1
|
Williamson JN, James SA, Mullen SP, Sutton BP, Wszalek T, Mulyana B, Mukli P, Yabluchanskiy A, Yang Y. Sex differences in interacting genetic and functional connectivity biomarkers in Alzheimer's disease. GeroScience 2024; 46:6071-6084. [PMID: 38598069 PMCID: PMC11493897 DOI: 10.1007/s11357-024-01151-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/01/2024] [Indexed: 04/11/2024] Open
Abstract
As of 2023, it is estimated that 6.7 million individuals in the United States live with Alzheimer's disease (AD). Prior research indicates that AD disproportionality affects females; females have a greater incidence rate, perform worse on a variety of neuropsychological tasks, and have greater total brain atrophy. Recent research shows that hippocampal functional connectivity differs by sex and may be related to the observed sex differences in AD, and apolipoprotein E (ApoE) ε4 carriers have reduced hippocampal functional connectivity. The purpose of this study was to determine if the ApoE genotype plays a role in the observed sex differences in hippocampal functional connectivity in Alzheimer's disease. The resting state fMRI and T2 MRI of individuals with AD (n = 30, female = 15) and cognitively normal individuals (n = 30, female = 15) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) were analyzed using the functional connectivity toolbox (CONN). Our results demonstrated intrahippocampal functional connectivity differed between those without an ε4 allele and those with at least one ε4 allele in each group. Additionally, intrahippocampal functional connectivity differed only by sex when Alzheimer's participants had at least one ε4 allele. These results improve our current understanding of the role of the interacting relationship between sex, ApoE genotype, and hippocampal function in AD. Understanding these biomarkers may aid in the development of sex-specific interventions for improved AD treatment.
Collapse
Affiliation(s)
- Jordan N Williamson
- Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Shirley A James
- Hudson College of Public Health, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Sean P Mullen
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Kinesiology & Community Health, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Informatics Programs, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Center for Social & Behavioral Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Bradley P Sutton
- Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Tracey Wszalek
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Beni Mulyana
- Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Peter Mukli
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Yuan Yang
- Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Clinical Imaging Research Center, Stephenson Family Clinical Research Institute, Carle Foundation Hospital, Urbana, IL, USA.
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
2
|
von Berg J, McArdle PF, Häppölä P, Haessler J, Kooperberg C, Lemmens R, Pezzini A, Thijs V, Pulit SL, Kittner SJ, Mitchell BD, de Ridder J, van der Laan SW. Evidence of survival bias in the association between APOE-Є4 and age at ischemic stroke onset. Front Genet 2024; 15:1392061. [PMID: 39286457 PMCID: PMC11403718 DOI: 10.3389/fgene.2024.1392061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/18/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Large genome-wide association studies (GWASs) using case-control study designs have now identified tens of loci associated with ischemic stroke (IS). As a complement to these studies, we performed GWAS in a case-only design to identify loci influencing the age at onset (AAO) of ischemic stroke. Methods Analyses were conducted in a discovery cohort of 10,857 ischemic stroke cases using a linear regression framework. We meta-analyzed all SNPs with p-value <1 x 10-5 in a sexcombined or sex-stratified analysis using summary data from two additional replication cohorts. Results In the women-only meta-analysis, we detected significant evidence for the association of AAO with rs429358, an exonic variant in apolipoprotein E (APOE) that encodes for the APOE-Є4 allele. Each copy of the rs429358:T>C allele was associated with a 1.29-year earlier stroke AAO (meta p-value = 2.48 x 10-11). This APOE variant has previously been associated with increased mortality and ischemic stroke AAO. We hypothesized that the association with AAO may reflect a survival bias attributable to an age-related decrease in mortality among APOE-Є4 carriers and have no association to stroke AAO per se. A simulation study showed that a variant associated with overall mortality might indeed be detected with an AAO analysis. A variant with a 2-fold increase in mortality risk would lead to an observed effect of AAO that is comparable to what we found. Discussion In conclusion, we detected a robust association of the APOE locus with stroke AAO and provided simulations to suggest that this association may be unrelated to ischemic stroke per se but related to a general survival bias.
Collapse
Affiliation(s)
- Joanna von Berg
- Center for Molecular Medicine, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Patrick F. McArdle
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Paavo Häppölä
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | | | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Robin Lemmens
- University Hospitals Leuven, Department of Neurology, Leuven, Belgium
- KU Leuven–University of Leuven, Department of Neurosciences, Experimental Neurology, Leuven, Belgium
| | - Alessandro Pezzini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Stroke Care Program, Department of Emergency, Parma University Hospital, Parma, Italy
| | - Vincent Thijs
- Stroke Theme, The Florey, Heidelberg, VIC, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
- Department of Neurology, Austin Health, Heidelberg, VIC, Australia
| | - Sara L. Pulit
- Center for Molecular Medicine, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Steven J. Kittner
- Geriatric Research and Education Clinical Center, VA Maryland Healthcare System, Baltimore, MD, United States
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Braxton D. Mitchell
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Geriatric Research and Education Clinical Center, VA Maryland Healthcare System, Baltimore, MD, United States
| | - Jeroen de Ridder
- Center for Molecular Medicine, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Sander W. van der Laan
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Center of Population Health and Genomics, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
3
|
Wang YZ, Zhao W, Moorjani P, Gross AL, Zhou X, Dey AB, Lee J, Smith JA, Kardia SLR. Effect of apolipoprotein E ε4 and its modification by sociodemographic characteristics on cognitive measures in South Asians from LASI-DAD. Alzheimers Dement 2024; 20:4854-4867. [PMID: 38889280 PMCID: PMC11247697 DOI: 10.1002/alz.14052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND We investigated the effects of apolipoprotein E (APOE) ε4 and its interactions with sociodemographic characteristics on cognitive measures in South Asians from the Diagnostic Assessment of Dementia for the Longitudinal Aging Study of India (LASI-DAD). METHODS Linear regression was used to assess the association between APOE ε4 and global- and domain-specific cognitive function in 2563 participants (mean age 69.6 ± 7.3 years; 53% female). Effect modification by age, sex, and education were explored using interaction terms and subgroup analyses. RESULTS APOE ε4 was inversely associated with most cognitive measures (p < 0.05). This association was stronger with advancing age for the Hindi Mental State Examination (HMSE) score (βε4×age = -0.44, p = 0.03), orientation (βε4×age = -0.07, p = 0.01), and language/fluency (βε4×age = -0.07, p = 0.01), as well as in females for memory (βε4×male = 0.17, p = 0.02) and language/fluency (βε4×male = 0.12, p = 0.03). DISCUSSION APOE ε4 is associated with lower cognitive function in South Asians from India, with a more pronounced impact observed in females and older individuals. HIGHLIGHTS APOE ε4 carriers had lower global and domain-specific cognitive performance. Females and older individuals may be more susceptible to ε4 effects. For most cognitive measures, there was no interaction between ε4 and education.
Collapse
Affiliation(s)
- Yi Zhe Wang
- Department of EpidemiologySchool of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| | - Wei Zhao
- Department of EpidemiologySchool of Public HealthUniversity of MichiganAnn ArborMichiganUSA
- Survey Research CenterInstitute for Social ResearchUniversity of MichiganAnn ArborMichiganUSA
| | - Priya Moorjani
- Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
- Center for Computational BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Alden L. Gross
- Department of EpidemiologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Xiang Zhou
- Department of BiostatisticsSchool of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| | - Aparajit B. Dey
- Department of Geriatric MedicineAll India Institute of Medical Sciences, Ansari NagarNew DelhiIndia
| | - Jinkook Lee
- Department of Economics and Center for Social ResearchUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Jennifer A. Smith
- Department of EpidemiologySchool of Public HealthUniversity of MichiganAnn ArborMichiganUSA
- Survey Research CenterInstitute for Social ResearchUniversity of MichiganAnn ArborMichiganUSA
| | - Sharon L. R. Kardia
- Department of EpidemiologySchool of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
4
|
Park HK, Marston L, Mukadam N. The Effects of Estrogen on the Risk of Developing Dementia: A Cohort Study Using the UK Biobank Data. Am J Geriatr Psychiatry 2024; 32:792-805. [PMID: 38310026 DOI: 10.1016/j.jagp.2024.01.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/05/2024]
Abstract
OBJECTIVES The protective role of estrogen in the development of dementia remains uncertain. We investigated the role of lifetime cumulative exposure to estrogen in dementia in the UK Biobank. METHODS Reproductive characteristics, including estrogen length and history of surgery (hysterectomy/oophorectomy), were used as exposure variables. Cox Proportional Hazard models were used to estimate hazard ratios (HR) for the development of dementia. RESULTS A total of 273,260 female participants were included in this study. Compared to women with the shortest estrogen length, women with the longer estrogen length (38-42) had a 28% decreased risk of dementia (HR = 0.718, 95% confidence interval [CI] = 0.651-0.793). Women with later last age at estrogen exposure (50-52) had a 24% decreased risk for dementia (HR = 0.763, 95% CI = 0.695-0.839) compared to women with younger age at last estrogen exposure (≤45). Later age at menarche (≥15) was associated with a 12% increased risk for dementia (HR = 1.121, 95% CI = 1.018-1.234) compared to women with earlier age at menarche (≤12). Women with a history of surgery had an 8% increased risk of dementia (HR = 1.079, 95% CI = 1.002-1.164) compared to women without a history of surgery. CONCLUSION This study found that more prolonged exposure to estrogen (longer estrogen length and later age at last estrogen exposure) had a decreased risk for dementia, and shorter exposure to estrogen (later age at menarche and history of reproductive surgery) had an increased risk for dementia. Based on the results of this study, estrogen might have a protective role in women in the development of dementia.
Collapse
Affiliation(s)
- Hee Kyung Park
- Division of Psychiatry (HKP, NM), University College London, London, UK.
| | - Louise Marston
- Department of Primary Care and Population Health (LM), University College London, London, UK
| | - Naaheed Mukadam
- Division of Psychiatry (HKP, NM), University College London, London, UK
| |
Collapse
|
5
|
Wang Y, Ye M, Ji Q, Liu Q, Xu X, Zhan Y. The longitudinal trajectory of CSF sTREM2: the alzheimer's disease neuroimaging initiative. Alzheimers Res Ther 2024; 16:138. [PMID: 38926894 PMCID: PMC11202383 DOI: 10.1186/s13195-024-01506-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND The soluble triggering receptor expressed on myeloid cells 2 (sTREM2) in cerebrospinal fluid (CSF) is considered a biomarker of microglia activity. The objective of this study was to investigate the trajectory of CSF sTREM2 levels over time and examine its association with sex. METHODS A total of 1,017 participants from the Alzheimer's Disease Neuroimaging Initiative Study (ADNI) with at least one CSF sTREM2 record were included. The trajectory of CSF sTREM2 was analyzed using a growth curve model. The association between CSF sTREM2 levels and sex was assessed using linear mixed-effect models. RESULTS CSF sTREM2 levels were increased with age over time (P < 0.0001). No significant sex difference was observed in sTREM2 levels across the entire sample; however, among the APOE ε4 allele carriers, women exhibited significantly higher sTREM2 levels than men (β = 0.146, P = 0.002). CONCLUSION Our findings highlight the association between CSF sTREM2 levels and age-related increments, underscoring the potential influence of aging on sTREM2 dynamics. Furthermore, our observations indicate a noteworthy association between sex and CSF sTREM2 levels, particularly in individuals carrying the APOE ε4 allele.
Collapse
Affiliation(s)
- Yu Wang
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Meijie Ye
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Qianqian Ji
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Qi Liu
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Xiaowei Xu
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China.
| | - Yiqiang Zhan
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China.
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
6
|
Ni X, Su H, Li GH, Li R, Lan R, Lv Y, Pang G, Zhang W, Yang Z, Hu C. Specific differences and novel key regulatory genes of sex in influencing exceptional longevity phenotypes. Diabetes Metab Syndr 2024; 18:103039. [PMID: 38762968 DOI: 10.1016/j.dsx.2024.103039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND AND AIMS Although the life expectancy of women systematically and robustly exceeds that of men, specific differences and molecular mechanisms of sex in influencing longevity phenotypes remain largely unknown. Therefore, we performed transcriptome sequencing of peripheral blood samples to explore regulatory mechanisms of healthy longevity by incorporating sex data. METHODS We selected 34 exceptional longevity (age: 98.26 ± 2.45 years) and 16 controls (age: 52.81 ± 9.78) without advanced outcomes from 1363 longevity and 692 controls recruited from Nanning of Guangxi for RNA sequencing 1. The transcriptome sequencing 1 data of 50 samples were compared by longevity and sex to screen differentially expressed genes (DEGs). Then, 121 aging samples (40-110 years old) without advanced outcomes from 355 longevity and 294 controls recruited from Dongxing of Guangxi were selected for RNA sequencing 2. The genes associated with aging from the transcriptome sequencing 2 of 121 aging samples were filtered out. Finally, the gender-related longevity candidate genes and their possible metabolic pathways were verified by cell model of aging and a real-time polymerase chain reaction (RT-PCR). RESULTS Metabolism differs between male and female and plays a key role in longevity. Moreover, the principal findings of this study revealed a novel key gene, UGT2B11, that plays an important role in regulating lipid metabolism through the peroxisome proliferator activated receptor gamma (PPARG) signalling pathway and ultimately improving lifespan, particularly in females. CONCLUSION The findings suggest specific differences in metabolism affecting exceptional longevity phenotypes between the sexes and offer novel therapeutic targets to extend lifespan by regulating lipid homeostasis.
