1
|
Li H, Zhang J, Ke JR, Yu Z, Shi R, Gao SS, Li JF, Gao ZX, Ke CS, Han HX, Xu J, Leng Q, Wu GR, Li Y, Tao L, Zhang X, Sy MS, Li C. Pro-prion, as a membrane adaptor protein for E3 ligase c-Cbl, facilitates the ubiquitination of IGF-1R, promoting melanoma metastasis. Cell Rep 2022; 41:111834. [PMID: 36543142 DOI: 10.1016/j.celrep.2022.111834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/13/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
Aberrant activation of receptor tyrosine kinase (RTK) is usually a result of mutation and plays important roles in tumorigenesis. How RTK without mutation affects tumorigenesis remains incompletely understood. Here we show that in human melanomas pro-prion (pro-PrP) is an adaptor protein for an E3 ligase c-Cbl, enabling it to polyubiquitinate activated insulin-like growth factor-1 receptor (IGF-1R), leading to enhanced melanoma metastasis. All human melanoma cell lines studied here express pro-PrP, retaining its glycosylphosphatidylinositol-peptide signal sequence (GPI-PSS). The sequence, PVILLISFLI in the GPI-PSS of pro-PrP, binds c-Cbl, docking c-Cbl to the inner cell membrane, forming a pro-PrP/c-Cbl/IGF-1R trimeric complex. Subsequently, IGF-1R polyubiquitination and degradation are augmented, which increases autophagy and tumor metastasis. Importantly, the synthetic peptide PVILLISFLI disrupts the pro-PrP/c-Cbl/IGF-1R complex, reducing cancer cell autophagy and mitigating tumor aggressiveness in vitro and in vivo. Targeting cancer-associated GPI-PSS may provide a therapeutic approach for treating human cancers expressing pro-PrP.
Collapse
Affiliation(s)
- Huan Li
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong High Education Institute, 78 Heng Zhi Gang Road, Guangzhou 510095, China; Wuhan Institute of Virology, Chinese Academy of Sciences, 44 Xiao Hong Shan Zhong Qu, Wuhan 430030, China
| | - Jie Zhang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong High Education Institute, 78 Heng Zhi Gang Road, Guangzhou 510095, China
| | - Jing-Ru Ke
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Ze Yu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong High Education Institute, 78 Heng Zhi Gang Road, Guangzhou 510095, China
| | - Run Shi
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong High Education Institute, 78 Heng Zhi Gang Road, Guangzhou 510095, China
| | - Shan-Shan Gao
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong High Education Institute, 78 Heng Zhi Gang Road, Guangzhou 510095, China
| | - Jing-Feng Li
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong High Education Institute, 78 Heng Zhi Gang Road, Guangzhou 510095, China
| | - Zhen-Xing Gao
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong High Education Institute, 78 Heng Zhi Gang Road, Guangzhou 510095, China
| | - Chang-Shu Ke
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Hui-Xia Han
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, No. 1023-1063 Shatai South Road, Guangzhou 510515, China
| | - Jiang Xu
- Department of Stomatology, First Affiliated Hospital, School of Medicine, Shihezi University, No. 107 North 2nd Road, Shihezi 832008, China
| | - Qibin Leng
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong High Education Institute, 78 Heng Zhi Gang Road, Guangzhou 510095, China
| | - Gui-Ru Wu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong High Education Institute, 78 Heng Zhi Gang Road, Guangzhou 510095, China
| | - Yingqiu Li
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, 135 West Xingang Road, Guangzhou 510275, China
| | - Lin Tao
- Department of Pathology, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi 832008, China
| | - Xianghui Zhang
- Department of Public Health, Shihezi University School of Medicine, Shihezi 832000, China
| | - Man-Sun Sy
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Chaoyang Li
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong High Education Institute, 78 Heng Zhi Gang Road, Guangzhou 510095, China.
| |
Collapse
|
2
|
Fionda C, Stabile H, Molfetta R, Kosta A, Peruzzi G, Ruggeri S, Zingoni A, Capuano C, Soriani A, Paolini R, Gismondi A, Cippitelli M, Santoni A. Cereblon regulates NK cell cytotoxicity and migration via Rac1 activation. Eur J Immunol 2021; 51:2607-2617. [PMID: 34392531 PMCID: PMC9291148 DOI: 10.1002/eji.202149269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/23/2021] [Indexed: 11/14/2022]
Abstract
Rearrangement of the actin cytoskeleton is critical for cytotoxic and immunoregulatory functions as well as migration of natural killer (NK) cells. However, dynamic reorganization of actin is a complex process, which remains largely unknown. Here, we investigated the role of the protein Cereblon (CRBN), an E3 ubiquitin ligase complex co‐receptor and the primary target of the immunomodulatory drugs, in NK cells. We observed that CRBN partially colocalizes with F‐actin in chemokine‐treated NK cells and is recruited to the immunological synapse, thus suggesting a role for this protein in cytoskeleton reorganization. Accordingly, silencing of CRBN in NK cells results in a reduced cytotoxicity that correlates with a defect in conjugate and lytic synapse formation. Moreover, CRBN depletion significantly impairs the ability of NK cells to migrate and reduces the enhancing effect of lenalidomide on NK cell migration. Finally, we provided evidence that CRBN is required for activation of the small GTPase Rac1, a critical mediator of cytoskeleton dynamics. Indeed, in CRBN‐depleted NK cells, chemokine‐mediated or target cell–mediated Rac1 activation is significantly reduced. Altogether our data identify a critical role for CRBN in regulating NK cell functions and suggest that this protein may mediate the stimulatory effect of lenalidomide on NK cells.
Collapse
Affiliation(s)
- Cinzia Fionda
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy
| | - Helena Stabile
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy
| | - Rosa Molfetta
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy
| | - Andrea Kosta
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy
| | - Giovanna Peruzzi
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Silvia Ruggeri
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy
| | - Alessandra Zingoni
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy
| | - Cristina Capuano
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Alessandra Soriani
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy
| | - Rossella Paolini
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy
| | - Angela Gismondi
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy
| | - Marco Cippitelli
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy.,RCCS Neuromed, Pozzilli, IS, Italy
| |
Collapse
|
3
|
Barbera S, Lugano R, Pedalina A, Mongiat M, Santucci A, Tosi GM, Dimberg A, Galvagni F, Orlandini M. The C-type lectin CD93 controls endothelial cell migration via activation of the Rho family of small GTPases. Matrix Biol 2021; 99:1-17. [PMID: 34062268 DOI: 10.1016/j.matbio.2021.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023]
Abstract
Endothelial cell migration is essential to angiogenesis, enabling the outgrowth of new blood vessels both in physiological and pathological contexts. Migration requires the activation of several signaling pathways, the elucidation of which expands the opportunity to develop new drugs to be used in antiangiogenic therapy. In the proliferating endothelium, the interaction between the transmembrane glycoprotein CD93 and the extracellular matrix activates signaling pathways that regulate cell adhesion, migration, and vascular maturation. Here we identify a pathway, comprising CD93, the adaptor proteins Cbl and Crk, and the small GTPases Rac1, Cdc42, and RhoA, which we propose acts as a regulator of cytoskeletal movements responsible for endothelial cell migration. In this framework, phosphorylation of Cbl on tyrosine 774 leads to the interaction with Crk, which acts as a downstream integrator in the CD93-mediated signaling regulating cell polarity and migration. Moreover, confocal microscopy analyses of GTPase biosensors show that CD93 drives coordinated activation of Rho-proteins at the cell edge of migratory endothelial cells. In conclusion, together with the demonstration of the key contribution of CD93 to the migratory process in living cells, these findings suggest that the signaling triggered by CD93 converges to the activation and modulation of the Rho GTPase signaling pathways regulating cell dynamics.
