1007/978-3-030-50621-6_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022]
|
14
|
Modulation of LPA1 receptor-mediated neuronal apoptosis by Saikosaponin-d: A target involved in depression. Neuropharmacology 2019; 155:150-161. [DOI: 10.1016/j.neuropharm.2019.05.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/02/2019] [Revised: 05/13/2019] [Accepted: 05/20/2019] [Indexed: 12/13/2022]
|
15
|
Tabbai S, Moreno-Fernández RD, Zambrana-Infantes E, Nieto-Quero A, Chun J, García-Fernández M, Estivill-Torrús G, Rodríguez de Fonseca F, Santín LJ, Oliveira TG, Pérez-Martín M, Pedraza C. Effects of the LPA 1 Receptor Deficiency and Stress on the Hippocampal LPA Species in Mice. Front Mol Neurosci 2019; 12:146. [PMID: 31244601 PMCID: PMC6580287 DOI: 10.3389/fnmol.2019.00146] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/21/2018] [Accepted: 05/17/2019] [Indexed: 12/29/2022] Open
Abstract
Lysophosphatidic acid (LPA) is an important bioactive lipid species that functions in intracellular signaling through six characterized G protein-coupled receptors (LPA1-6). Among these receptors, LPA1 is a strong candidate to mediate the central effects of LPA on emotion and may be involved in promoting normal emotional behaviors. Alterations in this receptor may induce vulnerability to stress and predispose an individual to a psychopathological disease. In fact, mice lacking the LPA1 receptor exhibit emotional dysregulation and cognitive alterations in hippocampus-dependent tasks. Moreover, the loss of this receptor results in a phenotype of low resilience with dysfunctional coping in response to stress and induces anxiety and several behavioral and neurobiological changes that are strongly correlated with mood disorders. In fact, our group proposes that maLPA1-null mice represent an animal model of anxious depression. However, despite the key role of the LPA-LPA1-pathway in emotion and stress coping behaviors, the available information describing the mechanisms by which the LPA-LPA1-pathway regulates emotion is currently insufficient. Because activation of LPA1 requires LPA, here, we used a Matrix-Assisted Laser Desorption/ Ionization mass spectrometry-based approach to evaluate the effects of an LPA1 receptor deficiency on the hippocampal levels of LPA species. Additionally, the impact of stress on the LPA profile was also examined in both wild-type (WT) and the Malaga variant of LPA1-null mice (maLPA1-null mice). Mice lacking LPA1 did not exhibit gross perturbations in the hippocampal LPA species, but the LPA profile was modified, showing an altered relative abundance of 18:0 LPA. Regardless of the genotype, restraint stress produced profound changes in all LPA species examined, revealing that hippocampal LPA species are a key target of stress. Finally, the relationship between the hippocampal levels of LPA species and performance in the elevated plus maze was established. To our knowledge, this study is the first to detect, identify and profile LPA species in the hippocampus of both LPA1-receptor null mice and WT mice at baseline and after acute stress, as well as to link these LPA species with anxiety-like behaviors. In conclusion, the hippocampal LPA species are a key target of stress and may be involved in psychopathological conditions.
Collapse
Affiliation(s)
- Sara Tabbai
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| | - Román Dario Moreno-Fernández
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| | - Emma Zambrana-Infantes
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| | - Andrea Nieto-Quero
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Maria García-Fernández
- Departamento de Fisiología y Medicina Deportiva, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| | - Guillermo Estivill-Torrús
- Unidad de Gestión Clínica de Neurociencias, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Luis Javier Santín
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| | - Tiago Gil Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| | - Margarita Pérez-Martín
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| | - Carmen Pedraza
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| |
Collapse
|