Collapse
Affiliation(s)
- Xiaolin Ni
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College, Beijing, 100005, PR China; The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, 100730, PR China.
| | - Huabin Su
- Jiangbin Hospital, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Gong-Hua Li
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, PR China
| | - Rongqiao Li
- Jiangbin Hospital, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Rushu Lan
- Jiangbin Hospital, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Yuan Lv
- Jiangbin Hospital, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Guofang Pang
- Jiangbin Hospital, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Wei Zhang
- Jiangbin Hospital, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Ze Yang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, 100730, PR China.
| | - Caiyou Hu
- Jiangbin Hospital, Guangxi Zhuang Autonomous Region, 530021, PR China.
| |
Collapse
|
7
|
Justice MJ. Sex matters in preclinical research. Dis Model Mech 2024; 17:dmm050759. [PMID: 38450661 PMCID: PMC10941654 DOI: 10.1242/dmm.050759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
International Women's Day 2024 has a theme of inclusion. As publishers of preclinical research, we aim to show how inclusion of females in research advances scientific rigor and improves treatment reliability. Sexual reproduction is key to all life across the plant and animal kingdoms. Biological sex takes many forms that are morphologically differentiated during development: stamens versus pistils in plants; color and plumage in birds; fallopian tubes versus vas deferens in mammals; and differences in size, for instance, males are smaller in the fruit fly Drosophila melanogaster. Physical differences may be obvious, but many traits may be more obscure, including hormonal, physiological and metabolic factors. These traits have a big influence on disease and responses to treatment. Thus, we call for improved inclusion, analysis and reporting of sex as a biological variable in preclinical animal modeling research.
Collapse
Affiliation(s)
- Monica J. Justice
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
| |
Collapse
|
8
|
Reyes-Reyes EM, Brown J, Trial MD, Chinnasamy D, Wiegand JP, Bradford D, Brinton RD, Rodgers KE. Vivaria housing conditions expose sex differences in brain oxidation, microglial activation, and immune system states in aged hAPOE4 mice. Exp Brain Res 2024; 242:543-557. [PMID: 38206365 PMCID: PMC10894770 DOI: 10.1007/s00221-023-06763-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/04/2023] [Indexed: 01/12/2024]
Abstract
Apolipoprotein E ε4 allele (APOE4) is the predominant genetic risk factor for late-onset Alzheimer's disease (AD). APOE4 mouse models have provided advances in the understanding of disease pathogenesis, but unaccounted variables like rodent housing status may hinder translational outcomes. Non-sterile aspects like food and bedding can be major sources of changes in rodent microflora. Alterations in intestinal microbial ecology can cause mucosal barrier impairment and increase pro-inflammatory signals. The present study examined the role of sterile and non-sterile food and housing on redox indicators and the immune status of humanized-APOE4 knock-in mice (hAPOe4). hAPOE4 mice were housed under sterile conditions until 22 months of age, followed by the transfer of a cohort of mice to non-sterile housing for 2 months. At 24 months of age, the redox/immunologic status was evaluated by flow cytometry/ELISA. hAPOE4 females housed under non-sterile conditions exhibited: (1) higher neuronal and microglial oxygen radical production and (2) lower CD68+ microglia (brain) and CD8+ T cells (periphery) compared to sterile-housed mice. In contrast, hAPOE4 males in non-sterile housing exhibited: (1) higher MHCII+ microglia and CD11b+CD4+ T cells (brain) and (2) higher CD11b+CD4+ T cells and levels of lipopolysaccharide-binding protein and inflammatory cytokines in the periphery relative to sterile-housed mice. This study demonstrated that sterile vs. non-sterile housing conditions are associated with the activation of redox and immune responses in the brain and periphery in a sex-dependent manner. Therefore, housing status may contribute to variable outcomes in both the brain and periphery.
Collapse
Affiliation(s)
- E M Reyes-Reyes
- Center for Innovation in Brain Science, University of Arizona, 1230 N. Cherry Ave, PO Box 210242, Tucson, AZ, 85721-0242, USA
| | - J Brown
- Center for Innovation in Brain Science, University of Arizona, 1230 N. Cherry Ave, PO Box 210242, Tucson, AZ, 85721-0242, USA
| | - M D Trial
- Center for Innovation in Brain Science, University of Arizona, 1230 N. Cherry Ave, PO Box 210242, Tucson, AZ, 85721-0242, USA
| | - D Chinnasamy
- Center for Innovation in Brain Science, University of Arizona, 1230 N. Cherry Ave, PO Box 210242, Tucson, AZ, 85721-0242, USA
| | - J P Wiegand
- Center for Innovation in Brain Science, University of Arizona, 1230 N. Cherry Ave, PO Box 210242, Tucson, AZ, 85721-0242, USA
| | - D Bradford
- Center for Innovation in Brain Science, University of Arizona, 1230 N. Cherry Ave, PO Box 210242, Tucson, AZ, 85721-0242, USA
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - R D Brinton
- Center for Innovation in Brain Science, University of Arizona, 1230 N. Cherry Ave, PO Box 210242, Tucson, AZ, 85721-0242, USA
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - K E Rodgers
- Center for Innovation in Brain Science, University of Arizona, 1230 N. Cherry Ave, PO Box 210242, Tucson, AZ, 85721-0242, USA.
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
9
|
Saternos H, Hamlett ED, Guzman S, Head E, Granholm AC, Ledreux A. Unique Pathology in the Locus Coeruleus of Individuals with Down Syndrome. J Alzheimers Dis 2024; 101:541-561. [PMID: 39213062 DOI: 10.3233/jad-240043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Background Down syndrome (DS) is one of the most commonly occurring chromosomal conditions. Most individuals with DS develop Alzheimer's disease (AD) by 50 years of age. Recent evidence suggests that AD pathology in the locus coeruleus (LC) is an early event in sporadic AD. It is likely that the widespread axonal network of LC neurons contributes to the spread of tau pathology in the AD brain, although this has not been investigated in DS-AD. Objective The main purpose of this study was to profile AD pathology and neuroinflammation in the LC, comparing AD and DS-AD in postmortem human tissues. Methods We utilized immunofluorescence and semi-quantitative analyses of pTau (4 different forms), amyloid-β (Aβ), glial, and neuronal markers in the LC across 36 cases (control, DS-AD, and AD) to compare the different pathological profiles. Results Oligomeric tau was highly elevated in DS-AD cases compared to LOAD or EOAD cases. The distribution of staining for pT231 was elevated in DS-AD and EOAD compared to the LOAD group. The DS-AD group exhibited increased Aβ immunostaining compared to AD cases. The number of tau-bearing neurons was also significantly different between the EOAD and DS-AD cases compared to the LOAD cases. Conclusions While inflammation, pTau, and Aβ are all involved in AD pathology, their contribution to disease progression may differ depending on the diagnosis. Our results suggest that DS-AD and EOAD may be more similar in pathology than LOAD. Our study highlights unique avenues to further our understanding of the mechanisms governing AD neuropathology.
Collapse
Affiliation(s)
- Hannah Saternos
- Department of Neurosurgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Eric D Hamlett
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Samuel Guzman
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, University of California at Irvine, Irvine, CA, USA
| | - Ann-Charlotte Granholm
- Department of Neurosurgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Aurélie Ledreux
- Department of Neurosurgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
10
|
Ekanayake A, Peiris S, Ahmed B, Kanekar S, Grove C, Kalra D, Eslinger P, Yang Q, Karunanayaka P. A Review of the Role of Estrogens in Olfaction, Sleep and Glymphatic Functionality in Relation to Sex Disparity in Alzheimer's Disease. Am J Alzheimers Dis Other Demen 2024; 39:15333175241272025. [PMID: 39116421 PMCID: PMC11311174 DOI: 10.1177/15333175241272025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Several risk factors contribute to the development of Alzheimer's disease (AD), including genetics, metabolic health, cardiovascular history, and diet. It has been observed that women appear to face a higher risk of developing AD. Among the various hypotheses surrounding the gender disparity in AD, one pertains to the potential neuroprotective properties of estrogen. Compared to men, women are believed to be more susceptible to neuropathology due to the significant decline in circulating estrogen levels following menopause. Studies have shown, however, that estrogen replacement therapies in post-menopausal women do not consistently reduce the risk of AD. While menopause and estrogen levels are potential factors in the elevated incidence rates of AD among women, this review highlights the possible roles estrogen has in other pathways that may also contribute to the sex disparity observed in AD such as olfaction, sleep, and glymphatic functionality.
Collapse
Affiliation(s)
- Anupa Ekanayake
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
- Grodno State Medical University, Grodno, Belarus
| | - Senal Peiris
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
| | - Biyar Ahmed
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
| | - Sangam Kanekar
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
| | - Cooper Grove
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
| | - Deepak Kalra
- Department of Neurology, Penn State University College of Medicine, Hershey, PA, USA
| | - Paul Eslinger
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
- Department of Neurology, Penn State University College of Medicine, Hershey, PA, USA
| | - Qing Yang
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
- Department of Neurosurgery, Penn State University College of Medicine, Hershey, PA, USA
| | - Prasanna Karunanayaka
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
11
|
Sayfullaeva J, McLoughlin J, Kwakowsky A. Hormone Replacement Therapy and Alzheimer's Disease: Current State of Knowledge and Implications for Clinical Use. J Alzheimers Dis 2024; 101:S235-S261. [PMID: 39422965 DOI: 10.3233/jad-240899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder responsible for over half of dementia cases, with two-thirds being women. Growing evidence from preclinical and clinical studies underscores the significance of sex-specific biological mechanisms in shaping AD risk. While older age is the greatest risk factor for AD, other distinct biological mechanisms increase the risk and progression of AD in women including sex hormones, brain structural differences, genetic background, immunomodulation and vascular disorders. Research indicates a correlation between declining estrogen levels during menopause and an increased risk of developing AD, highlighting a possible link with AD pathogenesis. The neuroprotective effects of estrogen vary with the age of treatment initiation, menopause stage, and type. This review assesses clinical and observational studies conducted in women, examining the influence of estrogen on cognitive function or addressing the ongoing question regarding the potential use of hormone replacement therapy (HRT) as a preventive or therapeutic option for AD. This review covers recent literature and discusses the working hypothesis, current use, controversies and challenges regarding HRT in preventing and treating age-related cognitive decline and AD. The available evidence indicates that estrogen plays a significant role in influencing dementia risk, with studies demonstrating both beneficial and detrimental effects of HRT. Recommendations regarding HRT usage should carefully consider the age when the hormonal supplementation is initiated, baseline characteristics such as genotype and cardiovascular health, and treatment duration until this approach can be more thoroughly investigated or progress in the development of alternative treatments can be made.
Collapse
Affiliation(s)
- Jessica Sayfullaeva
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | - John McLoughlin
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | - Andrea Kwakowsky
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre, University of Galway, Galway, Ireland
| |
Collapse
|
12
|
Daniels MJD, Lefevre L, Szymkowiak S, Drake A, McCulloch L, Tzioras M, Barrington J, Dando OR, He X, Mohammad M, Sasaguri H, Saito T, Saido TC, Spires-Jones TL, McColl BW. Cystatin F ( Cst7) drives sex-dependent changes in microglia in an amyloid-driven model of Alzheimer's disease. eLife 2023; 12:e85279. [PMID: 38085657 PMCID: PMC10715728 DOI: 10.7554/elife.85279] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 11/04/2023] [Indexed: 12/18/2023] Open
Abstract
Microglial endolysosomal (dys)function is strongly implicated in neurodegenerative disease. Transcriptomic studies show that a microglial state characterised by a set of genes involved in endolysosomal function is induced in both mouse Alzheimer's disease (AD) models and human AD brain, and that the emergence of this state is emphasised in females. Cst7 (encoding cystatin F) is among the most highly upregulated genes in these microglia. However, despite such striking and robust upregulation, the function of Cst7 in neurodegenerative disease is not understood. Here, we crossed Cst7-/- mice with the AppNL-G-F mouse to test the role of Cst7 in a model of amyloid-driven AD. Surprisingly, we found that Cst7 plays a sexually dimorphic role regulating microglia in this model. In females, Cst7-/-AppNL-G-F microglia had greater endolysosomal gene expression, lysosomal burden, and amyloid beta (Aβ) burden in vivo and were more phagocytic in vitro. However, in males, Cst7-/-AppNL-G-F microglia were less inflammatory and had a reduction in lysosomal burden but had no change in Aβ burden. Overall, our study reveals functional roles for one of the most commonly upregulated genes in microglia across disease models, and the sex-specific profiles of Cst7-/--altered microglial disease phenotypes. More broadly, the findings raise important implications for AD including crucial questions on sexual dimorphism in neurodegenerative disease and the interplay between endolysosomal and inflammatory pathways in AD pathology.