Collapse
Affiliation(s)
- Stefano Barbera
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy; Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Roberta Lugano
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Alessia Pedalina
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy
| | - Maurizio Mongiat
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy
| | - Gian Marco Tosi
- Department of Medicine, Surgery and Neuroscience, Ophthalmology Unit, University of Siena, Italy
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Federico Galvagni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy
| | - Maurizio Orlandini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy.
| |
Collapse
|
4
|
Zhao Y, Jia L, Zheng Y, Li W. Involvement of Noncoding RNAs in the Differentiation of Osteoclasts. Stem Cells Int 2020; 2020:4813140. [PMID: 32908541 PMCID: PMC7468661 DOI: 10.1155/2020/4813140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 12/13/2022] Open
Abstract
As the most important bone-resorbing cells, osteoclasts play fundamental roles in bone remodeling and skeletal health. Much effort has been focused on identifying the regulators of osteoclast metabolism. Noncoding RNAs (ncRNAs) reportedly regulate osteoclast formation, differentiation, survival, and bone-resorbing activity to participate in bone physiology and pathology. The present review intends to provide a general framework for how ncRNAs and their targets regulate osteoclast differentiation and the important events of osteoclastogenesis they are involved in, including osteoclast precursor generation, early differentiation, mononuclear osteoclast fusion, and multinucleated osteoclast function and survival. This framework is beneficial for understanding bone biology and for identifying the potential biomarkers or therapeutic targets of bone diseases. The review also summarizes the results of in vivo experiments and classic experiment methods for osteoclast-related researches.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Lingfei Jia
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Yunfei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Weiran Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
| |
Collapse
|
5
|
Valdivia A, Goicoechea SM, Awadia S, Zinn A, Garcia-Mata R. Regulation of circular dorsal ruffles, macropinocytosis, and cell migration by RhoG and its exchange factor, Trio. Mol Biol Cell 2017; 28:1768-1781. [PMID: 28468978 PMCID: PMC5491185 DOI: 10.1091/mbc.e16-06-0412] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 04/20/2017] [Accepted: 04/25/2017] [Indexed: 11/11/2022] Open
Abstract
The small GTPase RhoG and its exchange factor, Trio, regulate the formation and size of circular dorsal ruffles and associated functions, including macropinocytosis and cell migration. Circular dorsal ruffles (CDRs) are actin-rich structures that form on the dorsal surface of many mammalian cells in response to growth factor stimulation. CDRs represent a unique type of structure that forms transiently and only once upon stimulation. The formation of CDRs involves a drastic rearrangement of the cytoskeleton, which is regulated by the Rho family of GTPases. So far, only Rac1 has been consistently associated with CDR formation, whereas the role of other GTPases in this process is either lacking or inconclusive. Here we show that RhoG and its exchange factor, Trio, play a role in the regulation of CDR dynamics, particularly by modulating their size. RhoG is activated by Trio downstream of PDGF in a PI3K- and Src-dependent manner. Silencing RhoG expression decreases the number of cells that form CDRs, as well as the area of the CDRs. The regulation of CDR area by RhoG is independent of Rac1 function. In addition, our results show the RhoG plays a role in the cellular functions associated with CDR formation, including macropinocytosis, receptor internalization, and cell migration. Taken together, our results reveal a novel role for RhoG in the regulation of CDRs and the cellular processes associated with their formation.
Collapse
Affiliation(s)
- Alejandra Valdivia
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606.,Division of Cardiology, School of Medicine, Emory University, Atlanta, GA 30322
| | | | - Sahezeel Awadia
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606
| | - Ashtyn Zinn
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606
| | - Rafael Garcia-Mata
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606
| |
Collapse
|
6
|
Zhang Q, Gao X, Li C, Feliciano C, Wang D, Zhou D, Mei Y, Monteiro P, Anand M, Itohara S, Dong X, Fu Z, Feng G. Impaired Dendritic Development and Memory in Sorbs2 Knock-Out Mice. J Neurosci 2016; 36:2247-60. [PMID: 26888934 PMCID: PMC4756157 DOI: 10.1523/jneurosci.2528-15.2016] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 12/21/2015] [Accepted: 01/13/2016] [Indexed: 12/27/2022] Open
Abstract
Intellectual disability is a common neurodevelopmental disorder characterized by impaired intellectual and adaptive functioning. Both environmental insults and genetic defects contribute to the etiology of intellectual disability. Copy number variations of SORBS2 have been linked to intellectual disability. However, the neurobiological function of SORBS2 in the brain is unknown. The SORBS2 gene encodes ArgBP2 (Arg/c-Abl kinase binding protein 2) protein in non-neuronal tissues and is alternatively spliced in the brain to encode nArgBP2 protein. We found nArgBP2 colocalized with F-actin at dendritic spines and growth cones in cultured hippocampal neurons. In the mouse brain, nArgBP2 was highly expressed in the cortex, amygdala, and hippocampus, and enriched in the outer one-third of the molecular layer in dentate gyrus. Genetic deletion of Sorbs2 in mice led to reduced dendritic complexity and decreased frequency of AMPAR-miniature spontaneous EPSCs in dentate gyrus granule cells. Behavioral characterization revealed that Sorbs2 deletion led to a reduced acoustic startle response, and defective long-term object recognition memory and contextual fear memory. Together, our findings demonstrate, for the first time, an important role for nArgBP2 in neuronal dendritic development and excitatory synaptic transmission, which may thus inform exploration of neurobiological basis of SORBS2 deficiency in intellectual disability. SIGNIFICANCE STATEMENT Copy number variations of the SORBS2 gene are linked to intellectual disability, but the neurobiological mechanisms are unknown. We found that nArgBP2, the only neuronal isoform encoded by SORBS2, colocalizes with F-actin at neuronal dendritic growth cones and spines. nArgBP2 is highly expressed in the cortex, amygdala, and dentate gyrus in the mouse brain. Genetic deletion of Sorbs2 in mice leads to impaired dendritic complexity and reduced excitatory synaptic transmission in dentate gyrus granule cells, accompanied by behavioral deficits in acoustic startle response and long-term memory. This is the first study of Sorbs2 function in the brain, and our findings may facilitate the study of neurobiological mechanisms underlying SORBS2 deficiency in the development of intellectual disability.
Collapse
Affiliation(s)
- Qiangge Zhang
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology, and Harvard, Cambridge, Massachusetts 02142
| | - Xian Gao
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, Key Laboratory of Brain Functional Genomics (Ministry of Education and Science and Technology Commission of Shanghai Municipality), Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China, Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology, and Harvard, Cambridge, Massachusetts 02142
| | - Chenchen Li
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology, and Harvard, Cambridge, Massachusetts 02142
| | - Catia Feliciano
- Champalimaud Neuroscience Programme, Champalimaud Center for the Unknown, Lisbon 1400-038, Portugal
| | - Dongqing Wang
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Dingxi Zhou
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, School of Life Sciences, Peking University, Beijing 100871, China, and
| | - Yuan Mei
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Patricia Monteiro
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology, and Harvard, Cambridge, Massachusetts 02142
| | - Michelle Anand
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Shigeyoshi Itohara
- Laboratory of Behavioral Genetics, RIKEN Brain Science Institute, Wako 351-0198, Japan
| | - Xiaowei Dong
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Science and Technology Commission of Shanghai Municipality), Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Zhanyan Fu
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology, and Harvard, Cambridge, Massachusetts 02142
| | - Guoping Feng
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, Key Laboratory of Brain Functional Genomics (Ministry of Education and Science and Technology Commission of Shanghai Municipality), Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China, Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology, and Harvard, Cambridge, Massachusetts 02142,
| |
Collapse
|
7
|
Charming neighborhoods on the cell surface: plasma membrane microdomains regulate receptor tyrosine kinase signaling. Cell Signal 2015; 27:1963-76. [PMID: 26163824 DOI: 10.1016/j.cellsig.2015.07.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/07/2015] [Indexed: 12/14/2022]
Abstract
Receptor tyrosine kinases (RTK) are an important family of growth factor and hormone receptors that regulate many aspects of cellular physiology. Ligand binding by RTKs at the plasma membrane elicits activation of many signaling intermediates. The spatial and temporal regulation of RTK signaling within cells is an important determinant of receptor signaling outcome. In particular, the compartmentalization of the plasma membrane into a number of microdomains allows context-specific control of RTK signaling. Indeed various RTKs are recruited to and enriched within specific plasma membrane microdomains under various conditions, including lipid-ordered domains such as caveolae and lipid rafts, clathrin-coated structures, tetraspanin-enriched microdomains, and actin-dependent protrusive membrane microdomains such as dorsal ruffles and invadosomes. We examine the evidence for control of RTK signaling by each of these plasma membrane microdomains, as well as molecular mechanisms for how this spatial organization controls receptor signaling.
