1
|
Petrovic S, Mouskeftara T, Paunovic M, Deda O, Vucic V, Milosevic M, Gika H. Unveiling Lipidomic Alterations in Metabolic Syndrome: A Study of Plasma, Liver, and Adipose Tissues in a Dietary-Induced Rat Model. Nutrients 2024; 16:3466. [PMID: 39458462 PMCID: PMC11509917 DOI: 10.3390/nu16203466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Metabolic syndrome (MetS) is a complex condition characterized by fat accumulation, dyslipidemia, impaired glucose control and hypertension. In this study, rats were fed a high-fat high-fructose (HFF) diet in order to develop MetS. After ten weeks, the dietary-induced MetS was confirmed by higher body fat percentage, lower HDL-cholesterol and increased blood pressure in the HFF-fed rats compared to the normal-fed control animals. However, the effect of MetS development on the lipidomic signature of the dietary-challenged rats remains to be investigated. To reveal the contribution of specific lipids to the development of MetS, the lipid profiling of rat tissues particularly susceptible to MetS was performed using untargeted UHPLC-QTOF-MS/MS lipidomic analysis. A total of 37 lipid species (mainly phospholipids, triglycerides, sphingolipids, cholesterol esters, and diglycerides) in plasma, 43 lipid species in liver, and 11 lipid species in adipose tissue were identified as dysregulated between the control and MetS groups. Changes in the lipid signature of selected tissues additionally revealed systemic changes in the dietary-induced rat model of MetS.
Collapse
Affiliation(s)
- Snjezana Petrovic
- Group for Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (M.P.); (V.V.)
| | - Thomai Mouskeftara
- Laboratory of Forensic Medicine & Toxicology, Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Marija Paunovic
- Group for Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (M.P.); (V.V.)
| | - Olga Deda
- Laboratory of Forensic Medicine & Toxicology, Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece
| | - Vesna Vucic
- Group for Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (M.P.); (V.V.)
| | - Maja Milosevic
- Group for Neuroendocrinology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Helen Gika
- Laboratory of Forensic Medicine & Toxicology, Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece
| |
Collapse
|
2
|
Varela L, van de Lest CHA, Boere J, Libregts SFWM, Lozano-Andrés E, van Weeren PR, Wauben MHM. Acute joint inflammation induces a sharp increase in the number of synovial fluid EVs and modifies their phospholipid profile. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159367. [PMID: 37473834 DOI: 10.1016/j.bbalip.2023.159367] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Inflammation is the hallmark of most joint disorders. However, the precise regulation of induction, perpetuation, and resolution of joint inflammation is not entirely understood. Since extracellular vesicles (EVs) are critical for intercellular communication, we aim to unveil their role in these processes. Here, we investigated the EVs' dynamics and phospholipidome profile from synovial fluid (SF) of healthy equine joints and from horses with lipopolysaccharide (LPS)-induced synovitis. LPS injection triggered a sharp increase of SF-EVs at 5-8 h post-injection, which started to decline at 24 h post-injection. Importantly, we identified significant changes in the lipid profile of SF-EVs after synovitis induction. Compared to healthy joint-derived SF-EVs (0 h), SF-EVs collected at 5, 24, and 48 h post-LPS injection were strongly increased in hexosylceramides. At the same time, phosphatidylserine, phosphatidylcholine, and sphingomyelin were decreased in SF-EVs at 5 h and 24 h post-LPS injection. Based on the lipid changes during acute inflammation, we composed specific lipid profiles associated with healthy and inflammatory state-derived SF-EVs. The sharp increase in SF-EVs during acute synovitis and the correlation of specific lipids with either healthy or inflamed states-derived SF-EVs are findings of potential interest for unveiling the role of SF-EVs in joint inflammation, as well as for the identification of EV-biomarkers of joint inflammation.