Collapse
Affiliation(s)
- Michael JD Daniels
- UK Dementia Research Institute at The University of EdinburghEdinburghUnited Kingdom
| | - Lucas Lefevre
- UK Dementia Research Institute at The University of EdinburghEdinburghUnited Kingdom
| | - Stefan Szymkowiak
- UK Dementia Research Institute at The University of EdinburghEdinburghUnited Kingdom
| | - Alice Drake
- UK Dementia Research Institute at The University of EdinburghEdinburghUnited Kingdom
| | - Laura McCulloch
- UK Dementia Research Institute at The University of EdinburghEdinburghUnited Kingdom
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of EdinburghEdinburghUnited Kingdom
| | - Makis Tzioras
- UK Dementia Research Institute at The University of EdinburghEdinburghUnited Kingdom
| | - Jack Barrington
- UK Dementia Research Institute at The University of EdinburghEdinburghUnited Kingdom
| | - Owen R Dando
- UK Dementia Research Institute at The University of EdinburghEdinburghUnited Kingdom
- Simons Initiative for the Developing Brain, University of EdinburghEdinburghUnited Kingdom
| | - Xin He
- UK Dementia Research Institute at The University of EdinburghEdinburghUnited Kingdom
- Simons Initiative for the Developing Brain, University of EdinburghEdinburghUnited Kingdom
| | - Mehreen Mohammad
- UK Dementia Research Institute at The University of EdinburghEdinburghUnited Kingdom
| | - Hiroki Sasaguri
- Department of Neurology and Neurological Science, Graduate School of Medicine, Tokyo Medical and Dental UniversityTokyoJapan
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science InstituteWakoJapan
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science InstituteWakoJapan
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya UniversityNagoyaJapan
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science InstituteWakoJapan
| | - Tara L Spires-Jones
- UK Dementia Research Institute at The University of EdinburghEdinburghUnited Kingdom
| | - Barry W McColl
- UK Dementia Research Institute at The University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
13
|
von Berg J, McArdle PF, Häppölä P, Haessler J, Kooperberg C, Lemmens R, Pezzini A, Thijs V, Pulit SL, Kittner SJ, Mitchell BD, de Ridder J, van der Laan SW. Evidence of survival bias in the association between APOE-ϵ4 and age of ischemic stroke onset. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.01.23294385. [PMID: 38076909 PMCID: PMC10705635 DOI: 10.1101/2023.12.01.23294385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Large genome-wide association studies (GWAS) employing case-control study designs have now identified tens of loci associated with ischemic stroke (IS). As a complement to these studies, we performed GWAS in a case-only design to identify loci influencing age at onset (AAO) of ischemic stroke. Analyses were conducted in a Discovery cohort of 10,857 ischemic stroke cases using a linear regression framework. We meta-analyzed all SNPs with p-value < 1×10-5 in a sex-combined or sex-stratified analysis using summary data from two additional replication cohorts. In the women-only meta-analysis, we detected significant evidence for association of AAO with rs429358, an exonic variant in APOE that encodes for the APOE-ϵ4 allele. Each copy of the rs429358:T>C allele was associated with a 1.29 years earlier stroke AOO (meta p-value = 2.48×10-11). This APOE variant has previously been associated with increased mortality and ischemic stroke AAO. We hypothesized that the association with AAO may reflect a survival bias attributable to an age-related decline in mortality among APOE-ϵ4 carriers and have no association to stroke AAO per se. Using a simulation study, we found that a variant associated with overall mortality might indeed be detected with an AAO analysis. A variant with a two-fold increase on mortality risk would lead to an observed effect of AAO that is comparable to what we found. In conclusion, we detected a robust association of the APOE locus with stroke AAO and provided simulations to suggest that this association may be unrelated to ischemic stroke per se but related to a general survival bias.
Collapse
Affiliation(s)
- Joanna von Berg
- Center for Molecular Medicine, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Patrick F. McArdle
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Paavo Häppölä
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | | | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seatle, WA, USA
| | - Robin Lemmens
- University Hospitals Leuven, Department of Neurology, Leuven, Belgium
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, Leuven, Belgium
| | - Alessandro Pezzini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Stroke Care Program, Department of Emergency, Parma University Hospital, Parma, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Vincent Thijs
- Stroke Theme, The Florey, Heidelberg, Victoria, Australia
- Department of Medicine, University of Melbourne, Victoria, Australia
- Department of Neurology, Austin Health, Heidelberg, Victoria, Australia
| | | | - Sara L. Pulit
- Center for Molecular Medicine, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Steven J. Kittner
- Geriatric Research and Education Clinical Center, VA Maryland Health Care System, Baltimore, MD, USA
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Braxton D. Mitchell
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Geriatric Research and Education Clinical Center, VA Maryland Health Care System, Baltimore, MD, USA
| | - Jeroen de Ridder
- Center for Molecular Medicine, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Sander W. van der Laan
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Center of Population Health and Genomics, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
14
|
Gregory S, Booi L, Jenkins N, Bridgeman K, Muniz-Terrera G, Farina FR. Hormonal contraception and risk for cognitive impairment or Alzheimer's disease and related dementias in young women: a scoping review of the evidence. Front Glob Womens Health 2023; 4:1289096. [PMID: 38025979 PMCID: PMC10679746 DOI: 10.3389/fgwh.2023.1289096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Women are significantly more likely to develop Alzheimer's disease and related dementias (ADRD) than men. Suggestions to explain the sex differences in dementia incidence have included the influence of sex hormones with little attention paid to date as to the effect of hormonal contraception on brain health. The aim of this scoping review is to evaluate the current evidence base for associations between hormonal contraceptive use by women and non-binary people in early adulthood and brain health outcomes. Methods A literature search was conducted using EMBASE, Medline and Google Scholar, using the keywords "hormonal contraception" OR "contraception" OR "contraceptive" AND "Alzheimer*" OR "Brain Health" OR "Dementia". Results Eleven papers were identified for inclusion in the narrative synthesis. Studies recruited participants from the UK, USA, China, South Korea and Indonesia. Studies included data from women who were post-menopausal with retrospective data collection, with only one study contemporaneously collecting data from participants during the period of hormonal contraceptive use. Studies reported associations between hormonal contraceptive use and a lower risk of ADRD, particularly Alzheimer's disease (AD), better cognition and larger grey matter volume. Some studies reported stronger associations with longer duration of hormonal contraceptive use, however, results were inconsistent. Four studies reported no significant associations between hormonal contraceptive use and measures of brain health, including brain age on MRI scans and risk of AD diagnosis. Discussion Further research is needed on young adults taking hormonal contraceptives, on different types of hormonal contraceptives (other than oral) and to explore intersections between sex, gender, race and ethnicity. Systematic Review Registration https://doi.org/10.17605/OSF.IO/MVX63, identifier: OSF.io: 10.17605/OSF.IO/MVX63.
Collapse
Affiliation(s)
- Sarah Gregory
- Edinburgh Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Laura Booi
- Memory and Aging Center, Global Brain Health Institute, Trinity College, Dublin, Ireland
- Centre for Dementia Research, School of Health, Leeds Beckett University, Leeds, United Kingdom
| | - Natalie Jenkins
- Edinburgh Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- School of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Katie Bridgeman
- Edinburgh Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Graciela Muniz-Terrera
- Edinburgh Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Francesca R. Farina
- Memory and Aging Center, Global Brain Health Institute, Trinity College, Dublin, Ireland
- Department of Medical Social Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
15
|
Samson AD, Rajagopal S, Pasvanis S, Villeneuve S, McIntosh AR, Rajah MN. Sex differences in longitudinal changes of episodic memory-related brain activity and cognition in cognitively unimpaired older adults with a family history of Alzheimer's disease. Neuroimage Clin 2023; 40:103532. [PMID: 37931333 PMCID: PMC10652211 DOI: 10.1016/j.nicl.2023.103532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023]
Abstract
Episodic memory decline is an early symptom of Alzheimer's disease (AD) - a neurodegenerative disease that has a higher prevalence rate in older females compared to older males. However, little is known about why these sex differences in prevalence rate exist. In the current longitudinal task fMRI study, we explored whether there were sex differences in the patterns of memory decline and brain activity during object-location (spatial context) encoding and retrieval in a large sample of cognitively unimpaired older adults from the Pre-symptomatic Evaluation of Novel or Experimental Treatments for Alzheimer's Disease (PREVENT-AD) program who are at heightened risk of developing AD due to having a family history (+FH) of the disease. The goal of the study was to gain insight into whether there are sex differences in the neural correlates of episodic memory decline, which may advance knowledge about sex-specific patterns in the natural progression to AD. Our results indicate that +FH females performed better than +FH males at both baseline and follow-up on neuropsychological and task fMRI measures of episodic memory. Moreover, multivariate data-driven task fMRI analysis identified generalized patterns of longitudinal decline in medial temporal lobe activity that was paralleled by longitudinal increases in lateral prefrontal cortex, caudate and midline cortical activity during successful episodic retrieval and novelty detection in +FH males, but not females. Post-hoc analyses indicated that higher education had a stronger effect on +FH females neuropsychological scores compared to +FH males. We conclude that higher educational attainment may have a greater neuroprotective effect in older +FH females compared to +FH males.
Collapse
Affiliation(s)
- Alexandria D Samson
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario M6A 2E1, Canada; Department of Psychology, University of Toronto, Toronto, Ontario M5S 3G3, Canada
| | - Sricharana Rajagopal
- Centre for Cerebral Imaging, Douglas Hospital Research Centre, Montreal, Quebec H4H 1R3, Canada
| | - Stamatoula Pasvanis
- Centre for Cerebral Imaging, Douglas Hospital Research Centre, Montreal, Quebec H4H 1R3, Canada
| | - Sylvia Villeneuve
- Centre for Studies on the Prevention of Alzheimer's Disease (StoP-AD), Douglas Hospital Research Centre, Montreal, Quebec H4H 1R3, Canada; Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Anthony R McIntosh
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario M6A 2E1, Canada; Department of Psychology, University of Toronto, Toronto, Ontario M5S 3G3, Canada; Institute for Neuroscience and Neurotechnology, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada; Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - M Natasha Rajah
- Centre for Cerebral Imaging, Douglas Hospital Research Centre, Montreal, Quebec H4H 1R3, Canada; Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada; Department of Psychology, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada.
| |
Collapse
|
16
|
Kim NN, Tan C, Ma E, Kutlu S, Carrazana E, Vimala V, Viereck J, Liow K. Abnormal Temporal Slowing on EEG Findings in Preclinical Alzheimer's Disease Patients With the ApoE4 Allele: A Pilot Study. Cureus 2023; 15:e47852. [PMID: 38021568 PMCID: PMC10679961 DOI: 10.7759/cureus.47852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2023] [Indexed: 12/01/2023] Open
Abstract
INTRODUCTION Currently, there are limited accessible and cost-effective biomarkers for preclinical Alzheimer's disease (AD) patients. However, the apolipoprotein E (ApoE) polymorphic alleles can predict if someone is at high (e4), neutral (e3), or low (e2) genetic risk for developing AD. This study analyzed electroencephalogram (EEG) reports from individuals with various ApoE genotypes, aiming to identify EEG changes and patterns that could potentially serve as predictive markers for preclinical AD progression. METHODS Participants aged 64-78 were selected from the patient database at an outpatient neurology clinic. Genotype studies were performed to determine ApoE status, followed by EEG analysis to identify any apparent trends. A case-control design was used, categorizing participants into cases (e2e3, e2e4, e3e4, e4e4) and controls (e3e3). EEG recordings were compared between the groups to identify potential differences in EEG characteristics, including abnormal temporal slowing, frequency, and ApoE genotype association. RESULTS Among 43 participants, 49% demonstrated evidence of abnormal temporal slowing on EEG. Of these, 48% displayed focal left temporal slowing, and 52% displayed bilateral temporal slowing. The right-sided temporal slowing was not observed. Among participants with abnormal slowing, 95% exhibited theta frequency (4-8 Hz) slowing, while only 4.8% displayed delta frequency (0-4 Hz) slowing. Among participants with the ApoE4 allele, 61.5% demonstrated evidence of abnormal slowing, compared to 43.3% without it. Furthermore, the presence of an ApoE4 allele was associated with a significantly higher proportion of males (54%) compared to those without it (13%) (p=0.009). CONCLUSIONS Although we did not find a statistically significant difference in temporal EEG slowing among different ApoE genotypes, our findings suggest a potential association between temporal slowing on EEG and the presence of an ApoE4 allele in individuals with preclinical AD. These observations highlight the need for further exploration into the potential influence of the ApoE4 allele on EEG findings and the utility of EEG as a complementary diagnostic tool for AD. Longitudinal studies with large sample sizes are needed to establish the precise relationship between EEG patterns, ApoE genotypes, and AD progression.
Collapse
Affiliation(s)
- Nathan N Kim
- Neurology, John A. Burns School of Medicine (JABSOM), University of Hawaii, Honolulu, USA
| | - Charissa Tan
- Neurology, John A. Burns School of Medicine (JABSOM), University of Hawaii, Honolulu, USA
| | - Enze Ma
- Neurology, John A. Burns School of Medicine (JABSOM), University of Hawaii, Honolulu, USA
| | - Selin Kutlu
- Neurology, John A. Burns School of Medicine (JABSOM), University of Hawaii, Honolulu, USA
| | - Enrique Carrazana
- Brain Research, Innovation, & Translation Laboratory, Comprehensive Epilepsy Center & Video-EEG Epilepsy Monitoring Unit, Hawaii Pacific Neuroscience, Honolulu, USA
| | | | - Jason Viereck
- Brain Research, Innovation, & Translation Laboratory, Hawaii Pacific Neuroscience, Honolulu, USA
| | - Kore Liow
- Neurology, Hawaii Pacific Neuroscience, Honolulu, USA
| |
Collapse
|
17
|
Wood ME, Xiong LY, Wong YY, Buckley RF, Swardfager W, Masellis M, Lim ASP, Nichols E, Joie RL, Casaletto KB, Kumar RG, Dams-O'Connor K, Palta P, George KM, Satizabal CL, Barnes LL, Schneider JA, Binet AP, Villeneuve S, Pa J, Brickman AM, Black SE, Rabin JS. Sex differences in associations between APOE ε2 and longitudinal cognitive decline. Alzheimers Dement 2023; 19:4651-4661. [PMID: 36994910 PMCID: PMC10544702 DOI: 10.1002/alz.13036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 03/31/2023]
Abstract
INTRODUCTION We examined whether sex modifies the association between APOE ε2 and cognitive decline in two independent samples. METHODS We used observational data from cognitively unimpaired non-Hispanic White (NHW) and non-Hispanic Black (NHB) adults. Linear mixed models examined interactive associations of APOE genotype (ε2 or ε4 carrier vs. ε3/ε3) and sex on cognitive decline in NHW and NHB participants separately. RESULTS In both Sample 1 (N = 9766) and Sample 2 (N = 915), sex modified the association between APOE ε2 and cognitive decline in NHW participants. Specifically, relative to APOE ε3/ε3, APOE ε2 protected against cognitive decline in men but not women. Among APOE ε2 carriers, men had slower decline than women. Among APOE ε3/ε3 carriers, cognitive trajectories did not differ between sexes. There were no sex-specific associations of APOE ε2 with cognition in NHB participants (N = 2010). DISCUSSION In NHW adults, APOE ε2 may protect men but not women against cognitive decline. HIGHLIGHTS We studied sex-specific apolipoprotein E (APOE) ε2 effects on cognitive decline. In non-Hispanic White (NHW) adults, APOE ε2 selectively protects men against decline. Among men, APOE ε2 was more protective than APOE ε3/ε3. In women, APOE ε2 was no more protective than APOE ε3/ε3. Among APOE ε2 carriers, men had slower decline than women. There were no sex-specific APOE ε2 effects in non-Hispanic Black (NHB) adults.