Collapse
|
8
|
Anekal PV, Yong J, Manser E. Arg kinase-binding protein 2 (ArgBP2) interaction with α-actinin and actin stress fibers inhibits cell migration. J Biol Chem 2014; 290:2112-25. [PMID: 25429109 DOI: 10.1074/jbc.m114.610725] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cell migration requires dynamic remodeling of the actomyosin network. We report here that an adapter protein, ArgBP2, is a component of α-actinin containing stress fibers and inhibits migration. ArgBP2 is undetectable in many commonly studied cancer-derived cell lines. COS-7 and HeLa cells express ArgBP2 (by Western analysis), but expression was detectable only in approximately half the cells by immunofluorescence. Short term clonal analysis demonstrated 0.2-0.3% of cells switch ArgBP2 expression (on or off) per cell division. ArgBP2 can have a fundamental impact on the actomyosin network: ArgBP2 positive COS-7 cells, for example, are clearly distinguishable by their denser actomyosin (stress fiber) network. ArgBP2γ binding to α-actinin appears to underlie its ability to localize to stress fibers and decrease cell migration. We map a small α-actinin binding region in ArgBP2 (residues 192-228) that is essential for these effects. Protein kinase A phosphorylation of ArgBP2γ at neighboring Ser-259 and consequent 14-3-3 binding blocks its interaction with α-actinin. ArgBP2 is known to be down-regulated in some aggressively metastatic cancers. Our work provides a biochemical explanation for the anti-migratory effect of ArgBP2.
Collapse
Affiliation(s)
- Praju Vikas Anekal
- From the sGSK Group Institute of Molecular and Cell Biology (IMCB), Proteos Building, 61 Biopolis Drive, 138673 Singapore
| | - Jeffery Yong
- From the sGSK Group Institute of Molecular and Cell Biology (IMCB), Proteos Building, 61 Biopolis Drive, 138673 Singapore
| | - Ed Manser
- From the sGSK Group Institute of Molecular and Cell Biology (IMCB), Proteos Building, 61 Biopolis Drive, 138673 Singapore, the Institute of Medical Biology (IMB), 8A Biomedical Grove, 06-06 Immunos Building, 138648 Singapore, and the Department of Pharmacology, National University of Singapore, 119077 Singapore
| |
Collapse
|
9
|
Lee H, Tsygankov AY. Cbl-family proteins as regulators of cytoskeleton-dependent phenomena. J Cell Physiol 2013; 228:2285-93. [DOI: 10.1002/jcp.24412] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/29/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Hojin Lee
- Department of Microbiology and Immunology; Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research; Temple University School of Medicine; Philadelphia Pennsylvania
| | - Alexander Y. Tsygankov
- Department of Microbiology and Immunology; Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research; Temple University School of Medicine; Philadelphia Pennsylvania
| |
Collapse
|
10
|
Abstract
Cells construct a number of plasma membrane structures to meet a range of physiological demands. Driven by juxtamembrane actin machinery, these actin-based membrane protrusions are essential for the operation and maintenance of cellular life. They are required for diverse cellular functions, such as directed cell motility, cell spreading, adhesion, and substrate/matrix degradation. Circular dorsal ruffles (CDRs) are one class of such structures characterized as F-actin-rich membrane projections on the apical cell surface. CDRs commence their formation minutes after stimulation as flat, open, and immature ruffles and progressively develop into fully enclosed circular ruffles. These "rings" then mature and contract centrifugally before subsiding. Serving a critical function in receptor internalization and cell migration, CDRs are thus highly dynamic but transient formations. Here, we review the current state of knowledge concerning the regulation of circular dorsal ruffles. We focus specifically on the biochemical pathways leading to CDR formation in order to better define the roles and functions of these enigmatic structures.
Collapse
|
11
|
Duan L, Raja SM, Chen G, Virmani S, Williams SH, Clubb RJ, Mukhopadhyay C, Rainey MA, Ying G, Dimri M, Chen J, Reddi AL, Naramura M, Band V, Band H. Negative regulation of EGFR-Vav2 signaling axis by Cbl ubiquitin ligase controls EGF receptor-mediated epithelial cell adherens junction dynamics and cell migration. J Biol Chem 2011; 286:620-33. [PMID: 20940296 PMCID: PMC3013022 DOI: 10.1074/jbc.m110.188086] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Indexed: 02/04/2023] Open
Abstract
The E3 ubiquitin ligase Casitas B lymphoma protein (Cbl) controls the ubiquitin-dependent degradation of EGF receptor (EGFR), but its role in regulating downstream signaling elements with which it associates and its impact on biological outcomes of EGFR signaling are less clear. Here, we demonstrate that stimulation of EGFR on human mammary epithelial cells disrupts adherens junctions (AJs) through Vav2 and Rac1/Cdc42 activation. In EGF-stimulated cells, Cbl regulates the levels of phosphorylated Vav2 thereby attenuating Rac1/Cdc42 activity. Knockdown of Cbl and Cbl-b enhanced the EGF-induced disruption of AJs and cell motility. Overexpression of constitutively active Vav2 activated Rac1/Cdc42 and reorganized junctional actin cytoskeleton; these effects were suppressed by WT Cbl and enhanced by a ubiquitin ligase-deficient Cbl mutant. Cbl forms a complex with phospho-EGFR and phospho-Vav2 and facilitates phospho-Vav2 ubiquitinylation. Cbl can also interact with Vav2 directly in a Cbl Tyr-700-dependent manner. A ubiquitin ligase-deficient Cbl mutant enhanced the morphological transformation of mammary epithelial cells induced by constitutively active Vav2; this effect requires an intact Cbl Tyr-700. These results indicate that Cbl ubiquitin ligase plays a critical role in the maintenance of AJs and suppression of cell migration through down-regulation of EGFR-Vav2 signaling.
