1
|
Wu YC, Xiang XL, Yong JK, Li M, Li LM, Lv ZC, Zhou Y, Sun XC, Zhang ZJ, Tong H, He XY, Xia Q, Feng H. Immune remodulation in pediatric inherited metabolic liver diseases. World J Hepatol 2024; 16:1258-1268. [PMID: 39351516 PMCID: PMC11438594 DOI: 10.4254/wjh.v16.i9.1258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/28/2024] [Accepted: 08/19/2024] [Indexed: 09/23/2024] Open
Abstract
Inherited metabolic liver diseases arise from genetic mutations that lead to disruptions in liver metabolic pathways and are predominantly observed in pediatric populations. The spectrum of genetic metabolic liver disorders is diverse, encompassing a range of conditions associated with aberrations in iron, copper, carbohydrate, lipid, protein, and amino acid metabolism. Historically, research in the domain of genetic metabolic liver diseases has predominantly concentrated on hepatic parenchymal cell alterations. Nevertheless, emerging studies suggest that inherited metabolic liver diseases exert significant influences on the immune microenvironment, both within the liver and systemically. This review endeavors to encapsulate the immunological features of genetic metabolic liver diseases, aiming to expand the horizons of researchers in this discipline, and to elucidate the underlying pathophysiological mechanisms pertinent to hereditary metabolic liver diseases and to propose innovative therapeutic approaches.
Collapse
Affiliation(s)
- Yi-Chi Wu
- Department of Liver Surgery, Renji Hospital (Punan Branch), School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xue-Lin Xiang
- Department of Liver Surgery, Renji Hospital (Punan Branch), School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - June-Kong Yong
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Meng Li
- Department of Liver Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University, Shanghai Institute of Transplantation, Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai 200127, China
| | - Lin-Man Li
- Department of Liver Surgery, Renji Hospital (Punan Branch), School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zi-Cheng Lv
- Department of Liver Surgery, Renji Hospital (Punan Branch), School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yi Zhou
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xi-Cheng Sun
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zi-Jie Zhang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Huan Tong
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Shanghai 200012, China
| | - Xiao-Ying He
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Shanghai 200012, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University, Shanghai Institute of Transplantation, Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai 200127, China
| | - Hao Feng
- Department of Liver Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University, Shanghai Institute of Transplantation, Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai 200127, China.
| |
Collapse
|
2
|
Schreuder AB, Overduin RJ, Peltenburg NC, de Boer L, Bodewes FAJA, Derks TGJ. Screening and surveillance of hepatocellular carcinoma by serum des-gamma-carboxy prothrombin in patients with glycogen storage disease type Ia. JIMD Rep 2024; 65:207-211. [PMID: 38974608 PMCID: PMC11224497 DOI: 10.1002/jmd2.12414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 07/09/2024] Open
Abstract
No sensitive tumor marker for hepatocellular carcinoma (HCC) is available for patients with glycogen storage disease type Ia (GSDIa), in whom alpha-fetoprotein and carcino-embryonic antigen levels often remain normal. We describe increased levels of the HCC tumor marker des-gamma-carboxy prothrombin (DCP) in GSDIa patients with HCC. In one case DCP levels normalized after liver transplantation. We recommend including DCP as a screening HCC tumor marker in the surveillance of patients with GSDIa.