Collapse
Affiliation(s)
- Madeline E Wood
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
| | - Lisa Y Xiong
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Yuen Yan Wong
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Rachel F Buckley
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Florey Institute, University of Melbourne, Parkville, Victoria, Australia
- Melbourne School of Psychological Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Walter Swardfager
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Mario Masellis
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Andrew S P Lim
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Emma Nichols
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Kaitlin B Casaletto
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Raj G Kumar
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kristen Dams-O'Connor
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Priya Palta
- Departments of Medicine and Epidemiology, Columbia University Irving Medical Center, New York, New York, USA
| | - Kristen M George
- Department of Public Health Sciences, University of California Davis School of Medicine, Davis, California, USA
| | - Claudia L Satizabal
- Department of Population Health Science and Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, Texas, USA
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Lisa L Barnes
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, USA
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, USA
| | - Alexa Pichette Binet
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden
| | - Sylvia Villeneuve
- Centre for Studies on Prevention of Alzheimer's Disease (StoP-AD), Douglas Mental Health University Institute, Centre for Studies on the Prevention of Alzheimer's Disease (StoP-AD), Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Judy Pa
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Department of Neurology, University of Southern California, Los Angeles, California, USA
| | - Adam M Brickman
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Sandra E Black
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer S Rabin
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Yu Z, Shi Z, Dan T, Dere M, Kim M, Li Q, Wu G. Uncovering Diverse Mechanistic Spreading Pathways in Disease Progression of Alzheimer's Disease. J Alzheimers Dis Rep 2023; 7:855-872. [PMID: 37662609 PMCID: PMC10473126 DOI: 10.3233/adr-230081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023] Open
Abstract
Background The AT[N] research framework focuses on three major biomarkers in Alzheimer's disease (AD): amyloid-β deposition (A), pathologic tau (T), and neurodegeneration [N]. Objective We hypothesize that the diverse mechanisms such as A⟶T and A⟶[N] pathways from one brain region to others, may underlie the wide variation in clinical symptoms. We aim to uncover the causal-like effect of regional AT[N] biomarkers on cognitive decline as well as the interaction with non-modifiable risk factors such as age and APOE4. Methods We apply multi-variate statistical inference to uncover all possible mechanistic spreading pathways through which the aggregation of an upstream biomarker (e.g., increased amyloid level) in a particular brain region indirectly impacts cognitive decline, via the cascade build-up of a downstream biomarker (e.g., reduced metabolism level) in another brain region. Furthermore, we investigate the survival time for each identified region-to-region pathological pathway toward the AD onset. Results We have identified a collection of critical brain regions on which the amyloid burdens exert an indirect effect on the decline in memory and executive function (EF) domain, being mediated by the reduction of metabolism level at other brain regions. APOE4 status has been found not only involved in many A⟶N mechanistic pathways but also significantly contributes to the risk of developing AD. Conclusion Our major findings include 1) the region-to-region A⟶N⟶MEM and A⟶N⟶MEM pathways exhibit distinct spatial patterns; 2) APOE4 is significantly associated with both direct and indirect effects on the cognitive decline while sex difference has not been identified in the mediation analysis.
Collapse
Affiliation(s)
- Zhentao Yu
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA
| | - Zhuoyu Shi
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Tingting Dan
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Mustafa Dere
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Minjeong Kim
- Department of Computer Science, University of North Carolina, Greensboro, NC, USA
| | - Quefeng Li
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA
| | - Guorong Wu
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
- Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA
- Department of Statistics and Operations Research, University of North Carolina, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
- Carolina Institute of Developmental Disabilities, University of North Carolina, Chapel Hill, NC, USA
| | | |
Collapse
|
19
|
Valencia-Olvera AC, Maldonado Weng J, Christensen A, LaDu MJ, Pike CJ. Role of estrogen in women's Alzheimer's disease risk as modified by APOE. J Neuroendocrinol 2023; 35:e13209. [PMID: 36420620 PMCID: PMC10049970 DOI: 10.1111/jne.13209] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/29/2022] [Accepted: 10/13/2022] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is characterized by numerous sexual dimorphisms that impact the development, progression, and probably the strategies to prevent and treat the most common form of dementia. In this review, we consider this topic from a female perspective with a specific focus on how women's vulnerability to the disease is affected by the individual and interactive effects of estrogens and apolipoprotein E (APOE) genotype. Importantly, APOE appears to modulate systemic and neural outcomes of both menopause and estrogen-based hormone therapy. In the brain, dementia risk is greater in APOE4 carriers, and the impacts of hormone therapy on cognitive decline and dementia risk vary according to both outcome measure and APOE genotype. Beyond the CNS, estrogen and APOE genotype affect vulnerability to menopause-associated bone loss, dyslipidemia and cardiovascular disease risk. An emerging concept that may link these relationships is the possibility that the effects of APOE in women interact with estrogen status by mechanisms that may include modulation of estrogen responsiveness. This review highlights the need to consider the key AD risk factors of advancing age in a sex-specific manner to optimize development of therapeutic approaches for AD, a view aligned with the principle of personalized medicine.
Collapse
Affiliation(s)
- AC Valencia-Olvera
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - J Maldonado Weng
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - A Christensen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089 USA
| | - MJ LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - CJ Pike
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089 USA
| |
Collapse
|
20
|
Gottschalk WK, Mahon S, Hodgson D, Barrera J, Hill D, Wei A, Kumar M, Dai K, Anderson L, Mihovilovic M, Lutz MW, Chiba-Falek O. The APOE-TOMM40 Humanized Mouse Model: Characterization of Age, Sex, and PolyT Variant Effects on Gene Expression. J Alzheimers Dis 2023; 94:1563-1576. [PMID: 37458041 PMCID: PMC10733864 DOI: 10.3233/jad-230451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
BACKGROUND The human chromosome 19q13.32 is a gene rich region and has been associated with multiple phenotypes, including late onset Alzheimer's disease (LOAD) and other age-related conditions. OBJECTIVE Here we developed the first humanized mouse model that contains the entire TOMM40 and APOE genes with all intronic and intergenic sequences including the upstream and downstream regions. Thus, the mouse model carries the human TOMM40 and APOE genes and their intact regulatory sequences. METHODS We generated the APOE-TOMM40 humanized mouse model in which the entire mouse region was replaced with the human (h)APOE-TOMM40 loci including their upstream and downstream flanking regulatory sequences using recombineering technologies. We then measured the expression of the human TOMM40 and APOE genes in the mice brain, liver, and spleen tissues using TaqMan based mRNA expression assays. RESULTS We investigated the effects of the '523' polyT genotype (S/S or VL/VL), sex, and age on the human TOMM40- and APOE-mRNAs expression levels using our new humanized mouse model. The analysis revealed tissue specific and shared effects of the '523' polyT genotype, sex, and age on the regulation of the human TOMM40 and APOE genes. Noteworthy, the regulatory effect of the '523' polyT genotype was observed for all studied organs. CONCLUSION The model offers new opportunities for basic science, translational, and preclinical drug discovery studies focused on the APOE genomic region in relation to LOAD and other conditions in adulthood.
Collapse
Affiliation(s)
- William K. Gottschalk
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Scott Mahon
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Dellila Hodgson
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, USA
| | - Julio Barrera
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, USA
| | - Delaney Hill
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, USA
| | - Angela Wei
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, USA
| | - Manish Kumar
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, USA
| | - Kathy Dai
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, USA
| | - Lauren Anderson
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Mirta Mihovilovic
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Michael W. Lutz
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Ornit Chiba-Falek
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
21
|
Liew TM. Subjective cognitive decline, APOE e4 allele, and the risk of neurocognitive disorders: Age- and sex-stratified cohort study. Aust N Z J Psychiatry 2022; 56:1664-1675. [PMID: 35229693 PMCID: PMC9433458 DOI: 10.1177/00048674221079217] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Subjective cognitive decline and APOE e4 allele (APOE4) are known predictors of mild cognitive impairment and dementia (mild cognitive impairment/dementia), with recent evidence showing interaction between subjective cognitive decline and APOE4 in amplifying the risk of mild cognitive impairment/dementia. However, the literature is unclear whether the interaction effect is seen across various age and sex strata. This study examined the interaction between subjective cognitive decline and APOE4-across different age and sex strata-on the risk of mild cognitive impairment/dementia. METHODS This cohort study included 16,221 participants aged ⩾50 years and had normal cognition at baseline. Participants were evaluated for subjective cognitive decline and APOE4 at baseline, and followed-up almost annually for mild cognitive impairment/dementia (median follow-up = 4.5 years). Interaction effects were examined in Cox regression using Relative Excess Risk due to Interaction, stratified by age (⩽70 vs >70 years) and sex. RESULTS Subjective cognitive decline and APOE4 were independently associated with mild cognitive impairment/dementia (hazard ratio: 1.4-1.8), with the highest risk when subjective cognitive decline and APOE4 co-occurred (hazard ratio: 2.6). APOE4 amplified the association between subjective cognitive decline and mild cognitive impairment/dementia in older women (Relative Excess Risk due to Interaction 1.0; 95% confidence interval = [0.3, 1.6]), but not in other age or sex strata. Among older women, half of them developed mild cognitive impairment/dementia by 12.1 years in the absence of subjective cognitive decline or APOE4. This duration shortened to 8.1-10.3 years in the presence of either subjective cognitive decline or APOE4, and to 4.4 years in the presence of both subjective cognitive decline and APOE4. Interaction effect among older women remained consistent when alternate outcomes were used (i.e. mild cognitive impairment and dementia due to Alzheimer's disease; dementia; and Alzheimer's dementia) (Relative Excess Risk due to Interaction 1.2-2.5). CONCLUSIONS APOE4 amplifies the association between subjective cognitive decline and neurocognitive disorders in older women, with the findings suggesting the need for further research to delineate underlying neurobiology. APOE4 may potentially have a role in facilitating further risk stratification of older women with subjective cognitive decline in clinical practice.
Collapse
Affiliation(s)
- Tau Ming Liew
- Department of Psychiatry, Singapore General Hospital, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore
| |
Collapse
|
22
|
Upadhya S, Gingerich D, Lutz MW, Chiba-Falek O. Differential Gene Expression and DNA Methylation in the Risk of Depression in LOAD Patients. Biomolecules 2022; 12:1679. [PMID: 36421693 PMCID: PMC9687527 DOI: 10.3390/biom12111679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 06/28/2024] Open
Abstract
Depression is common among late-onset Alzheimer's Disease (LOAD) patients. Only a few studies investigated the genetic variability underlying the comorbidity of depression in LOAD. Moreover, the epigenetic and transcriptomic factors that may contribute to comorbid depression in LOAD have yet to be studied. Using transcriptomic and DNA-methylomic datasets from the ROSMAP cohorts, we investigated differential gene expression and DNA-methylation in LOAD patients with and without comorbid depression. Differential expression analysis did not reveal significant association between differences in gene expression and the risk of depression in LOAD. Upon sex-stratification, we identified 25 differential expressed genes (DEG) in males, of which CHI3L2 showed the strongest upregulation, and only 3 DEGs in females. Additionally, testing differences in DNA-methylation found significant hypomethylation of CpG (cg20442550) on chromosome 17 (log2FC = -0.500, p = 0.004). Sex-stratified differential DNA-methylation analysis did not identify any significant CpG probes. Integrating the transcriptomic and DNA-methylomic datasets did not discover relationships underlying the comorbidity of depression and LOAD. Overall, our study is the first multi-omics genome-wide exploration of the role of gene expression and epigenome alterations in the risk of comorbid depression in LOAD patients. Furthermore, we discovered sex-specific differences in gene expression underlying the risk of depression symptoms in LOAD.
Collapse
Affiliation(s)
| | | | | | - Ornit Chiba-Falek
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
23
|
Umeh CC, Mahajan A, Mihailovic A, Pontone GM. APOE4 Allele, Sex, and Dementia Risk in Parkinson's Disease: Lessons From a Longitudinal Cohort. J Geriatr Psychiatry Neurol 2022; 35:810-815. [PMID: 34958617 PMCID: PMC11062588 DOI: 10.1177/08919887211060019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION The effect of APOE4 allele on dementia risk is well established in Alzheimer's disease and Parkinson's disease (PD). However, it is unknown if sex modifies this relationship. We sought to determine the effect of sex on the relationship between APOE4 status and incident cognitive decline in PD. METHODS Data from the prospectively collected longitudinal National Alzheimer's Coordinating Center (NACC) Uniform Data Set (UDS) and Neuropathology Data Set (NDS) were analyzed. The NACC develops and maintains data from approximately 29 National Institutes of Aging-funded Alzheimer's Disease Research Centers. Further details may be found at the NACC web site (www.alz.washington.edu). The visit at which diagnosis of PD was made was termed the baseline visit. All patients with a PD diagnosis but without dementia at the baseline visit were included in the analyses. RESULTS Presence of APOE4 allele was associated with higher odds (OR = 7.4; P < .001) of subsequent diagnosis of dementia and with a faster time to developing dementia (P = .04). Those with APOE4 allele were more likely to have neuropathology associated with Alzheimer's disease than those without APOE4 allele. We did not find any difference by sex. There were no differences between Lewy body pathology or neuron loss in the substantia nigra between the 2 groups. Sex was not associated with dementia risk in PD (OR = 0.53, P = .15) or with the time to dementia onset (P = .22). Sex did not modify the relationship between the APOE4 allele and dementia onset in PD patients (P = .12). CONCLUSIONS APOE4 allele status in PD may be a predictor of cognitive decline in PD but does not appear to be modified by sex.