Collapse
Affiliation(s)
- Laura Varela
- Division Equine Sciences, Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; Division Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Chris H A van de Lest
- Division Equine Sciences, Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; Division Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Janneke Boere
- Division Equine Sciences, Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; Department of Orthopaedics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Sten F W M Libregts
- Division Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Estefanía Lozano-Andrés
- Division Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; Division of Infectious Diseases & Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - P René van Weeren
- Division Equine Sciences, Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Marca H M Wauben
- Division Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
3
|
Chemical vs. Enzymatic Refining to Produce Peanut Oil for Edible Use or to Obtain a Sustainable and Cost-Effective Protector for Stored Grains against Sitophilus zeamais (Coleoptera: Curculionidae). Foods 2022; 11:foods11091224. [PMID: 35563946 PMCID: PMC9104994 DOI: 10.3390/foods11091224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022] Open
Abstract
Among the various existing techniques, enzymatic degumming represents a process that is establishing itself as a valid alternative to the more classic chemical processes. Moreover, vegetable oils of various origins have been gaining more consideration as sustainable and affordable protectants for cereals and pulses against the attack of several insect pests. Sitophilus zeamais (Motschulsky) (Coleoptera: Curculionidae) is one of the key pests of cereal crops in the field and in stored and processed cereal products. Based on these highlighted issues, the overall aim of this research was twofold: (i) firstly, the effectiveness of the enzymatic degumming process was evaluated through the use of three different enzymes in order to verify the possible industrial application within the SALOV company as an alternative to the conventional chemical process; (ii) in a second phase, the possible use of the innovative refined oils was explored for sustainable stored grain protection towards S. zeamais. The results obtained confirm the strong possibility of applying the enzymatic process, which is innovative and, in a chemical way, more sustainable than the classical one. Regarding the toxicity towards S. zeamais, the crude peanut oil and the chemically refined peanut oil had lower LC50 values (1.836 and 1.372 g kg-1, respectively) than the oils rectified through enzymatic degumming (LC50 from 2.453 to 4.076 g kg-1), and, therefore, they can be suggested as sustainable stored grain protectants.
Collapse
|
4
|
Hooper KM. What lies beyond 100 years of insulin. Dis Model Mech 2021; 14:dmm049361. [PMID: 34752619 PMCID: PMC8592014 DOI: 10.1242/dmm.049361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has been 100 years since the discovery of insulin. This revolutionary treatment saves the lives of millions of people living with diabetes, but much remains to be understood of its mechanisms and roles in homeostasis and disease. To celebrate this centenary, we explore areas of ongoing insulin research in diabetes, metabolic syndrome and beyond. Disease Models & Mechanisms aims to publish high-quality basic and pre-clinical research that advances our understanding of these conditions to facilitate clinical and public health impact.
Collapse
Affiliation(s)
- Kirsty M. Hooper
- The Company of Biologists, Bidder Building, Station Road, Cambridge CB24 9LF, UK
| |
Collapse
|
5
|
Karabicici M, Azbazdar Y, Iscan E, Ozhan G. Misregulation of Wnt Signaling Pathways at the Plasma Membrane in Brain and Metabolic Diseases. MEMBRANES 2021; 11:844. [PMID: 34832073 PMCID: PMC8621778 DOI: 10.3390/membranes11110844] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/23/2021] [Accepted: 10/27/2021] [Indexed: 12/26/2022]
Abstract
Wnt signaling pathways constitute a group of signal transduction pathways that direct many physiological processes, such as development, growth, and differentiation. Dysregulation of these pathways is thus associated with many pathological processes, including neurodegenerative diseases, metabolic disorders, and cancer. At the same time, alterations are observed in plasma membrane compositions, lipid organizations, and ordered membrane domains in brain and metabolic diseases that are associated with Wnt signaling pathway activation. Here, we discuss the relationships between plasma membrane components-specifically ligands, (co) receptors, and extracellular or membrane-associated modulators-to activate Wnt pathways in several brain and metabolic diseases. Thus, the Wnt-receptor complex can be targeted based on the composition and organization of the plasma membrane, in order to develop effective targeted therapy drugs.