Collapse
Affiliation(s)
- A. B. Schreuder
- Department of Metabolic Diseases, Beatrix Children's HospitalUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - R. J. Overduin
- Department of Metabolic Diseases, Beatrix Children's HospitalUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - N. C. Peltenburg
- Department of Metabolic Diseases and internal medicineErasmus Medical CenterRotterdamThe Netherlands
| | - L. de Boer
- Department of Metabolic Diseases, Amalia Children's HospitalRadboud University Medical CenterNijmegenThe Netherlands
| | - F. A. J. A. Bodewes
- Department of Pediatric Hepatology and Gastroenterology, Beatrix Children's HospitalUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - T. G. J. Derks
- Department of Metabolic Diseases, Beatrix Children's HospitalUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| |
Collapse
|
3
|
Morini M, Raggi F, Bartolucci M, Petretto A, Ardito M, Rossi C, Segalerba D, Garaventa A, Eva A, Cangelosi D, Bosco MC. Plasma-Derived Exosome Proteins as Novel Diagnostic and Prognostic Biomarkers in Neuroblastoma Patients. Cells 2023; 12:2516. [PMID: 37947594 PMCID: PMC10649754 DOI: 10.3390/cells12212516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor during infancy, causing up to 10% of mortality in children; thus, identifying novel early and accurate diagnostic and prognostic biomarkers is mandatory. NB-derived exosomes carry proteins (Exo-prots) reflecting the status of the tumor cell of origin. The purpose of this study was to characterize, for the first time, the Exo-prots specifically expressed in NB patients associated with tumor phenotype and disease stage. We isolated exosomes from plasma specimens of 24 HR-NB patients and 24 low-risk (LR-NB) patients at diagnosis and of 24 age-matched healthy controls (CTRL). Exo-prot expression was measured by liquid chromatography-mass spectrometry. The data are available via ProteomeXchange (PXD042422). The NB patients had a different Exo-prot expression profile compared to the CTRL. The deregulated Exo-prots in the NB specimens acted mainly in the tumor-associated pathways. The HR-NB patients showed a different Exo-prot expression profile compared to the LR-NB patients, with the modulation of proteins involved in cell migration, proliferation and metastasis. NCAM, NCL, LUM and VASP demonstrated a diagnostic value in discriminating the NB patients from the CTRL; meanwhile, MYH9, FN1, CALR, AKAP12 and LTBP1 were able to differentiate between the HR-NB and LR-NB patients with high accuracy. Therefore, Exo-prots contribute to NB tumor development and to the aggressive metastatic NB phenotype.
Collapse
Affiliation(s)
- Martina Morini
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (M.M.); (M.A.); (D.S.)
| | - Federica Raggi
- Unit of Autoinflammatory Diseases and Immunodeficiencies, Pediatric Rheumatology Clinic, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (C.R.); (M.C.B.)
| | - Martina Bartolucci
- Core Facilities, Clinical Proteomics and Metabolomics, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (M.B.); (A.P.)
| | - Andrea Petretto
- Core Facilities, Clinical Proteomics and Metabolomics, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (M.B.); (A.P.)
| | - Martina Ardito
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (M.M.); (M.A.); (D.S.)
| | - Chiara Rossi
- Unit of Autoinflammatory Diseases and Immunodeficiencies, Pediatric Rheumatology Clinic, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (C.R.); (M.C.B.)
| | - Daniela Segalerba
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (M.M.); (M.A.); (D.S.)
| | - Alberto Garaventa
- Pediatric Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy;
| | - Alessandra Eva
- Scientific Directorate, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy;
| | - Davide Cangelosi
- Clinical Bioinfomatics Unit, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy;
| | - Maria Carla Bosco
- Unit of Autoinflammatory Diseases and Immunodeficiencies, Pediatric Rheumatology Clinic, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (C.R.); (M.C.B.)
| |
Collapse
|
4
|
Lee S, Ko JH, Kim SN. The Extracellular MicroRNAs on Inflammation: A Literature Review of Rodent Studies. Biomedicines 2022; 10:1601. [PMID: 35884901 PMCID: PMC9312877 DOI: 10.3390/biomedicines10071601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/03/2022] [Accepted: 07/03/2022] [Indexed: 11/17/2022] Open
Abstract
Inflammation is an indispensable biological process stimulated by infection and injuries. Inflammatory mechanisms related to extracellular vesicles (EVs), which are small membrane structures carrying various molecules, were summarized in this review. Emerging evidence from animal studies has highlighted the role of EVs in modulating inflammatory responses, by transporting various molecules involved in host defense. In this review, we have discussed the role of EV miRNAs in inflammation. Rodent studies associated with extracellular miRNAs in inflammatory diseases, published from 2012 to 2022, were explored from PUBMED, EMBASE, and MEDLINE. A total of 95 studies were reviewed. In summary, EV-associated miRNAs play a key role in various diseases, including organ injury, immune dysfunction, neurological disease, metabolic syndrome, vesicular disease, arthritis, cancer, and other inflammatory diseases. Diverse EV-associated miRNAs regulate inflammasome activation and pro- and anti-inflammatory cytokine levels by targeting genes.