Collapse
Affiliation(s)
- Lei Duan
- From the Eppley Institute for Cancer and Allied Diseases, and
- the Department of Medicine, NorthShore University Health Systems, Northwestern University, Evanston, Illinois 60201
| | - Srikumar M. Raja
- From the Eppley Institute for Cancer and Allied Diseases, and
- the Department of Medicine, NorthShore University Health Systems, Northwestern University, Evanston, Illinois 60201
| | - Gengsheng Chen
- the Department of Medicine, NorthShore University Health Systems, Northwestern University, Evanston, Illinois 60201
| | - Sumeet Virmani
- the Department of Medicine, NorthShore University Health Systems, Northwestern University, Evanston, Illinois 60201
| | | | - Robert J. Clubb
- From the Eppley Institute for Cancer and Allied Diseases, and
| | | | - Mark A. Rainey
- From the Eppley Institute for Cancer and Allied Diseases, and
- the Department of Medicine, NorthShore University Health Systems, Northwestern University, Evanston, Illinois 60201
| | - Guoguang Ying
- the Department of Medicine, NorthShore University Health Systems, Northwestern University, Evanston, Illinois 60201
| | - Manjari Dimri
- the Department of Medicine, NorthShore University Health Systems, Northwestern University, Evanston, Illinois 60201
| | - Jing Chen
- the Department of Medicine, NorthShore University Health Systems, Northwestern University, Evanston, Illinois 60201
| | - Alagarsamy L. Reddi
- the Department of Medicine, NorthShore University Health Systems, Northwestern University, Evanston, Illinois 60201
| | - Mayumi Naramura
- From the Eppley Institute for Cancer and Allied Diseases, and
- the Department of Medicine, NorthShore University Health Systems, Northwestern University, Evanston, Illinois 60201
| | - Vimla Band
- From the Eppley Institute for Cancer and Allied Diseases, and
- Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198-5950 and
- the Department of Medicine, NorthShore University Health Systems, Northwestern University, Evanston, Illinois 60201
| | - Hamid Band
- From the Eppley Institute for Cancer and Allied Diseases, and
- Departments of Biochemistry and Molecular Biology, Pathology and Microbiology, Pharmacology and Neuroscience, and
- the Department of Medicine, NorthShore University Health Systems, Northwestern University, Evanston, Illinois 60201
| |
Collapse
|
12
|
Adapala NS, Barbe MF, Langdon WY, Tsygankov AY, Sanjay A. Cbl-phosphatidylinositol 3 kinase interaction differentially regulates macrophage colony-stimulating factor-mediated osteoclast survival and cytoskeletal reorganization. Ann N Y Acad Sci 2010; 1192:376-84. [PMID: 20392263 DOI: 10.1111/j.1749-6632.2009.05346.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Cbl protein is a key player in macrophage colony-stimulating factor (M-CSF)-induced signaling. To examine the role of Cbl in M-CSF-mediated cellular events, we used Cbl(YF/YF) knockin mice in which the regulatory tyrosine 737, which when phosphorylated binds to the p85 subunit of phosphatidylinositol 3 kinase (PI3K), is substituted to phenylalanine. In ex vivo cultures, M-CSF and receptor activator of nuclear factor-kappaB ligand-mediated differentiation of bone marrow precursors from Cbl(YF/YF) mice generated increased number of osteoclasts; however, osteoclast numbers in Cbl(YF/YF) cultures were unchanged with increasing doses of M-CSF. We found that Cbl(YF/YF) osteoclasts have enhanced intrinsic ability to survive, and this response was further augmented upon exposure to M-CSF. Treatment of osteoclasts with M-CSF-induced actin reorganization and lamellipodia formation in wild-type osteoclasts; however, in Cbl(YF/YF) osteoclasts lamellipodia formation was compromised. Collectively, these results indicate that abrogation of the Cbl-PI3K interaction, although not affecting M-CSF-induced proliferation and differentiation of precursors, is required for regulation of survival and actin cytoskeletal reorganization of mature osteoclasts.
Collapse
Affiliation(s)
- Naga Suresh Adapala
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|
13
|
Abella JV, Vaillancourt R, Frigault MM, Ponzo MG, Zuo D, Sangwan V, Larose L, Park M. The Gab1 scaffold regulates RTK-dependent dorsal ruffle formation through the adaptor Nck. J Cell Sci 2010; 123:1306-19. [PMID: 20332103 DOI: 10.1242/jcs.062570] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The polarised distribution of signals downstream from receptor tyrosine kinases (RTKs) regulates fundamental cellular processes that control cell migration, growth and morphogenesis. It is poorly understood how RTKs are involved in the localised signalling and actin remodelling required for these processes. Here, we show that the Gab1 scaffold is essential for the formation of a class of polarised actin microdomain, namely dorsal ruffles, downstream from the Met, EGF and PDGF RTKs. Gab1 associates constitutively with the actin-nucleating factor N-WASP. Following RTK activation, Gab1 recruits Nck, an activator of N-WASP, into a signalling complex localised to dorsal ruffles. Formation of dorsal ruffles requires interaction between Gab1 and Nck, and also requires functional N-WASP. Epithelial cells expressing Gab1DeltaNck (Y407F) exhibit decreased Met-dependent Rac activation, fail to induce dorsal ruffles, and have impaired cell migration and epithelial remodelling. These data show that a Gab1-Nck signalling complex interacts with several RTKs to promote polarised actin remodelling and downstream biological responses.
Collapse
Affiliation(s)
- Jasmine V Abella
- Department of Biochemistry, McGill University, Montréal, Québec H3A 1A1, Canada
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Shmelzer Z, Karter M, Eisenstein M, Leto TL, Hadad N, Ben-Menahem D, Gitler D, Banani S, Wolach B, Rotem M, Levy R. Cytosolic Phospholipase A2α Is Targeted to the p47 -PX Domain of the Assembled NADPH Oxidase via a Novel Binding Site in Its C2 Domain. J Biol Chem 2008; 283:31898-908. [DOI: 10.1074/jbc.m804674200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
15
|
The Src-like adaptor protein regulates PDGF-induced actin dorsal ruffles in a c-Cbl-dependent manner. Oncogene 2008; 27:3494-500. [PMID: 18193084 DOI: 10.1038/sj.onc.1211011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Src-like adaptor protein (SLAP) belongs to the subfamily of adapter proteins that negatively regulate cellular signalling initiated by tyrosine kinases. SLAP has a unique, myristylated N-terminus, followed by SH3 and SH2 domains with high homology to Src family tyrosine kinases (SFK) and a unique C-terminal tail, which is important for c-Cbl binding. We have previously shown that SLAP negatively regulates platelet-derived growth factor (PDGF)-induced mitogenesis in fibroblasts and we now report that it regulates F-actin assembly for dorsal ruffles formation. c-Cbl mediated SLAP inhibition towards actin remodelling. Moreover, SLAP enhanced PDGF-induced c-Cbl phosphorylation by SFK. In contrast, SLAP mitogenic inhibition was not mediated by c-Cbl, but it rather involved a competitive mechanism with SFK for PDGF-receptor (PDGFR) association and mitogenic signalling. Accordingly, phosphorylation of the Src mitogenic substrates Stat3 and Shc were reduced by SLAP. Thus, we concluded that SLAP regulates PDGFR signalling by two independent mechanisms: a competitive mechanism for PDGF-induced Src mitogenic signalling and a non-competitive mechanism for dorsal ruffles formation mediated by c-Cbl.
Collapse
|
16
|
Abstract
Cbl proteins are ubiquitin ligases and multifunctional adaptor proteins that are implicated in the regulation of signal transduction in various cell types and in response to different stimuli. Cbl-associated proteins can assemble together at a given time or space inside the cell, and such an interactome can form signal competent networks that control many physiological processes. Dysregulation of spatial or temporal constraints in the Cbl interactome results in the development of human pathologies such as immune diseases, diabetes and cancer.
Collapse
Affiliation(s)
- Mirko H H Schmidt
- Institute for Biochemistry II, Goethe University Medical School, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | | |
Collapse
|
17
|
Swaminathan G, Feshchenko EA, Tsygankov AY. c-Cbl-facilitated cytoskeletal effects in v-Abl-transformed fibroblasts are regulated by membrane association of c-Cbl. Oncogene 2007; 26:4095-105. [PMID: 17237826 DOI: 10.1038/sj.onc.1210184] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The multi-functional protein c-Cbl is an important modulator of actin cytoskeletal dynamics in diverse biological systems. We had previously reported that c-Cbl facilitates cell spreading and adhesion and suppresses anchorage-independent growth of v-Abl-transformed fibroblasts. To assess the importance of membrane localization of c-Cbl for the observed effects of c-Cbl in v-Abl-3T3 cells, we first mapped the membrane interactive domain(s) of c-Cbl. Our studies indicate that localization of c-Cbl to the membrane is likely to be mediated by the tyrosine kinase binding (TKB) domain and the proline-rich region of c-Cbl, whereas C-terminal tyrosine phosphorylation does not play a role. The association of v-Cbl, which encompasses the TKB domain, with the membrane was unusual as it was not entirely dependent on SH2-phosphotyrosine interactions. Our studies further demonstrate that Src-like adaptor protein (SLAP), which binds to v-Cbl in a tyrosine phosphorylation-independent manner, facilitates membrane association of Cbl. The interaction between c-Cbl and SLAP in v-Abl-3T3 cells positively influenced c-Cbl-mediated spreading and adhesion of these cells. SLAP appears to exert its effects not simply by increasing the amount of c-Cbl in the membrane but by facilitating binding of p85-phosphatidylinositol-3-kinase (PI3K) with membrane-associated c-Cbl.