Collapse
Affiliation(s)
- Mustafa Karabicici
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir 35340, Turkey; (M.K.); (Y.A.); (E.I.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir 35340, Turkey
| | - Yagmur Azbazdar
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir 35340, Turkey; (M.K.); (Y.A.); (E.I.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir 35340, Turkey
| | - Evin Iscan
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir 35340, Turkey; (M.K.); (Y.A.); (E.I.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir 35340, Turkey
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir 35340, Turkey; (M.K.); (Y.A.); (E.I.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir 35340, Turkey
| |
Collapse
|
6
|
Kadri L, Bacle A, Khoury S, Vandebrouck C, Bescond J, Faivre JF, Ferreira T, Sebille S. Polyunsaturated Phospholipids Increase Cell Resilience to Mechanical Constraints. Cells 2021; 10:937. [PMID: 33920685 PMCID: PMC8073313 DOI: 10.3390/cells10040937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/10/2021] [Accepted: 04/13/2021] [Indexed: 11/24/2022] Open
Abstract
If polyunsaturated fatty acids (PUFAs) are generally accepted to be good for health, the mechanisms of their bona fide benefits still remain elusive. Membrane phospholipids (PLs) of the cardiovascular system and skeletal muscles are particularly enriched in PUFAs. The fatty acid composition of PLs is known to regulate crucial membrane properties, including elasticity and plasticity. Since muscle cells undergo repeated cycles of elongation and relaxation, we postulated in the present study that PUFA-containing PLs could be central players for muscle cell adaptation to mechanical constraints. By a combination of in cellulo and in silico approaches, we show that PUFAs, and particularly the ω-3 docosahexaenoic acid (DHA), regulate important properties of the plasma membrane that improve muscle cell resilience to mechanical constraints. Thanks to their unique property to contortionate within the bilayer plane, they facilitate the formation of vacuole-like dilation (VLD), which, in turn, avoid cell breakage under mechanical constraints.
Collapse
|
7
|
Vandebrouck C, Ferreira T. Glued in lipids: Lipointoxication in cystic fibrosis. EBioMedicine 2020; 61:103038. [PMID: 33038767 PMCID: PMC7648119 DOI: 10.1016/j.ebiom.2020.103038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/27/2020] [Accepted: 09/14/2020] [Indexed: 01/14/2023] Open
Abstract
Cystic Fibrosis (CF) is an autosomal recessive disease caused by mutations in the CF transmembrane regulator (CFTR) gene, which encodes a chloride channel located at the apical surface of epithelial cells. Unsaturated Fatty Acid (UFA) deficiency has been a persistent observation in tissues from patients with CF. However, the impacts of such deficiencies on the etiology of the disease have been the object of intense debates. The aim of the present review is first to highlight the general consensus on fatty acid dysregulations that emerges from, sometimes apparently contradictory, studies. In a second step, a unifying mechanism for the potential impacts of these fatty acid dysregulations in CF cells, based on alterations of membrane biophysical properties (known as lipointoxication), is proposed. Finally, the contribution of lipointoxication to the progression of the CF disease and how it could affect the efficacy of current treatments is also discussed.
Collapse
Affiliation(s)
- Clarisse Vandebrouck
- Laboratoire "Lipointoxication and Channelopathies (LiTch) - ConicMeds", Université de Poitiers, 1, rue Georges Bonnet, Poitiers, France; Laboratoire "Signalisation et Transports Ioniques Membranaires (STIM; EA 7349)", Université de Poitiers, 1, rue Georges Bonnet, Poitiers, France
| | - Thierry Ferreira
- Laboratoire "Lipointoxication and Channelopathies (LiTch) - ConicMeds", Université de Poitiers, 1, rue Georges Bonnet, Poitiers, France.
| |
Collapse
|
8
|
Shokry E, Sadiq K, Soofi S, Habib A, Bhutto N, Rizvi A, Ahmad I, Demmelmair H, Uhl O, Bhutta ZA, Koletzko B. Impact of Treatment with RUTF on Plasma Lipid Profiles of Severely Malnourished Pakistani Children. Nutrients 2020; 12:nu12072163. [PMID: 32708260 PMCID: PMC7401247 DOI: 10.3390/nu12072163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 12/22/2022] Open
Abstract
(1) Background: Little is known on impacts of ready-to-use therapeutic food (RUTF) treatment on lipid metabolism in children with severe acute malnutrition (SAM). (2) Methods: We analyzed glycerophospholipid fatty acids (FA) and polar lipids in plasma of 41 Pakistani children with SAM before and after 3 months of RUTF treatment using gas chromatography and flow-injection analysis tandem mass spectrometry, respectively. Statistical analysis was performed using univariate, multivariate tests and evaluated for the impact of age, sex, breastfeeding status, hemoglobin, and anthropometry. (3) Results: Essential fatty acid (EFA) depletion at baseline was corrected by RUTF treatment which increased EFA. In addition, long-chain polyunsaturated fatty acids (LC-PUFA) and the ratio of arachidonic acid (AA)/linoleic acid increased reflecting greater EFA conversion to LC-PUFA, whereas Mead acid/AA decreased. Among phospholipids, lysophosphatidylcholines (lyso.PC) were most impacted by treatment; in particular, saturated lyso.PC decreased. Higher child age and breastfeeding were associated with great decrease in total saturated FA (ΣSFA) and lesser decrease in monounsaturated FA and total phosphatidylcholines (ΣPC). Conclusions: RUTF treatment improves EFA deficiency in SAM, appears to enhance EFA conversion to biologically active LC-PUFA, and reduces lipolysis reflected in decreased ΣSFA and saturated lyso.PC. Child age and breastfeeding modify treatment-induced changes in ΣSFA and ΣPC.