Collapse
Affiliation(s)
- Seri Lee
- College of Korean Medicine, Dongguk University, Goyang 10326, Korea; (S.L.); (J.H.K.)
- Graduate School, Dongguk University, Seoul 04620, Korea
| | - Jade Heejae Ko
- College of Korean Medicine, Dongguk University, Goyang 10326, Korea; (S.L.); (J.H.K.)
| | - Seung-Nam Kim
- College of Korean Medicine, Dongguk University, Goyang 10326, Korea; (S.L.); (J.H.K.)
| |
Collapse
|
5
|
Qiu G, Fan J, Zheng G, He J, Lin F, Ge M, Huang L, Wang J, Xia J, Huang R, Shu Q, Xu J. Diagnostic Potential of Plasma Extracellular Vesicle miR-483-3p and Let-7d-3p for Sepsis. Front Mol Biosci 2022; 9:814240. [PMID: 35187084 PMCID: PMC8847446 DOI: 10.3389/fmolb.2022.814240] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background: microRNAs (miRNAs) from circulating extracellular vesicles (EVs) have been reported as disease biomarkers. This study aimed to identify the diagnostic value of plasma EV-miRNAs in sepsis.Methods: EVs were separated from the plasma of sepsis patients at admission and healthy controls. The expression of EV-miRNAs was evaluated by microarray and qRT-PCR.Results: A preliminary miRNA microarray of plasma EVs from a discovery cohort of 3 sepsis patients at admission and three healthy controls identified 11 miRNAs with over 2-fold upregulation in sepsis group. Based on this finding, EV samples from a validation cohort of 37 sepsis patients at admission and 25 healthy controls were evaluated for the expression of the 6 miRNAs relating injury and inflammation via qRT-PCR. Elevated expression of miR-483-3p and let-7d-3p was validated in sepsis patients and corroborated in a mouse model of sepsis. miR-483-3p and let-7d-3p levels positively correlated with the disease severity. Additionally, a combination of miR-483-3p and let-7d-3p had diagnostic value for sepsis. Furthermore, bioinformatic analysis and experimental validation showed that miR-483-3p and let-7d-3p target pathways regulating immune response and endothelial function.Conclusion: The present study reveals the potential role of plasma EV-miRNAs in the pathogenesis of sepsis and the utility of combining miR-483-3p and let-7d-3p as biomarkers for early sepsis diagnosis.
Collapse
Affiliation(s)
| | - Jiajie Fan
- Department of Thoracic and Cardiovascular Surgery, Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | | | | | | | - Menghua Ge
- Shaoxing Second Hospital, Shaoxing, China
| | | | - Jiangmei Wang
- Department of Thoracic and Cardiovascular Surgery, Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Jie Xia
- Department of Thoracic and Cardiovascular Surgery, Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Ruoqiong Huang
- Department of Thoracic and Cardiovascular Surgery, Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Qiang Shu
- Department of Thoracic and Cardiovascular Surgery, Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
- *Correspondence: Qiang Shu, ; Jianguo Xu,
| | - Jianguo Xu
- Department of Thoracic and Cardiovascular Surgery, Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
- *Correspondence: Qiang Shu, ; Jianguo Xu,
| |
Collapse
|
6
|
Resaz R, Cangelosi D, Segalerba D, Morini M, Uva P, Bosco MC, Banderali G, Estrella A, Wanner C, Weinstein DA, Sechi A, Paci S, Melis D, Di Rocco M, Lee YM, Eva A. Exosomal MicroRNAs as Potential Biomarkers of Hepatic Injury and Kidney Disease in Glycogen Storage Disease Type Ia Patients. Int J Mol Sci 2021; 23:328. [PMID: 35008754 PMCID: PMC8745197 DOI: 10.3390/ijms23010328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/15/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022] Open
Abstract
Glycogen storage disease type Ia (GSDIa) is an inherited metabolic disorder caused by mutations in the enzyme glucose-6-phosphatase-α (G6Pase-α). Affected individuals develop renal and liver complications, including the development of hepatocellular adenoma/carcinoma and kidney failure. The purpose of this study was to identify potential biomarkers of the evolution of the disease in GSDIa patients. To this end, we analyzed the expression of exosomal microRNAs (Exo-miRs) in the plasma exosomes of 45 patients aged 6 to 63 years. Plasma from age-matched normal individuals were used as controls. We found that the altered expression of several Exo-miRs correlates with the pathologic state of the patients and might help to monitor the progression of the disease and the development of late GSDIa-associated complications.