Collapse
Affiliation(s)
- G Swaminathan
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
18
|
DeJournett R, Kobayashi R, Pan S, Wu C, Etkin L, Clark R, Bögler O, Kuang J. Phosphorylation of the proline-rich domain of Xp95 modulates Xp95 interaction with partner proteins. Biochem J 2007; 401:521-31. [PMID: 16978157 PMCID: PMC1820820 DOI: 10.1042/bj20061287] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The mammalian adaptor protein Alix [ALG-2 (apoptosis-linked-gene-2 product)-interacting protein X] belongs to a conserved family of proteins that have in common an N-terminal Bro1 domain and a C-terminal PRD (proline-rich domain), both of which mediate partner protein interactions. Following our previous finding that Xp95, the Xenopus orthologue of Alix, undergoes a phosphorylation-dependent gel mobility shift during progesteroneinduced oocyte meiotic maturation, we explored potential regulation of Xp95/Alix by protein phosphorylation in hormone-induced cell cycle re-entry or M-phase induction. By MALDI-TOF (matrix-assisted laser-desorption ionization-time-of-flight) MS analyses and gel mobility-shift assays, Xp95 is phosphorylated at multiple sites within the N-terminal half of the PRD during Xenopus oocyte maturation, and a similar region in Alix is phosphorylated in mitotically arrested but not serum-stimulated mammalian cells. By tandem MS, Thr745 within this region, which localizes in a conserved binding site to the adaptor protein SETA [SH3 (Src homology 3) domain-containing, expressed in tumorigenic astrocytes] CIN85 (a-cyano-4-hydroxycinnamate)/SH3KBP1 (SH3-domain kinase-binding protein 1), is one of the phosphorylation sites in Xp95. Results from GST (glutathione S-transferase)-pull down and peptide binding/competition assays further demonstrate that the Thr745 phosphorylation inhibits Xp95 interaction with the second SH3 domain of SETA. However, immunoprecipitates of Xp95 from extracts of M-phase-arrested mature oocytes contained additional partner proteins as compared with immunoprecipitates from extracts of G2-arrested immature oocytes. The deubiquitinase AMSH (associated molecule with the SH3 domain of signal transducing adaptor molecule) specifically interacts with phosphorylated Xp95 in M-phase cell lysates. These findings establish that Xp95/Alix is phosphorylated within the PRD during M-phase induction, and indicate that the phosphorylation may both positively and negatively modulate their interaction with partner proteins.
Collapse
Affiliation(s)
- Robert E. DeJournett
- *Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd, Box 019, Houston, TX 77030, U.S.A
- †Department of Neurosurgery and Neuro-Oncology, The University of Texas, M.D. Anderson Cancer Center, 1515 Holcombe Blvd, Box 019, Houston, TX 77030, U.S.A
- ‡Program in Genes and Development, University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, U.S.A
| | - Ryuji Kobayashi
- §Department of Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd, Box 019, Houston, TX 77030, U.S.A
| | - Shujuan Pan
- *Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd, Box 019, Houston, TX 77030, U.S.A
- †Department of Neurosurgery and Neuro-Oncology, The University of Texas, M.D. Anderson Cancer Center, 1515 Holcombe Blvd, Box 019, Houston, TX 77030, U.S.A
- ‡Program in Genes and Development, University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, U.S.A
| | - Chuanfen Wu
- ∥Department of Molecular Genetics, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd, Box 019, Houston, TX 77030, U.S.A
| | - Laurence D. Etkin
- ∥Department of Molecular Genetics, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd, Box 019, Houston, TX 77030, U.S.A
| | - Richard B. Clark
- ¶Department of Integrative Biology and Pharmacology, The University of Texas Medical School, Houston, TX 77225, U.S.A
| | - Oliver Bögler
- †Department of Neurosurgery and Neuro-Oncology, The University of Texas, M.D. Anderson Cancer Center, 1515 Holcombe Blvd, Box 019, Houston, TX 77030, U.S.A
- ‡Program in Genes and Development, University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, U.S.A
| | - Jian Kuang
- *Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd, Box 019, Houston, TX 77030, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
19
|
Swaminathan G, Tsygankov AY. The Cbl family proteins: ring leaders in regulation of cell signaling. J Cell Physiol 2006; 209:21-43. [PMID: 16741904 DOI: 10.1002/jcp.20694] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The proto-oncogenic protein c-Cbl was discovered as the cellular form of v-Cbl, a retroviral transforming protein. This was followed over the years by important discoveries, which identified c-Cbl and other Cbl-family proteins as key players in several signaling pathways. c-Cbl has donned the role of a multivalent adaptor protein, capable of interacting with a plethora of proteins, and has been shown to positively influence certain biological processes. The identity of c-Cbl as an E3 ubiquitin ligase unveiled the existence of an important negative regulatory pathway involved in maintaining homeostasis in protein tyrosine kinase (PTK) signaling. Recent years have also seen the emergence of novel regulators of Cbl, which have provided further insights into the complexity of Cbl-influenced pathways. This review will endeavor to provide a summary of current studies focused on the effects of Cbl proteins on various biological processes and the mechanism of these effects. The major sections of the review are as follows: Structure and genomic organization of Cbl proteins; Phosphorylation of Cbl; Interactions of Cbl; Localization of Cbl; Mechanism of effects of Cbl: (a) Ubiquitylation-dependent events: This section elucidates the mechanism of Cbl-mediated downregulation of EGFR and details the PTK and non-PTKs targeted by Cbl. In addition, it addresses the functional requirements for E3 Ubiquitin ligase activity of Cbl and negative regulation of Cbl-mediated downregulation of PTKs, (b) Adaptor functions: This section discusses the mechanisms of adaptor functions of Cbl in mitogen-activated protein kinase (MAPK) activation, insulin signaling, regulation of Ras-related protein 1 (Rap1), PI-3' kinase signaling, and regulation of Rho-family GTPases and cytoskeleton; Biological functions: This section gives an account of the diverse biological functions of Cbl and includes the role of Cbl in transformation, T-cell signaling and thymus development, B-cell signaling, mast-cell degranulation, macrophage functions, bone development, neurite growth, platelet activation, muscle degeneration, and bacterial invasion; Conclusions and perspectives.