Collapse
Affiliation(s)
- Engy Shokry
- Department of Pediatrics, Ludwig-Maximilians-University Paediatrics, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children’s Hospital, 80337 Munich, Germany; (E.S.); (H.D.); (O.U.)
| | - Kamran Sadiq
- Department of Pediatrics & Child Health, The Aga Khan University, Stadium Road, P.O. Box 3500, Karachi 74800, Pakistan; (K.S.); (S.S.)
| | - Sajid Soofi
- Department of Pediatrics & Child Health, The Aga Khan University, Stadium Road, P.O. Box 3500, Karachi 74800, Pakistan; (K.S.); (S.S.)
- Center of Excellence in Women & Child Health, The Aga Khan University, Stadium Road, P.O. Box 3500, Karachi 74800, Pakistan; (A.H.); (N.B.); (A.R.); (I.A.)
| | - Atif Habib
- Center of Excellence in Women & Child Health, The Aga Khan University, Stadium Road, P.O. Box 3500, Karachi 74800, Pakistan; (A.H.); (N.B.); (A.R.); (I.A.)
| | - Naveed Bhutto
- Center of Excellence in Women & Child Health, The Aga Khan University, Stadium Road, P.O. Box 3500, Karachi 74800, Pakistan; (A.H.); (N.B.); (A.R.); (I.A.)
| | - Arjumand Rizvi
- Center of Excellence in Women & Child Health, The Aga Khan University, Stadium Road, P.O. Box 3500, Karachi 74800, Pakistan; (A.H.); (N.B.); (A.R.); (I.A.)
| | - Imran Ahmad
- Center of Excellence in Women & Child Health, The Aga Khan University, Stadium Road, P.O. Box 3500, Karachi 74800, Pakistan; (A.H.); (N.B.); (A.R.); (I.A.)
| | - Hans Demmelmair
- Department of Pediatrics, Ludwig-Maximilians-University Paediatrics, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children’s Hospital, 80337 Munich, Germany; (E.S.); (H.D.); (O.U.)
| | - Olaf Uhl
- Department of Pediatrics, Ludwig-Maximilians-University Paediatrics, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children’s Hospital, 80337 Munich, Germany; (E.S.); (H.D.); (O.U.)
| | - Zulfiqar A. Bhutta
- Center of Excellence in Women & Child Health, The Aga Khan University, Stadium Road, P.O. Box 3500, Karachi 74800, Pakistan; (A.H.); (N.B.); (A.R.); (I.A.)
- Centre for Global Child Health, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Correspondence: (Z.A.B.); (B.K.); Tel.: +17-573248424 (Z.A.B.); +49-89-44005-2826 (B.K.); Fax: +49-89-44005-7742 (B.K.)
| | - Berthold Koletzko
- Department of Pediatrics, Ludwig-Maximilians-University Paediatrics, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children’s Hospital, 80337 Munich, Germany; (E.S.); (H.D.); (O.U.)
- Correspondence: (Z.A.B.); (B.K.); Tel.: +17-573248424 (Z.A.B.); +49-89-44005-2826 (B.K.); Fax: +49-89-44005-7742 (B.K.)
| |
Collapse
|
9
|
First person – Amélie Bacle. Dis Model Mech 2020. [PMCID: PMC7328140 DOI: 10.1242/dmm.045526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
First Person is a series of interviews with the first authors of a selection of papers published in Disease Models & Mechanisms, helping early-career researchers promote themselves alongside their papers. Amélie Bacle is first author on ‘A comprehensive study of phospholipid fatty acid rearrangements in metabolic syndrome: correlations with organ dysfunction’, published in DMM. Amélie conducted the research described in this article while a postdoc in Thierry Ferreira’s lab at Université de Poitiers, Poitiers, France, where she investigated lipid membranes, their composition, and the link between their properties, cellular processes and diseases, using computational techniques such as molecular modelization. She is now working in a private company developing health care applications.
Collapse
|