Collapse
Affiliation(s)
- Roberta Resaz
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy; (R.R.); (D.S.); (M.M.); (M.C.B.)
| | - Davide Cangelosi
- Clinical Bioinformatics Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy; (D.C.); (P.U.)
| | - Daniela Segalerba
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy; (R.R.); (D.S.); (M.M.); (M.C.B.)
| | - Martina Morini
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy; (R.R.); (D.S.); (M.M.); (M.C.B.)
| | - Paolo Uva
- Clinical Bioinformatics Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy; (D.C.); (P.U.)
| | - Maria Carla Bosco
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy; (R.R.); (D.S.); (M.M.); (M.C.B.)
| | - Giuseppe Banderali
- Clinical Department of Pediatrics, ASST Santi Paolo e Carlo, Presidio San Paolo, Università degli Studi di Milano, Via Antonio di Rudinì 8, 20142 Milano, Italy; (G.B.); (S.P.)
| | - Ana Estrella
- Department of Pediatrics, University of Connecticut School of Medicine, 400 Farmington Ave, Farmington, CT 06030, USA; (A.E.); (C.W.); (D.A.W.)
| | - Corbinian Wanner
- Department of Pediatrics, University of Connecticut School of Medicine, 400 Farmington Ave, Farmington, CT 06030, USA; (A.E.); (C.W.); (D.A.W.)
| | - David A. Weinstein
- Department of Pediatrics, University of Connecticut School of Medicine, 400 Farmington Ave, Farmington, CT 06030, USA; (A.E.); (C.W.); (D.A.W.)
| | - Annalisa Sechi
- Regional Coordinating Center for Rare Diseases, Presidio Ospedaliero Universitario di Udine, P.zzale SM Della Misericordia 15, 33100 Udine, Italy;
| | - Sabrina Paci
- Clinical Department of Pediatrics, ASST Santi Paolo e Carlo, Presidio San Paolo, Università degli Studi di Milano, Via Antonio di Rudinì 8, 20142 Milano, Italy; (G.B.); (S.P.)
| | - Daniela Melis
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, Section of Pediatrics, Università Degli Studi di Salerno, Via Salvador Allende 43, Baronissi, 84100 Salerno, Italy;
| | - Maja Di Rocco
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy;
| | - Young Mok Lee
- Department of Pediatrics, University of Connecticut School of Medicine, 400 Farmington Ave, Farmington, CT 06030, USA; (A.E.); (C.W.); (D.A.W.)
| | - Alessandra Eva
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy; (R.R.); (D.S.); (M.M.); (M.C.B.)