Collapse
Affiliation(s)
- Gayathri Swaminathan
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
20
|
Honma N, Genda T, Matsuda Y, Yamagiwa S, Takamura M, Ichida T, Aoyagi Y. MEK/ERK signaling is a critical mediator for integrin-induced cell scattering in highly metastatic hepatocellular carcinoma cells. J Transl Med 2006; 86:687-96. [PMID: 16636681 DOI: 10.1038/labinvest.3700427] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The human hepatocellular carcinoma (HCC)-derived cell line KYN-2 is thought to provide a good model for studying the molecular basis of invasion and metastasis of human HCC, because it often shows cell scattering in vitro and intrahepatic metastasis in vivo. We previously found that integrin-mediated extracellular signals inactivated E-cadherin in KYN-2, and caused loss of cell-cell contact with gain of cell motility, which is considered to be a critical step in the process of cancer cell invasion and metastasis. To further understand molecular mechanisms involved in biological aggressiveness of HCC, we investigated intracellular signaling involved in integrin-mediated scattering of KYN-2 cells. Cultured KYN-2 cells formed trabecular aggregates in suspension, but when adhering to integrin-stimulating substrata, they scattered according to phosphorylation of extracellular signal-regulated kinase (ERK). Upon treatment with ERK kinase (MEK) inhibitor PD98059, adhered KYN-2 cell scattering was inhibited, tight cell-to-cell contact was recovered, and both E-cadherin and actin filaments accumulated in the area of intercellular contact zone. In contrast, constitutively active MEK1-transfected KYN-2 cells showed reduced E-cadherin and actin filaments in the intercellular contact zone, showing a flattened phenotype with broad lamellipodia. Enforced signaling of MEK-ERK pathway in KYN-2 cells suppressed cadherin-mediated homotypic adhesion and increased the potential of cell motility. An antibody-based protein microarray analysis revealed that the cytoplasmic protein c-Cbl was significantly downregulated in MEK1-transfected KYN-2 cells, suggesting that c-Cbl might be a candidate downstream mediator of integrin/MEK/ERK-mediated cell scattering. In conclusion, cell scattering of the highly metastatic cell line KYN-2 is regulated through the integrin-MEK-ERK signaling cascade, suggesting that this molecular pathway may be critical in intrahepatic metastasis of human HCC.
Collapse
Affiliation(s)
- Nobuyuki Honma
- Division of Gastroenterology and Hepatology, Department of Cellular Function, Niigata University Graduate School of Medical and Dental Science, Niigata City, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Veracini L, Franco M, Boureux A, Simon V, Roche S, Benistant C. Two distinct pools of Src family tyrosine kinases regulate PDGF-induced DNA synthesis and actin dorsal ruffles. J Cell Sci 2006; 119:2921-34. [PMID: 16787943 DOI: 10.1242/jcs.03015] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The mechanism by which the Src family of protein-tyrosine kinases (SFKs) regulate mitogenesis and morphological changes induced by platelet-derived growth factor (PDGF) is not well known. The cholesterol-enriched membrane microdomains, caveolae, regulate PDGF receptor signalling in fibroblasts and we examined their role in SFK functions. Here we show that caveolae disruption by membrane cholesterol depletion or expression of the dominant-negative caveolin-3 DGV mutant impaired Src mitogenic signalling including kinase activation, Myc gene induction and DNA synthesis. The impact of caveolae on SFK function was underscored by the capacity of Myc to overcome mitogenic inhibition as a result of caveolae disruption. Using biochemical fractionation we show that caveolae-enriched subcellular membranes regulate the formation of PDGF-receptor-SFK complexes. An additional pool of PDGF-activated SFKs that was insensitive to membrane cholesterol depletion was characterised in non-caveolae fractions. SFK activation outside caveolae was linked to the capacity of PDGF to induce F-actin rearrangements leading to dorsal ruffle formation. Inhibition of phospholipase C gamma (PLCgamma), sphingosine kinase and heterotrimeric Gi proteins implicates a PLC gamma-sphingosine-1-phosphate-Gi pathway for PDGF-induced SFK activation outside caveolae and actin assembly. In addition, the cytoplasmic tyrosine kinase Abl was identified as an important effector of this signalling cascade. We conclude that PDGF may stimulate two spatially distinct pools of SFKs leading to two different biological outcomes: DNA synthesis and dorsal ruffle formation.
Collapse
Affiliation(s)
- Laurence Veracini
- CNRS FRE2593 CRBM, 1919 route de Mende, 34293 Montpellier CEDEX 05, France
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Bioactive retinoids are potent limb teratogens, upregulating apoptosis, decreasing chondrogenesis, and producing limb-reduction defects. To target the origins of these effects, we examined gene expression changes in the developing murine limb after 3 h of culture with teratogenic concentrations of vitamin A. Embryonic day 12 CD-1 limbs were cultured in the absence or presence of vitamin A (retinol acetate) at 1.25 and 62.5muM (n = 5). Total RNA was used to probe Atlas 1.2 cDNA arrays. Eighty-one genes were significantly upregulated by retinol exposure; among these were key limb development signaling molecules, extracellular matrix and adhesion proteins, oncogenes, and a large number of transcriptional regulators, including Eya2, Id3, Snail, and Hes1. To relate these expression changes to teratogenic outcome, the response of these four genes was assessed after culture with vitamin A and retinoid receptor antagonists that are able to rescue retinoid-induced malformations; expression levels were correlated with limb malformations. Lastly, pathways analysis revealed that a large number of the genes significantly affected by retinoid treatment are functionally linked through direct interactions. Several regulatory gene cascades emerged relevant to morphogenesis, cell-fate, and chondrogenesis; moreover, members of these cascades crosstalk with one other. These results indicate that retinoids act in a coordinated fashion to disrupt development at multiple levels. In sum, this work proposes several unifying mechanisms for retinoid-induced limb malformations, identifies novel retinoid targets, and highlights Eya2, Id3, Snail, and Hes1 as potential key teratogenic effectors.
Collapse
Affiliation(s)
- Sarah E Ali-Khan
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada H3G 1Y6
| | | |
Collapse
|
23
|
Horne WC, Sanjay A, Bruzzaniti A, Baron R. The role(s) of Src kinase and Cbl proteins in the regulation of osteoclast differentiation and function. Immunol Rev 2006; 208:106-25. [PMID: 16313344 DOI: 10.1111/j.0105-2896.2005.00335.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The osteoclast resorbs mineralized bone during bone development, homeostasis, and repair. The deletion of the gene encoding the nonreceptor tyrosine kinase c-Src produces an osteopetrotic skeletal phenotype that is the consequence of the inability of the mature osteoclast to efficiently resorb bone. Src-/- osteoclasts exhibit reduced motility and abnormal organization of the apical secretory domain (the ruffled border) and attachment-related cytoskeletal elements that are necessary for bone resorption. A key function of Src in osteoclasts is to promote the rapid assembly and disassembly of the podosomes, the specialized integrin-based attachment structures of osteoclasts and other highly motile cells. Once recruited to the activated integrins, especially alphavbeta3), by the adhesion tyrosine kinase Pyk2, Src binds and phosphorylates Cbl and Cbl-b, homologous multisite adapter proteins with ubiquitin ligase activity. The Cbl proteins in turn recruit and activate additional signaling effectors, including phosphatidylinositol 3-kinase and dynamin, which play key roles in the development of cell polarity and the regulation of cell attachment and motility. In addition, Src and the Cbl proteins contribute to signaling cascades that are activated by several important receptors, including receptor activator of nuclear factor kappaB and the macrophage colony-stimulating factor receptor, and also downregulate the signaling from many of these receptors.
Collapse
Affiliation(s)
- William C Horne
- Department of Orthopaedics and Rehabilitation and Cell Biology, Yale University School of Medicine, New Haven, CT 06520-8044, USA
| | | | | | | |
Collapse
|
24
|
Scaife RM. Microtubule disassembly and inhibition of mitosis by a novel synthetic pharmacophore. J Cell Biochem 2006; 98:102-14. [PMID: 16365878 DOI: 10.1002/jcb.20758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Microtubule drugs, which block cell cycle progression through mitosis, have seen widespread use in cancer chemotherapies. Although microtubules are subject to regulation by signal transduction mechanisms, their pharmacological modulation has so far relied on compounds that bind to the tubulin subunit. A new microtubule pharmacophore, diphenyleneiodonium, causing disassembly of the microtubule cytoskeleton is described here. Although this synthetic compound does not affect the assembly state of purified microtubules, it profoundly suppresses microtubule assembly in vivo, causes paclitaxel-stabilized microtubules to cluster around the centrosomes, and selectively disassembles dynamic microtubules. Similar to other microtubule drugs, this new pharmacophore blocks mitotic spindle assembly and mitotic cell division.