Collapse
Affiliation(s)
- Chizoba C. Umeh
- Department of Neurology, Beth Israel Lahey Health, Burlington, MA, USA
| | - Abhimanyu Mahajan
- Rush Parkinson’s Disease and Movement Disorders Program, Chicago, IL, USA
| | | | - Gregory M. Pontone
- Departments of Psychiatry and Neurology (GMP), Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
24
|
Colombo G, Cubero RJA, Kanari L, Venturino A, Schulz R, Scolamiero M, Agerberg J, Mathys H, Tsai LH, Chachólski W, Hess K, Siegert S. A tool for mapping microglial morphology, morphOMICs, reveals brain-region and sex-dependent phenotypes. Nat Neurosci 2022; 25:1379-1393. [PMID: 36180790 PMCID: PMC9534764 DOI: 10.1038/s41593-022-01167-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 08/16/2022] [Indexed: 11/10/2022]
Abstract
Environmental cues influence the highly dynamic morphology of microglia. Strategies to characterize these changes usually involve user-selected morphometric features, which preclude the identification of a spectrum of context-dependent morphological phenotypes. Here we develop MorphOMICs, a topological data analysis approach, which enables semiautomatic mapping of microglial morphology into an atlas of cue-dependent phenotypes and overcomes feature-selection biases and biological variability. We extract spatially heterogeneous and sexually dimorphic morphological phenotypes for seven adult mouse brain regions. This sex-specific phenotype declines with maturation but increases over the disease trajectories in two neurodegeneration mouse models, with females showing a faster morphological shift in affected brain regions. Remarkably, microglia morphologies reflect an adaptation upon repeated exposure to ketamine anesthesia and do not recover to control morphologies. Finally, we demonstrate that both long primary processes and short terminal processes provide distinct insights to morphological phenotypes. MorphOMICs opens a new perspective to characterize microglial morphology.
Collapse
Affiliation(s)
- Gloria Colombo
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Ryan John A Cubero
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Lida Kanari
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | | | - Rouven Schulz
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Martina Scolamiero
- Department of Mathematics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Jens Agerberg
- Department of Mathematics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Hansruedi Mathys
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- University of Pittsburgh Brain Institute and Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Wojciech Chachólski
- Department of Mathematics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Kathryn Hess
- Laboratory for Topology and Neuroscience, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sandra Siegert
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria.
| |
Collapse
|
25
|
Maffioli E, Murtas G, Rabattoni V, Badone B, Tripodi F, Iannuzzi F, Licastro D, Nonnis S, Rinaldi AM, Motta Z, Sacchi S, Canu N, Tedeschi G, Coccetti P, Pollegioni L. Insulin and serine metabolism as sex-specific hallmarks of Alzheimer's disease in the human hippocampus. Cell Rep 2022; 40:111271. [PMID: 36070700 DOI: 10.1016/j.celrep.2022.111271] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 07/01/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022] Open
Abstract
Healthy aging is an ambitious aspiration for humans, but neurodegenerative disorders, such as Alzheimer's disease (AD), strongly affect quality of life. Using an integrated omics approach, we investigate alterations in the molecular composition of postmortem hippocampus samples of healthy persons and individuals with AD. Profound differences are apparent between control and AD male and female cohorts in terms of up- and downregulated metabolic pathways. A decrease in the insulin response is evident in AD when comparing the female with the male group. The serine metabolism (linked to the glycolytic pathway and generating the N-methyl-D-aspartate [NMDA] receptor coagonist D-serine) is also significantly modulated: the D-Ser/total serine ratio represents a way to counteract age-related cognitive decline in healthy men and during AD onset in women. These results show how AD changes and, in certain respects, almost reverses sex-specific proteomic and metabolomic profiles, highlighting how different pathophysiological mechanisms are active in men and women.
Collapse
Affiliation(s)
- Elisa Maffioli
- DIVAS, Department of Veterinary Medicine and Animal Science, University of Milano, 20121 Milano, Italy; CIMAINA, University of Milano, 20121 Milano, Italy
| | - Giulia Murtas
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Valentina Rabattoni
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Beatrice Badone
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
| | - Farida Tripodi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
| | - Filomena Iannuzzi
- Department of System Medicine, University of Rome "Tor Vergata," 00133 Rome, Italy
| | | | - Simona Nonnis
- DIVAS, Department of Veterinary Medicine and Animal Science, University of Milano, 20121 Milano, Italy; CIMAINA, University of Milano, 20121 Milano, Italy
| | - Anna Maria Rinaldi
- Department of System Medicine, University of Rome "Tor Vergata," 00133 Rome, Italy
| | - Zoraide Motta
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Silvia Sacchi
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Nadia Canu
- Department of System Medicine, University of Rome "Tor Vergata," 00133 Rome, Italy; Istituto di Biochimica e Biologia Cellulare (IBBC) CNR, 00015 Monterotondo Scalo, Italy.
| | - Gabriella Tedeschi
- DIVAS, Department of Veterinary Medicine and Animal Science, University of Milano, 20121 Milano, Italy; CIMAINA, University of Milano, 20121 Milano, Italy.
| | - Paola Coccetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy.
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy.
| |
Collapse
|
26
|
Longterm Increased S100B Enhances Hippocampal Progenitor Cell Proliferation in a Transgenic Mouse Model. Int J Mol Sci 2022; 23:ijms23179600. [PMID: 36076994 PMCID: PMC9455494 DOI: 10.3390/ijms23179600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/13/2022] [Accepted: 08/19/2022] [Indexed: 12/11/2022] Open
Abstract
(1) The neurotrophic protein S100B is a marker of brain injury and has been associated with neuroregeneration. In S100Btg mice rendering 12 copies of the murine S100B gene we evaluated whether S100B may serve as a treatment option. (2) In juvenile, adult, and one-year-old S100Btg mice (female and male; n = 8 per group), progenitor cell proliferation was quantified in the subgranular zone (SGZ) and the granular cell layer (GCL) of the dentate gyrus with the proliferative marker Ki67 and BrdU (50 mg/kg). Concomitant signaling was quantified utilizing glial fibrillary acidic protein (GFAP), apolipoprotein E (ApoE), brain-derived neurotrophic factor (BDNF), and the receptor for advanced glycation end products (RAGE) immunohistochemistry. (3) Progenitor cell proliferation in the SGZ and migration to the GCL was enhanced. Hippocampal GFAP was reduced in one-year-old S100Btg mice. ApoE in the hippocampus and frontal cortex of male and BDNF in the frontal cortex of female S100Btg mice was reduced. RAGE was not affected. (4) Enhanced hippocampal neurogenesis in S100Btg mice was not accompanied by reactive astrogliosis. Sex- and brain region-specific variations of ApoE and BDNF require further elucidations. Our data reinforce the importance of this S100Btg model in evaluating the role of S100B in neuroregenerative medicine.
Collapse
|
27
|
Corriveau-Lecavalier N, Décarie-Labbé L, Mellah S, Belleville S, Rajah MN. Sex differences in patterns of associative memory-related activation in individuals at risk of Alzheimer's disease. Neurobiol Aging 2022; 119:89-101. [PMID: 35985098 DOI: 10.1016/j.neurobiolaging.2022.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/05/2022] [Accepted: 07/20/2022] [Indexed: 11/15/2022]
Abstract
The risk of developing Alzheimer's disease dementia is higher in females compared to males and is greater in individuals with subjective cognitive decline and mild cognitive impairment than in healthy controls. We used a multivariate behavioral partial least square correlation analysis to examine how relationships between memory-related activation and associative memory performance vary as a function of sex and clinical status. This was assessed in 182 participants from the Consortium for the Early Identification of Alzheimer's Disease-Quebec cohort, which were stratified according to sex (Male, Female) and clinical status (healthy controls, subjective cognitive decline, mild cognitive impairment). We found 6 significant latent variables mainly expressing: (1) overall sex differences; (2) between-sex differences according to clinical status; and (3) within-sex differences according to clinical status in relationships between whole-brain memory-related activation and memory performance. These patterns of activation mostly involved the default mode and fronto-parietal networks. Our results have implication in understanding the macro-scale functional processes possibly contributing to the higher risk of cognitive decline in females compared to males in the context of aging and early Alzheimer's disease.
Collapse
Affiliation(s)
| | - Laurie Décarie-Labbé
- Research Centre, Institut universitaire de geriatrie de Montreal, Montreal, Quebec, Canada; Department of Psychology, Universite de Montreal, Montreal, Quebec, Canada
| | - Samira Mellah
- Research Centre, Institut universitaire de geriatrie de Montreal, Montreal, Quebec, Canada
| | - Sylvie Belleville
- Research Centre, Institut universitaire de geriatrie de Montreal, Montreal, Quebec, Canada; Department of Psychology, Universite de Montreal, Montreal, Quebec, Canada
| | - Maria Natasha Rajah
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Douglas Research Centre, Montreal, Quebec, Canada.
| | | |
Collapse
|
28
|
Chen SM, Hsu TC, Chew CH, Huang WT, Chen AL, Lin YF, Eddarkaoui S, Buee L, Chen CC. Microtube Array Membrane Encapsulated Cell Therapy: A Novel Platform Technology Solution for Treatment of Alzheimer's Disease. Int J Mol Sci 2022; 23:6855. [PMID: 35743295 PMCID: PMC9224941 DOI: 10.3390/ijms23126855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer's disease is the most frequent form of dementia in aging population and is presently the world's sixth largest cause of mortality. With the advancement of therapies, several solutions have been developed such as passive immunotherapy against these misfolded proteins, thereby resulting in the clearance. Within this segment, encapsulated cell therapy (ECT) solutions that utilize antibody releasing cells have been proposed with a multitude of techniques under development. Hence, in this study, we utilized our novel and patented Microtube Array Membranes (MTAMs) as an encapsulating platform system with anti-pTau antibody-secreting hybridoma cells to study the impact of it on Alzheimer's disease. In vivo results revealed that in the water maze, the mice implanted with hybridoma cell MTAMs intracranially (IN) and subcutaneously (SC) showed improvement in the time spent the goal quadrant and escape latency. In passive avoidance, hybridoma cell loaded MTAMs (IN and SC) performed significantly well in step-through latency. At the end of treatment, animals with hybridoma cell loaded MTAMs had lower phosphorylated tau (pTau) expression than empty MTAMs had. Combining both experimental results unveiled that the clearance of phosphorylated tau might rescue the cognitive impairment associated with AD.
Collapse
Affiliation(s)
- Shu-Mei Chen
- Department of Surgery, Division of Neurosurgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 11031, Taiwan
| | - Tsung-Chin Hsu
- Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11052, Taiwan; (T.-C.H.); (C.-H.C.); (W.-T.H.)
| | - Chee-Ho Chew
- Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11052, Taiwan; (T.-C.H.); (C.-H.C.); (W.-T.H.)
| | - Wan-Ting Huang
- Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11052, Taiwan; (T.-C.H.); (C.-H.C.); (W.-T.H.)
| | - Amanda Lin Chen
- Department of Biology, University of Washington, Seattle, WA 98195, USA;
| | - Yung-Feng Lin
- School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei 11052, Taiwan;
| | - Sabiha Eddarkaoui
- Lille Neuroscience & Cognition, Inserm, CHU-Lille, Université de Lille, 59045 Lille, France; (S.E.); (L.B.)
| | - Luc Buee
- Lille Neuroscience & Cognition, Inserm, CHU-Lille, Université de Lille, 59045 Lille, France; (S.E.); (L.B.)
- NeuroTMU, Lille International Laboratory, Université de Lille, 59000 Lille, France
| | - Chien-Chung Chen
- Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11052, Taiwan; (T.-C.H.); (C.-H.C.); (W.-T.H.)
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- The Ph.D. Program for Translational Medicine, Taipei Medical University, Taipei 11052, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
29
|
Wang L, Shao C, Han C, Li P, Wang F, Wang Y, Li J. Correlation of ApoE gene polymorphism with acute myocardial infarction and aspirin resistance after percutaneous coronary intervention. Am J Transl Res 2022; 14:3303-3310. [PMID: 35702102 PMCID: PMC9185036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/31/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To determine the correlation of Apolipoprotein E (ApoE) gene polymorphism with acute myocardial infarction (AMI) and aspirin (APC) resistance after percutaneous coronary intervention (PCI). METHODS In this randomized controlled trial (The Second People's Hospital of Lianyungang Ethics Committee No.L1719), a total of 120 AMI patients admitted to the Second People's Hospital of Lianyungang from January 2019 to June 2020 were enrolled into the research group (Res group) and 120 healthy individuals during the same time period into the control group (Con group). ApoE gene polymorphism was detected by gene microarray and analyzed statistically. The occurrence of APC resistance after PCI was recorded, and the relationship between ApoE gene polymorphism and APC resistance was analyzed. RESULTS The Res group showed a significantly lower level of ε3/ε3 gene and significantly higher levels of ε3/ε4 and ε4/ε4 genes than the Con group (all P<0.05), but no notable difference was found in the distribution of ApoE ε2 between the two groups (P>0.05). ApoE ε3 carriers were the main carriers in both groups. However, the Res group showed a lower frequency of ApoE ε3 and a higher frequency of ApoE ε4 compared to the Con group (both P<0.05), and patients with more severe AMI had a significantly higher frequency of ApoE ε4 genotype (P<0.05). According to logistic regression analysis, carrying ApoE ε4 allele (ε3/ε4, ε4/ε4) was a risk factor for AMI (P<0.05). Additionally, patients with APC resistance had a significantly higher frequency of ApoE ε4 allele than those without it (P<0.05). A higher frequency of ApoE ε4 allele was also a risk factor of APC resistance in AMI patients after PCI, and its adjusted risk ratio (OR) was 2.26 times (P<0.05). Moreover, no significant difference was observed among patients with different ApoE genotypes in the incidence of adverse events (P>0.05). CONCLUSION ApoE gene polymorphism is correlated with AMI and APC resistance after PCI, and ApoE ε4 genotype is probably the risk allele for AMI.