| |
Collapse
|
7
|
Tangaro MA, Mandreoli P, Chiara M, Donvito G, Antonacci M, Parisi A, Bianco A, Romano A, Bianchi DM, Cangelosi D, Uva P, Molineris I, Nosi V, Calogero RA, Alessandri L, Pedrini E, Mordenti M, Bonetti E, Sangiorgi L, Pesole G, Zambelli F. Laniakea@ReCaS: exploring the potential of customisable Galaxy on-demand instances as a cloud-based service. BMC Bioinformatics 2021; 22:544. [PMID: 34749633 PMCID: PMC8574934 DOI: 10.1186/s12859-021-04401-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Improving the availability and usability of data and analytical tools is a critical precondition for further advancing modern biological and biomedical research. For instance, one of the many ramifications of the COVID-19 global pandemic has been to make even more evident the importance of having bioinformatics tools and data readily actionable by researchers through convenient access points and supported by adequate IT infrastructures. One of the most successful efforts in improving the availability and usability of bioinformatics tools and data is represented by the Galaxy workflow manager and its thriving community. In 2020 we introduced Laniakea, a software platform conceived to streamline the configuration and deployment of "on-demand" Galaxy instances over the cloud. By facilitating the set-up and configuration of Galaxy web servers, Laniakea provides researchers with a powerful and highly customisable platform for executing complex bioinformatics analyses. The system can be accessed through a dedicated and user-friendly web interface that allows the Galaxy web server's initial configuration and deployment. RESULTS "Laniakea@ReCaS", the first instance of a Laniakea-based service, is managed by ELIXIR-IT and was officially launched in February 2020, after about one year of development and testing that involved several users. Researchers can request access to Laniakea@ReCaS through an open-ended call for use-cases. Ten project proposals have been accepted since then, totalling 18 Galaxy on-demand virtual servers that employ ~ 100 CPUs, ~ 250 GB of RAM and ~ 5 TB of storage and serve several different communities and purposes. Herein, we present eight use cases demonstrating the versatility of the platform. CONCLUSIONS During this first year of activity, the Laniakea-based service emerged as a flexible platform that facilitated the rapid development of bioinformatics tools, the efficient delivery of training activities, and the provision of public bioinformatics services in different settings, including food safety and clinical research. Laniakea@ReCaS provides a proof of concept of how enabling access to appropriate, reliable IT resources and ready-to-use bioinformatics tools can considerably streamline researchers' work.
Collapse
Affiliation(s)
- Marco Antonio Tangaro
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council (CNR), Via Giovanni Amendola 122/O, 70126, Bari, Italy
- National Institute for Nuclear Physics (INFN), Section of Bari, Via Orabona 4, 70126, Bari, Italy
| | - Pietro Mandreoli
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council (CNR), Via Giovanni Amendola 122/O, 70126, Bari, Italy
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milano, Italy
| | - Matteo Chiara
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council (CNR), Via Giovanni Amendola 122/O, 70126, Bari, Italy
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milano, Italy
| | - Giacinto Donvito
- National Institute for Nuclear Physics (INFN), Section of Bari, Via Orabona 4, 70126, Bari, Italy
| | - Marica Antonacci
- National Institute for Nuclear Physics (INFN), Section of Bari, Via Orabona 4, 70126, Bari, Italy
| | - Antonio Parisi
- Istituto Zooprofilattico Sperimentale Della Puglia e Della Basilicata, Via Manfredonia 20, 71121, Foggia, Italy
| | - Angelica Bianco
- Istituto Zooprofilattico Sperimentale Della Puglia e Della Basilicata, Via Manfredonia 20, 71121, Foggia, Italy
| | - Angelo Romano
- National Reference Laboratory for Coagulase-Positive Staphylococci Including Staphylococcus Aureus, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Turin, Italy
| | - Daniela Manila Bianchi
- National Reference Laboratory for Coagulase-Positive Staphylococci Including Staphylococcus Aureus, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Turin, Italy
| | - Davide Cangelosi
- Clinical Bioinformatics Unit, Scientific Direction, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147, Genova, Italy
| | - Paolo Uva
- Clinical Bioinformatics Unit, Scientific Direction, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147, Genova, Italy
- Italian Institute of Technology, Via Morego 30, 16163, Genova, Italy
| | - Ivan Molineris
- Department of Life Science and System Biology, University of Turin, Via Accademia Albertina, 13-1023, Turin, Italy
| | - Vladimir Nosi
- Department of Computer Science, University of Turin, Via Pessinetto 12, 10049, Turin, Italy
| | - Raffaele A Calogero
- Department of Molecular Biotechnology and Health Sciences, Via Nizza 52, 10126, Turin, Italy
| | - Luca Alessandri
- Department of Molecular Biotechnology and Health Sciences, Via Nizza 52, 10126, Turin, Italy
| | - Elena Pedrini
- Department of Rare Skeletal Disorders, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136, Bologna, Italy
| | - Marina Mordenti
- Department of Rare Skeletal Disorders, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136, Bologna, Italy
| | - Emanuele Bonetti
- Department of Rare Skeletal Disorders, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136, Bologna, Italy
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Luca Sangiorgi
- Department of Rare Skeletal Disorders, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136, Bologna, Italy
| | - Graziano Pesole
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council (CNR), Via Giovanni Amendola 122/O, 70126, Bari, Italy.