Collapse
Affiliation(s)
- Robin M Scaife
- Laboratory for Cancer Medicine, Western Australian Institute for Medical Research, Centre for Medical Research, The University of Western Australia, Western Australia, Australia.
| |
Collapse
|
25
|
Teckchandani AM, Birukova AA, Tar K, Verin AD, Tsygankov AY. The multidomain protooncogenic protein c-Cbl binds to tubulin and stabilizes microtubules. Exp Cell Res 2005; 306:114-27. [PMID: 15878338 DOI: 10.1016/j.yexcr.2005.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2004] [Revised: 01/27/2005] [Accepted: 02/15/2005] [Indexed: 11/18/2022]
Abstract
The protooncogenic protein c-Cbl is known to regulate the actin cytoskeleton. In this study, we present results indicating that c-Cbl can also regulate the microtubular network. We have shown that c-Cbl binds to tubulin and microtubules through its tyrosine kinase binding (TKB) domain. However, the character of the interactions described in this report is novel, since the G306E mutation, which disrupts the ability of c-Cbl's TKB to bind to tyrosine-phosphorylated proteins, does not affect the observed interaction between c-Cbl and microtubules. Furthermore, overexpression of c-Cbl in human pulmonary artery endothelial cells and COS-7 cells leads to microtubule stabilization. We demonstrate that this effect of c-Cbl is mediated by TKB, and, like c-Cbl binding to microtubules, is independent of the ability of TKB to bind to tyrosine-phosphorylated proteins. Finally, we have shown that c-Cbl directly polymerizes microtubules in vitro, and that TKB is necessary and sufficient for this effect of c-Cbl. In this last phenomenon, as well as in the previous ones, the effect of TKB is not sensitive to the inactivating G306E mutation. Overall, the results presented in this report suggest a novel function for c-Cbl-microtubule binding and stabilization.
Collapse
Affiliation(s)
- Anjali M Teckchandani
- Department of Microbiology and Immunology, Temple University School of Medicine, 3400 N. Broad Street, Philadelphia, PA 19140, USA
| | | | | | | | | |
Collapse
|
26
|
Cestra G, Toomre D, Chang S, De Camilli P. The Abl/Arg substrate ArgBP2/nArgBP2 coordinates the function of multiple regulatory mechanisms converging on the actin cytoskeleton. Proc Natl Acad Sci U S A 2005; 102:1731-6. [PMID: 15659545 PMCID: PMC547834 DOI: 10.1073/pnas.0409376102] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
ArgBP2, and its brain-specific splice variant, nArgBP2, are interactors and substrates of Abl/Arg tyrosine kinases and of the ubiquitin ligase Cbl. They are members of a family of adaptor proteins that colocalize with actin on stress fibers and at cell-adhesion sites, including neuronal synapses. We show here that their NH2-terminal region, which contains a sorbin homology domain domain, interacts with spectrin, and we identify binding proteins for their COOH-terminal SH3 domains. All these binding partners participate in the regulation of the actin cytoskeleton. These include dynamin, synaptojanin, and WAVE isoforms, as well as WAVE regulatory proteins. At least two of the ArgBP2/nArgBP2 binding partners, synaptojanin 2B and WAVE2, undergo ubiquitination and Abl-dependent tyrosine phosphorylation. ArgBP2/nArgBP2 knockdown in astrocytes produces a redistribution of focal adhesion proteins and an increase in peripheral actin ruffles, whereas nArgBP2 overexpression produces a collapse of the actin cytoskeleton. Thus, ArgBP2/nArgBP2 is a scaffold protein that control the balance between adhesion and motility by coordinating the function of multiple signaling pathways converging on the actin cytoskeleton.
Collapse
Affiliation(s)
- Gianluca Cestra
- Department of Cell Biology and Howard Hughes Medical Institute, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA
| | | | | | | |
Collapse
|
27
|
Angers-Loustau A, Hering R, Werbowetski TE, Kaplan DR, Del Maestro RF. Src Regulates Actin Dynamics and Invasion of Malignant Glial Cells in Three Dimensions. Mol Cancer Res 2004. [DOI: 10.1158/1541-7786.595.2.11] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Abstract
Malignant glioma is the major brain tumor in adults and has a poor prognosis. The failure to control invasive cell subpopulations may be the key reason for local glioma recurrence after radical tumor resection and may contribute substantially to the failure of the other treatment modalities such as radiation therapy and chemotherapy. As a model for this invasion, we have implanted spheroids from a human glioma cell line (U251) in three-dimensional collagen type I matrices, which these cells readily invade. We first observed that the Src family kinase-specific pharmacologic inhibitors PP2 and SU6656 significantly inhibited the invasion of the cells in this assay. We confirmed this result by showing that expression of two inhibitors of Src family function, dominant-negative-Src and CSK, also suppressed glioma cell invasion. To characterize this effect at the level of the cytoskeleton, we used fluorescent time-lapse microscopy on U251 cells stably expressing a YFP-actin construct and observed a rapid change in actin dynamics following addition of PP2 in both two-dimensional and three-dimensional cultures. In monolayer cultures, PP2 caused the disappearance of peripheral membrane ruffles within minutes. In three-dimensional cultures, PP2 induced the loss of actin bursting at the leading tip of the invadopodium. The inhibition of Src family activity is thus a potential therapeutic approach to treat highly invasive malignant glioma.
Collapse
Affiliation(s)
- Alexandre Angers-Loustau
- 1Brain Tumor Research Center, Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada and
| | - Ramm Hering
- 1Brain Tumor Research Center, Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada and
| | - Tamra E. Werbowetski
- 1Brain Tumor Research Center, Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada and
| | - David R. Kaplan
- 1Brain Tumor Research Center, Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada and
- 2Hospital for Sick Children and Department of Molecular Genetics and Microbiology, University of Toronto, Toronto, Ontario, Canada
| | - Rolando F. Del Maestro
- 1Brain Tumor Research Center, Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada and
| |
Collapse
|
28
|
Goure J, Pastor A, Faudry E, Chabert J, Dessen A, Attree I. The V antigen of Pseudomonas aeruginosa is required for assembly of the functional PopB/PopD translocation pore in host cell membranes. Infect Immun 2004; 72:4741-50. [PMID: 15271936 PMCID: PMC470589 DOI: 10.1128/iai.72.8.4741-4750.2004] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Pseudomonas aeruginosa efficiently intoxicates eukaryotic cells through the activity of the type III secretion-translocation system (TTSS). Gene deletions within the translocation operon pcrGVH-popBD abolish pore-forming activity of P. aeruginosa strains with macrophages and TTSS-dependent hemolysis. Here we investigated the requirements for PcrV, PopB, and PopD in pore formation by analyzing specific mutants using red blood cells (RBCs) and fibroblasts expressing green fluorescent protein fused to actin. Simultaneous secretion of three proteins, PopB, PopD, and PcrV, was required to achieve wild-type hemolysis and effector translocation. Deletion of pcrV in a cytotoxic strain did not affect secretion of PopB and PopD but abolished hemolytic activity and translocation of effectors into fibroblasts. Notably, the PcrV-deficient mutant was not capable of inserting PopD into host cell membranes, whereas PopB and PopD, but not PcrV, were readily found within membranes of wild-type-infected RBCs. Immunoprecipitation experiments performed by using a liposome model of pore assembly revealed a direct interaction between PopD and PopB but not between PopD and PcrV. Consequently, PcrV is necessary for the functional assembly of the PopB/D translocon complex but does not interact directly with pore-forming Pop proteins.