Collapse
Affiliation(s)
- Luoqing Wang
- Department of Cardiovascular Medicine, Lianyungang Second People’s Hospital Affiliated to Bengbu Medical CollegeLianyungang 222006, Jiangsu, China
| | - Chen Shao
- Department of Cardiovascular Medicine, Lianyungang Second People’s Hospital Affiliated to Bengbu Medical CollegeLianyungang 222006, Jiangsu, China
| | - Cuimin Han
- Department of Cardiovascular Medicine, Lianyungang Second People’s Hospital Affiliated to Bengbu Medical CollegeLianyungang 222006, Jiangsu, China
| | - Peng Li
- Department of Cardiovascular Medicine, Lianyungang Second People’s Hospital Affiliated to Bengbu Medical CollegeLianyungang 222006, Jiangsu, China
| | - Feixiang Wang
- Department of Cardiovascular Medicine, Lianyungang Second People’s Hospital Affiliated to Bengbu Medical CollegeLianyungang 222006, Jiangsu, China
| | - Yilian Wang
- Department of Cardiovascular Medicine, Lianyungang Second People’s Hospital Affiliated to Bengbu Medical CollegeLianyungang 222006, Jiangsu, China
| | - Junping Li
- Department of Electrocardiogram, Lianyungang Second People’s Hospital Affiliated to Bengbu Medical CollegeLianyungang 222006, Jiangsu, China
| |
Collapse
|
30
|
Patel T, Carnwath TP, Wang X, Allen M, Lincoln SJ, Lewis‐Tuffin L, Quicksall ZS, Lin S, Tutor‐New FQ, Ho CC, Min Y, Malphrus KG, Nguyen TT, Martin E, Garcia CA, Alkharboosh RM, Grewal S, Chaichana K, Wharen R, Guerrero‐Cazares H, Quinones‐Hinojosa A, Ertekin‐Taner N. Transcriptional landscape of human microglia implicates age, sex, and APOE-related immunometabolic pathway perturbations. Aging Cell 2022; 21:e13606. [PMID: 35388616 PMCID: PMC9124307 DOI: 10.1111/acel.13606] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 12/20/2022] Open
Abstract
Microglia have fundamental roles in health and disease; however, effects of age, sex, and genetic factors on human microglia have not been fully explored. We applied bulk and single-cell approaches to comprehensively characterize human microglia transcriptomes and their associations with age, sex, and APOE. We identified a novel microglial signature, characterized its expression in bulk tissue and single-cell microglia transcriptomes. We discovered microglial co-expression network modules associated with age, sex, and APOE-ε4 that are enriched for lipid and carbohydrate metabolism genes. Integrated analyses of modules with single-cell transcriptomes revealed significant overlap between age-associated module genes and both pro-inflammatory and disease-associated microglial clusters. These modules and clusters harbor known neurodegenerative disease genes including APOE, PLCG2, and BIN1. Meta-analyses with published bulk and single-cell microglial datasets further supported our findings. Thus, these data represent a well-characterized human microglial transcriptome resource and highlight age, sex, and APOE-related microglial immunometabolism perturbations with potential relevance in neurodegeneration.
Collapse
Affiliation(s)
- Tulsi Patel
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | | | - Xue Wang
- Department of Quantitative Health SciencesMayo ClinicJacksonvilleFloridaUSA
| | - Mariet Allen
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | | | | | | | - Shu Lin
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | | | | | - Yuhao Min
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | | | - Thuy T. Nguyen
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | | | | | - Rawan M. Alkharboosh
- Department of NeurosurgeryMayo ClinicJacksonvilleFloridaUSA
- Neuroscience Graduate ProgramMayo Clinic Graduate School of Biomedical SciencesMayo ClinicRochesterMinnesotaUSA
- Regenerative Sciences Training ProgramCenter for Regenerative MedicineMayo ClinicRochesterMinnesotaUSA
| | - Sanjeet Grewal
- Department of NeurosurgeryMayo ClinicJacksonvilleFloridaUSA
| | | | - Robert Wharen
- Department of NeurosurgeryMayo ClinicJacksonvilleFloridaUSA
| | | | | | - Nilüfer Ertekin‐Taner
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Department of NeurologyMayo ClinicJacksonvilleFloridaUSA
| |
Collapse
|
31
|
Lynch MA. Exploring Sex-Related Differences in Microglia May Be a Game-Changer in Precision Medicine. Front Aging Neurosci 2022; 14:868448. [PMID: 35431903 PMCID: PMC9009390 DOI: 10.3389/fnagi.2022.868448] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/08/2022] [Indexed: 12/16/2022] Open
Abstract
One area of microglial biology that has been relatively neglected until recently is sex differences and this is in spite of the fact that sex is a risk factor in several diseases that are characterized by neuroinflammation and, by extension, microglial activation. Why these sex differences exist is not known but the panoply of differences extend to microglial number, genotype and phenotype. Significantly, several of these sex-related differences are also evident in health and change during life emphasizing the dynamic and plastic nature of microglia. This review will consider how age impacts on sex-related differences in microglia and ask whether the advancement of personalized medicine demands that a greater focus is placed on studying sex-related differences in microglia in Alzheimer's disease, Parkinson's disease and models of inflammatory stress and trauma in order to make true progress in dealing with these conditions.
Collapse
Affiliation(s)
- Marina A. Lynch
- Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| |
Collapse
|
32
|
Troutwine BR, Hamid L, Lysaker CR, Strope TA, Wilkins HM. Apolipoprotein E and Alzheimer's disease. Acta Pharm Sin B 2022; 12:496-510. [PMID: 35256931 PMCID: PMC8897057 DOI: 10.1016/j.apsb.2021.10.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/30/2021] [Accepted: 10/07/2021] [Indexed: 12/14/2022] Open
Abstract
Genetic variation in apolipoprotein E (APOE) influences Alzheimer's disease (AD) risk. APOE ε4 alleles are the strongest genetic risk factor for late onset sporadic AD. The AD risk is dose dependent, as those carrying one APOE ε4 allele have a 2-3-fold increased risk, while those carrying two ε4 alleles have a 10-15-fold increased risk. Individuals carrying APOE ε2 alleles have lower AD risk and those carrying APOE ε3 alleles have neutral risk. APOE is a lipoprotein which functions in lipid transport, metabolism, and inflammatory modulation. Isoform specific effects of APOE within the brain include alterations to Aβ, tau, neuroinflammation, and metabolism. Here we review the association of APOE with AD, the APOE isoform specific effects within brain and periphery, and potential therapeutics.
Collapse
Affiliation(s)
- Benjamin R. Troutwine
- Department of Neurology University of Kansas Medical Center, Kansas City, KS 66160, USA
- University of Kansas Alzheimer's Disease Center, Kansas City, KS 66160, USA
| | - Laylan Hamid
- University of Kansas Alzheimer's Disease Center, Kansas City, KS 66160, USA
| | - Colton R. Lysaker
- University of Kansas Alzheimer's Disease Center, Kansas City, KS 66160, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Taylor A. Strope
- University of Kansas Alzheimer's Disease Center, Kansas City, KS 66160, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Heather M. Wilkins
- Department of Neurology University of Kansas Medical Center, Kansas City, KS 66160, USA
- University of Kansas Alzheimer's Disease Center, Kansas City, KS 66160, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
33
|
Bergamino M, Keeling EG, Baxter LC, Sisco NJ, Walsh RR, Stokes AM. Sex Differences in Alzheimer's Disease Revealed by Free-Water Diffusion Tensor Imaging and Voxel-Based Morphometry. J Alzheimers Dis 2022; 85:395-414. [PMID: 34842185 PMCID: PMC9015709 DOI: 10.3233/jad-210406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Imaging biomarkers are increasingly used in Alzheimer's disease (AD), and the identification of sex differences using neuroimaging may provide insight into disease heterogeneity, progression, and therapeutic targets. OBJECTIVE The purpose of this study was to investigate differences in grey matter (GM) volume and white matter (WM) microstructural disorganization between males and females with AD using voxel-based morphometry (VBM) and free-water-corrected diffusion tensor imaging (FW-DTI). METHODS Data were downloaded from the OASIS-3 database, including 158 healthy control (HC; 86 females) and 46 mild AD subjects (24 females). VBM and FW-DTI metrics (fractional anisotropy (FA), axial and radial diffusivities (AxD and RD, respectively), and FW index) were compared using effect size for the main effects of group, sex, and their interaction. RESULTS Significant group and sex differences were observed, with no significant interaction. Post-hoc comparisons showed that AD is associated with reduced GM volume, reduced FW-FA, and higher FW-RD/FW-index, consistent with neurodegeneration. Females in both groups exhibited higher GM volume than males, while FW-DTI metrics showed sex differences only in the AD group. Lower FW, lower FW-FA and higher FW-RD were observed in females relative to males in the AD group. CONCLUSION The combination of VBM and DTI may reveal complementary sex-specific changes in GM and WM associated with AD and aging. Sex differences in GM volume were observed for both groups, while FW-DTI metrics only showed significant sex differences in the AD group, suggesting that WM tract disorganization may play a differential role in AD pathophysiology between females and males.
Collapse
Affiliation(s)
| | - Elizabeth G. Keeling
- Neuroimaging Research, Barrow Neurological Institute,School of Life Sciences, Arizona State University
| | | | | | - Ryan R. Walsh
- Muhammad Ali Parkinson Center at Barrow Neurological
Institute
| | | |
Collapse
|
34
|
Guo L, Zhong MB, Zhang L, Zhang B, Cai D. Sex Differences in Alzheimer's Disease: Insights From the Multiomics Landscape. Biol Psychiatry 2022; 91:61-71. [PMID: 33896621 PMCID: PMC8996342 DOI: 10.1016/j.biopsych.2021.02.968] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 01/03/2023]
Abstract
Alzheimer's disease (AD) has complex etiologies, and the impact of sex on AD varies over the course of disease development. The literature provides some evidence of sex-specific contributions to AD. However, molecular mechanisms of sex-biased differences in AD remain elusive. Multiomics data in tandem with systems biology approaches offer a new avenue to dissect sex-stratified molecular mechanisms of AD and to develop sex-specific diagnostic and therapeutic strategies for AD. Single-cell transcriptomic datasets and cell deconvolution of bulk tissue transcriptomic data provide additional insights into brain cell type-specific impact on sex-biased differences in AD. In this review, we summarize the impact of sex chromosomes and sex hormones on AD, the impact of sex-biased differences during AD development, and the interplay between sex and a major AD genetic risk factor, the APOE ε4 genotype, through the multiomics landscape. Several sex-biased molecular pathways such as neuroinflammation and bioenergetic metabolism have been identified. The importance of sex chromosome and sex hormones, as well as the associated pathways in AD pathogenesis, is further strengthened by findings from omics studies. Future research efforts should integrate the multiomics data from different brain regions and different cell types using systems biology approaches, and leverage the knowledge into a holistic examination of sex differences in AD. Advances in systems biology technologies and increasingly available large-scale multiomics datasets will facilitate future studies dissecting such complex signaling mechanisms to better understand AD pathogenesis in both sexes, with the ultimate goals of developing efficacious sex- and APOE-stratified preventive and therapeutic interventions for AD.
Collapse
Affiliation(s)
- Lei Guo
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Margaret B Zhong
- Department of Neuroscience, Barnard College of Columbia University, New York, New York
| | - Larry Zhang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York; Research and Development Service, James J. Peters VA Medical Center, Bronx, New York
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Dongming Cai
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York; Alzheimer Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, New York; Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York; Research and Development Service, James J. Peters VA Medical Center, Bronx, New York.
| |
Collapse
|
35
|
Barrera J, Song L, Gamache JE, Garrett ME, Safi A, Yun Y, Premasinghe I, Sprague D, Chipman D, Li J, Fradin H, Soldano K, Gordân R, Ashley-Koch AE, Crawford GE, Chiba-Falek O. Sex dependent glial-specific changes in the chromatin accessibility landscape in late-onset Alzheimer's disease brains. Mol Neurodegener 2021; 16:58. [PMID: 34429139 PMCID: PMC8383438 DOI: 10.1186/s13024-021-00481-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND In the post-GWAS era, there is an unmet need to decode the underpinning genetic etiologies of late-onset Alzheimer's disease (LOAD) and translate the associations to causation. METHODS We conducted ATAC-seq profiling using NeuN sorted-nuclei from 40 frozen brain tissues to determine LOAD-specific changes in chromatin accessibility landscape in a cell-type specific manner. RESULTS We identified 211 LOAD-specific differential chromatin accessibility sites in neuronal-nuclei, four of which overlapped with LOAD-GWAS regions (±100 kb of SNP). While the non-neuronal nuclei did not show LOAD-specific differences, stratification by sex identified 842 LOAD-specific chromatin accessibility sites in females. Seven of these sex-dependent sites in the non-neuronal samples overlapped LOAD-GWAS regions including APOE. LOAD loci were functionally validated using single-nuclei RNA-seq datasets. CONCLUSIONS Using brain sorted-nuclei enabled the identification of sex-dependent cell type-specific LOAD alterations in chromatin structure. These findings enhance the interpretation of LOAD-GWAS discoveries, provide potential pathomechanisms, and suggest novel LOAD-loci.