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona 4, 70126, Bari, Italy.
| | - Federico Zambelli
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council (CNR), Via Giovanni Amendola 122/O, 70126, Bari, Italy.
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milano, Italy.
| |
Collapse
|
8
|
Hooper KM. What lies beyond 100 years of insulin. Dis Model Mech 2021; 14:dmm049361. [PMID: 34752619 PMCID: PMC8592014 DOI: 10.1242/dmm.049361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has been 100 years since the discovery of insulin. This revolutionary treatment saves the lives of millions of people living with diabetes, but much remains to be understood of its mechanisms and roles in homeostasis and disease. To celebrate this centenary, we explore areas of ongoing insulin research in diabetes, metabolic syndrome and beyond. Disease Models & Mechanisms aims to publish high-quality basic and pre-clinical research that advances our understanding of these conditions to facilitate clinical and public health impact.
Collapse
Affiliation(s)
- Kirsty M. Hooper
- The Company of Biologists, Bidder Building, Station Road, Cambridge CB24 9LF, UK
| |
Collapse
|
9
|
Cai X, Zou F, Xuan R, Lai XY. Exosomes from mesenchymal stem cells expressing microribonucleic acid-125b inhibit the progression of diabetic nephropathy via the tumour necrosis factor receptor-associated factor 6/Akt axis. Endocr J 2021; 68:817-828. [PMID: 34024846 DOI: 10.1507/endocrj.ej20-0619] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Diabetic nephropathy (DN) seriously threatens the health of patients with diabetes. Moreover, it has been reported that mesenchymal stem cell (MSC)-derived exosomal miRNAs can modulate the progression of multiple diseases, including DN. It has been suggested that miR-125b is involved in DN. However, the biological functions of exosomal miRNAs, especially miR-125b, in DN are still unclear. To establish a DN model in vitro, we used a model of human embryonic kidney epithelial cells (HKCs) injury induced by high glucose (HG). Then, miR-125b was delivered to the model cells in vitro via MSC-derived exosomes (MSC-Exos), and the effect of exosomal miR-125b on HKCs apoptosis was evaluated by flow cytometry. qRT-PCR or western blotting was performed to measure miR-125b or tumour necrosis factor receptor-associated factor 6 (TRAF6) expression in HKC. The effect of MSC-Exos on HKCs apoptosis after miR-125b knockdown was determined by flow cytometry. Moreover, dual-luciferase reporter assays were used to determine the targeting relationship between miR-125b and TRAF6 in HKCs. Our data revealed that MSC-Exos increased HG-induced autophagy in HKCs and reversed HKCs apoptosis. Moreover, our study found that miR-125b was enriched in MSC-Exos and directly targeted TRAF6 in HKCs. In addition, exosomally transferred miR-125b inhibited the apoptosis of HG-treated HKCs by mediating Akt signalling. In summary, MSC-derived exosomal miR-125b induced autophagy and inhibited apoptosis in HG-treated HKCs via the downregulation of TRAF6. Therefore, our study provided a new idea for DN treatment.
Collapse
Affiliation(s)
- Xia Cai
- Department of Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, P.R.China
| | - Fang Zou
- Department of Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, P.R.China
| | - Rui Xuan
- Department of Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, P.R.China
| | - Xiao-Yang Lai
- Department of Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, P.R.China
| |
Collapse
|