Collapse
Affiliation(s)
- Julien Goure
- Biochimie et Biophysique des Systèmes Intégrés, UMR 5092 CNRS/CEA/UJF, DRDC, CEA, Grenoble, France
| | | | | | | | | | | |
Collapse
|
29
|
Scaife RM, Job D, Langdon WY. Rapid microtubule-dependent induction of neurite-like extensions in NIH 3T3 fibroblasts by inhibition of ROCK and Cbl. Mol Biol Cell 2003; 14:4605-17. [PMID: 12960437 PMCID: PMC266776 DOI: 10.1091/mbc.e02-11-0739] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A number of key cellular functions, such as morphological differentiation and cell motility, are closely associated with changes in cytoskeletal dynamics. Many of the principal signaling components involved in actin cytoskeletal dynamics have been identified, and these have been shown to be critically involved in cell motility. In contrast, signaling to microtubules remains relatively uncharacterized, and the importance of signaling pathways in modulation of microtubule dynamics has so far not been established clearly. We report here that the Rho-effector ROCK and the multiadaptor proto-oncoprotein Cbl can profoundly affect the microtubule cytoskeleton. Simultaneous inhibition of these two signaling molecules induces a dramatic rearrangement of the microtubule cytoskeleton into microtubule bundles. The formation of these microtubule bundles, which does not involve signaling by Rac, Cdc42, Crk, phosphatidylinositol 3-kinase, and Abl, is sufficient to induce distinct neurite-like extensions in NIH 3T3 fibroblasts, even in the absence of microfilaments. This novel microtubule-dependent function that promotes neurite-like extensions is not dependent on net changes in microtubule polymerization or stabilization, but rather involves selective elongation and reorganization of microtubules into long bundles.
Collapse
Affiliation(s)
- Robin M Scaife
- Department of Pathology, University of Western Australia, Crawley, WA 6009, Australia.
| | | | | |
Collapse
|
30
|
Price LS, Langeslag M, ten Klooster JP, Hordijk PL, Jalink K, Collard JG. Calcium signaling regulates translocation and activation of Rac. J Biol Chem 2003; 278:39413-21. [PMID: 12888567 DOI: 10.1074/jbc.m302083200] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Rac is activated in response to various stimuli including growth factors and by adhesion to the extracellular matrix. However, how these stimuli ultimately result in Rac activation is poorly understood. The increase in intracellular calcium [Ca2+]i represents a ubiquitous second messenger system in cells, linking receptor activation to downstream signaling pathways. Here we show that elevation of [Ca2+]i, either artificially or by thrombin receptor activation, potently induces Rac activation. Lamellipodia formation induced by artificial elevation of [Ca2+]i is blocked by inhibition of Rac signaling, indicating that calcium-induced cytoskeletal changes are controlled by the activation of Rac. Calcium-dependent Rac activation was dependent on the activation of a conventional protein kinase C. Furthermore, both increased [Ca2+]i and protein kinase C activation induce phosphorylation of RhoGDI alpha and induce the translocation of cytosolic Rac to the plasma membrane. Intracellular calcium signaling may thus contribute to the intracellular localization and activation of Rac to regulate the cytoskeletal changes in response to receptor stimulation.
Collapse
Affiliation(s)
- Leo S Price
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | | | | | | | | | | |
Collapse
|
31
|
Suetsugu S, Yamazaki D, Kurisu S, Takenawa T. Differential Roles of WAVE1 and WAVE2 in Dorsal and Peripheral Ruffle Formation for Fibroblast Cell Migration. Dev Cell 2003; 5:595-609. [PMID: 14536061 DOI: 10.1016/s1534-5807(03)00297-1] [Citation(s) in RCA: 222] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cell migration is driven by actin polymerization at the leading edge of lamellipodia, where WASP family verprolin-homologous proteins (WAVEs) activate Arp2/3 complex. When fibroblasts are stimulated with PDGF, formation of peripheral ruffles precedes that of dorsal ruffles in lamellipodia. Here, we show that WAVE2 deficiency impairs peripheral ruffle formation and WAVE1 deficiency impairs dorsal ruffle formation. During directed cell migration in the absence of extracellular matrix (ECM), cells migrate with peripheral ruffles at the leading edge and WAVE2, but not WAVE1, is essential. In contrast, both WAVE1 and WAVE2 are essential for invading migration into ECM, suggesting that the leading edge in ECM has characteristics of both ruffles. WAVE1 is colocalized with ECM-degrading enzyme MMP-2 in dorsal ruffles, and WAVE1-, but not WAVE2-, dependent migration requires MMP activity. Thus, WAVE2 is essential for leading edge extension for directed migration in general and WAVE1 is essential in MMP-dependent migration in ECM.
Collapse
Affiliation(s)
- Shiro Suetsugu
- Department of Biochemistry, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
| | | | | | | |
Collapse
|
32
|
Castoria G, Lombardi M, Barone MV, Bilancio A, Di Domenico M, Bottero D, Vitale F, Migliaccio A, Auricchio F. Androgen-stimulated DNA synthesis and cytoskeletal changes in fibroblasts by a nontranscriptional receptor action. J Cell Biol 2003; 161:547-56. [PMID: 12743104 PMCID: PMC2172930 DOI: 10.1083/jcb.200211099] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In NIH3T3 cells, 0.001 nM of the synthetic androgen R1881 induces and stimulates association of androgen receptor (AR) with Src and phosphatidylinositol 3-kinase (Pl3-kinase), respectively, thereby triggering S-phase entry. 10 nM R1881 stimulates Rac activity and membrane ruffling in the absence of the receptor-Src-PI3-kinase complex assembly. The antiandrogen Casodex and specific inhibitors of Src and PI3-kinase prevent both hormonal effects, DNA synthesis and cytoskeletal changes. Neither low nor high R1881 concentration allows receptor nuclear translocation and receptor-dependent transcriptional activity in fibroblasts, although they harbor the classical murine AR. The very low amount of AR in NIH3T3 cells (7% of that present in LNCaP cells) activates the signaling pathways, but apparently is not sufficient to stimulate gene transcription. This view is supported by the appearance of receptor nuclear translocation as well as receptor-mediated transcriptional activity after overexpression of AR in fibroblasts. In addition, AR-negative Cos cells transiently transfected with a very low amount of hAR cDNA respond to low and high R1881 concentrations with signaling activation. Interestingly, they do not show significant transcriptional activation under the same experimental conditions. Fibroblasts are the first example of cells that respond to steroid hormones with activation of signaling pathways in the absence of endogenous receptor transcriptional activity. The data reported also show that hormone concentration can be crucial in determining the type of cell responsiveness.
Collapse
MESH Headings
- 3T3 Cells
- Active Transport, Cell Nucleus/drug effects
- Active Transport, Cell Nucleus/genetics
- Androgens/metabolism
- Androgens/pharmacology
- Animals
- Antibodies/pharmacology
- COS Cells
- Cell Membrane/drug effects
- Cell Membrane/metabolism
- Cell Transformation, Neoplastic/drug effects
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cytoskeleton/drug effects
- Cytoskeleton/metabolism
- Cytoskeleton/ultrastructure
- DNA/biosynthesis
- DNA/drug effects
- Dose-Response Relationship, Drug
- Female
- Fetus
- Fibroblasts/cytology
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/genetics
- Humans
- Male
- Mice
- Receptors, Androgen/drug effects
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- S Phase/drug effects
- S Phase/genetics
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Stromal Cells/cytology
- Stromal Cells/drug effects
- Stromal Cells/metabolism
- Transcription, Genetic/drug effects
- Transcription, Genetic/genetics
- Tumor Cells, Cultured
- rac GTP-Binding Proteins/drug effects
- rac GTP-Binding Proteins/genetics
- rac GTP-Binding Proteins/metabolism
Collapse
Affiliation(s)
- Gabriella Castoria
- Dipartimento di Patologia Generale, Facoltá di Medicina e Chirurgia, II Università degli Studi di Napoli, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|