Collapse
Affiliation(s)
- Julio Barrera
- Department of Neurology, Division of Translational Brain Sciences, Duke University Medical Center, DUMC, Box 2900, Durham, NC 27710 USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27708 USA
| | - Lingyun Song
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27708 USA
| | - Julia E. Gamache
- Department of Neurology, Division of Translational Brain Sciences, Duke University Medical Center, DUMC, Box 2900, Durham, NC 27710 USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27708 USA
| | - Melanie E. Garrett
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701 USA
| | - Alexias Safi
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27708 USA
| | - Young Yun
- Department of Neurology, Division of Translational Brain Sciences, Duke University Medical Center, DUMC, Box 2900, Durham, NC 27710 USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27708 USA
| | - Ivana Premasinghe
- Department of Neurology, Division of Translational Brain Sciences, Duke University Medical Center, DUMC, Box 2900, Durham, NC 27710 USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27708 USA
| | - Daniel Sprague
- Department of Neurology, Division of Translational Brain Sciences, Duke University Medical Center, DUMC, Box 2900, Durham, NC 27710 USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27708 USA
| | - Danielle Chipman
- Department of Neurology, Division of Translational Brain Sciences, Duke University Medical Center, DUMC, Box 2900, Durham, NC 27710 USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27708 USA
| | - Jeffrey Li
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27708 USA
| | - Hélène Fradin
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27708 USA
| | - Karen Soldano
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701 USA
| | - Raluca Gordân
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27708 USA
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC 27705 USA
- Department of Computer Science, Duke University, Durham, NC 27705 USA
| | - Allison E. Ashley-Koch
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701 USA
- Department of Medicine, Duke University Medical Center, DUMC, Box 104775, Durham, NC 27708 USA
| | - Gregory E. Crawford
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27708 USA
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, DUMC, Box 3382, Durham, NC 27708 USA
- Center for Advanced Genomic Technologies, Duke University Medical Center, Durham, NC 27708 USA
| | - Ornit Chiba-Falek
- Department of Neurology, Division of Translational Brain Sciences, Duke University Medical Center, DUMC, Box 2900, Durham, NC 27710 USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27708 USA
| |
Collapse
|
36
|
From Menopause to Neurodegeneration-Molecular Basis and Potential Therapy. Int J Mol Sci 2021; 22:ijms22168654. [PMID: 34445359 PMCID: PMC8395405 DOI: 10.3390/ijms22168654] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
The impacts of menopause on neurodegenerative diseases, especially the changes in steroid hormones, have been well described in cell models, animal models, and humans. However, the therapeutic effects of hormone replacement therapy on postmenopausal women with neurodegenerative diseases remain controversial. The steroid hormones, steroid hormone receptors, and downstream signal pathways in the brain change with aging and contribute to disease progression. Estrogen and progesterone are two steroid hormones which decline in circulation and the brain during menopause. Insulin-like growth factor 1 (IGF-1), which plays an import role in neuroprotection, is rapidly decreased in serum after menopause. Here, we summarize the actions of estrogen, progesterone, and IGF-1 and their signaling pathways in the brain. Since the incidence of Alzheimer’s disease (AD) is higher in women than in men, the associations of steroid hormone changes and AD are emphasized. The signaling pathways and cellular mechanisms for how steroid hormones and IGF-1 provide neuroprotection are also addressed. Finally, the molecular mechanisms of potential estrogen modulation on N-methyl-d-aspartic acid receptors (NMDARs) are also addressed. We provide the viewpoint of why hormone therapy has inconclusive results based on signaling pathways considering their complex response to aging and hormone treatments. Nonetheless, while diagnosable AD may not be treatable by hormone therapy, its preceding stage of mild cognitive impairment may very well be treatable by hormone therapy.
Collapse
|
37
|
Kulminski AM, Philipp I, Loika Y, He L, Culminskaya I. Protective association of the ε2/ε3 heterozygote with Alzheimer's disease is strengthened by TOMM40-APOE variants in men. Alzheimers Dement 2021; 17:1779-1787. [PMID: 34310032 DOI: 10.1002/alz.12413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/07/2021] [Accepted: 05/25/2021] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Despite advances, understanding the protective role of the apolipoprotein E (APOE) ε2 allele in Alzheimer's disease (AD) remains elusive. METHODS We examined associations of variants comprised of the TOMM40 rs8106922 and APOE rs405509, rs440446, and ε2-encoding rs7412 polymorphisms with AD in a sample of 2862 AD-affected and 169,516 AD-unaffected non-carriers of the ε4 allele. RESULTS Association of the ε2/ε3 heterozygote of men with AD is 38% (P = 1.65 × 10-2 ) more beneficial when it is accompanied by rs8106922 major allele homozygote and rs405509 and rs440446 heterozygotes than by rs8106922 heterozygote and rs405509 and rs440446 major allele homozygotes. No difference in the beneficial associations of these two most common ε2/ε3-bearing variants with AD was identified in women. The role of ε2/ε3 heterozygote may be affected by different immunomodulation functions of rs8106922, rs405509, and rs440446 variants in a sex-specific manner. DISCUSSION Combination of TOMM40 and APOE variants defines a more homogeneous AD-protective ε2/ε3-bearing profile in men.
Collapse
Affiliation(s)
- Alexander M Kulminski
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina, USA
| | - Ian Philipp
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina, USA
| | - Yury Loika
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina, USA
| | - Liang He
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina, USA
| | - Irina Culminskaya
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina, USA
| |
Collapse
|
38
|
Ashton NJ, Leuzy A, Karikari TK, Mattsson-Carlgren N, Dodich A, Boccardi M, Corre J, Drzezga A, Nordberg A, Ossenkoppele R, Zetterberg H, Blennow K, Frisoni GB, Garibotto V, Hansson O. The validation status of blood biomarkers of amyloid and phospho-tau assessed with the 5-phase development framework for AD biomarkers. Eur J Nucl Med Mol Imaging 2021; 48:2140-2156. [PMID: 33677733 PMCID: PMC8175325 DOI: 10.1007/s00259-021-05253-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/09/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE The development of blood biomarkers that reflect Alzheimer's disease (AD) pathophysiology (phosphorylated tau and amyloid-β) has offered potential as scalable tests for dementia differential diagnosis and early detection. In 2019, the Geneva AD Biomarker Roadmap Initiative included blood biomarkers in the systematic validation of AD biomarkers. METHODS A panel of experts convened in November 2019 at a two-day workshop in Geneva. The level of maturity (fully achieved, partly achieved, preliminary evidence, not achieved, unsuccessful) of blood biomarkers was assessed based on the Biomarker Roadmap methodology and discussed fully during the workshop which also evaluated cerebrospinal fluid (CSF) and positron emission tomography (PET) biomarkers. RESULTS Plasma p-tau has shown analytical validity (phase 2 primary aim 1) and first evidence of clinical validity (phase 3 primary aim 1), whereas the maturity level for Aβ remains to be partially achieved. Full and partial achievement has been assigned to p-tau and Aβ, respectively, in their associations to ante-mortem measures (phase 2 secondary aim 2). However, only preliminary evidence exists for the influence of covariates, assay comparison and cut-off criteria. CONCLUSIONS Despite the relative infancy of blood biomarkers, in comparison to CSF biomarkers, much has already been achieved for phases 1 through 3 - with p-tau having greater success in detecting AD and predicting disease progression. However, sufficient data about the effect of covariates on the biomarker measurement is lacking. No phase 4 (real-world performance) or phase 5 (assessment of impact/cost) aim has been tested, thus not achieved.
Collapse
Affiliation(s)
- N J Ashton
- Institute of Neuroscience & Physiology, Department of Psychiatry & Neurochemistry, Sahlgrenska Academy, University of Gothenburg, House V3/SU, SE-431 80, Mölndal, Sweden.
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - A Leuzy
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
| | - T K Karikari
- Institute of Neuroscience & Physiology, Department of Psychiatry & Neurochemistry, Sahlgrenska Academy, University of Gothenburg, House V3/SU, SE-431 80, Mölndal, Sweden
| | - N Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
- Department of Neurology, Skåne University Hospital, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - A Dodich
- NIMTlab - Neuroimaging and Innovative Molecular Tracers Laboratory, University of Geneva, Geneva, Switzerland
- Center for Neurocognitive Rehabilitation (CeRiN), CIMeC, University of Trento, Trento, Italy
| | - M Boccardi
- German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald, Rostock, Germany
- LANVIE - Laboratory of Neuroimaging of Aging, University of Geneva, Geneva, Switzerland
| | - J Corre
- Centre National de la Recherche Scientifique, Montpellier, France
| | - A Drzezga
- Medical Faculty and University Hospital of Cologne, Cologne, Germany
| | - A Nordberg
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Theme Aging, Karolinska University Hospital Stockholm, Stockholm, Sweden
| | - R Ossenkoppele
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - H Zetterberg
- Institute of Neuroscience & Physiology, Department of Psychiatry & Neurochemistry, Sahlgrenska Academy, University of Gothenburg, House V3/SU, SE-431 80, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - K Blennow
- Institute of Neuroscience & Physiology, Department of Psychiatry & Neurochemistry, Sahlgrenska Academy, University of Gothenburg, House V3/SU, SE-431 80, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - G B Frisoni
- German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald, Rostock, Germany
- Memory Clinic, Geneva University Hospitals, Geneva, Switzerland
| | - V Garibotto
- NIMTlab - Neuroimaging and Innovative Molecular Tracers Laboratory, University of Geneva, Geneva, Switzerland
- Diagnostic Department, University Hospitals of Geneva, Geneva, Switzerland
| | - O Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden.
- UK Dementia Research Institute at UCL, London, UK.
- Memory Clinic, Skåne University Hospital, SE-205 02, Malmö, Sweden.
| |
Collapse
|
39
|
Beydoun MA, Weiss J, Beydoun HA, Hossain S, Maldonado AI, Shen B, Evans MK, Zonderman AB. Race, APOE genotypes, and cognitive decline among middle-aged urban adults. ALZHEIMERS RESEARCH & THERAPY 2021; 13:120. [PMID: 34193248 PMCID: PMC8247163 DOI: 10.1186/s13195-021-00855-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022]
Abstract
Background Associations of Apolipoprotein (APOE) ε2 or ε4 (APOE2 or APOE4) dosages with cognitive change may differ across racial groups. Methods Longitudinal data on 1770 middle-aged White and African American adults was compiled from the Healthy Aging in Neighborhoods of Diversity across the Life Span (HANDLS 2004-2013) study. APOE2 and APOE4 dosages were the two main exposures, while v1 and annual rate of change in cognitive performance (between v1 and v2) on 11 test scores were the main outcomes of interest (v1: 2004–2009 and v2: 2009–2013). Mixed-effects linear regression models were conducted adjusting for socio-demographic, lifestyle, and health-related potential confounders. Race (African American vs. White) and sex within racial groups were main effect modifiers. Results Upon adjustment for multiple testing and potential confounders, APOE4 allelic dosage was associated with faster decline on a test of verbal memory among Whites only (CVLT-List A: γ12 = − 0.363 ± 0.137, p = 0.008), but not among African Americans. In contrast, among African American women, APOE4 dosage was linked to slower decline on a test of attention (BTA: γ12 = + 0.106 ± 0.035, p = 0.002), while no association was detected among African American men. APOE2 and APOE4 dosages showed inconsistent results in other domains of cognition overall and across racial groups that did not survive correction for multiple testing. Conclusions In conclusion, APOE4 dosage was associated with faster decline on a test of verbal memory among Whites only, while exhibiting a potential protective effect among African American women in the domain of attention. Further longitudinal studies are needed to replicate our race and sex-specific findings. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-021-00855-y.
Collapse
Affiliation(s)
- May A Beydoun
- Laboratory of Epidemiology and Population Sciences, NIH Biomedical Research Center, National Institute on Aging, IRP, 251 Bayview Blvd., Suite 100, Room #: 04B118, Baltimore, MD, 21224, USA.
| | - Jordan Weiss
- Department of Demography, University of California, Berkeley, Berkeley, CA, USA
| | - Hind A Beydoun
- Department of Research Programs, Fort Belvoir Community Hospital, Fort Belvoir, VA, USA
| | - Sharmin Hossain
- Laboratory of Epidemiology and Population Sciences, NIH Biomedical Research Center, National Institute on Aging, IRP, 251 Bayview Blvd., Suite 100, Room #: 04B118, Baltimore, MD, 21224, USA
| | - Ana I Maldonado
- Laboratory of Epidemiology and Population Sciences, NIH Biomedical Research Center, National Institute on Aging, IRP, 251 Bayview Blvd., Suite 100, Room #: 04B118, Baltimore, MD, 21224, USA.,Department of Psychology, University of Maryland Baltimore County, Catonsville, MD, USA
| | - Botong Shen
- Laboratory of Epidemiology and Population Sciences, NIH Biomedical Research Center, National Institute on Aging, IRP, 251 Bayview Blvd., Suite 100, Room #: 04B118, Baltimore, MD, 21224, USA
| | - Michele K Evans
- Laboratory of Epidemiology and Population Sciences, NIH Biomedical Research Center, National Institute on Aging, IRP, 251 Bayview Blvd., Suite 100, Room #: 04B118, Baltimore, MD, 21224, USA
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Sciences, NIH Biomedical Research Center, National Institute on Aging, IRP, 251 Bayview Blvd., Suite 100, Room #: 04B118, Baltimore, MD, 21224, USA
| |
Collapse
|
40
|
Zhu D, Montagne A, Zhao Z. Alzheimer's pathogenic mechanisms and underlying sex difference. Cell Mol Life Sci 2021; 78:4907-4920. [PMID: 33844047 PMCID: PMC8720296 DOI: 10.1007/s00018-021-03830-w] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/09/2021] [Accepted: 03/29/2021] [Indexed: 01/01/2023]
Abstract
AD is a neurodegenerative disease, and its frequency is often reported to be higher for women than men: almost two-thirds of patients with AD are women. One prevailing view is that women live longer than men on average of 4.5 years, plus there are more women aged 85 years or older than men in most global subpopulations; and older age is the greatest risk factor for AD. However, the differences in the actual risk of developing AD for men and women of the same age is difficult to assess, and the findings have been mixed. An increasing body of evidence from preclinical and clinical studies as well as the complications in estimating incidence support the sex-specific biological mechanisms in diverging AD risk as an important adjunct explanation to the epidemiologic perspective. Although some of the sex differences in AD prevalence are due to differences in longevity, other distinct biological mechanisms increase the risk and progression of AD in women. These risk factors include (1) deviations in brain structure and biomarkers, (2) psychosocial stress responses, (3) pregnancy, menopause, and sex hormones, (4) genetic background (i.e., APOE), (5) inflammation, gliosis, and immune module (i.e., TREM2), and (6) vascular disorders. More studies focusing on the underlying biological mechanisms for this phenomenon are needed to better understand AD. This review presents the most recent data in sex differences in AD-the gateway to precision medicine, therefore, shaping expert perspectives, inspiring researchers to go in new directions, and driving development of future diagnostic tools and treatments for AD in a more customized way.
Collapse
Affiliation(s)
- Donghui Zhu
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA.
- Neuroscience Graduate Program, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA.
| | - Axel Montagne
- UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Zhen Zhao
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
41
|
Wang H, Lo MT, Rosenthal SB, Makowski C, Andreassen OA, Salem RM, McEvoy LK, Fiecas M, Chen CH. Similar Genetic Architecture of Alzheimer's Disease and Differential APOE Effect Between Sexes. Front Aging Neurosci 2021; 13:674318. [PMID: 34122051 PMCID: PMC8194397 DOI: 10.3389/fnagi.2021.674318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/27/2021] [Indexed: 01/09/2023] Open
Abstract
Sex differences have been observed in the clinical manifestations of Alzheimer’s disease (AD) and elucidating their genetic basis is an active research topic. Based on autosomal genotype data of 7,216 men and 10,680 women, including 8,136 AD cases and 9,760 controls, we explored sex-related genetic heterogeneity in AD by investigating SNP heritability, genetic correlation, as well as SNP- and gene-based genome-wide analyses. We found similar SNP heritability (men: 19.5%; women: 21.5%) and high genetic correlation (Rg = 0.96) between the sexes. The heritability of APOE ε4-related risks for AD, after accounting for effects of all SNPs excluding chromosome 19, was nominally, but not significantly, higher in women (10.6%) than men (9.7%). In age-stratified analyses, ε3/ε4 was associated with a higher risk of AD among women than men aged 65–75 years, but not in the full sample. Apart from APOE, no new significant locus was identified in sex-stratified gene-based analyses. Our result of the high genetic correlation indicates overall similar genetic architecture of AD in both sexes at the genome-wide averaged level. Our study suggests that clinically observed sex differences may arise from sex-specific variants with small effects or more complicated mechanisms involving epigenetic alterations, sex chromosomes, or gene-environment interactions.
Collapse
Affiliation(s)
- Hao Wang
- Department of Radiology, Center for Multimodal Imaging and Genetics, University of California, San Diego, San Diego, CA, United States
| | - Min-Tzu Lo
- Department of Radiology, Center for Multimodal Imaging and Genetics, University of California, San Diego, San Diego, CA, United States
| | - Sara Brin Rosenthal
- Center for Computational Biology and Bioinformatics, University of California, San Diego, San Diego, CA, United States
| | - Carolina Makowski
- Department of Radiology, Center for Multimodal Imaging and Genetics, University of California, San Diego, San Diego, CA, United States
| | - Ole A Andreassen
- Division of Mental Health and Addiction, NORMENT Centre, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Rany M Salem
- Department of Family Medicine and Public Health, Division of Epidemiology, University of California, San Diego, San Diego, CA, United States
| | - Linda K McEvoy
- Department of Radiology, Center for Multimodal Imaging and Genetics, University of California, San Diego, San Diego, CA, United States.,Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, San Diego, CA, United States
| | - Mark Fiecas
- School of Public Health, Division of Biostatistics, University of Minnesota, Minneapolis, MN, United States
| | - Chi-Hua Chen
- Department of Radiology, Center for Multimodal Imaging and Genetics, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
42
|
Rabipour S, Rajagopal S, Pasvanis S, Rajah MN. Generalization of memory-related brain function in asymptomatic older women with a family history of late onset Alzheimer's Disease: Results from the PREVENT-AD Cohort. Neurobiol Aging 2021; 104:42-56. [PMID: 33964608 DOI: 10.1016/j.neurobiolaging.2021.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/04/2021] [Accepted: 03/18/2021] [Indexed: 11/18/2022]
Abstract
Late-onset Alzheimer's disease (AD) disproportionately affects women compared to men. Episodic memory decline is one of the earliest and most pronounced deficits observed in AD. However, it remains unclear whether sex influences episodic memory-related brain function in cognitively intact older adults at risk of developing AD. Here we used task-based multivariate partial least squares analysis to examine sex differences in episodic memory-related brain activity and brain activity-behavior correlations in a matched sample of cognitively intact older women and men with a family history of AD from the PREVENT-AD cohort study in Montreal, Canada (Mage=63.03±3.78; Meducation=15.41±3.40). We observed sex differences in task-related brain activity and brain activity-behavior correlations during the encoding of object-location associative memories and object-only item memory, and the retrieval of object only item memories. Our findings suggest a generalization of episodic memory-related brain activation and performance in women compared to men. Follow up analyses should test for sex differences in the relationship between brain activity patterns and performance longitudinally, in association with risk factors for AD development. This article is part of the Virtual Special Issue titled COGNITIVE NEUROSCIENCE OF HEALTHY AND PATHOLOGICAL AGING. The full issue can be found on ScienceDirect at https://www.sciencedirect.com/journal/neurobiology-of-aging/special-issue/105379XPWJP.
Collapse
Affiliation(s)
- Sheida Rabipour
- Centre for Cerebral Imaging, Douglas Hospital Research Centre, Montreal, Canada; Department of Psychiatry, McGill University, Montreal, Canada
| | | | - Stamatoula Pasvanis
- Centre for Cerebral Imaging, Douglas Hospital Research Centre, Montreal, Canada
| | - M Natasha Rajah
- Centre for Cerebral Imaging, Douglas Hospital Research Centre, Montreal, Canada; Department of Psychiatry, McGill University, Montreal, Canada.
| |
Collapse
|
43
|
2020 update on the clinical validity of cerebrospinal fluid amyloid, tau, and phospho-tau as biomarkers for Alzheimer's disease in the context of a structured 5-phase development framework. Eur J Nucl Med Mol Imaging 2021; 48:2121-2139. [PMID: 33674895 PMCID: PMC8175301 DOI: 10.1007/s00259-021-05258-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/11/2021] [Indexed: 12/15/2022]
Abstract
Purpose In the last decade, the research community has focused on defining reliable biomarkers for the early detection of Alzheimer’s disease (AD) pathology. In 2017, the Geneva AD Biomarker Roadmap Initiative adapted a framework for the systematic validation of oncological biomarkers to cerebrospinal fluid (CSF) AD biomarkers—encompassing the 42 amino-acid isoform of amyloid-β (Aβ42), phosphorylated-tau (P-tau), and Total-tau (T-tau)—with the aim to accelerate their development and clinical implementation. The aim of this work is to update the current validation status of CSF AD biomarkers based on the Biomarker Roadmap methodology. Methods A panel of experts in AD biomarkers convened in November 2019 at a 2-day workshop in Geneva. The level of maturity (fully achieved, partly achieved, preliminary evidence, not achieved, unsuccessful) of CSF AD biomarkers was assessed based on the Biomarker Roadmap methodology before the meeting and presented and discussed during the workshop. Results By comparison to the previous 2017 Geneva Roadmap meeting, the primary advances in CSF AD biomarkers have been in the area of a unified protocol for CSF sampling, handling and storage, the introduction of certified reference methods and materials for Aβ42, and the introduction of fully automated assays. Additional advances have occurred in the form of defining thresholds for biomarker positivity and assessing the impact of covariates on their discriminatory ability. Conclusions Though much has been achieved for phases one through three, much work remains in phases four (real world performance) and five (assessment of impact/cost). To a large degree, this will depend on the availability of disease-modifying treatments for AD, given these will make accurate and generally available diagnostic tools key to initiate therapy. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-021-05258-7.
Collapse
|
44
|
Kundu P, Torres ERS, Stagaman K, Kasschau K, Okhovat M, Holden S, Ward S, Nevonen KA, Davis BA, Saito T, Saido TC, Carbone L, Sharpton TJ, Raber J. Integrated analysis of behavioral, epigenetic, and gut microbiome analyses in App NL-G-F, App NL-F, and wild type mice. Sci Rep 2021; 11:4678. [PMID: 33633159 PMCID: PMC7907263 DOI: 10.1038/s41598-021-83851-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/09/2021] [Indexed: 12/19/2022] Open
Abstract
Epigenetic mechanisms occurring in the brain as well as alterations in the gut microbiome composition might contribute to Alzheimer’s disease (AD). Human amyloid precursor protein knock-in (KI) mice contain the Swedish and Iberian mutations (AppNL-F) or those two and also the Arctic mutation (AppNL-G-F). In this study, we assessed whether behavioral and cognitive performance in 6-month-old AppNL-F, AppNL-G-F, and C57BL/6J wild-type (WT) mice was associated with the gut microbiome, and whether the genotype modulates this association. The genotype effects observed in behavioral tests were test-dependent. The biodiversity and composition of the gut microbiome linked to various aspects of mouse behavioral and cognitive performance but differences in genotype modulated these relationships. These genotype-dependent associations include members of the Lachnospiraceae and Ruminococcaceae families. In a subset of female mice, we assessed DNA methylation in the hippocampus and investigated whether alterations in hippocampal DNA methylation were associated with the gut microbiome. Among other differentially methylated regions, we identified a 1 Kb region that overlapped ing 3′UTR of the Tomm40 gene and the promoter region of the Apoe gene that and was significantly more methylated in the hippocampus of AppNL-G-F than WT mice. The integrated gut microbiome hippocampal DNA methylation analysis revealed a positive relationship between amplicon sequence variants (ASVs) within the Lachnospiraceae family and methylation at the Apoe gene. Hence, these microbes may elicit an impact on AD-relevant behavioral and cognitive performance via epigenetic changes in AD-susceptibility genes in neural tissue or that such changes in the epigenome can elicit alterations in intestinal physiology that affect the growth of these taxa in the gut microbiome.
Collapse
Affiliation(s)
- Payel Kundu
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Eileen Ruth S Torres
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Keaton Stagaman
- Department of Microbiology, Oregon State University, Corvallis, OR, 97331, USA
| | - Kristin Kasschau
- Department of Microbiology, Oregon State University, Corvallis, OR, 97331, USA
| | - Mariam Okhovat
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Sarah Holden
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Samantha Ward
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Kimberly A Nevonen
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Brett A Davis
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Lucia Carbone
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, 97239, USA.,Departments of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, 97239, USA.,Departments of Medical Informatics and Clinical Epidemiology, Portland, OR, 97239, USA.,Division of Genetics, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| | - Thomas J Sharpton
- Department of Microbiology, Oregon State University, Corvallis, OR, 97331, USA.,Department of Statistics, Oregon State University, Corvallis, OR, 97331, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA. .,Departments of Neurology, Psychiatry, and Radiation Medicine, Division of Neuroscience ONPRC, Oregon Health & Science University, Portland, OR, 97239, USA. .,College of Pharmacy, Oregon State University, Corvallis, OR, 97331, USA. .,Department of Behavioral Neuroscience, L470, Oregon Health & Science University, 3181SW Sam Jackson Park Road, Portland, OR, 97239, USA.
| |
Collapse
|
45
|
Shinohara M, Suzuki K, Bu G, Sato N. Interaction Between APOE Genotype and Diabetes in Longevity. J Alzheimers Dis 2021; 82:719-726. [PMID: 34092638 DOI: 10.3233/jad-210125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND While both apolipoprotein E (APOE) genotype and diabetes affect longevity as well as Alzheimer's disease, their relationship remains to be elucidated. OBJECTIVE The current study investigated the potential interaction between diabetes and APOE for lifespan and their relationship with cognitive status. METHODS We reviewed the National Alzheimer's Coordinating Center (NACC) dataset, which documents longitudinally clinical records of 24,967 individuals with APOE genotype and diabetic status. RESULTS Diabetes was associated with shorter lifespan in APOE3 carriers (n = 12,415, HR = 1.29, 95%CI = 1.17-1.42, p < 0.001) and APOE2 carriers (n = 2,390, HR = 1.37, 95%CI = 1.10-1.69, p = 0.016), while such associations were weaker and not significant in APOE4 carriers (n = 9,490, HR = 1.11, 95%CI = 0.99-1.24, p = 0.162). As there is a significant interactive effect of cognitive status and diabetes on lifespan (p < 0.001), we stratified subjects by cognitive status and observed persistent APOE-dependent harmful effects of diabetes in nondemented individuals but not demented individuals. Notably, questionnaire-based activity status, with which we previously observed an association between APOE genotype and longevity, was also significantly affected by diabetes only in non-APOE4 carriers. CONCLUSION The effects of diabetes on longevity vary among APOE genotype. These effects are observed in nondemented individuals and are potentially associated with activity status during their lifespan.
Collapse
Affiliation(s)
- Mitsuru Shinohara
- Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
- Department of Aging Neurobiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Kaoru Suzuki
- Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Naoyuki Sato
- Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
- Department of Aging Neurobiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|